R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Benutzer-Handbuch

) Volume 2
Ubersetzung von Programmen, Debugging

Version 1.0

(Leerseite)

R-BASIC - Benutzer-Handbuch

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4 Ubersetzen von BASIC-Programmencccucsmsscmsnsssssssssssssssssssses

5 Fehlersuche und Debugging -....ccvcoemnmmnnmmnntnn et

5.1 Methoden zur FENIErSUCNE .. .cuuieeiiei e
5.2 Die Error-Checking Version ...
5.3 Der R-BASIC DebUGQQETeeeiiiiiiiiiiiie e

5.3.1 Bedienung des Debuggers ..o
5.3.2 Debuggen von Librariescccocoeeeiiiiiiiiiiiiiie
5.3.3 Interne Organisationcccocveeiiiiiiiiiiiiii

R-BASIC - Benutzer-Handbuch

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

4 Ubersetzen von R-BASIC Programmen

R-BASIC unterstiitzt das Ubertragen von Programmen in eine andere Sprache
sehr komfortabel. Der Einsteiger mag es fir eine gute Idee halten, den Quellcode
durchzugehen, jeden Textstring zu andern und dann das Programm neu zu
compilieren. Das wére jedoch nicht nur mihsam und fehleranféllig, sondern
miisste nach jeder noch so kleinen Anderung des Programms wiederholt werden.

Deswegen wird mit R-BASIC ein "Ubersetzer" Tool (R-BASIC Translator)
mitgeliefert. Dieses Tool 6ffnet ein fertig compiliertes R-BASIC-Programm, liest die
zu Ubersetzenden Strings aus, ermdglicht deren Ubersetzung und speichert eine
libersetzte Kopie des Originalprogramms. Die Ubersetzungsdaten, d.h. die
Originaltexte und die Ubersetzten Texte, werden auBerdem in einer eigenen Datei
(im Folgenden "Ubersetzungsdatei" genannt) abgelegt, so dass sie wieder-
verwendet werden kdnnen, wenn spater eine neue Version des Programms
ubersetzt werden soll.

Ein weiterer Vorteil dieses Prinzips ist es, dass die Ubersetzung nicht direkt vom
Programmierer ausgefuhrt werden muss. Vielmehr kann auch ein Sprachkundiger,
der keine Ahnung vom Programmieren hat, nach kurzer Einweisung Ihr Programm
Ubersetzen.

Da in den meisten Féllen die Originalversion und die Gbersetzte Version den
gleichen Namen haben und auch am gleichen Ort gespeichert werden sollen bzw.
mussen (z.B. bei Libraries), ist es erforderlich, die GUbersetzte Version in einer
zweiten PC/GEQOS-Installation, dem sogenannten Target (engl. target = Ziel),
abzulegen. Dieses Target missen Sie vorher anlegen und den Pfad dorthin dem
"Ubersetzer" einmalig mitteilen. Wenn Sie alle zu Ihrem Projekt gehérenden
Dateien in die Target-Installation kopieren kénnen Sie das Installationspaket flr
die Ubersetzte Version komplett unter dem Target anlegen.

Um ein R-BASIC-Programm zu Ubersetzten mussen Sie also folgendermaBen
vorgehen:

1. Stellen Sie sicher, dass eine lauffahige Target-Installation existiert.

2. Compilieren Sie ihr Programm. Legen Sie eine ein eigenstandig lauffahiges
Programm (R-App) an. Nur diese kénnen Ubersetzt werden.

3. Offnen Sie das zu (ibersetzende Programm mit dem R-BASIC Translator.
Dazu gehen Sie folgendermal3en vor:

Wenn Sie das Programm erstmalig Gbersetzen:
+ Starten Sie das Ubersetzer-Tool direkt. Wahlen Sie "BASIC Programm" und
6ffnen damit den Launcher des BASIC-Programms im World-Verzeichnis.

Falls bereits eine Ubersetzungsdatei existiert:

+ Offnen Sie die Ubersetzungsdatei bitte diese durch Doppelklick.

« Wahlen Sie "Ubersetzungsdatei updaten" aus dem Dateimenii. Der
Translator vergleicht damit die in der Ubersetzungsdatei gespeicherten

Programme Ubersetzen - 44

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Informationen mit der aktuellen Version und weiB jetzt, ob zu Gbersetzende
Texte geadndert wurden, hinzugekommen sind oder geléscht wurden. Sie
bekommen die entsprechenden Informationen angezeigt.

4. Ubersetzen Sie alle Textstrings und speichern die Ubersetzer-Daten als
Dokument des Ubersetzer-Tools (Ubersetzungsdatei).

5. Erzeugen Sie das Ubersetzte R-BASIC-Programm. Wahlen Sie dazu den
Meniipunkt "Ubersetztes Programm anlegen" aus dem Dateimenii. Der R-
BASIC Translator kopiert alle notwendigen Dateien ins Target und passt die
Ubersetzten Strings an.

6. Wechseln Sie ins Target und testen |hr Gbersetztes Programm. Achten Sie
dabei besonders auf die Tastenkurzel zur Tastaturnavigation.

7. Erzeugen Sie ein Installationspaket fir das tUbersetzte Programm.

Eine ausfihrliche Beschreibung, wie man den R-BASIC Translator bedient finden
Sie in der Hilfe zum Programm. Dort sind auch die Terminologie und weitere
Details ausfuhrlich erlautert.

Anweisungen an das Ubersetzer-Tool

Anweisung Syntax im Ul-Code und im BASIC-Code
NoTranslate NoTranslate
TranslatelLen TranslateLen <n>

In bestimmten Situationen ist es gar nicht gewlinscht, wenn bestimmte Strings
durch einen Ubersetzer gedndert werden kdnnen. Wenn Sie z.B. ein Spiel
programmieren, dessen Levels durch Strings in DATA-Zeilen beschrieben werden,
miissen diese Level-Strings vor versehentlichen Anderungen durch den
Ubersetzer geschiitzt werden. Ein haufiger Fall sind auch die Zugriffs-Flags oder
Dateinamen bei Datei-Operationen (z.B. FileOpen), die als Strings im Quelltext
stehen.

Ein anderes potentielles Problem stellen Strings dar, die eine bestimmte Lange
nicht Uberschreiten dirfen.

Zur Loésung dieser Probleme bietet R-BASIC die Steueranweisungen NoTranslate
und TranslateLen an. Diese kdnnen Uberall im Code, sowohl im BASIC-Code als
auch im Ul-Code, stehen. Sie steuern das Anlegen der Ubersetzungs-
informationen, werden aber selbst nicht in im compilierten Code abgespeichert.

Programme Ubersetzen - 45

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

NoTranslate

Syntax im Code NoTranslate

Die Anweisung NoTranslate bewirkt, dass alle Textstrings, die in der darauf-
folgenden Anweisung (bis zum Zeilenende oder dem folgenden Doppelpunkt)
stehen, vom Ubersetzter Tool nicht gedndert werden kénnen. In allen drei
folgenden Code-Beispielen kénnen die Strings "Ich bin" und "Jahre alt." nicht
Ubersetzt werden. Der String "Das ist viel" ist wieder Ubersetzbar.

NoTranslate

Print "Ich bin"; n; "Jahre alt."
Print "Das ist viel."

NoTranslate : Print "Ich bin"; n; "Jahre alt."
Print "Das ist viel."

NoTranslate
Print "Ich bin"; n; "Jahre alt." : Print "Das ist viel."

Weitere Beispiele:

NoTranslate

DATA "Ein", "Mops", "kam" '’ alle nicht ibersetzbar
DATA "in", "die", "Kiiche" ' wieder iibersetzbar
NoTranslate

FileCreate "info.txt", "orw"

Beispiel im Ul-Code

Button ApplyButton
NoTranslate

Caption$ = "Anwenden", 2
End Object

TranslatelLen

Syntax im Code TranslateLen n)
n: numerischer Wert - maximale Textlange bei Ubersetzung

Die Anweisung "TranslateLen n" bewirkt, dass allen Textstrings, die in der darauf
folgenden Anweisung (bis zum Zeilenende oder dem folgenden Doppelpunkt)

Programme Ubersetzen - 46

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

stehen, vom Ubersetzer-Tool nur bis zu n Zeichen zugewiesen werden kénnen.

Der Standardwert fir die maximale Lange Ubersetzter Texte ist 1024, der
Maximalwert ist ebenfalls 1024.

"TranslateLen 0" ist identisch mit "NoTranslate".

Beispiel:

TranslateLen 32

CONST tempFile$ = "MyTmp GEOS File" ’ max.

32 Zeichen
CONST info$ = "Sind Sie sicher?" '

wieder frei iibersetzbar

Programme Ubersetzen - 47

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

5 Fehlersuche und Debugging

5.1 Methoden zur Fehlersuche

Um einen Fehler einzugrenzen gibt es keinen allgemeingultigen Algorithmus. Es
gibt jedoch einige Strategien, sie sich bewéahrt haben.

Hilfreiche Befehle
Die in der folgenden Tabelle aufgelisteten Befehle und globale Variablen kénnen
Ihnen bei der Fehlersuche behilflich sein.

Befehl Bedeutung

fileError Globale Variable. Enthalt die Information, ob die
letzte Dateioperation erfolgreich war oder nicht.

clipboardError Globale Variable. Enthalt die Information, ob die
letzte Clipboardoperation erfolgreich war oder nicht.

customError Globale Variable zur freien Verfiigung des Program-

mierers. Ublicher Weise verwendet um Programm-
spezifische Fehlercodes abzuspeichern.

ErrorText$ String-Funktion, die einen System-Fehlercode in
eine "verstandliche" Form Ubersetzt.

Handlelnfo$ String-Funktion, die interne Informationen tber ein
Handle liefert.

FileInfo$ String-Funktion, die interne Informationen tber eine
Datei-Variable liefert.

ObjInfo$ String-Funktion, die interne Informationen tber ein
Objekt liefert.

MsgBox, ErrorBox Geben eine Information in einer Dialogbox aus.

QuestionBox Gibt eine Information in einer Dialogbox aus und

erwartet eine Entscheidung vom Nutzer.

EC, NC, ECON, ECOFF | Steuern, ob eine bestimmte Codezeile compiliert
wird oder nicht.

WaitForHandles Sicherstellen, dass die Anzahl freier Handles nicht
zu niedrig ist (siehe unten).
IgnoreWarning Néchste Compilerwarnung ignorieren.

Defensive Programmierung

Rechnen Sie jederzeit damit, dass etwas schief geht, auch wenn Sie der Meinung

sind, dass gar nichts schief gehen kann. Beispiele:

» Ein typisches Problemfeld sind Dateioperationen. Prifen sie z.B. nach dem
Offnen einer Datei immer die globale Variable fileError ab, auch wenn Sie
sicher sind, dass die Datei existieren muss. Gerade in der Entwicklungsphase
von Programmen kommt es z.B. vor, dass Sie irgendwo das Verzeichnis
gewechselt haben und deswegen die Datei im aktuellen Verzeichnis doch nicht
zu finden ist.

Debugging - 48

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

+ Verwenden Sie in jeder ON ... SWITCH Anweisung einen DEFAULT-Zweig, in
dem Sie z.B. mit einer MsgBox daruber informiert, dass ein bestimmter Fall nicht
behandelt wurde.

Nachteil einer extensiv defensiven Programmierung ist, dass sich das Programm

aufblahen und / oder verlangsamen kann.

Ausgabe von Log-Informationen

Um zu Uberprifen, ob ein bestimmter Programmteil auch genau so arbeitet, wie
man es winscht, kann man sich in bestimmten Abstdnden eine Information
ausgeben lassen, dass dieser Programmteil gerade erfolgreich abgearbeitet
wurde - oder eben nicht. Im einfachsten Fall verwendet man dazu den Befehl
MsgBox, eventuell in Kombination mit dem Befehl ErrorText$. Die komfortable
Variante sieht so aus, dass man sich ein eigenes Objekt zur Ausgabe von Log-
oder Fehlermeldungen definiert (z.B. ein Memo oder ein BitmapContent) und sich
eine Routine schreibt, die Text an dieses Objekt ausgibt. Auf diese Weise kann
man auch den Zustand von bestimmten Variablen ausgeben. Fir ein
BitmapContent als Ausgabeobjekt kdnnte diese Routine so aussehen:

SUB DebugLog(text$ as String)
DIM scr as Object
scr = Screen ' aktuellen Screen merken
Screen = MyBitmapContent
Print text$
Screen = scr ' Screen zuriicksetzen
End Sub

Wenn Sie ein Memo Objekt zur Ausgabe der Informationen verwenden mussen
Sie die Print-Anweisung ersetzen und kénnen sich das Umschalten des Screens
ersparen. In einem Memo kdnnen Sie auch mehr Text anzeigen, Sie mussen
jedoch selbst dafir sorgen, dass das Fassungsvermégen des Objekts nicht
uberschritten wird.

Verwenden der Error-Checking Version

R-BASIC bietet die Mdglichkeit bestimmte Codezeilen nur dann zu Compilieren,
wenn man eine "Error-Checking Version" (Version zur Entwicklung bzw.
Fehlersuche) compiliert. Zwischen dieser und der "normalen" Version kann mit
wenigen Mausklicks umgeschaltet werden. In Kombination mit den oben
genannten Methoden kann man damit eine extensive Fehlerkontrolle
implementieren, ohne die damit verbundenen Nachteile in der Endversion des
Programms zu haben. Die Verwendung von Error-Checking Code wird ausfuhrlich
im n&chsten Kapitel beschrieben.

Verwenden des Debuggers

Der Debugger ist die leistungsfahigste Methode der Fehlersuche. Sie kdénnen
damit zum Beispiel lhren Code schrittweise abarbeiten, Variablen ansehen und
andern, uberprifen in welcher Reihenfolge Routinen aufgerufen werden und vieles
mehr. Es wird dringend empfohlen sich mit der Arbeitsweise des Debuggers

Debugging - 48

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

vertraut zu machen. Auch wenn er anfangs relativ komplex erscheint ist er doch
sehr einfach und intuitiv zu bedienen. Der Debugger ist ausfuhrlich im Kapitel 5.3
beschrieben.

WaitForHandles

Unter GEOS ist es ein haufiges Problem, dass die Systemhandles knapp werden.
Unglicklicher Weise verbrauchen bestimmte Operationen, insbesondere einige
Dateioperationen oder das Setzen bestimmter Instancevariablen, temporar einige
Handles. Fihrt man diese Operationen oft hintereinander aus, z.B. in einer
Schleife, so kann es zum berUlchtigten "zu wenig Handles" Fehler kommen. Das
ist ein Problem auf Systemebene, tritt also auch bei reinen SDK-Programmen auf.
R-BASIC bieten einen "WorkAround" fur dieses Problem. Falls bei lhrem
Programm ein solches Problem auftritt kbnnen Sie den Befehl WaitForHandles
verwenden. Dieser WorkAround wird z.B. auch im Uni-Installer Programm
verwendet.

R-BASIC Programme merken sich die Anzahl der freien Handles am
Programmstart. WaitForHandles stoppt die Ausfiihrung eines BASIC Programms
fur eine bestimmte Zeit, wenn die Anzahl der verfligbaren Handles unter einem
bestimmten Wert liegt. Wéhrend dessen hat das System Zeit, die temporéar
benutzten Handles freizugeben, so dass das BASIC Programm anschlieBend
problemlos weiterarbeiten kann.

Syntax: WaitForHandles [p[,t[,n]l]

p: Prozentualer Anteil, unter den die Anzahl an frei verfligbaren
Handles sinken muss, damit das BASIC Programm pausiert.
Default: 25

t: Zeitin Tics (1 tic = 1/60s), die das BASIC Programm warten soll.
Default: 6 (1/10s)

n: Anzahl der Versuche, die 't’ Tics gewartet werden soll, bis die
Anzahl an freien Handles wieder gréBer ist. Wird die Anzahl 'n’
Uberschritten arbeitet das R-BASIC Programm weiter.
Default: 20 (-> per Default insgesamt 2 Sekunden warten)

Wenn Sie fur p, t oder n den Wert Null angeben wird der
Defaultwert benutzt.

Beispiele
WaitForHandles ' Defaultwerte verwenden
WaitForHandles 50, 6 ' Bei weniger als 50% der Handles
" 0,1 Sekunde warten

Ein typisches Vorgehen, dieses Problem unter R-BASIC hervorzurufen, ist das
sehr haufig Aufrufen einer Sequenz, in der eine Datei getffnet, bearbeitet und
wieder geschlossen wird. Fir den Fall, dass man eine Datei benutzt um die
Schritte eines Programms zu dokumentieren, ist das ein durchaus realistisches

Debugging - 50

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Szenario. Die folgende Schleife ruft den "zu wenig Handles" Fehler hervor, falls
der Befehle WaitForHandles entfernt wird.

FOR n = 10 TO 1000
FOR ¢ = Asc("A") TO Asc("z")

fh = FileOpen "crash.txt"
FileWrite fh, c, 1
FileClose fh
WaitForHandles
NEXT

NEXT

Ein anderes Szenario ist das schnelle und periodische Setzen einer Instance-
variablen, die ein visuelles Update eines oder mehrerer Objekte hervorruft. Diese
Objekte senden dann wieder Messages an andere Objekte usw. Da das Senden
von Messages temporar Handles erfordert kann das in seltenen Féallen zu einem

Problem fuhren.
In allen Fallen gilt aber auch: ob das Problem auftritt oder nicht kann auch von der

Systemgeschwindigkeit abhangen.

IgnoreWarning

Der Compiler gibt in verschiedenen Situationen eine Warnung aus, um Sie auf
potentiell fehlerhaften Code hinzuweisen. Ein typisches Beispiel ist der Vergleich
von Strukturvariablen. Enthélt die Struktur einen String, der klrzer als die
maximale Lange ist, so befinden sich dahinter einige Bytes, die unbenutzt sind
und so Datenmull enthalten kénnen. Hier kann es beim Vergleich zu einem
falschen Ergebnis kommen, weil Strukturen Byte-fur-Byte - einschlieBlich des
Datenmdills -verglichen werden.

Wenn Sie sicher sind, dass dieses Problem nicht auftreten kann, dann kénnen Sie
IgnoreWarning verwenden, um die Warnmeldung zu unterdricken. IgnoreWarning
wirkt nur auf die direkt auf IgnoreWarning folgende Anweisung.

Syntax: IgnoreWarning
Beispiel
DIM tl1l, t2 AS GeodeToken
IgnoreWarning
IF tl=t2 then Print "ungleich" ' keine Warnmeldung
IF tl=t2 then Print "ungleich" ' Jetzt wieder Warnmeldung

Debugging - 51

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

5.2 Die Error-Checking Version

Sehr haufig kommt es vor, dass man wahrend der Programmentwicklung
bestimmte Fehlersituationen abfragen méchte, der entsprechende Code im
fertigen Programm aber nur stéren wirde, weil er das Programm z.B. unnétig
verlangsamt. Deswegen bietet R-BASIC die Mdglichkeit einzelne Codezeilen nur
dann zu compilieren, wenn eine "Error-Checking-Version" (EC-Version) compiliert
wird. Alternativ kann man auch Codezeilen nur dann compilieren, wenn eine "Non-
Error-Checking-Version" (NC-Version) compiliert wird.

Ob eine EC-Version compiliert wird oder nicht kénnen Sie im Menu "Programm”
unter "Error-Checking Version" einstellen.
—‘l Error-Checking Version
4 ECON/ECOFF benutzen
+ EC-Version kompilieren
+ NC-Version kompilieren

+ ECON/ECOFF benutzen
Dies ist die Defaulteinstellung. Sie kénnen damit fir einzelne Codeabschnitte
durch Verwendung der Befehle ECON bzw. ECOFF festlegen, ob eine EC-
Version (ECON) oder eine NC-Version (ECOFF) compiliert werden soll.
Wenn Sie keinen dieser Befehle verwenden wird die NC-Version compiliert, so
als ob Sie den Befehl ECOFF geschrieben héatten.
Hinweis: Das Aktivieren der EC-Version mit ECON muss fir jedes Code-Window
extra erfolgen!

+ EC-Version compilieren
Es wird in jedem Fall die EC-Version compiliert. Die Anweisungen ECON und
ECOFF werden ignoriert.

* NC-Version compilieren
Es wird in jedem Fall die NC-Version compiliert. Die Anweisungen ECON und
ECOFF werden ignoriert.

ECON

ECON aktiviert das Compilieren der EC-Version fir die ndchsten Codezeilen bis
zum néachsten ECOFF-Befehl oder bis zum Ende des Codewindows. Zeilen mit
vorangestellter EC Anweisung werden compiliert, Zeilen mit vorangestellter NC
Anweisung werden als Kommentarzeilen behandelt.

ECON kann sowohl im BASIC Code als auch im Ul Code, auch innerhalb von
Objektdeklarationen, verwendet werden.

Damit ECON wirkt muss im Menu "Programm"-"Error-Checking Version" die
Option "ECON/ECOFF benutzen" aktiv sein.

Syntax: ECON

Hinweis: Im Modus "ECON/ECOFF benutzen" ist am Beginn jedes Codewindows
die NC-Version aktiviert. EC-Code wird erst compiliert, wenn das erste ECON in
diesem Codewindow ausgefuhrt wurde.

Debugging - 52

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

ECOFF

ECOFF aktiviert das Compilieren der NC-Version fur die nachsten Codezeilen bis
zum néachsten ECON-Befehl oder bis zum Ende des Codewindows. Zeilen mit
vorangestellter NC Anweisung werden compiliert, Zeilen mit vorangestellter EC
Anweisung werden als Kommentarzeilen behandelt.

ECOFF kann sowohl im BASIC Code als auch im Ul Code, auch innerhalb von
Objektdeklarationen, verwendet werden.

Damit ECOFF wirkt muss im Menu "Programm"-"Error-Checking Version" die
Option "ECON/ECOFF benutzen" aktiv sein.

Syntax: ECOFF

EC
EC markiert eine Zeile als "zur EC-Version gehdrig". Diese Zeile wird nur
compiliert, wenn eine EC-Version compiliert wird, entweder weil die Anweisung
ECON ausgefuhrt wurde oder weil im Menu "Programm"-"Error-Checking Version"
die Option "EC-Version compilieren" aktiv ist.

Syntax: EC <Codezeile>

NC

NC markiert eine Zeile als "zur NC-Version gehdrig". Diese Zeile wird nur

compiliert, wenn eine NC-Version compiliert wird. Das ist in folgenden Féllen der

Fall:

+ Per Default: Es wurde im aktuellen Codewindow noch keine der Anweisungen
ECON oder ECOFF verwendet.

+ Die Anweisung ECON wurde durch ein folgendes ECOFF deaktiviert.

* Im Menl "Programm" - "Error-Checking Version" ist die Option "NC-Version
compilieren" aktiviert.

Syntax: EC <Codezeile>

Beispiele:

Beispiel 1: Die Sub DrawData funktioniert nur richtig, wenn der Parameter x
kleiner als der Parameter y ist. Wahrend der Programmentwicklung wollen wird
das Uberwachen.
ECON

SUB DrawData (x, y as Real)
EC IF x >= y THEN MsgBox('"Parameterfehler in DrawData")

END SUB

Debugging - 53

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Beispiel 2: In der EC-Version wollen wir eine Group mit einer Beschriftung
versehen, die und darauf aufmerksam macht, das wie eine EC-Version vor uns
haben. In der NC-Version soll es nur ein einfacher Text sein.

Group InfoKasten

EC Caption$ ="EC-VERSION Meldungen"
NC Caption$ ="Meldungen"

End Object

Beispiel 3: Ein Objekt soll nur in der EC-Version sichtbar sein

Button TestButton
Caption$ ="Test"
NC visible = FALSE
ActionHandler =
End Object

Beispiel 4: Komplexe Verwendung von ECON und ECOFF

ECON

Print "Beispiel"
EC Print "Error Checking Code 1"
NC Print "Die Welt ist schon"
ECOFF
EC Print "Error Checking Code 2"

NC Print "Der Himmel ist blau"

Je nach Einstellung im Menu "Error-Checking Version" werden folgende Texte

ausgegeben:
+ ECON/ECOFF benutzen

+ EC-Version compilieren

* NC-Version compilieren

Debugging - 54

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

5.3 Der R-BASIC Debugger

Der Debugger ist das leistungsfahigste Werkzeug bei der Fehlersuche. Er
ermoglicht es, das Programm an einer bestimmten Stelle anzuhalten, den
Programmcode schrittweise auszufihren, die Aufrufreihenfolge der Routinen zu
ermitteln, dabei die Werte von Variablen anzusehen und zu &ndern und so einen
Fehler komfortabel einzugrenzen.

Breakpoints

5 BUTTONRC
Um ein Programm an einer bestimmten Stelle anzuhalten E*ZEEFW Nk
mussen Sie dort einen Breakpoint (einen Haltepunkt) 6 Li
setzen. Dazu klicken Sie mit der rechten Maustaste auf !
die Zeilennummer im Editorfenster. : ATl

Sie erkennen einen gesetzten Breakpoint an der rot markierten Zeilennummer.

Der néchste rechte Mausklick markiert den Breakpoint als "disabled" (d.h. inaktiv),

der dritte I16scht ihn wieder.

Breakpoints werden mit dem Programmcode gespeichert und beim Compilieren in

das Programm Gbernommen.

Wenn der Interpreter auf eine Zeile stéBt, fur die ein Breakpoint gesetzt ist, halt er

die Ausfihrung an und das Debugger-Window 6ffnet sich. Das Programm befindet

sich jetzt im Einzelschrittbetrieb. Sie kdnnen jetzt das Programm Schritt fr

Schritt abarbeiten, Variablen einsehen usw.

Hinweise:

+ Sie kdénnen weitere Breakpoints setzen, Breakpoints disablen oder I6schen,
wahrend sich das Programm im Einzelschrittbetrieb befindet.

* Breakpoints werden beim Kopieren von Codezeilen nicht mitkopiert.

* Um im Einzelschrittbetrieb einen Breakpoint mit der Tastatur zu setzen (Taste
F5) massen Sie vorher im Menu "Programm" die Codefenster editierbar machen.

Laufzeitfehler

Wenn es zu einem Laufzeitfehler kommt, z.B. beim Lesen aus einer nicht
gedffneten Datei, wird ein Programm ohne Debugger automatisch beendet. Der
Debugger greift hier ein und behandelt einen Laufzeitfehler wie einen Breakpoint.
Damit haben Sie Zugriff auf alle Debugger-Funktionen - mit Ausnahme des
Einzelschrittbetriebs. Haufig ist jedoch der Schalter "Handler abbrechen" aktiv.
Dieser unterbricht den laufenden Handler ohne das Programm zu beenden. In
vielen Fallen ist das Programm dann trotz des Laufzeitfehlers weiter lauffahig, was
bei der Fehlersuche nutzlich sein kann.

Debugging - 55

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

5.3.1 Bedienung des Debuggers
= R-BASIC Debugger

DEMOREPLYHANDLER1

;

-

|
— o a—

-

_|

Das ist das Debugger-Window. Von hier aus kénnen Sie Ihr Programm steuern,
die Variablen einsehen und vieles mehr. Sie kbnnen dieses Fenster auch jederzeit
Uber die Taste F10 oder das "Programm" Menu 6ffnen.

Einzelschrittbetrieb

Steht das Programm in einem Breakpoint so kénnen Sie den Code Zeile fur Zeile
oder Routine fur Routine abarbeiten. Dabei bietet der Debugger folgende

Mdglichkeiten:

+ Einzelne Anweisung

Der Interpreter flihrt genau eine Anweisung aus und halt dann an der néchsten
auszufihrenden Anweisung an. Dabei ist es egal, ob die ndchste Anweisung in
der nachsten Zeile oder irgendwo anders steht. Ist die aktuelle Anweisung z.B.
ein Routinenaufruf so wird in die Routine verzweigt und dort angehalten. Wenn
die Anweisung eine NEXT-Anweisung ist stoppt der Interpreter entweder in der
folgenden Programmzeile oder am zugehdérigen FOR-Kommando - je nachdem
ob die Schleife beendet ist oder noch ein Schleifendurchlauf folgt.

+ Bis néchste Zeile

Der Interpreter setzt einen temporéaren Breakpoint auf die néchste Zeile und

setzt dann die Programmausfuhrung normal fort. Als "néchste Zeile" zahlen

dabei nur Zeilen, die ausfihrbaren Code enthalten, als keine Leer- oder

Kommentarzeilen. Das Programm stoppt dann am né&chsten Breakpoint - also

hoffentlich in der n&chsten Zeile.

* Ist die aktuelle Anweisung ein Routinenaufruf, so wird die Routine komplett
abgearbeitet und das Programm stoppt, nachdem die Routine zurtckkehrt.

+ Ist die aktuelle Anweisung z.B. eine NEXT Anweisung so wird die zugehdrige
Schleife komplett abgearbeitet. Das Programm stoppt erst, wenn die Schleife
verlassen und die auf NEXT folgende Anweisung abgearbeitet wird.

* Findet der Interpreter vorher einen (anderen) Breakpoint, so stoppt er dort
ganz normal. Der temporar gesetzte Breakpoint bleibt dabei erhalten.

» Der temporare Breakpoint wird automatisch geléscht, sobald die zugehdrige
Zeile ausgefuhrt wird.

» Temporéare Breakpoint werden nicht in den Sourcecode tibernommen.

Debugging - 56

R-BASIC - Benutzer-Handbuch

Einfach unter PC/GEOS programmieren

Gesamte Routine

Der Interpreter setzt einen temporaren Breakpoint auf die Ruckkehradresse der

aktuellen Routine und setzt dann die Programmausfihrung normal fort. Die

aktuelle Routine wird also komplett abgearbeitet und das Programm stoppt,

sobald die Routine zurtckkehrt.

+ Findet der Interpreter vorher einen (anderen) Breakpoint, so stoppt er dort
ganz normal. Der temporar gesetzte Breakpoint bleibt dabei erhalten.

* Ist die aktuelle Routine ein Handler, so wird kein Breakpoint gesetzt. Der
Handler wird abgearbeitet und das Programm geht in den Standby Modus.

Normal fortfahren
Die Abarbeitung des Programms wird normal fortgesetzt.

Bereich Sonstiges

Jetzt anhalten

Mit diesem Schalter weisen Sie den Interpreter an, vor Abarbeitung des
nachsten Befehls in den Einzelschrittbetrieb Gberzugehen. Das ist z.B. hilfreich,
wenn das Programm in einer "Endlosschleife" steckt.

Handler abbrechen

Mit diesem Schalter senden Sie einen "END" Befehl an den Interpreter.
Dadurch wird der aktuelle Handler sofort beendet und das Programm geht in
den Standby Modus Uber.

Stopp in jedem Handler

Wenn diese Option aktiviert ist geht der Interpreter beim Start eines jeden
Handlers in den Einzelschrittbetrieb Uber. Damit kann man z.B. schwer zu
findende Fehler eingrenzen, die durch den automatischen Start von Handlern,
z.B. dem NotificationHandler eines FileSelectors, verursacht werden.

Breakpoints disablen

Diese Option bewirkt, dass alle manuell gesetzten Breakpoints ignoriert werden.
Dazu zahlen aber nicht die temporaren Breakpoints der Einzelschrittan-
weisungen.

Debugger deaktivieren
Diese Option deaktiviert den Debugger vollstandig. Das Programm verhalt sich
jetzt exakt so, als wenn es als "Eigenstédndiges Programm" gestartet wére.

Debugging - 57

R-BASIC - Benutzer-Handbuch

Einfach unter PC/GEOS programmieren

Elemente auf der rechten Seite

Aktuelle Routine
Dieses Feld enthéalt den Namen der Routine, in der der Breakpoint oder der
Laufzeitfehler aufgetreten sind.

Selektor "Anzeigen"

Hier wahlen Sie aus, welche Elemente in
der Liste darunter angezeigt werden sollen.
Von dieser Auswahl hangt ab, welche
Informationen rechts neben der Liste
angezeigt werden.

Globale und lokale Variablen und Konstanten, Systemvariablen

Hier kbnnen Sie die Werte von Variablen und Konstanten ansehen. Einfache
Variablen und Strukturelemente (Strings und allen numerischen Typen) kénnen
verandert werden, Felder und Strukturen kdnnen aufgelistet werden.
Numerische Variablen werden zusétzlich in ihrer hexadezimalen Darstellung
(gerundet, max. 32 Bit) und in ihrer bindren Darstellung (gerundet, max. 16 Bit)
angegeben.

Unter "Systemvariablen" kénnen Sie systemweite Variablen wie fileError,
currentPath$, Screen und die Systemstrukturen graphic (steuert die
Grafikausgabe), printFont (steuert die Zeichenausgabe mit Print) und
numberFormat (steuert die Zahlenformatierung) einsehen und teilweise
andern.

« Struktur-Items verstecken

Diese Option bewirkt, dass in der Liste links die Elemente von Strukturen
(erkennbar an einem vorangestellten ~.) nicht angezeigt werden.

+ Struktur-Namen verwenden
Diese Option beeinflusst die Art, wie Strukturen und Arrays von Strukturen
vom Debugger aufgelistet werden.

Debugging - 58

R-BASIC - Benutzer-Handbuch

Einfach unter PC/GEOS programmieren

Routinen Stack

In diesem Bereich wird die Aufrufreihenfolge der Routinen angezeigt. Damit
kdnnen Sie genau verfolgen, welche Routine von wo aus aufgerufen wurde.

£
DRAWTILE F
[
I—
=
Y E

+ Gehe zu
Wechselt zum Code der Routine, die in der Liste links ausgewahlt ist.

* zu lokalen Variablen wechseln
Ist diese Option aktiv so wird mit "Gehe zu" automatisch die Liste der lokalen
Variablen der ausgewéhlten Routine geladen und angezeigt.

+ auch Schleifeneintrdge anzeigen
Jede Schleife (FOR-NEXT, REPEAT-UNTIL, WHILE-WEND) erzeugt einen
Eintrag auf dem Stack. Diese Eintrdge sind hier normalerweise verborgen.
Hinweis: Da auf dem Stack die Ruckkehradressen in die Routine gespeichert
sind erscheinen die zu einer Routine gehdrenden Schleifen-Stackeintréage vor
dem Namen der Routine (also in der Liste oberhalb des Namens).

* Breakpoints

Hier werden alle im Programm vereinbarten Breakpoints angezeigt. Sie
bekommen detaillierte Informationen, wo der Breakpoint vereinbart ist und Uber
seinen Status. Sie kdnnen zum Code des ausgewéahlten Breakpoints oder zu
dem Breakpoint wechseln, an dem das Programm angehalten hat.

BASIC-Code:413

Debugging - 58

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Elemente in der ReplyBar

_Eenster schliegen | Programm beenden | L|R]

Neben den selbst erklarenden Schaltern "Fenster schlieBen" und "Programm
beenden" finden Sie hier Buttons mit den Aufschriften " L " und " R ". Diese
Buchstaben stehen fir "links" und "rechts" und blenden die entsprechenden
Bereiche des Debugger-Windows aus bzw. ein. Damit wird die GrdBe des
Debugger-Windows reduziert, was von Vorteil sein kann, wenn neben dem
Debugger-Window gleichzeitig das zu analysierende Programm auf dem
Bildschirm zu sehen sein soll. Werden beide Bereiche ausgeblendet wird trotzdem
eine minimale Ul angezeigt, mit der man das Programm in Einzelschrittbetrieb
steuern kann.

Anmerkung: Die IDE selbst kann nicht auf diese Weise versteckt werden.
Schieben Sie sie einfach an den unteren Bildschirmrand, wenn sie stort.

Debugging - 60

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

5.3.2 Debuggen von Libraries

Die aktuelle Version des Debuggers unterstitzt das Debuggen von Code in
Libraries nicht. Breakpoints innerhalb von Libraries werden ohne Warnung
ignoriert. Um Code aus Libraries zu debuggen missen Sie ihn ins
Hauptprogramm verschieben.

5.3.3 Interne Organisation

Dieser Abschnitt enthalt Hintergrundinformationen, deren Kenntnis oder
Verstandnis fur die Arbeit mit dem Debugger nicht unbedingt erforderlich sind.

Wenn der Compiler ein Programm Ubersetzt, ersetzt er die Variablennamen durch
ihre Position im Variablenspeicher, beim Aufruf von Routinen wird statt des
Namens die Position der aufgerufenen Routine im Code abgespeichert usw. Wenn
der Debugger auf die entsprechenden Namen zugreifen will, missen sie extra
gespeichert werden. Dazu legt der Compiler eine zuséatzliche Datei an, die
Debugger-Datei genannt wird. Sie wird nur benétigt, wenn das Programm aus der
IDE heraus gestartet wird und enthédlt alle fir den Debugger nétigen
Informationen, die im eigentlichen Programm nicht bendtigt werden. Dazu zahlen
insbesondere Listen mit den Namen der globalen Variablen, Konstanten und
Strukturen sowie aller Routinen und der dazugehérigen lokalen Variablen.

Alle Programme benutzen die gleiche Debugger-Datei, sie heit "PROGRAM
SYMBOL FILE" bzw. fur Libraries "LIBRARY SYMBOL FILE". Das hat folgende
Konsequenz. Nehmen wir an, Sie compilieren zuerst Programm A. Wenn Sie im
Anschluss daran das Programm B compilieren, so gehen die Debugger-
Informationen von Programm A verloren. Falls Sie das Programm A danach
erneut starten wollen, missen Sie es erneut compilieren, selbst wenn Sie nichts
daran geéndert haben.

Jedes Mal, wenn der Interpreter eine Codezeile zum Ausflihren |adt, prift er ab,
ob das Programm unter der Kontrolle der IDE lauft. Das geht extrem schnell, weil
nur ein einziges Bit abgefragt werden muss. Diese Abfrage verlangsamt ein
eigenstandiges Programm daher faktisch nicht. Nur wenn das Programm unter der
Kontrolle der IDE lauft wird eine Routine gestartet, die prift, ob ein Breakpoint
vorliegt und gegebenenfalls das Programm unterbricht und den Debugger startet.
Auch diese Routine fragt einzelne Bits ab, ist also ebenfalls recht schnell. Ein
Programm unter der Kontrolle der IDE lauft daher faktisch genauso schnell ab, wie
ein eigenstandiges Programm.

Intern 14uft bei einem Breakpoint der BASIC-Thread (das ist der Prozess-Thread
des Launchers) in einer Schleife, die darauf wartet, dass ein bestimmtes Bit
zuruckgesetzt wird. Der Ul-Thread des Launchers kommuniziert wahrenddessen
mit der IDE und nimmt Kommandos, wie z.B. "Einzelschritt ausfihren" entgegen.
Daraufhin setzt er bestimmte Bits und gibt den BASIC Thread wieder frei. Der
BASIC-Thread fuhrt dann z.B. genau einen Befehl aus und landet dann wieder in
der Warteschleife.

Debugging - 61

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Wahrend der BASIC-Thread in der Warteschleife ist konnen Sie auf die Variablen
des Programms zugreifen. Auch das wird Uber den Ul-Thread des Launchers
abgewickelt, denn nur das BASIC-Programm (und nicht die IDE selbst) kennt die
Position der Variablen im Variablenspeicher. Die IDE hingegen kennt Uber die
Debugger-Datei den Namen und den Typ der Variablen.

Analog verhédlt es sich mit dem Routinen-Stack. Der Launcher kennt die
Aufrufreihenfolge und die Position bzw. die Returnadresse der Routinen, die IDE
ermittelt daraus mit Hilfe der Debugger-Datei den Namen der Routine.

Bei einem Laufzeitfehler wird die gleiche Routine gerufen, die auch bei einem
Breakpoint die Kommunikation mit der IDE abwickelt. Deswegen steht bei einem
Laufzeitfehler der Zugriff auf Variablen und Routinenstack genauso zur Verfiigung
wie in einem Breakpoint. Nur das weitere Ausfihren des Programms ist
naturgeman nicht mdglich.

Debugging - 62

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

(Leerseite)

Debugging - 63

