

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Benutzer-HandbuchBenutzer-Handbuch

Volume 2
Übersetzung von Programmen, Debugging

Version 1.0

(Leerseite)

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

4 Übersetzen von BASIC-Programmen ... 44

5 Fehlersuche und Debugging ... 48
5.1 Methoden zur Fehlersuche ... 48
5.2 Die Error-Checking Version .. 52
5.3 Der R-BASIC Debugger ... 55

5.3.1 Bedienung des Debuggers .. 56
5.3.2 Debuggen von Libraries .. 61
5.3.3 Interne Organisation .. 61

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Programme übersetzen - 44

4 Übersetzen von R-BASIC Programmen

R-BASIC unterstützt das Übertragen von Programmen in eine andere Sprache
sehr komfortabel. Der Einsteiger mag es für eine gute Idee halten, den Quellcode
durchzugehen, jeden Textstring zu ändern und dann das Programm neu zu
compilieren. Das wäre jedoch nicht nur mühsam und fehleranfällig, sondern
müsste nach jeder noch so kleinen Änderung des Programms wiederholt werden.

Deswegen wird mit R-BASIC ein "Übersetzer" Tool (R-BASIC Translator)
mitgeliefert. Dieses Tool öffnet ein fertig compiliertes R-BASIC-Programm, liest die
zu übersetzenden Strings aus, ermöglicht deren Übersetzung und speichert eine
übersetzte Kopie des Originalprogramms. Die Übersetzungsdaten, d.h. die
Originaltexte und die übersetzten Texte, werden außerdem in einer eigenen Datei
(im Folgenden "Übersetzungsdatei" genannt) abgelegt, so dass sie wieder-
verwendet werden können, wenn später eine neue Version des Programms
übersetzt werden soll.

Ein weiterer Vorteil dieses Prinzips ist es, dass die Übersetzung nicht direkt vom
Programmierer ausgeführt werden muss. Vielmehr kann auch ein Sprachkundiger,
der keine Ahnung vom Programmieren hat, nach kurzer Einweisung Ihr Programm
übersetzen.

Da in den meisten Fällen die Originalversion und die übersetzte Version den
gleichen Namen haben und auch am gleichen Ort gespeichert werden sollen bzw.
müssen (z.B. bei Libraries), ist es erforderlich, die übersetzte Version in einer
zweiten PC/GEOS-Installation, dem sogenannten Target (engl. target = Ziel),
abzulegen. Dieses Target müssen Sie vorher anlegen und den Pfad dorthin dem
"Übersetzer" einmalig mitteilen. Wenn Sie alle zu Ihrem Projekt gehörenden
Dateien in die Target-Installation kopieren können Sie das Installationspaket für
die übersetzte Version komplett unter dem Target anlegen.

Um ein R-BASIC-Programm zu übersetzten müssen Sie also folgendermaßen
vorgehen:

1. Stellen Sie sicher, dass eine lauffähige Target-Installation existiert.

2. Compilieren Sie ihr Programm. Legen Sie eine ein eigenständig lauffähiges
Programm (R-App) an. Nur diese können übersetzt werden.

3. Öffnen Sie das zu übersetzende Programm mit dem R-BASIC Translator.
Dazu gehen Sie folgendermaßen vor:

Wenn Sie das Programm erstmalig übersetzen:
• Starten Sie das Übersetzer-Tool direkt. Wählen Sie "BASIC Programm" und

öffnen damit den Launcher des BASIC-Programms im World-Verzeichnis.

Falls bereits eine Übersetzungsdatei existiert:
• Öffnen Sie die Übersetzungsdatei bitte diese durch Doppelklick.
• Wählen Sie "Übersetzungsdatei updaten" aus dem Dateimenü. Der

Translator vergleicht damit die in der Übersetzungsdatei gespeicherten

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Programme übersetzen - 45

Informationen mit der aktuellen Version und weiß jetzt, ob zu übersetzende
Texte geändert wurden, hinzugekommen sind oder gelöscht wurden. Sie
bekommen die entsprechenden Informationen angezeigt.

4. Übersetzen Sie alle Textstrings und speichern die Übersetzer-Daten als
Dokument des Übersetzer-Tools (Übersetzungsdatei).

5. Erzeugen Sie das übersetzte R-BASIC-Programm. Wählen Sie dazu den
Menüpunkt "Übersetztes Programm anlegen" aus dem Dateimenü. Der R-
BASIC Translator kopiert alle notwendigen Dateien ins Target und passt die
übersetzten Strings an.

6. Wechseln Sie ins Target und testen Ihr übersetztes Programm. Achten Sie
dabei besonders auf die Tastenkürzel zur Tastaturnavigation.

7. Erzeugen Sie ein Installationspaket für das übersetzte Programm.

Eine ausführliche Beschreibung, wie man den R-BASIC Translator bedient finden
Sie in der Hilfe zum Programm. Dort sind auch die Terminologie und weitere
Details ausführlich erläutert.

Anweisungen an das Übersetzer-Tool

Anweisung Syntax im UI-Code und im BASIC-Code
NoTranslate NoTranslate
TranslateLen TranslateLen <n>

In bestimmten Situationen ist es gar nicht gewünscht, wenn bestimmte Strings
durch einen Übersetzer geändert werden können. Wenn Sie z.B. ein Spiel
programmieren, dessen Levels durch Strings in DATA-Zeilen beschrieben werden,
müssen diese Level-Strings vor versehentlichen Änderungen durch den
Übersetzer geschützt werden. Ein häufiger Fall sind auch die Zugriffs-Flags oder
Dateinamen bei Datei-Operationen (z.B. FileOpen), die als Strings im Quelltext
stehen.
Ein anderes potentielles Problem stellen Strings dar, die eine bestimmte Länge
nicht überschreiten dürfen.
Zur Lösung dieser Probleme bietet R-BASIC die Steueranweisungen NoTranslate
und TranslateLen an. Diese können überall im Code, sowohl im BASIC-Code als
auch im UI-Code, stehen. Sie steuern das Anlegen der Übersetzungs-
informationen, werden aber selbst nicht in im compilierten Code abgespeichert.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Programme übersetzen - 46

NoTranslate

Syntax im Code NoTranslate

Die Anweisung NoTranslate bewirkt, dass alle Textstrings, die in der darauf-
folgenden Anweisung (bis zum Zeilenende oder dem folgenden Doppelpunkt)
stehen, vom Übersetzter Tool nicht geändert werden können. In allen drei
folgenden Code-Beispielen können die Strings "Ich bin" und "Jahre alt." nicht
übersetzt werden. Der String "Das ist viel" ist wieder übersetzbar.

NoTranslate
Print "Ich bin"; n; "Jahre alt."
Print "Das ist viel."

NoTranslate : Print "Ich bin"; n; "Jahre alt."
Print "Das ist viel."

NoTranslate
Print "Ich bin"; n; "Jahre alt." : Print "Das ist viel."

Weitere Beispiele:

NoTranslate
DATA "Ein", "Mops", "kam" ’ alle nicht übersetzbar
DATA "in", "die", "Küche" ’ wieder übersetzbar

NoTranslate
FileCreate "info.txt", "orw"

Beispiel im UI-Code

Button ApplyButton
NoTranslate
Caption$ = "Anwenden", 2

End Object

TranslateLen

Syntax im Code TranslateLen n
n: numerischer Wert - maximale Textlänge bei Übersetzung

Die Anweisung "TranslateLen n" bewirkt, dass allen Textstrings, die in der darauf
folgenden Anweisung (bis zum Zeilenende oder dem folgenden Doppelpunkt)

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Programme übersetzen - 47

stehen, vom Übersetzer-Tool nur bis zu n Zeichen zugewiesen werden können.
Der Standardwert für die maximale Länge übersetzter Texte ist 1024, der
Maximalwert ist ebenfalls 1024.
"TranslateLen 0" ist identisch mit "NoTranslate".

Beispiel:

TranslateLen 32
CONST tempFile$ = "MyTmp GEOS File" ’ max. 32 Zeichen
CONST info$ = "Sind Sie sicher?" ’ wieder frei übersetzbar

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 48

5 Fehlersuche und Debugging

5.1 Methoden zur Fehlersuche

Um einen Fehler einzugrenzen gibt es keinen allgemeingültigen Algorithmus. Es
gibt jedoch einige Strategien, sie sich bewährt haben.

Hilfreiche Befehle
Die in der folgenden Tabelle aufgelisteten Befehle und globale Variablen können
Ihnen bei der Fehlersuche behilflich sein.

Befehl Bedeutung
fileError Globale Variable. Enthält die Information, ob die

letzte Dateioperation erfolgreich war oder nicht.
clipboardError Globale Variable. Enthält die Information, ob die

letzte Clipboardoperation erfolgreich war oder nicht.
customError Globale Variable zur freien Verfügung des Program-

mierers. Üblicher Weise verwendet um Programm-
spezifische Fehlercodes abzuspeichern.

ErrorText$ String-Funktion, die einen System-Fehlercode in
eine "verständliche" Form übersetzt.

HandleInfo$ String-Funktion, die interne Informationen über ein
Handle liefert.

FileInfo$ String-Funktion, die interne Informationen über eine
Datei-Variable liefert.

ObjInfo$ String-Funktion, die interne Informationen über ein
Objekt liefert.

MsgBox, ErrorBox Geben eine Information in einer Dialogbox aus.
QuestionBox Gibt eine Information in einer Dialogbox aus und

erwartet eine Entscheidung vom Nutzer.
EC, NC, ECON, ECOFF Steuern, ob eine bestimmte Codezeile compiliert

wird oder nicht.
WaitForHandles Sicherstellen, dass die Anzahl freier Handles nicht

zu niedrig ist (siehe unten).
IgnoreWarning Nächste Compilerwarnung ignorieren.

Defensive Programmierung
Rechnen Sie jederzeit damit, dass etwas schief geht, auch wenn Sie der Meinung
sind, dass gar nichts schief gehen kann. Beispiele:
• Ein typisches Problemfeld sind Dateioperationen. Prüfen sie z.B. nach dem

Öffnen einer Datei immer die globale Variable fileError ab, auch wenn Sie
sicher sind, dass die Datei existieren muss. Gerade in der Entwicklungsphase
von Programmen kommt es z.B. vor, dass Sie irgendwo das Verzeichnis
gewechselt haben und deswegen die Datei im aktuellen Verzeichnis doch nicht
zu finden ist.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 49

• Verwenden Sie in jeder ON ... SWITCH Anweisung einen DEFAULT-Zweig, in
dem Sie z.B. mit einer MsgBox darüber informiert, dass ein bestimmter Fall nicht
behandelt wurde.

Nachteil einer extensiv defensiven Programmierung ist, dass sich das Programm
aufblähen und / oder verlangsamen kann.

Ausgabe von Log-Informationen
Um zu überprüfen, ob ein bestimmter Programmteil auch genau so arbeitet, wie
man es wünscht, kann man sich in bestimmten Abständen eine Information
ausgeben lassen, dass dieser Programmteil gerade erfolgreich abgearbeitet
wurde - oder eben nicht. Im einfachsten Fall verwendet man dazu den Befehl
MsgBox, eventuell in Kombination mit dem Befehl ErrorText$. Die komfortable
Variante sieht so aus, dass man sich ein eigenes Objekt zur Ausgabe von Log-
oder Fehlermeldungen definiert (z.B. ein Memo oder ein BitmapContent) und sich
eine Routine schreibt, die Text an dieses Objekt ausgibt. Auf diese Weise kann
man auch den Zustand von bestimmten Variablen ausgeben. Für ein
BitmapContent als Ausgabeobjekt könnte diese Routine so aussehen:

SUB DebugLog(text$ as String)
DIM scr as Object
scr = Screen ’ aktuellen Screen merken
Screen = MyBitmapContent
Print text$
Screen = scr ’ Screen zurücksetzen

End Sub

Wenn Sie ein Memo Objekt zur Ausgabe der Informationen verwenden müssen
Sie die Print-Anweisung ersetzen und können sich das Umschalten des Screens
ersparen. In einem Memo können Sie auch mehr Text anzeigen, Sie müssen
jedoch selbst dafür sorgen, dass das Fassungsvermögen des Objekts nicht
überschritten wird.

Verwenden der Error-Checking Version
R-BASIC bietet die Möglichkeit bestimmte Codezeilen nur dann zu Compilieren,
wenn man eine "Error-Checking Version" (Version zur Entwicklung bzw.
Fehlersuche) compiliert. Zwischen dieser und der "normalen" Version kann mit
wenigen Mausklicks umgeschaltet werden. In Kombination mit den oben
genannten Methoden kann man damit eine extensive Fehlerkontrolle
implementieren, ohne die damit verbundenen Nachteile in der Endversion des
Programms zu haben. Die Verwendung von Error-Checking Code wird ausführlich
im nächsten Kapitel beschrieben.

Verwenden des Debuggers
Der Debugger ist die leistungsfähigste Methode der Fehlersuche. Sie können
damit zum Beispiel Ihren Code schrittweise abarbeiten, Variablen ansehen und
ändern, überprüfen in welcher Reihenfolge Routinen aufgerufen werden und vieles
mehr. Es wird dringend empfohlen sich mit der Arbeitsweise des Debuggers

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 50

vertraut zu machen. Auch wenn er anfangs relativ komplex erscheint ist er doch
sehr einfach und intuitiv zu bedienen. Der Debugger ist ausführlich im Kapitel 5.3
beschrieben.

WaitForHandles

Unter GEOS ist es ein häufiges Problem, dass die Systemhandles knapp werden.
Unglücklicher Weise verbrauchen bestimmte Operationen, insbesondere einige
Dateioperationen oder das Setzen bestimmter Instancevariablen, temporär einige
Handles. Führt man diese Operationen oft hintereinander aus, z.B. in einer
Schleife, so kann es zum berüchtigten "zu wenig Handles" Fehler kommen. Das
ist ein Problem auf Systemebene, tritt also auch bei reinen SDK-Programmen auf.
R-BASIC bieten einen "WorkAround" für dieses Problem. Falls bei Ihrem
Programm ein solches Problem auftritt können Sie den Befehl WaitForHandles
verwenden. Dieser WorkAround wird z.B. auch im Uni-Installer Programm
verwendet.

R-BASIC Programme merken sich die Anzahl der freien Handles am
Programmstart. WaitForHandles stoppt die Ausführung eines BASIC Programms
für eine bestimmte Zeit, wenn die Anzahl der verfügbaren Handles unter einem
bestimmten Wert liegt. Während dessen hat das System Zeit, die temporär
benutzten Handles freizugeben, so dass das BASIC Programm anschließend
problemlos weiterarbeiten kann.

Syntax: WaitForHandles [p [, t [, n]]]
p: Prozentualer Anteil, unter den die Anzahl an frei verfügbaren

Handles sinken muss, damit das BASIC Programm pausiert.
Default: 25

t: Zeit in Tics (1 tic = 1/60s), die das BASIC Programm warten soll.
Default: 6 (1/10s)

n: Anzahl der Versuche, die ’t’ Tics gewartet werden soll, bis die
Anzahl an freien Handles wieder größer ist. Wird die Anzahl ’n’
überschritten arbeitet das R-BASIC Programm weiter.
Default: 20 (-> per Default insgesamt 2 Sekunden warten)

Wenn Sie für p, t oder n den Wert Null angeben wird der
Defaultwert benutzt.

Beispiele
WaitForHandles ’ Defaultwerte verwenden
WaitForHandles 50, 6 ’ Bei weniger als 50% der Handles

’ 0,1 Sekunde warten

Ein typisches Vorgehen, dieses Problem unter R-BASIC hervorzurufen, ist das
sehr häufig Aufrufen einer Sequenz, in der eine Datei geöffnet, bearbeitet und
wieder geschlossen wird. Für den Fall, dass man eine Datei benutzt um die
Schritte eines Programms zu dokumentieren, ist das ein durchaus realistisches

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 51

Szenario. Die folgende Schleife ruft den "zu wenig Handles" Fehler hervor, falls
der Befehle WaitForHandles entfernt wird.

FOR n = 10 TO 1000
FOR c = Asc("A") TO Asc("z")
fh = FileOpen "crash.txt"
FileWrite fh, c, 1
FileClose fh
WaitForHandles
NEXT

NEXT

Ein anderes Szenario ist das schnelle und periodische Setzen einer Instance-
variablen, die ein visuelles Update eines oder mehrerer Objekte hervorruft. Diese
Objekte senden dann wieder Messages an andere Objekte usw. Da das Senden
von Messages temporär Handles erfordert kann das in seltenen Fällen zu einem
Problem führen.
In allen Fällen gilt aber auch: ob das Problem auftritt oder nicht kann auch von der
Systemgeschwindigkeit abhängen.

IgnoreWarning

Der Compiler gibt in verschiedenen Situationen eine Warnung aus, um Sie auf
potentiell fehlerhaften Code hinzuweisen. Ein typisches Beispiel ist der Vergleich
von Strukturvariablen. Enthält die Struktur einen String, der kürzer als die
maximale Länge ist, so befinden sich dahinter einige Bytes, die unbenutzt sind
und so Datenmüll enthalten können. Hier kann es beim Vergleich zu einem
falschen Ergebnis kommen, weil Strukturen Byte-für-Byte - einschließlich des
Datenmülls -verglichen werden.
Wenn Sie sicher sind, dass dieses Problem nicht auftreten kann, dann können Sie
IgnoreWarning verwenden, um die Warnmeldung zu unterdrücken. IgnoreWarning
wirkt nur auf die direkt auf IgnoreWarning folgende Anweisung.

Syntax: IgnoreWarning

Beispiel
DIM t1, t2 AS GeodeToken
IgnoreWarning
IF t1=t2 then Print "ungleich" ’ keine Warnmeldung
IF t1=t2 then Print "ungleich" ’ Jetzt wieder Warnmeldung

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 52

5.2 Die Error-Checking Version

Sehr häufig kommt es vor, dass man während der Programmentwicklung
bestimmte Fehlersituationen abfragen möchte, der entsprechende Code im
fertigen Programm aber nur stören würde, weil er das Programm z.B. unnötig
verlangsamt. Deswegen bietet R-BASIC die Möglichkeit einzelne Codezeilen nur
dann zu compilieren, wenn eine "Error-Checking-Version" (EC-Version) compiliert
wird. Alternativ kann man auch Codezeilen nur dann compilieren, wenn eine "Non-
Error-Checking-Version" (NC-Version) compiliert wird.

Ob eine EC-Version compiliert wird oder nicht können Sie im Menü "Programm"
unter "Error-Checking Version" einstellen.

• ECON/ECOFF benutzen
Dies ist die Defaulteinstellung. Sie können damit für einzelne Codeabschnitte
durch Verwendung der Befehle ECON bzw. ECOFF festlegen, ob eine EC-
Version (ECON) oder eine NC-Version (ECOFF) compiliert werden soll.
Wenn Sie keinen dieser Befehle verwenden wird die NC-Version compiliert, so
als ob Sie den Befehl ECOFF geschrieben hätten.
Hinweis: Das Aktivieren der EC-Version mit ECON muss für jedes Code-Window
extra erfolgen!

• EC-Version compilieren
Es wird in jedem Fall die EC-Version compiliert. Die Anweisungen ECON und
ECOFF werden ignoriert.

• NC-Version compilieren
Es wird in jedem Fall die NC-Version compiliert. Die Anweisungen ECON und
ECOFF werden ignoriert.

ECON

ECON aktiviert das Compilieren der EC-Version für die nächsten Codezeilen bis
zum nächsten ECOFF-Befehl oder bis zum Ende des Codewindows. Zeilen mit
vorangestellter EC Anweisung werden compiliert, Zeilen mit vorangestellter NC
Anweisung werden als Kommentarzeilen behandelt.
ECON kann sowohl im BASIC Code als auch im UI Code, auch innerhalb von
Objektdeklarationen, verwendet werden.
Damit ECON wirkt muss im Menü "Programm"-"Error-Checking Version" die
Option "ECON/ECOFF benutzen" aktiv sein.

Syntax: ECON

Hinweis: Im Modus "ECON/ECOFF benutzen" ist am Beginn jedes Codewindows
die NC-Version aktiviert. EC-Code wird erst compiliert, wenn das erste ECON in
diesem Codewindow ausgeführt wurde.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 53

ECOFF

ECOFF aktiviert das Compilieren der NC-Version für die nächsten Codezeilen bis
zum nächsten ECON-Befehl oder bis zum Ende des Codewindows. Zeilen mit
vorangestellter NC Anweisung werden compiliert, Zeilen mit vorangestellter EC
Anweisung werden als Kommentarzeilen behandelt.
ECOFF kann sowohl im BASIC Code als auch im UI Code, auch innerhalb von
Objektdeklarationen, verwendet werden.
Damit ECOFF wirkt muss im Menü "Programm"-"Error-Checking Version" die
Option "ECON/ECOFF benutzen" aktiv sein.

Syntax: ECOFF

EC

EC markiert eine Zeile als "zur EC-Version gehörig". Diese Zeile wird nur
compiliert, wenn eine EC-Version compiliert wird, entweder weil die Anweisung
ECON ausgeführt wurde oder weil im Menü "Programm"-"Error-Checking Version"
die Option "EC-Version compilieren" aktiv ist.

Syntax: EC <Codezeile>

NC

NC markiert eine Zeile als "zur NC-Version gehörig". Diese Zeile wird nur
compiliert, wenn eine NC-Version compiliert wird. Das ist in folgenden Fällen der
Fall:
• Per Default: Es wurde im aktuellen Codewindow noch keine der Anweisungen

ECON oder ECOFF verwendet.
• Die Anweisung ECON wurde durch ein folgendes ECOFF deaktiviert.
• Im Menü "Programm" - "Error-Checking Version" ist die Option "NC-Version

compilieren" aktiviert.

Syntax: EC <Codezeile>

Beispiele:

Beispiel 1: Die Sub DrawData funktioniert nur richtig, wenn der Parameter x
kleiner als der Parameter y ist. Während der Programmentwicklung wollen wird
das überwachen.
ECON
SUB DrawData (x, y as Real)
EC IF x >= y THEN MsgBox("Parameterfehler in DrawData")
...
END SUB

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 54

Beispiel 2: In der EC-Version wollen wir eine Group mit einer Beschriftung
versehen, die und darauf aufmerksam macht, das wie eine EC-Version vor uns
haben. In der NC-Version soll es nur ein einfacher Text sein.
Group InfoKasten
EC Caption$ ="EC-VERSION Meldungen"
NC Caption$ ="Meldungen"
...
End Object

Beispiel 3: Ein Objekt soll nur in der EC-Version sichtbar sein
Button TestButton

Caption$ ="Test"
NC visible = FALSE

ActionHandler =
End Object

Beispiel 4: Komplexe Verwendung von ECON und ECOFF
ECON

Print "Beispiel"
EC Print "Error Checking Code 1"
NC Print "Die Welt ist schön"
ECOFF
EC Print "Error Checking Code 2"
NC Print "Der Himmel ist blau"

Je nach Einstellung im Menü "Error-Checking Version" werden folgende Texte
ausgegeben:
• ECON/ECOFF benutzen
Beispiel
Error Checking Code 1
Der Himmel ist blau

• EC-Version compilieren
Beispiel
Error Checking Code 1
Error Checking Code 2

• NC-Version compilieren
Beispiel
Die Welt ist schön
Der Himmel ist blau

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 55

5.3 Der R-BASIC Debugger

Der Debugger ist das leistungsfähigste Werkzeug bei der Fehlersuche. Er
ermöglicht es, das Programm an einer bestimmten Stelle anzuhalten, den
Programmcode schrittweise auszuführen, die Aufrufreihenfolge der Routinen zu
ermitteln, dabei die Werte von Variablen anzusehen und zu ändern und so einen
Fehler komfortabel einzugrenzen.

Breakpoints

Um ein Programm an einer bestimmten Stelle anzuhalten
müssen Sie dort einen Breakpoint (einen Haltepunkt)
setzen. Dazu klicken Sie mit der rechten Maustaste auf
die Zeilennummer im Editorfenster.
Sie erkennen einen gesetzten Breakpoint an der rot markierten Zeilennummer.
Der nächste rechte Mausklick markiert den Breakpoint als "disabled" (d.h. inaktiv),
der dritte löscht ihn wieder.
Breakpoints werden mit dem Programmcode gespeichert und beim Compilieren in
das Programm übernommen.
Wenn der Interpreter auf eine Zeile stößt, für die ein Breakpoint gesetzt ist, hält er
die Ausführung an und das Debugger-Window öffnet sich. Das Programm befindet
sich jetzt im Einzelschrittbetrieb. Sie können jetzt das Programm Schritt für
Schritt abarbeiten, Variablen einsehen usw.
Hinweise:
• Sie können weitere Breakpoints setzen, Breakpoints disablen oder löschen,

während sich das Programm im Einzelschrittbetrieb befindet.
• Breakpoints werden beim Kopieren von Codezeilen nicht mitkopiert.
• Um im Einzelschrittbetrieb einen Breakpoint mit der Tastatur zu setzen (Taste

F5) müssen Sie vorher im Menü "Programm" die Codefenster editierbar machen.

Laufzeitfehler

Wenn es zu einem Laufzeitfehler kommt, z.B. beim Lesen aus einer nicht
geöffneten Datei, wird ein Programm ohne Debugger automatisch beendet. Der
Debugger greift hier ein und behandelt einen Laufzeitfehler wie einen Breakpoint.
Damit haben Sie Zugriff auf alle Debugger-Funktionen - mit Ausnahme des
Einzelschrittbetriebs. Häufig ist jedoch der Schalter "Handler abbrechen" aktiv.
Dieser unterbricht den laufenden Handler ohne das Programm zu beenden. In
vielen Fällen ist das Programm dann trotz des Laufzeitfehlers weiter lauffähig, was
bei der Fehlersuche nützlich sein kann.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 56

5.3.1 Bedienung des Debuggers

Das ist das Debugger-Window. Von hier aus können Sie Ihr Programm steuern,
die Variablen einsehen und vieles mehr. Sie können dieses Fenster auch jederzeit
über die Taste F10 oder das "Programm" Menü öffnen.

Einzelschrittbetrieb

Steht das Programm in einem Breakpoint so können Sie den Code Zeile für Zeile
oder Routine für Routine abarbeiten. Dabei bietet der Debugger folgende
Möglichkeiten:

• Einzelne Anweisung
Der Interpreter führt genau eine Anweisung aus und hält dann an der nächsten
auszuführenden Anweisung an. Dabei ist es egal, ob die nächste Anweisung in
der nächsten Zeile oder irgendwo anders steht. Ist die aktuelle Anweisung z.B.
ein Routinenaufruf so wird in die Routine verzweigt und dort angehalten. Wenn
die Anweisung eine NEXT-Anweisung ist stoppt der Interpreter entweder in der
folgenden Programmzeile oder am zugehörigen FOR-Kommando - je nachdem
ob die Schleife beendet ist oder noch ein Schleifendurchlauf folgt.

• Bis nächste Zeile
Der Interpreter setzt einen temporären Breakpoint auf die nächste Zeile und
setzt dann die Programmausführung normal fort. Als "nächste Zeile" zählen
dabei nur Zeilen, die ausführbaren Code enthalten, als keine Leer- oder
Kommentarzeilen. Das Programm stoppt dann am nächsten Breakpoint - also
hoffentlich in der nächsten Zeile.
• Ist die aktuelle Anweisung ein Routinenaufruf, so wird die Routine komplett

abgearbeitet und das Programm stoppt, nachdem die Routine zurückkehrt.
• Ist die aktuelle Anweisung z.B. eine NEXT Anweisung so wird die zugehörige

Schleife komplett abgearbeitet. Das Programm stoppt erst, wenn die Schleife
verlassen und die auf NEXT folgende Anweisung abgearbeitet wird.

• Findet der Interpreter vorher einen (anderen) Breakpoint, so stoppt er dort
ganz normal. Der temporär gesetzte Breakpoint bleibt dabei erhalten.

• Der temporäre Breakpoint wird automatisch gelöscht, sobald die zugehörige
Zeile ausgeführt wird.

• Temporäre Breakpoint werden nicht in den Sourcecode übernommen.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 57

• Gesamte Routine
Der Interpreter setzt einen temporären Breakpoint auf die Rückkehradresse der
aktuellen Routine und setzt dann die Programmausführung normal fort. Die
aktuelle Routine wird also komplett abgearbeitet und das Programm stoppt,
sobald die Routine zurückkehrt.
• Findet der Interpreter vorher einen (anderen) Breakpoint, so stoppt er dort

ganz normal. Der temporär gesetzte Breakpoint bleibt dabei erhalten.
• Ist die aktuelle Routine ein Handler, so wird kein Breakpoint gesetzt. Der

Handler wird abgearbeitet und das Programm geht in den Standby Modus.

• Normal fortfahren
Die Abarbeitung des Programms wird normal fortgesetzt.

Bereich Sonstiges

• Jetzt anhalten
Mit diesem Schalter weisen Sie den Interpreter an, vor Abarbeitung des
nächsten Befehls in den Einzelschrittbetrieb überzugehen. Das ist z.B. hilfreich,
wenn das Programm in einer "Endlosschleife" steckt.

• Handler abbrechen
Mit diesem Schalter senden Sie einen "END" Befehl an den Interpreter.
Dadurch wird der aktuelle Handler sofort beendet und das Programm geht in
den Standby Modus über.

• Stopp in jedem Handler
Wenn diese Option aktiviert ist geht der Interpreter beim Start eines jeden
Handlers in den Einzelschrittbetrieb über. Damit kann man z.B. schwer zu
findende Fehler eingrenzen, die durch den automatischen Start von Handlern,
z.B. dem NotificationHandler eines FileSelectors, verursacht werden.

• Breakpoints disablen
Diese Option bewirkt, dass alle manuell gesetzten Breakpoints ignoriert werden.
Dazu zählen aber nicht die temporären Breakpoints der Einzelschrittan-
weisungen.

• Debugger deaktivieren
Diese Option deaktiviert den Debugger vollständig. Das Programm verhält sich
jetzt exakt so, als wenn es als "Eigenständiges Programm" gestartet wäre.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 58

Elemente auf der rechten Seite

• Aktuelle Routine
Dieses Feld enthält den Namen der Routine, in der der Breakpoint oder der
Laufzeitfehler aufgetreten sind.

• Selektor "Anzeigen"
Hier wählen Sie aus, welche Elemente in
der Liste darunter angezeigt werden sollen.
Von dieser Auswahl hängt ab, welche
Informationen rechts neben der Liste
angezeigt werden.

• Globale und lokale Variablen und Konstanten, Systemvariablen
Hier können Sie die Werte von Variablen und Konstanten ansehen. Einfache
Variablen und Strukturelemente (Strings und allen numerischen Typen) können
verändert werden, Felder und Strukturen können aufgelistet werden.
Numerische Variablen werden zusätzlich in ihrer hexadezimalen Darstellung
(gerundet, max. 32 Bit) und in ihrer binären Darstellung (gerundet, max. 16 Bit)
angegeben.

• Unter "Systemvariablen" können Sie systemweite Variablen wie fileError,
currentPath$, Screen und die Systemstrukturen graphic (steuert die
Grafikausgabe), printFont (steuert die Zeichenausgabe mit Print) und
numberFormat (steuert die Zahlenformatierung) einsehen und teilweise
ändern.

• Struktur-Items verstecken
Diese Option bewirkt, dass in der Liste links die Elemente von Strukturen
(erkennbar an einem vorangestellten ~.) nicht angezeigt werden.

• Struktur-Namen verwenden
Diese Option beeinflusst die Art, wie Strukturen und Arrays von Strukturen
vom Debugger aufgelistet werden.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 59

• Routinen Stack
In diesem Bereich wird die Aufrufreihenfolge der Routinen angezeigt. Damit
können Sie genau verfolgen, welche Routine von wo aus aufgerufen wurde.

• Gehe zu
Wechselt zum Code der Routine, die in der Liste links ausgewählt ist.

• zu lokalen Variablen wechseln
Ist diese Option aktiv so wird mit "Gehe zu" automatisch die Liste der lokalen
Variablen der ausgewählten Routine geladen und angezeigt.

• auch Schleifeneinträge anzeigen
Jede Schleife (FOR-NEXT, REPEAT-UNTIL, WHILE-WEND) erzeugt einen
Eintrag auf dem Stack. Diese Einträge sind hier normalerweise verborgen.
Hinweis: Da auf dem Stack die Rückkehradressen in die Routine gespeichert
sind erscheinen die zu einer Routine gehörenden Schleifen-Stackeinträge vor
dem Namen der Routine (also in der Liste oberhalb des Namens).

• Breakpoints
Hier werden alle im Programm vereinbarten Breakpoints angezeigt. Sie
bekommen detaillierte Informationen, wo der Breakpoint vereinbart ist und über
seinen Status. Sie können zum Code des ausgewählten Breakpoints oder zu
dem Breakpoint wechseln, an dem das Programm angehalten hat.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 60

Elemente in der ReplyBar

Neben den selbst erklärenden Schaltern "Fenster schließen" und "Programm
beenden" finden Sie hier Buttons mit den Aufschriften " L " und " R ". Diese
Buchstaben stehen für "links" und "rechts" und blenden die entsprechenden
Bereiche des Debugger-Windows aus bzw. ein. Damit wird die Größe des
Debugger-Windows reduziert, was von Vorteil sein kann, wenn neben dem
Debugger-Window gleichzeitig das zu analysierende Programm auf dem
Bildschirm zu sehen sein soll. Werden beide Bereiche ausgeblendet wird trotzdem
eine minimale UI angezeigt, mit der man das Programm in Einzelschrittbetrieb
steuern kann.
Anmerkung: Die IDE selbst kann nicht auf diese Weise versteckt werden.
Schieben Sie sie einfach an den unteren Bildschirmrand, wenn sie stört.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 61

5.3.2 Debuggen von Libraries

Die aktuelle Version des Debuggers unterstützt das Debuggen von Code in
Libraries nicht. Breakpoints innerhalb von Libraries werden ohne Warnung
ignoriert. Um Code aus Libraries zu debuggen müssen Sie ihn ins
Hauptprogramm verschieben.

5.3.3 Interne Organisation

Dieser Abschnitt enthält Hintergrundinformationen, deren Kenntnis oder
Verständnis für die Arbeit mit dem Debugger nicht unbedingt erforderlich sind.

Wenn der Compiler ein Programm übersetzt, ersetzt er die Variablennamen durch
ihre Position im Variablenspeicher, beim Aufruf von Routinen wird statt des
Namens die Position der aufgerufenen Routine im Code abgespeichert usw. Wenn
der Debugger auf die entsprechenden Namen zugreifen will, müssen sie extra
gespeichert werden. Dazu legt der Compiler eine zusätzliche Datei an, die
Debugger-Datei genannt wird. Sie wird nur benötigt, wenn das Programm aus der
IDE heraus gestartet wird und enthält alle für den Debugger nötigen
Informationen, die im eigentlichen Programm nicht benötigt werden. Dazu zählen
insbesondere Listen mit den Namen der globalen Variablen, Konstanten und
Strukturen sowie aller Routinen und der dazugehörigen lokalen Variablen.

Alle Programme benutzen die gleiche Debugger-Datei, sie heißt "PROGRAM
SYMBOL FILE" bzw. für Libraries "LIBRARY SYMBOL FILE". Das hat folgende
Konsequenz. Nehmen wir an, Sie compilieren zuerst Programm A. Wenn Sie im
Anschluss daran das Programm B compilieren, so gehen die Debugger-
Informationen von Programm A verloren. Falls Sie das Programm A danach
erneut starten wollen, müssen Sie es erneut compilieren, selbst wenn Sie nichts
daran geändert haben.

Jedes Mal, wenn der Interpreter eine Codezeile zum Ausführen lädt, prüft er ab,
ob das Programm unter der Kontrolle der IDE läuft. Das geht extrem schnell, weil
nur ein einziges Bit abgefragt werden muss. Diese Abfrage verlangsamt ein
eigenständiges Programm daher faktisch nicht. Nur wenn das Programm unter der
Kontrolle der IDE läuft wird eine Routine gestartet, die prüft, ob ein Breakpoint
vorliegt und gegebenenfalls das Programm unterbricht und den Debugger startet.
Auch diese Routine fragt einzelne Bits ab, ist also ebenfalls recht schnell. Ein
Programm unter der Kontrolle der IDE läuft daher faktisch genauso schnell ab, wie
ein eigenständiges Programm.

Intern läuft bei einem Breakpoint der BASIC-Thread (das ist der Prozess-Thread
des Launchers) in einer Schleife, die darauf wartet, dass ein bestimmtes Bit
zurückgesetzt wird. Der UI-Thread des Launchers kommuniziert währenddessen
mit der IDE und nimmt Kommandos, wie z.B. "Einzelschritt ausführen" entgegen.
Daraufhin setzt er bestimmte Bits und gibt den BASIC Thread wieder frei. Der
BASIC-Thread führt dann z.B. genau einen Befehl aus und landet dann wieder in
der Warteschleife.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 62

Während der BASIC-Thread in der Warteschleife ist können Sie auf die Variablen
des Programms zugreifen. Auch das wird über den UI-Thread des Launchers
abgewickelt, denn nur das BASIC-Programm (und nicht die IDE selbst) kennt die
Position der Variablen im Variablenspeicher. Die IDE hingegen kennt über die
Debugger-Datei den Namen und den Typ der Variablen.
Analog verhält es sich mit dem Routinen-Stack. Der Launcher kennt die
Aufrufreihenfolge und die Position bzw. die Returnadresse der Routinen, die IDE
ermittelt daraus mit Hilfe der Debugger-Datei den Namen der Routine.

Bei einem Laufzeitfehler wird die gleiche Routine gerufen, die auch bei einem
Breakpoint die Kommunikation mit der IDE abwickelt. Deswegen steht bei einem
Laufzeitfehler der Zugriff auf Variablen und Routinenstack genauso zur Verfügung
wie in einem Breakpoint. Nur das weitere Ausführen des Programms ist
naturgemäß nicht möglich.

R-BASIC - Benutzer-Handbuch
Einfach unter PC/GEOS programmieren

Debugging - 63

(Leerseite)

