

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Neue FunktionenNeue Funktionen

Version 1.0.3

(Leerseite)

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

1 Versionsübersicht .. 4

2 Tab-styled RadioButtonGroups ... 5

3 Erweiterte Konvertierungsfunktionen für macOS und Linux 9

4 Suchen in Text-Objekten ... 10

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 4

1 Versionsübersicht

Diese Übersicht enthält die wesentlichen Neuerungen, Änderungen und Bugfixes
für die R-BASIC-Versionen, die nach der Version 1.0 (Dezember 2021)
veröffentlicht wurden und die direkt das Programmieren betreffen. Kleine
Anpassungen und Fehlerkorrekturen, die es in jeder Version gibt, oder Ver-
besserungen des Editor-Handlings, sind nicht explizit aufgeführt.
Falls erforderlich wurde jeweils die Handbücher angepasst.

Version 1.0.4 - Dezember 2024
• Diverse BugFixes: z.B. Crash beim Compilieren sehr großer Programme,

Memo und Inputline handlen anfänglichen Font und Textgröße richtig und
einige mehr.

• Fortschrittsbox für Compile-Vorgang und diverse weitere Verbesserungen
an der UI.

• Anpassungen an neue FM-Sounds für GEOS 6.

Version 1.0.3 - Mai 2023
• BugFix: Funktionsaufruf im RETURN-Statement konnte zu fehlerhaften

Ergebnissen oder Systemabsturz führen
• Handling beim Überschreiten des Zahlenbereichs von vorzeichen-

behafteten Integer-Zahlen (Integer, LongInt) an das Vorgehen anderer
Programmiersprachen angepasst: Keine Begrenzung auf Maximalwert
mehr, sondern einfache Übertragsbildung.

Version 1.0.2 - November 2022
• Tab-Styled ItemGroups bei RadioButtons ergänzt
• Unterstützung macOS und Linux: Zeilentrenner LF und erweiterte

Konvertierungsfunktionen
• BugFix: Launcher (R-App) registriert sich bei Neustart wieder für das

Clipboard.
• Suche in Textobjekten implementiert
• WizzardEditor: Helpfile verständlicher formuliert

Version 1.0.1 - Februar 2022
• Bugfix bei Setzen der Tausender-Punkte
• Bug in TxtObj.WriteToVMFile und WriteToFile bei leeren Texten beseitigt
• Paragraph-Attribute von Memo/InputLine funktionierten nicht

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 5

2 Tab-styled RadioButtonGroups

Tabs sind der übliche Weg, Informationen
gruppiert darzustellen. Unter GEOS benötigen
wir dafür die folgenden Objekte:
• Eine RadioButtonGroup mit den ent-

sprechenden RadioButton-Objekten. Diese
Objekte bilden die eigentlichen Tabs. Dazu
wird die Instancevariable look auf einen der
unten erwähnten Werte gesetzt.

• Ein Group-Objekt, TabsContent genannt,
das die zu den verschiedenen Tabs
gehörende UI verwaltet.

• Ein Group-Objekt, TabsHolder genannt, das die Anordnung der RadioButton-
Group und des TabContent-Objekts organisiert.

• Die eigentliche UI, mit der der Nutzer innerhalb der Tabs interagieren soll.

TabsHolder

TabsContentRadioButtonGroup

Tab1 Tab2 Tab3 UI 1 UI 2 UI 3

Einstellungen für die RadioButtonGroup

Die Einstellungen der RadioButtonGroup beschränken sich darauf, die Instance-
variable look mit einem der Werte aus der folgenden Tabelle zu belegen und einen
der Hints ExpandWidth oder ExpandHeight zu setzen. Außerdem muss ein Apply-
Handler definiert werden, der die zum angewählten Tab gehörende UI sichtbar
macht und die nicht dazu gehörende UI verbrigt.

Konstante Wert hex. Position der Tabs
LOOK_TABS_TOP 8 &h8 Über dem TabsContent
LOOK_TABS_LEFT 16 &h10 Links vom TabsContent
LOOK_TABS_RIGHT 32 &h20 Rechts vom TabsContent
LOOK_TABS_BOTTOM 64 &h40 Unter dem TabsContent

Hinweis: Wenn sich die Tabs links oder rechts vom TabsContent befinden, sollten
Sie für die RadioButton-Objekte den Hint fixedSize setzen, weil sie sonst
eventuell nicht bis an das TabsContent-Objekt heranreichen. Der Hint
ExpandWidth funktioniert (in der aktuellen GEOS-Version) hier nicht.

Intern werden beim Belegen der Instancevariablen look zusätzliche Instance-
variablen belegt, die im Folgenden aufgeführt sind.

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 6

Konstante
LOOK_TABS_TOP ExpandWidth

orientChildren = ORIENT_HORIZONTALLY
LOOK_TABS_LEFT ExpandHeight

orientChildren = ORIENT_VERTICALLY
LOOK_TABS_RIGHT ExpandHeight

orientChildren = ORIENT_VERTICALLY
justifyChildren = J_RIGHT

LOOK_TABS_BOTTOM ExpandWidth
orientChildren = ORIENT_HORIZONTALLY
justifyChildren = J_BOTTOM

Codebeispiel. Den vollständigen Code finden Sie in der Beispieldatei "Tabs
Tester" im Ordner "Beispiel\Objekte\Listen".

RadioButtonGroup TabsGroup
Children = TabText, TabNumber, TabButton
ApplyHandler = TabsChanged ’ as ListAction
selection = 1
look = LOOK_TABS_TOP

 End OBJECT

LISTACTION TabsChanged

TabsNumber.HideDelayed
TabsMemo.HideDelayed
TabsButton.HideDelayed

ON selection SWITCH
CASE 1: TabsMemo.visible = TRUE : End CASE
CASE 2: TabsNumber.visible = TRUE : End CASE
CASE 3: TabsButton.visible = TRUE : End CASE
End SWITCH

End ACTION

DontCenterTabbedChildren

In älteren GEOS-Versionen, die keine Tabs unterstützen, sieht es eventuell besser
aus, wenn die RadioButton-Objekte, die statt der Tabs erscheinen, zentriert sind.
Dazu müssen Sie die Instancevariable justifyChildren = J_CENTER setzen. Damit
in diesem Fall die Tabs nicht auch zentriert werden, können Sie den Hint
DontCenterTabbedChildren verwenden.

Syntax UI- Code: DontCenterTabbedChildren

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 7

Einstellungen für den TabsHolder

Der TabsHolder muss die RadioButtonGroup und das TabsContent Objekt als
Children haben. Die Reihenfolge und die Orientierung der Children hängt davon
ab, wo sich die Tabs befinden:
LOOK_TABS_TOP orientChildren = ORIENT_HORIZONTALLY

Children = TabsGroup, TabsContent
LOOK_TABS_LEFT orientChildren = ORIENT_VERTICALLY

Children = TabsGroup, TabsContent
LOOK_TABS_RIGHT orientChildren = ORIENT_VERTICALLY

Children = TabsContent, TabsGroup
LOOK_TABS_BOTTOM orientChildren = ORIENT_HORIZONTALLY

Children = TabsContent, TabsGroup

Zusätzlich sollte der Hint MinimizeChildSpacing gesetzt werden, um einen
Abstand zwischen TabsGroup und TabsContent zu verhindern.

Häufig ist es sinnvoll, die beiden Hints ExpandWidth und ExpandHeight zu
setzen.

Codebeispiel:
Group TabsHolder
Children = TabsGroup, TabsContent
orientChildren = ORIENT_HORIZONTALLY
MinimizeChildSpacing
ExpandWidth : ExpandHeight
End OBJECT

Einstellungen für das TabsContent-Objekt

Das TabsContent-Objekt sollte seine Größe nicht ändern, wenn die UI darin
umgeschaltet wird. Das erreicht man durch setzen beiden Hints ExpandWidth
und ExpandHeight oder durch Belegen der Instancevariablen fixedSize.

Sehr oft verwendet das TabsContent-Objekt einen hervorgehobenen Rahmen an
drei Seiten, um das typische Aussehen zu erzeugen. Der Rahmen auf der Seite,
auf der sich die Tabs befinden, sollte nicht hervorgehoben werden. Das erledigt
das RadioButton-Objekt. Um das zu realisieren, unterstützen Group-Objekte die
Instancevariable RaisedFrame. Ihr wird ein Zahlenwert übergeben, der bestimmt,
auf welcher Seite ein hervorgehobener Rahmen gezeichnet wird.

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 8

RaisedFrame

RaisedFrame zeichnet einen hervorgehobenen Rahmen an einer oder mehreren
Seiten des Objekts.
RaisedFrame ist ein Hint, d.h� nicht alle GenericClass Abkömmlinge unterstützen
diese Funktion. Er sollte nur für Groups verwendet werden.

Syntax UI- Code: RaisedFrame = numWert
Lesen: <numVar> = <obj> . RaisedFrame
Schreiben: <obj>.RaisedFrame = numWert

Zur Verwendung mit RaisedFrame sind die folgenden Konstanten definiert. Sie
können mit + oder OR verbunden werden.

Konstante Wert hex. Wirkung
RF_TOP 32768 &h8000 Rahmen oben
RF_LEFT 8192 &h2000 Rahmen links
RF_RIGHT 4096 &h1000 Rahmen rechts
RF_BOTTOM 16384 &h4000 Rahmen unten

Hinweis: Wird die Instancevariable RaisedFrame verwendet, so wird der Hint
DrawInBox ignoriert.

Codebeispiel:
Group TabsContent
Children = TabsMemo, TabsNumber, TabsButton
RaisedFrame = RF_TOP + RF_RIGHT + RF_BOTTOM
justifyChildren = J_CENTER
ExpandWidth : ExpandHeight
End OBJECT

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 9

3 Erweiterte Konvertierungsfunktionen für macOS und Linux

Zur Unterstützung von Textdateien, die unter Linux oder Mac OS erstellt wurden,
oder dort verwendet werden sollen, wurde die Funktionen FileWriteLine,
FileInsertLine, FileReplaceLine und Convert$ sowie die Text-Objekt Methoden
ReplaceFromFile, InsertFromFile und WriteToFile in ihrer Funktion erweitert.
Unter DOS und Windows wird die Kombination CRLF (Codes 13 + 10) zur Zeilen-
begrenzung verwendet. Linux und macOS verwenden nur das Zeichen LF (Code
10), während GEOS das Zeichen CR (Code 13) verwendet.

FileReadLine$

Alle FileReadLine-Modi (RLM_CLEAR, RLM_REPLACE_TO_CR, RLM_SET_CR
und RLM_DONT_CHANGE) arbeiten bereits problemlos mit Dateien, deren
Zeilen-Endezeichen ein CRLF (DOS, Windows) oder ein einfaches LF (Linux,
macOS) ist.

FileWriteLine

Zur Unterstützung von Linux- und macOS-Datein wurden drei neue WriteLine-
Modi eingeführt:

WLM_APPEND_LF (numerischer Wert: 4): Es wird ein LF-Code angehängt.
Eventuell im Text vorhandene Zeilen-Endezeichen werden nicht
verändert.

WLM_CR_TO_LF (numerischer Wert: 5): Jeder im Text vorhandene CR-Code
wird durch LF ersetzt.

WLM_SET_TO_LF (numerischer Wert: 6): Jeder im Text vorhandene CR-Code
wird durch LF ersetzt. Zusätzlich wird ein LF angehängt, falls am Ende
noch kein LF steht.

Convert$, ReplaceFromFile, InsertFromFile, WriteToFile

Neues Flag CR_TO_LF (numerischer Wert: 512)
Jedes Auftreten eines "CarriageReturn" (CR, Code 13 bzw. "\r") wird
durch ein "LineFeed" (LF, Code 10) ersetzt. Dieses Zeichen wird in Text-
Dateien unter Linux und macOS als Zeilenbegrenzung verwendet.

Erweiterte Funktion des Flags CRLF_TO_CR (numerischer Wert: 16)
Neben dem Auftreten der Codefolge CR+LF (Codes 13 und 10) wird auch
das Auftreten von LF (Code 10) alleine durch ein einfaches "Carriage-
Return" (CR, Code 13 bzw. "\r") ersetzt. Damit können auch Textdateien,
die unter Mac OS oder Linux erstellt wurden, eingelesen werden, ohne
dass man die Quelle der Datei kennen muss.

Eine vollständige Liste der Konvertiermodi und der verfügbaren Flags finden Sie
bei der Beschreibung der Funktion Convert$ im Programmierhandbuch Vol.2,
Kapitel 2.4.3.

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 10

4 Suchen in Text-Objekten

Das Suchen von Textpassagen in längeren Texten gehört häufig zu den
grundlegenden Aufgaben von Programmen. R-BASIC unterstützt die Suche in
Strings mit den Funktionen InStr (Finden von Textpassagen), CountStr (Zählen,
wie oft Textpassagen vorkommen) und ReplaceStr$ (Ersetzen von Text-
passagen). Texte in Textobjekten können jedoch länger als die maximale Text-
länge in R-BASIC sein (das sind max. 1024 Zeichen). Deswegen unterstützt R-
BASIC für alle Textobjekte (Memo, InputLine, LargeText und VisText) die
Methoden FindString (Finden von Textpassagen), FindStringBackward
(Rückwärtssuche nach Textpassagen), CountString (Zählen, wie oft
Textpassagen vorkommen) sowie ReplaceString (Ersetzen von Textpassagen).

Die Varianten FindStringWW, FindStringBackwardWW, CountStringWW und
ReplaceStringWW suchen nach "ganzen Wörtern" (engl. whole words).

Allgemeine Hinweise:
• Für alle Methoden kann der Suchbereich durch die Parameter start und end

eingeschränkt werden. Ist er leer (start = end) oder ungültig (start > end, start >=
texobj.textLen) so wird nichts gefunden. Es erfolgt hierbei keine Fehlermeldung.

• Es ist zulässig, für den Parameter ’end’ einen Wert größer als die aktuelle
Textlängen (z.B. 1E9) oder den Wert –1 zu wählen. In diesen Fällen wird der
Text bis zum Ende durchsucht.

• Ist der zu suchende String leer "", so wird ebenfalls nichts gefunden. Es erfolgt
auch hier keine Fehlermeldung.

• Befindet sich nur ein Teil des zu suchenden Strings im angegebenen Such-
bereich, ragt er z.B. über den Suchbereich hinaus, so wird ebenfalls nichts
gefunden. Wiederum erfolgt keine Fehlermeldung.

• Die Positions- und Rückgabe-Parameter sind intern vom Typ LongInt. Das
bedeutet, dass zu durchsuchende Textgröße bei LargeText-Objekten auf etwa
2 Gigabyte begrenzt ist.

FindString

Die Methode FindString ermittelt die Cursor-Position, ab welcher A$ im Text des
Text-Objekts zu finden ist. Der Suchbereich kann eingeschränkt werden.
Standardmäßig wird zwischen Groß- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 11

Syntax: <numVar> = <obj>.FindString A$ [, start [, end [, ignoreCase]]]
Parameter: A$: String-Ausdruck: der zu findende String

start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: –1

Übergeben Sie den Wert –1, wenn der Text bis
zum Ende durchsucht werden soll.

ignoreCase (optional) Groß/Kleinschreibung ignorieren (TRUE)
 oder berücksichtigen (FALSE, Default)

Return: Cursor-Position der Fundstelle (Null entspricht dem Textanfang) bzw.
–1, wenn der String A$ nicht gefunden wurde.

Beispiele:
DIM pos
pos = MyText.FindString "Paula" ’ gesamten Text durchsuchen
pos = MyText.FindString "Paula", 12, 200

’ Text im Bereich der Zeichenpositionen 12 bis 200
’ durchsuchen

pos = MyText.FindString "paulA", 0, –1, TRUE
’ gesamten Text durchsuchen, Groß/Kleinschreibung ignorieren

FindStringBackward

Die Methode FindStringBackward ermittelt die Cursor-Position, ab welcher A$ im
Text des Text-Objekts zu finden ist, wobei die Suche am Ende des Suchbereichs
beginnt. Wird z.B. nach "Hallo" gesucht, so ist der Rückgabewert die
Cursorposition des Buchstabens ’H’. Der Suchbereich kann eingeschränkt werden.
Standardmäßig wird zwischen Groß- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

Syntax:
<numVar> = <obj>.FindStringBackward A$ [, start [, end [, ignoreCase]]]
Parameter: A$: String-Ausdruck: der zu findende String

start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: –1

Übergeben Sie den Wert –1, wenn der Text ab
dem Ende durchsucht werden soll.

ignoreCase (optional) Groß/Kleinschreibung ignorieren (TRUE)
 oder berücksichtigen (FALSE, Default)

Return: Cursor-Position der Fundstelle (Null entspricht dem Textanfang) bzw.
–1, wenn der String A$ nicht gefunden wurde.

Beispiele:
DIM pos
pos = MyText.FindStringBackward "Paula"
’ gesamten Text durchsuchen

pos = MyText.FindStringBackward "paulA", 0, –1, TRUE
’ gesamten Text durchsuchen, Groß/Kleinschreibung ignorieren

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 12

CountString

Die Methode CountString ermittelt, wie oft A$ im Text des Text-Objekts zu finden
ist. Der Suchbereich kann eingeschränkt werden.
Standardmäßig wird zwischen Groß- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

Syntax: <numVar> = <obj>.CountString A$ [, start [, end [, ignoreCase]]]
Parameter: A$: String-Ausdruck: der zu findende String

start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: –1

Übergeben Sie den Wert –1, wenn der Text bis
zum Ende durchsucht werden soll.

ignoreCase (optional) Groß/Kleinschreibung ignorieren (TRUE)
 oder berücksichtigen (FALSE, Default)

Return: Häufigkeit des Auftretens des Strings A$ im Suchbereich.

Hinweis: Bereits gefundene Textstellen werden nicht noch einmal berücksichtigt.
Enthält der Text beispielsweise die Zeichenfolge "ahaha", so wird bei der Suche
nach "aha" nur ein Auftreten gefunden.

Beispiele:
DIM pos
pos = MyText.CountString, "Paula" ’ gesamten Text
durchsuchen
pos = MyText.CountString, "Paula", 10, 30 ’ eingeschränkte
Suche
pos = MyText.CountString, "paulA", 0, –1, TRUE
’ gesamten Text durchsuchen, Groß/Kleinschreibung ignorieren

ReplaceString

Die Methode ReplaceString realisiert eine "Alles Ersetzen"-Funktion für Text-
objekte. Jedes Auftreten der Zeichenfolge A$ wird ohne Nachfrage durch die
Zeichenfolge B$ ersetzt. Der Bereich, in dem ersetzt wird, kann eingeschränkt
werden.
Standardmäßig wird zwischen Groß- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

Syntax: <obj>.ReplaceString A$, B$ [, start [, end [, ignoreCase]]]
Parameter: A$: String-Ausdruck: der zu findende String

B$: String-Ausdruck: neuer Text
start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: –1

Übergeben Sie den Wert –1, wenn der Text bis
zum Ende durchsucht werden soll.

ignoreCase (optional) Groß/Kleinschreibung ignorieren (TRUE)
 oder berücksichtigen (FALSE, Default)

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 13

Hinweis: Beachten Sie, dass der Text durch das Ersetzten länger werden kann.
Dadurch kann er möglicherweise nicht mehr vom Text-Objekt aufgenommen
werden. Darüber erfolgt keine Fehlermeldung! Der Suchtext wird dann einfach
nicht ersetzt.
Sie können die Methode CountString verwenden, um herauszufinden wie oft der
zu ersetzende Text im Suchbereich vorkommt. Außerdem können Sie vor dem
Ersetzen die aktuelle Textlänge (Instancevariable textLen) und die maximale
Textlänge (Instancevariable maxLen) abfragen.
Für LargeText-Objekte existiert dieses Problem nicht.

Beispiele:
DIM count
count = MyText.CountString "Paula" ’ gesamten Text durchsuchen
count = MyText.CountString "paulA", 0, –1, TRUE
’ gesamten Text durchsuchen, Groß/Kleinschreibung ignorieren

FindStringWW, FindStringBackwardWW, CountStringWW, ReplaceStringWW

Diese Varianten der Methoden prüfen zusätzlich, ob eine Fundstelle als "ganzen
Wort" (engl. whole word) aufgefasst werden kann. Nur dann akzeptieren sie die
Fundstelle.
Beispiel: Suche nach "all" in einem Text, der nur aus dem Wort "Hallo" besteht:
Die Methode FindString liefert den Wert 1
Die Methode FindStringWW liefert "nicht gefunden" (–1)

Eine Textstelle zählt als "ganzes Wort", wenn sich davor und danach kein Zeichen
befindet, das Teil eines Wortes sein kann. Welche Zeichen Teil eines Wortes sein
können, hängt möglicherweise von den Umständen ab. R-BASIC verwendet die
folgenden Regeln:

Teil eines Wortes kann sein:
• Die Buchstaben ’A’ bis ’Z’ und ’a’ bis ’z’
• Die Ziffern ’0’ bis ’9’
• Der Unterstrich ’_’
• Die Umlaute und Buchstaben mit Akzent aus dem Code-Bereich ab 128

(dezimal) entsprechend der GEOS-Codetabelle. Dazu gehört z.B. die
deutschen Umlaute einschließlich dem ß, ausländische Buchstaben, z.B. ñ und
Ø, sowie Ligaturen wie Œ oder æ.

Nicht Teil eines Wortes kann z.B. folgendes sein:
• mathematische Symbole, z.B. ≥ oder ∞
• griechische Buchstaben, z.B. Ω oder π
• Währungszeichen

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 14

Beachten Sie folgendes:
• Die Zeichen innerhalb eines zu findenden Strings werden nicht geprüft. In

diesem Sinne kann ein "ganze Wort" auch Leerzeichen oder Satzzeichen
enthalten.

• Der Anfang und das Ende des Texts in einem Textobjekts kann ein "ganzes
Wort" begrenzen.

• Für eingeschränkte Suchbereiche gilt das nicht! Die Methoden prüfen die
beiden Zeichen links und rechts der Fundstelle, selbst wenn diese sich
außerhalb des Suchbereichs befinden.
Beispiel: Der Text in einem Textobjekt besteht aus dem String "Hallo Welt". Der
Suchbereich wird auf den Bereich der Zeichen ’o’ bis ’t’ eingeschränkt.
FindStringWW findest in diesem Fall den String "o" nicht, da direkt vor dem ’o’
ein ’l’ steht, dass Teil eines Wortes sein kann. Oder anders gesagt: das ’o’ ist
immer noch Teil des Wortes Hallo, also kein eigenständiges Wort.

Weitere Beispiele:
Beachten Sie das führende Leerzeichen im letzten Beispiel!

Text im Textobjekt Suchtext Rückgabewert Rückgabewert
FindString FindStringWW

"Fred ist schlau!" "Fred" 0 0
"Fred ist schlau!" "Fred ist" 0 0
"Fred ist schlau!" "ist schlau" 5 5
"Fred ist schlau!" "red" 1 –1
"Fred ist schlau!" "schlau!" 9 9
"Fred ist schlau!" " schlau!" 8 –1

Suchen und Weitersuchen

In vielen Fällen wollen Sie sich nicht mit der ersten Fundstelle zufriedengeben,
sondern auch die weiteren Fundstellen finden. Die folgenden Routinen zeigen, wie
das prinzipiell gemacht wird. Die Idee ist, dass Sie für die nächste Suche die
aktuelle Fundstelle ausklammern. Für eine Vorwärtssuche müssen Sie also den
Suchbereich auf den Bereich nach der letzten Fundstelle einschränken, für eine
Rückwärtssuche müssen Sie den Suchbereich auf den Bereich vor der letzten
Fundstelle einschränken.
Die FindString~Methoden sind dabei so programmiert, dass Sie selbst keine
Sonderfälle berücksichtigen müssen, Sie können also ruhig so lange weiter-
machen, bis die Meldung "nicht gefunden" kommt.
Ein komplettes Beispiel mit verschiedenen Suchvarianten finden Sie Beispieldatei
"Such-Demo" im Ordner "Beispiel\Objekte\Text".

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 15

SUB FindSimple ()
DIM t$, pos, start

t$ = SuchText.text$
start = 0
pos = FindLargeText.FindString t$ start, -1
WHILE pos >= 0
MsgBox "Gefunden auf Position "+Str$(pos)
start = pos + Len(t$)
pos = FindLargeText.FindString t$ start, -1

WEND

MsgBox "Nicht gefunden"

END SUB ’FindSimple

SUB FindSimpleBackward ()
DIM t$, pos, sEnd

t$ = SuchText.text$
sEnd = -1
pos = FindLargeText.FindStringBackward t$ 0, sEnd
WHILE pos >= 0
MsgBox "Gefunden auf Position "+Str$(pos)
sEnd = pos
pos = FindLargeText.FindStringBackward t$ 0, sEnd

WEND

MsgBox "Nicht gefunden"

End SUB ’FindSimpleBackward

Ein weiterer häufiger Fall ist das Ersetzen des gefundenen Strings mit Nachfrage.
Die folgende Function FindAndReplace zeigt, wie man das realisieren kann.
Beim Ersetzen von Zeichenketten innerhalb eines Textes kann sich der Text
verlängern oder verkürzen. Bei der Vorwärtssuche (aber nicht bei der Rück-
wärtssuche) muss man das bei der Berechnung der neuen Startposition
berücksichtigen. Die Funktion FindAndReplace berechnet diese Längenänderung
in der Variablen diff. So kann sie gleich die neue Suchposition für den nächsten
Aufruf von FindAndReplace zurückgeben.
Außerdem zeigt der Code, wie man eine Fundstelle im Text für den Nutzer
sichtbar markieren kann.

FUNCTION FindAndReplace (textObj AS OBJECT, old$, new$ AS STRING,
startpos AS REAL) AS REAL

DIM foundPos, newPos, cmd, diff

foundPos = textObj.FindString old$, startPos, -1
IF foundPos = -1 THEN RETURN -1 ’ Nicht mehr gefunden

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Neue Funktionen - 16

’ Fundstelle markieren
textObj.cursorPos = foundPos
textObj.selectionLen = Len(old$)
Target = textObj ’ Sichtbarkeit sicherstellen

’ Nachfragen
cmd = QuestionBox ("Dieses Auftreten ersetzen?")
IF cmd = YES THEN
textObj.ReplaceSelection new$

’ Neue Startposition berechnen
’ Die Textlänge kann sich geändert haben
diff = Len(new$) - Len(old$)
newPos = foundPos + Len(old$) + diff

ELSE
’ nur die neue Startposition berechnen
newPos = foundPos + Len(old$)

End IF

RETURN newPos

End FUNCTION ’FindAndReplace

Code-Beispiel: Einfacher Aufruf der Funktion FindAndReplace. Jedes Auftreten
der Zeichenkette "Paul" wird auf Nachfrage durch "Fred" ersetzt.

DIM startpos
sPos = 0
REPEAT
sPos = FindAndReplace (MyTextObj, "Paul", "Fred", sPos)

UNTIL sPos = -1

