R-BASIC

Einfach unter PC/GEOS programmieren

\O

ob
9&

Neue Funktionen

Version 1.0.3

(Leerseite)

R-BASIC - Neue Funktionen

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis
1 VersioNSUDEISICNT «oeveeeeiieiiiii i e e e 4
2 Tab-styled RadioBUttONGrOUPS ««vveeeeeeeiiiiiiiiiiiiiiiii i 5
3 Erweiterte Konvertierungsfunktionen fir macOS und Linux 9

4 Suchen in Text-ObJEKENcooiiiiiiiiiie e 10

R-BASIC - Neue Funktionen

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

1 Versionsibersicht

Diese Ubersicht enthélt die wesentlichen Neuerungen, Anderungen und Bugfixes
fir die R-BASIC-Versionen, die nach der Version 1.0 (Dezember 2021)
verdffentlicht wurden und die direkt das Programmieren betreffen. Kleine
Anpassungen und Fehlerkorrekturen, die es in jeder Version gibt, oder Ver-
besserungen des Editor-Handlings, sind nicht explizit aufgefihrt.

Falls erforderlich wurde jeweils die Handbucher angepasst.

Version 1.0.4 - Dezember 2024
+ Diverse BugFixes: z.B. Crash beim Compilieren sehr groBer Programme,
Memo und Inputline handlen anfénglichen Font und TextgréBe richtig und
einige mehr.
+ Fortschrittsbox flir Compile-Vorgang und diverse weitere Verbesserungen
an der Ul.
+ Anpassungen an neue FM-Sounds fir GEOS 6.

Version 1.0.3 - Mai 2023
+ BugFix: Funktionsaufruf im RETURN-Statement konnte zu fehlerhaften
Ergebnissen oder Systemabsturz fuhren
- Handling beim Uberschreiten des Zahlenbereichs von vorzeichen-
behafteten Integer-Zahlen (Integer, Longint) an das Vorgehen anderer
Programmiersprachen angepasst: Keine Begrenzung auf Maximalwert
mehr, sondern einfache Ubertragsbildung.

Version 1.0.2 - November 2022

« Tab-Styled ltemGroups bei RadioButtons erganzt

+ Unterstitzung macOS und Linux: Zeilentrenner LF und erweiterte
Konvertierungsfunktionen

+ BugFix: Launcher (R-App) registriert sich bei Neustart wieder fur das
Clipboard.

+ Suche in Textobjekten implementiert

+ WizzardEditor: Helpfile verstandlicher formuliert

Version 1.0.1 - Februar 2022
+ Budfix bei Setzen der Tausender-Punkte
* Bug in TxtObj.WriteToVMFile und WriteToFile bei leeren Texten beseitigt
+ Paragraph-Attribute von Memo/InputLine funktionierten nicht

Neue Funktionen - 4

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

2 Tab-styled RadioButtonGroups

Tabs sind der Ubliche Weg, Informationen
gruppiert darzustellen. Unter GEOS benétigen

wir dafir die folgenden Objekte: IBSIE=] Tabs Tester [N
+ Eine RadioButtonGroup mit den ent- Datei

sprechenden RadioButton-Objekten. Diese

Objekte bilden die eigentlichen Tabs. Dazu Text| number | Button |

wird die Instancevariable look auf einen der
unten erwahnten Werte gesetzt.

« Ein Group-Objekt, TabsContent genannt,
das die zu den verschiedenen Tabs
gehorende Ul verwaltet.

+ Ein Group-Objekt, TabsHolder genannt, das die Anordnung der RadioButton-
Group und des TabContent-Objekts organisiert.
+ Die eigentliche Ul, mit der der Nutzer innerhalb der Tabs interagieren soll.

Kommentar eingeben
Ich bin ein Text.

TabsHolder

('RadioButtonGroup) (TabsContent)

£ 1 PRI
(Tabt) (Tab2)(Tab3) (UI1) (ul2) (U3)

Einstellungen fiir die RadioButtonGroup

Die Einstellungen der RadioButtonGroup beschranken sich darauf, die Instance-
variable look mit einem der Werte aus der folgenden Tabelle zu belegen und einen
der Hints ExpandWidth oder ExpandHeight zu setzen. AuBerdem muss ein Apply-
Handler definiert werden, der die zum angewahlten Tab gehdérende Ul sichtbar
macht und die nicht dazu gehérende Ul verbrigt.

Konstante Wert hex. Position der Tabs
LOOK_TABS_TOP 8 &h8 | Uber dem TabsContent
LOOK_TABS_LEFT 16 &h10 | Links vom TabsContent
LOOK_TABS_RIGHT 32 &h20 | Rechts vom TabsContent
LOOK_TABS_BOTTOM 64 &h40 | Unter dem TabsContent

Hinweis: Wenn sich die Tabs links oder rechts vom TabsContent befinden, sollten
Sie fur die RadioButton-Objekte den Hint fixedSize setzen, weil sie sonst
eventuell nicht bis an das TabsContent-Objekt heranreichen. Der Hint
ExpandWidth funktioniert (in der aktuellen GEOS-Version) hier nicht.

Intern werden beim Belegen der Instancevariablen look zusétzliche Instance-
variablen belegt, die im Folgenden aufgefihrt sind.

Neue Funktionen -5

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Konstante
LOOK_TABS_TOP ExpandWidth

orientChildren = ORIENT_HORIZONTALLY
LOOK_TABS_LEFT ExpandHeight

orientChildren = ORIENT_VERTICALLY

LOOK_TABS_RIGHT ExpandHeight
orientChildren = ORIENT_VERTICALLY

justifyChildren = J_RIGHT

LOOK_TABS_BOTTOM | ExpandWidth
orientChildren = ORIENT_HORIZONTALLY
justifyChildren = J_BOTTOM

Codebeispiel. Den vollstdndigen Code finden Sie in der Beispieldatei "Tabs
Tester" im Ordner "Beispie\Objekte\Listen".

RadioButtonGroup TabsGroup
Children = TabText, TabNumber, TabButton
ApplyHandler = TabsChanged ' as ListAction
selection = 1
look = LOOK TABS TOP
End OBJECT

LISTACTION TabsChanged
TabsNumber.HideDelayed
TabsMemo.HideDelayed
TabsButton.HideDelayed

ON selection SWITCH

CASE 1: TabsMemo.visible = TRUE : End CASE
CASE 2: TabsNumber.visible = TRUE : End CASE
CASE 3: TabsButton.visible = TRUE : End CASE
End SWITCH

End ACTION

DontCenterTabbedChildren

In alteren GEOS-Versionen, die keine Tabs unterstltzen, sieht es eventuell besser
aus, wenn die RadioButton-Objekte, die statt der Tabs erscheinen, zentriert sind.
Dazu missen Sie die Instancevariable justifyChildren = J_CENTER setzen. Damit
in diesem Fall die Tabs nicht auch zentriert werden, kénnen Sie den Hint
DontCenterTabbedChildren verwenden.

Syntax Ul- Code: DontCenterTabbedChildren

Neue Funktionen - 6

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Einstellungen fur den TabsHolder

Der TabsHolder muss die RadioButtonGroup und das TabsContent Objekt als
Children haben. Die Reihenfolge und die Orientierung der Children hangt davon
ab, wo sich die Tabs befinden:

LOOK_TABS_TOP orientChildren = ORIENT_HORIZONTALLY
Children = TabsGroup, TabsContent

LOOK_TABS_LEFT orientChildren = ORIENT_VERTICALLY
Children = TabsGroup, TabsContent

LOOK_TABS_RIGHT orientChildren = ORIENT_VERTICALLY

Children = TabsContent, TabsGroup

LOOK_TABS_BOTTOM orientChildren = ORIENT_HORIZONTALLY
Children = TabsContent, TabsGroup

Zusatzlich sollte der Hint MinimizeChildSpacing gesetzt werden, um einen
Abstand zwischen TabsGroup und TabsContent zu verhindern.

Haufig ist es sinnvoll, die beiden Hints ExpandWidth und ExpandHeight zu
setzen.

Codebeispiel:

Group TabsHolder
Children = TabsGroup, TabsContent
orientChildren = ORIENT HORIZONTALLY
MinimizeChildSpacing
ExpandWidth : ExpandHeight
End OBJECT

Einstellungen fur das TabsContent-Objekt

Das TabsContent-Objekt sollte seine GréBe nicht andern, wenn die Ul darin
umgeschaltet wird. Das erreicht man durch setzen beiden Hints ExpandWidth
und ExpandHeight oder durch Belegen der Instancevariablen fixedSize.

Sehr oft verwendet das TabsContent-Objekt einen hervorgehobenen Rahmen an
drei Seiten, um das typische Aussehen zu erzeugen. Der Rahmen auf der Seite,
auf der sich die Tabs befinden, sollte nicht hervorgehoben werden. Das erledigt
das RadioButton-Objekt. Um das zu realisieren, unterstitzen Group-Objekte die
Instancevariable RaisedFrame. Ihr wird ein Zahlenwert Gbergeben, der bestimmt,
auf welcher Seite ein hervorgehobener Rahmen gezeichnet wird.

Neue Funktionen -7

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

RaisedFrame

RaisedFrame zeichnet einen hervorgehobenen Rahmen an einer oder mehreren
Seiten des Objekts.

RaisedFrame ist ein Hint, d.hO nicht alle GenericClass Abkémmlinge unterstitzen
diese Funktion. Er sollte nur fir Groups verwendet werden.

Syntax Ul- Code: RaisedFrame = numWert
Lesen: <numVar> = <obj> . RaisedFrame
Schreiben: <obj>.RaisedFrame = numWert

Zur Verwendung mit RaisedFrame sind die folgenden Konstanten definiert. Sie
kdnnen mit + oder OR verbunden werden.

Konstante Wert hex. Wirkung
RF_TOP 32768 &h8000 Rahmen oben
RF_LEFT 8192 &h2000 Rahmen links
RF_RIGHT 4096 &h1000 Rahmen rechts
RF_BOTTOM 16384 &h4000 Rahmen unten

Hinweis: Wird die Instancevariable RaisedFrame verwendet, so wird der Hint
DrawinBox ignoriert.

Codebeispiel:

Group TabsContent
Children = TabsMemo, TabsNumber, TabsButton
RaisedFrame = RF_TOP + RF_RIGHT + RF_BOTTOM
justifyChildren = J CENTER
ExpandWidth : ExpandHeight
End OBJECT

Neue Funktionen - 8

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

3 Erweiterte Konvertierungsfunktionen fir macOS und Linux

Zur Unterstlitzung von Textdateien, die unter Linux oder Mac OS erstellt wurden,
oder dort verwendet werden sollen, wurde die Funktionen FileWriteLine,
FilelnsertLine, FileReplaceLine und Convert$ sowie die Text-Objekt Methoden
ReplaceFromFile, InsertFromFile und WriteToFile in ihrer Funktion erweitert.
Unter DOS und Windows wird die Kombination CRLF (Codes 13 + 10) zur Zeilen-
begrenzung verwendet. Linux und macOS verwenden nur das Zeichen LF (Code
10), wahrend GEOS das Zeichen CR (Code 13) verwendet.

FileReadLine$

Alle FileReadLine-Modi (RLM_CLEAR, RLM_REPLACE_TO_CR, RLM_SET_CR
und RLM_DONT_CHANGE) arbeiten bereits problemlos mit Dateien, deren
Zeilen-Endezeichen ein CRLF (DOS, Windows) oder ein einfaches LF (Linux,
macQOS) ist.

FileWriteLine

Zur Unterstitzung von Linux- und macOS-Datein wurden drei neue WriteLine-
Modi eingefulhrt:

WLM_APPEND_LF (numerischer Wert: 4): Es wird ein LF-Code angehéangt.
Eventuell im Text vorhandene Zeilen-Endezeichen werden nicht
verandert.

WLM_CR_TO_LF (numerischer Wert: 5): Jeder im Text vorhandene CR-Code
wird durch LF ersetzt.

WLM_SET_TO_LF (numerischer Wert: 6): Jeder im Text vorhandene CR-Code
wird durch LF ersetzt. Zusatzlich wird ein LF angehéngt, falls am Ende
noch kein LF steht.

Convert$, ReplaceFromFile, InsertFromFile, WriteToFile

Neues Flag CR_TO_LF (numerischer Wert: 512)
Jedes Auftreten eines "CarriageReturn" (CR, Code 13 bzw. "\") wird
durch ein "LineFeed" (LF, Code 10) ersetzt. Dieses Zeichen wird in Text-
Dateien unter Linux und macOS als Zeilenbegrenzung verwendet.

Erweiterte Funktion des Flags CRLF_TO_CR (numerischer Wert: 16)
Neben dem Auftreten der Codefolge CR+LF (Codes 13 und 10) wird auch
das Auftreten von LF (Code 10) alleine durch ein einfaches "Carriage-
Return" (CR, Code 13 bzw. "\r") ersetzt. Damit kénnen auch Textdateien,
die unter Mac OS oder Linux erstellt wurden, eingelesen werden, ohne
dass man die Quelle der Datei kennen muss.

Eine vollstandige Liste der Konvertiermodi und der verfiigbaren Flags finden Sie

bei der Beschreibung der Funktion Convert$ im Programmierhandbuch Vol.2,
Kapitel 2.4.3.

Neue Funktionen -9

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

4 Suchen in Text-Objekten

Das Suchen von Textpassagen in langeren Texten gehdért haufig zu den
grundlegenden Aufgaben von Programmen. R-BASIC unterstitzt die Suche in
Strings mit den Funktionen InStr (Finden von Textpassagen), CountStr (Zahlen,
wie oft Textpassagen vorkommen) und ReplaceStr$ (Ersetzen von Text-
passagen). Texte in Textobjekten kénnen jedoch langer als die maximale Text-
lange in R-BASIC sein (das sind max. 1024 Zeichen). Deswegen unterstitzt R-
BASIC fir alle Textobjekte (Memo, InputLine, LargeText und VisText) die
Methoden FindString (Finden von Textpassagen), FindStringBackward
(Ruckwartssuche nach Textpassagen), CountString (Zahlen, wie oft
Textpassagen vorkommen) sowie ReplaceString (Ersetzen von Textpassagen).

Die Varianten FindStringWW, FindStringBackwardWW, CountStringWW und
ReplaceStringWW suchen nach "ganzen Wértern" (engl. whole words).

Allgemeine Hinweise:

+ Flr alle Methoden kann der Suchbereich durch die Parameter start und end
eingeschrankt werden. Ist er leer (start = end) oder ungliltig (start > end, start >=
texobj.textLen) so wird nichts gefunden. Es erfolgt hierbei keine Fehlermeldung.

+ Es ist zuléssig, fur den Parameter ’end’ einen Wert gréBer als die aktuelle
Textlangen (z.B. 1E9) oder den Wert —1 zu wahlen. In diesen Fallen wird der
Text bis zum Ende durchsucht.

+ Ist der zu suchende String leer ", so wird ebenfalls nichts gefunden. Es erfolgt
auch hier keine Fehlermeldung.

+ Befindet sich nur ein Teil des zu suchenden Strings im angegebenen Such-
bereich, ragt er z.B. Uber den Suchbereich hinaus, so wird ebenfalls nichts
gefunden. Wiederum erfolgt keine Fehlermeldung.

+ Die Positions- und Ruickgabe-Parameter sind intern vom Typ Longlint. Das
bedeutet, dass zu durchsuchende TextgroBe bei LargeText-Objekten auf etwa
2 Gigabyte begrenzt ist.

FindString

Die Methode FindString ermittelt die Cursor-Position, ab welcher A$ im Text des
Text-Objekts zu finden ist. Der Suchbereich kann eingeschrénkt werden.
Standardmé&Big wird zwischen GroB- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

Neue Funktionen - 10

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Syntax: <numVar> = <obj>.FindString AS$ [, start [, end [, ignoreCase]]]
Parameter: A$: String-Ausdruck: der zu findende String
start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: —1
Ubergeben Sie den Wert —1, wenn der Text bis
zum Ende durchsucht werden soll.
ignoreCase (optional) GroB/Kleinschreibung ignorieren (TRUE)
oder berucksichtigen (FALSE, Default)
Return: Cursor-Position der Fundstelle (Null entspricht dem Textanfang) bzw.
—1, wenn der String A$ nicht gefunden wurde.

Beispiele

DIM pos
pos = MyText.FindString "Paula" ' gesamten Text durchsuchen
pos = MyText.FindString "Paula", 12, 200

' Text im Bereich der Zeichenpositionen 12 bis 200
’ durchsuchen
pos = MyText.FindString "paulA", 0, —1, TRUE
' gesamten Text durchsuchen, GroB/Kleinschreibung ignorieren

FindStringBackward

Die Methode FindStringBackward ermittelt die Cursor-Position, ab welcher A$ im
Text des Text-Objekts zu finden ist, wobei die Suche am Ende des Suchbereichs
beginnt. Wird z.B. nach "Hallo" gesucht, so ist der Ruickgabewert die
Cursorposition des Buchstabens 'H’. Der Suchbereich kann eingeschrénkt werden.
StandardméBig wird zwischen GroB- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

Syntax:
<numVar> = <obj>.FindStringBackward AS$ [, start [, end [, ignoreCase][]
Parameter: A$: String-Ausdruck: der zu findende String
start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: —1
Ubergeben Sie den Wert —1, wenn der Text ab
dem Ende durchsucht werden soll.
ignoreCase (optional) GroB/Kleinschreibung ignorieren (TRUE)
oder berucksichtigen (FALSE, Default)
Return: Cursor-Position der Fundstelle (Null entspricht dem Textanfang) bzw.
—1, wenn der String A$ nicht gefunden wurde.

Beispiele:
DIM pos
pos = MyText.FindStringBackward "Paula"
' gesamten Text durchsuchen
pos = MyText.FindStringBackward "paulA", 0, —1, TRUE
' gesamten Text durchsuchen, GroB/Kleinschreibung ignorieren

Neue Funktionen - 11

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

CountString

Die Methode CountString ermittelt, wie oft A$ im Text des Text-Objekts zu finden
ist. Der Suchbereich kann eingeschrankt werden.

StandardméaBig wird zwischen GroB- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

Syntax: <numVar> = <obj>.CountString A$ [, start [, end [, ignoreCase]]]
Parameter: A$: String-Ausdruck: der zu findende String
start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: —1
Ubergeben Sie den Wert —1, wenn der Text bis
zum Ende durchsucht werden soll.
ignoreCase (optional) GroB/Kleinschreibung ignorieren (TRUE)
oder berucksichtigen (FALSE, Default)
Return: Haufigkeit des Auftretens des Strings A$ im Suchbereich.

Hinweis: Bereits gefundene Textstellen werden nicht noch einmal berticksichtigt.
Enthélt der Text beispielsweise die Zeichenfolge "ahaha", so wird bei der Suche
nach "aha" nur ein Auftreten gefunden.

Beispiele:
DIM pos
pos = MyText.CountString, "Paula" ' gesamten Text
durchsuchen
pos = MyText.CountString, "Paula", 10, 30 ' eingeschrankte
Suche
pos = MyText.CountString, "paulA", 0, —1, TRUE
' gesamten Text durchsuchen, GroB/Kleinschreibung ignorieren

ReplaceString

Die Methode ReplaceString realisiert eine "Alles Ersetzen"-Funktion far Text-
objekte. Jedes Auftreten der Zeichenfolge A$ wird ohne Nachfrage durch die
Zeichenfolge B$ ersetzt. Der Bereich, in dem ersetzt wird, kann eingeschrankt
werden.

StandardméaBig wird zwischen GroB- und Kleinschreibung unterschieden
(ignoreCase = FALSE).

Syntax: <obj>.ReplaceString A$, BS [, start [, end [, ignoreCase]]]
Parameter: A$: String-Ausdruck: der zu findende String
B$: String-Ausdruck: neuer Text
start (optional) Beginn des Suchbereichs. Default: Null
end (optional) Ende des Suchbereichs: Default: —1
Ubergeben Sie den Wert —1, wenn der Text bis
zum Ende durchsucht werden soll.
ignoreCase (optional) GroB/Kleinschreibung ignorieren (TRUE)
oder berucksichtigen (FALSE, Default)

Neue Funktionen - 12

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Hinweis: Beachten Sie, dass der Text durch das Ersetzten l&dnger werden kann.
Dadurch kann er mdglicherweise nicht mehr vom Text-Objekt aufgenommen
werden. Daruber erfolgt keine Fehlermeldung! Der Suchtext wird dann einfach
nicht ersetzt.

Sie kdénnen die Methode CountString verwenden, um herauszufinden wie oft der
zu ersetzende Text im Suchbereich vorkommt. AuBerdem kénnen Sie vor dem
Ersetzen die aktuelle Textlange (Instancevariable textLen) und die maximale
Textlange (Instancevariable maxLen) abfragen.

Fir LargeText-Objekte existiert dieses Problem nicht.

Beispiele:
DIM count
count = MyText.CountString "Paula" ' gesamten Text durchsuchen

count = MyText.CountString "paulA", 0, —1, TRUE
' gesamten Text durchsuchen, GroB/Kleinschreibung ignorieren

FindStringWW, FindStringBackwardWW, CountStringWW, ReplaceStringWW

Diese Varianten der Methoden prufen zusatzlich, ob eine Fundstelle als "ganzen
Wort" (engl. whole word) aufgefasst werden kann. Nur dann akzeptieren sie die

Fundstelle.

Beispiel: Suche nach "all" in einem Text, der nur aus dem Wort "Hallo" besteht:
Die Methode FindString liefert den Wert 1

Die Methode FindStringWW liefert "nicht gefunden" (—1)

Eine Textstelle zahlt als "ganzes Wort", wenn sich davor und danach kein Zeichen
befindet, das Teil eines Wortes sein kann. Welche Zeichen Teil eines Wortes sein
kdnnen, héngt moglicherweise von den Umsténden ab. R-BASIC verwendet die
folgenden Regeln:

Teil eines Wortes kann sein:

+ Die Buchstaben ’A’ bis ’Z’ und ’a’ bis 'z’
+ Die Ziffern ’0’ bis ’9’

* Der Unterstrich ’_’

« Die Umlaute und Buchstaben mit Akzent aus dem Code-Bereich ab 128
(dezimal) entsprechend der GEOS-Codetabelle. Dazu gehért z.B. die
deutschen Umlaute einschlieBlich dem B, auslandische Buchstaben, z.B. i und
@, sowie Ligaturen wie CE oder ee.

Nicht Teil eines Wortes kann z.B. folgendes sein:
+ mathematische Symbole, z.B. = oder «

+ griechische Buchstaben, z.B. Q oder 1t

+ Wahrungszeichen

Neue Funktionen - 13

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

Beachten Sie folgendes:

+ Die Zeichen innerhalb eines zu findenden Strings werden nicht geprift. In
diesem Sinne kann ein "ganze Wort" auch Leerzeichen oder Satzzeichen
enthalten.

+ Der Anfang und das Ende des Texts in einem Textobjekts kann ein "ganzes
Wort" begrenzen.

« FuUr eingeschrankte Suchbereiche gilt das nicht! Die Methoden prifen die
beiden Zeichen links und rechts der Fundstelle, selbst wenn diese sich
auBBerhalb des Suchbereichs befinden.

Beispiel: Der Text in einem Textobjekt besteht aus dem String "Hallo Welt". Der
Suchbereich wird auf den Bereich der Zeichen ’0’ bis 't' eingeschrankt.
FindStringWW findest in diesem Fall den String "0" nicht, da direkt vor dem ’o’
ein I’ steht, dass Teil eines Wortes sein kann. Oder anders gesagt: das ’0’ ist
immer noch Teil des Wortes Hallo, also kein eigenstandiges Wort.

Weitere Beispiele:
Beachten Sie das fliihrende Leerzeichen im letzten Beispiel!

Text im Textobjekt Suchtext Ruckgabewert Ruckgabewert
FindString FindStringWw

"Fred ist schlau!" "Fred" 0 0

"Fred ist schlau!" "Fred ist" 0 0

"Fred ist schlau!" "ist schlau" 5 5

"Fred ist schlau!" "red" 1 -1

"Fred ist schlau!" "schlau!" 9 9

"Fred ist schlau!" " schlau!" 8 -1

Suchen und Weitersuchen

In vielen Féllen wollen Sie sich nicht mit der ersten Fundstelle zufriedengeben,
sondern auch die weiteren Fundstellen finden. Die folgenden Routinen zeigen, wie
das prinzipiell gemacht wird. Die Idee ist, dass Sie fir die nachste Suche die
aktuelle Fundstelle ausklammern. Fir eine Vorwértssuche missen Sie also den
Suchbereich auf den Bereich nach der letzten Fundstelle einschranken, fir eine
Ruckwartssuche mussen Sie den Suchbereich auf den Bereich vor der letzten
Fundstelle einschréanken.

Die FindString~Methoden sind dabei so programmiert, dass Sie selbst keine
Sonderfélle berlcksichtigen missen, Sie kdnnen also ruhig so lange weiter-
machen, bis die Meldung "nicht gefunden" kommt.

Ein komplettes Beispiel mit verschiedenen Suchvarianten finden Sie Beispieldatei
"Such-Demo" im Ordner "Beispie\Objekte\Text".

Neue Funktionen - 14

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

SUB FindSimple ()
DIM t$, pos, start

t$ = SuchText.text$
start = 0
pos = FindLargeText.FindString t$ start, -1
WHILE pos >= 0
MsgBox "Gefunden auf Position "+Str$(pos)
start = pos + Len(t$)
pos = FindLargeText.FindString t$ start, -1
WEND

MsgBox "Nicht gefunden"

END SUB ’'FindSimple

SUB FindSimpleBackward ()
DIM t$, pos, sEnd

t$ = SuchText.text$
sEnd = -1
pos = FindLargeText.FindStringBackward t$ 0, sEnd
WHILE pos >= 0

MsgBox "Gefunden auf Position "+Str$(pos)

sEnd = pos

pos = FindLargeText.FindStringBackward t$ 0, sEnd
WEND

MsgBox "Nicht gefunden’

End SUB ’'FindSimpleBackward

Ein weiterer haufiger Fall ist das Ersetzen des gefundenen Strings mit Nachfrage.
Die folgende Function FindAndReplace zeigt, wie man das realisieren kann.

Beim Ersetzen von Zeichenketten innerhalb eines Textes kann sich der Text
verlangern oder verklrzen. Bei der Vorwértssuche (aber nicht bei der Ruck-
wartssuche) muss man das bei der Berechnung der neuen Startposition
berucksichtigen. Die Funktion FindAndReplace berechnet diese Langenanderung
in der Variablen diff. So kann sie gleich die neue Suchposition fir den nachsten
Aufruf von FindAndReplace zurlickgeben.

AuBerdem zeigt der Code, wie man eine Fundstelle im Text fir den Nutzer
sichtbar markieren kann.

FUNCTION FindAndReplace (textObj AS OBJECT, old$, new$ AS STRING,
startpos AS REAL) AS REAL
DIM foundPos, newPos, cmd, diff

foundPos = textObj.FindString old$, startPos, -1
IF foundPos = -1 THEN RETURN -1 ' Nicht mehr gefunden

Neue Funktionen - 15

R-BASIC - Neue Funktionen
Einfach unter PC/GEOS programmieren

' Fundstelle markieren
textObj.cursorPos = foundPos
textObj.selectionLen = Len(oldS$)
Target = textObj ' Sichtbarkeit sicherstellen

' Nachfragen
cmd = QuestionBox ("Dieses Auftreten ersetzen?")
IF cmd = YES THEN

textObj.ReplaceSelection new$

' Neue Startposition berechnen
' Die Textlange kann sich gedndert haben

diff = Len(new$) - Len(old$)
newPos = foundPos + Len(old$) + diff
ELSE

" nur die neue Startposition berechnen
newPos = foundPos + Len(old$)
End IF

RETURN newPos

End FUNCTION ’'FindAndReplace

Code-Beispiel: Einfacher Aufruf der Funktion FindAndReplace. Jedes Auftreten
der Zeichenkette "Paul" wird auf Nachfrage durch "Fred" ersetzt.

DIM startpos
sPos = 0
REPEAT
sPos = FindAndReplace (MyTextObj, "Paul", "Fred", sPos)
UNTIL sPos = -1

Neue Funktionen - 16

