

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 1
Überblick, Grundlegende Konzepte

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

1 Überblick ... 4
1.1 Ein Beispiel zur Einführung .. 4
1.2 Grundlegende Begriffe .. 11
1.3 Vereinbarungen für dieses Handbuch ... 14
1.4 Syntax für Objektzugriffe ... 16
1.5 Vereinbarung von Action-Handlern ... 19

2 Grundlegende Konzepte .. 21
2.1 Objekte und Objekt-Bäume (Trees) ... 21

2.1.1 Überblick .. 21
2.1.2 Arbeit mit Objekten .. 23
2.1.3 Verwaltung von Objektblöcken (*) ... 27
2.1.4 Beeinflussung der Objektblöcke im UI-Code (*) 29
2.1.5 Anlegen und Vernichten von Objekten zur Laufzeit (*) 33
(*) Kapitel für Fortgeschrittene

2.2 Ausgabe von Grafik .. 36
2.2.1 Objekte zur Grafikausgabe .. 36
2.2.2 Konzepte zur Grafikausgabe ... 38

2.3 Arbeit mit dem Screen .. 41
2.3.1 Die Screen-Variable .. 41
2.3.2 Clipping .. 43
2.3.3 Speichern und Wiederherstellen des Screen-Status 44
2.3.4 Anpassen des Koordinatensystems .. 46
2.3.5 Komplexe Manipulation des Koordinatensystems 49

2.4 Objekte individualisieren .. 51

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Willkommen in der Welt der Objekte, Ereignisse und Botschaften

In diesem Handbuch wird beschrieben, wie Sie mit R-BASIC Programme erstellen,
die sich vollständig ins System integrieren und sich nach außen nicht von
"normalen" (mit dem PC/GEOS SDK erstellten) Programmen unterscheiden.

Zu den grundlegenden Konzepten von GEOS und damit auch von R-BASIC
gehören die objektorientierte Programmierung (OOP) und die ereignisorientierte
Programmierung. Selbst der "klassische" Modus von R-BASIC ist intern mit OOP
realisiert. Hier erfahren Sie, welche Objekte es gibt, welche Eigenschaften und
Fähigkeiten sie haben und wie Sie die nutzen können.

Verweise auf andere Kapitel beziehen sich, wenn nicht explizit anderes angege-
ben, immer auf das Objekt Handbuch.

Um mit diesem Handbuch arbeiten zu können müssen Sie unbedingt die
Kapitel 1.3 (Vereinbarungen für dieses Handbuch) und 1.4 (Syntax von UI-
Objekten) lesen. Die dort vorgestellten Sachverhalte werden in allen darauf-
folgenden Kapiteln vorausgesetzt.

Im Benutzerhandbuch wird erklärt, wie man das R-BASIC Oberfläche benutzt, wie
man Programme in andere Sprachen übersetzt und andere Dinge, die nur indirekt
mit dem eigentlichen Programmieren zu tun haben.

Grundlegenden Befehle und Konzepte, die die R-BASIC Programmiersprache
ausmachen, finden Sie im R-BASIC Programmierhandbuch. Dort erfahren Sie
auch alles über Variablen, Schleifen, Verzweigungen, Unterprogramme und
andere grundlegende Dinge.

Das Handbuch "Spezielle Themen" widmet sich weiterführenden Themen, wie der
Arbeit mit Dateien oder die Verwendung von Schriften.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 4

1 Überblick

1.1 Ein Beispiel zur Einführung

Erstellen der grafischen Oberfläche

In den meisten Fällen beginnt man ein Programm damit, dass man die grafische
Oberfläche programmiert.
Starten Sie R-BASIC mit einer neuen Datei. Links unten finden Sie die verfüg-
baren Code-Fenster. Wir benötigen nur die Fenster "BASIC-Code" und "UI-
Objekte". Im Fenster "DIM & DATA" werden bei größeren Projekten globale Ver-
einbarungen und Variablen untergebracht. Die Codefenster "Init-Code" und
"Tools" können wir zunächst ignorieren. Hier kann man Teile seines Programm-
codes ablegen um das Programm übersichtlicher zu halten. UI steht für User
Interface (Benutzerschnittstelle) und bezeichnet die Objekte, mit denen der
Benutzer des Programms interagieren kann. Das Fenster "UI-Objekte" enthält den
UI-Code des Programms, der beschreibt, welche Objekte es gibt und welche
Eigenschaften sie haben.

Klicken Sie nun auf "UI-Objekte", so sehen Sie ... nichts. Wir müssen zunächst die
gewünschten Objekte vereinbaren. Für die ersten Versuche benötigen wir nur ein
Programmfenster und eine Möglichkeit, etwas auszugeben. Kopieren Sie dazu
einfach den folgenden Code in Ihr "UI-Objekte" Fenster.

Application DemoApplication
Children = DemoPrimary

END Object

Primary DemoPrimary
BreakButton = TRUE
Children = DemoView
SizeWindowAsDesired

END Object

View DemoView
Content = DemoBitmap
hControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT
vControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT
END Object

BitmapContent DemoBitmap
bitmapFormat = 640, 400, 8
DefaultScreen
defaultColor = YELLOW, LIGHT_BLUE

END Object

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 5

R-BASIC unterstützt das Anlegen von Objekten sehr komfortabel. Im Menü
"Extras" finden Sie den Eintrag "Code Bausteine" und dort "UI-Objekt" und "Neue
UI-Sequenz". Bevor wir den UI-Code besprechen sollten Sie sich etwas durch das
Menü "Code Bausteine" und seine Untermenüs klicken. Die Verwendung dieser
Menüs wird Ihnen sehr viel Schreibarbeit ersparen! Menüpunkte, die jetzt noch
grau sind, werden aktiv, wenn Sie im Fenster "BASIC-Code" sind.

Von Klassen und Objekten

Zurück zu unserem UI Code. Das erste Objekt ist vom Typ (man sagt: der Klasse)
"Application" und hat den Namen DemoApplication. Dieses Objekt stellt die
Verbindung zum GEOS-System her. Jedes Programm muss genau ein solches
Objekt haben. Der Namen (hier: DemoApplication) ist frei wählbar. Über diesen
Namen kann man das Objekt im BASIC-Code ansprechen.

Die Zeile
Children = DemoPrimary

stellt die Verbindung zum nächsten Objekt, dem Hauptfenster (Primary-Objekt)
her. Mehr zum sogenannten Objekt-Tree finden Sie im Kapitel 2.1.
"SizeWindowAsDesired" (engl: Window-Größe wie gewünscht) legt fest, dass das
Primary anfangs nur so groß sein soll, dass alle Children gerade hineinpassen.
Ansonsten nehmen Primaries automatisch einen relativ großen Bereich des
Bildschirms ein.
Mit END Object wird angezeigt, dass die Definition des Objekts beendet ist.

Das nächste Objekt gehört der Klasse "Primary" an und hat den Namen
"DemoPrimary". Man hätte es natürlich auch anders nennen können. Das Primary-
Objekt nimmt uns sehr viel Arbeit ab, denn es erzeugt selbständig einige Objekte:
das Dateimenü, das System-Menü links oben neben der Titelleiste und die
Minimieren-Maximieren-Schalter rechts oben. Auch das Express-Menü wird hier
platziert. Das Child (Kind) des Primary-Objekts ist ein View-Objekt, dass in
unserem Programm gemeinsam mit seinem "Content" für alle Ausgaben auf den
Bildschirm zuständig ist.

Mit der Anweisung
BreakButton = TRUE

wird festgelegt, dass das Dateimenü einen BREAK-Schalter enthält, mit dem man
ein "hängendes" Programm abbrechen kann. Dieser Eintrag aktiviert auch die
Tastenkombination "Strg-B" für diese Aufgabe.

Die letzten beiden Objekte sind ein View-Objekt (Objektklasse "View" mit dem
Namen "DemoView") und ein Content-Objekt (der Klasse "BitmapContent"
namens "DemoBitmap"). Diese beiden Objekte arbeiten eng zusammen. Während
das Content ausschließlich für die Verwaltung der darzustellenden Grafik
zuständig ist kümmert sich das View-Objekt um das Wie, Wann und Wo. Eine
ausführliche Beschreibung dieses Zusammenspiels finden Sie im Kapitel über das
View-Objekt (Kapitel 4.6). Dabei ist nur das View-Objekt als Child des Primary-
Objekts in den Tree eingebunden.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 6

Die Zeile
Content = DemoBitmap

legt das Content-Objekt fest. Mit den Zeilen
hControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT
vControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT

wird das View angewiesen, seine eigene Größe von der des Content-Objekts
abhängig zu machen, indem es sich in horizontaler (hControl) und vertikaler
Richtung (vControl) nicht größer (engl. large: groß) oder kleiner (engl. small: klein)
als das Content-Objekt macht. Dass stellt sicher, dass die komplette Bitmap stets
sichtbar ist. Der Vorsatz HVC_ steht für Horizontal-Vertikal-Control.

Das Objekt "DemoBitmap" verwaltet eine editierbare Bitmap, deren Größe und
Farbtiefe mit der Anweisung

bitmapFormat = 640, 400, 8

festgelegt wird. Das Objekt legt damit automatisch eine Bitmap der Größe 640 x
400 Pixel mit 256 Farben (8 Bit pro Pixel) an. Sie brauchen sich nicht weiter um
die Verwaltung der Bitmap zu kümmern - mit der Ausnahme etwas hineinzu-
zeichnen. Das Objekt weiß z.B. selbst wann die Bitmap angelegt, gezeichnet oder
am Programmende vernichtet werden muss.

Damit Sie etwas in die Bitmap zeichnen können legt die Anweisung
DefaultScreen

fest, dass alle Grafik- und Textausgaben standardmäßig an dieses Objekt gehen.
Mit der Anweisung

defaultColor = YELLOW, LIGHT_BLUE

werden die Ausgabefarben auf "Gelb auf Blau" eingestellt.

Beachten Sie, dass das BitmapContent-Objekt "DemoBitmap" nirgends als Child
eines Objekts auftaucht, sondern nur als "Content" des View-Objekts. Das ist für
das ordnungsgemäße Zusammenspiel von View und Content erforderlich.

Wenn Sie nun das Programm starten (Menü "Programm", "Programm starten")
wird es compiliert und ausgeführt. Dabei erzeugt der Compiler die im UI-Code
angegeben Objekte und übersetzt den Quelltext im "BASIC-Code" Fenster in ein
für R-BASIC ausführbares Format. Um zur R-BASIC IDE zurückzukehren wählen
Sie aus dem Datei-Menü des laufenden BASIC-Programms den "Beenden"
Eintrag.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 7

Ein OnStartup Handler

Aktuell sehen wir nur eine blaue Fläche. Nun wollen wir etwas hineinzeichnen.
Eine sehr typische Situation ist, dass beim Programmstart automatisch eine
Routine abgearbeitet werden muss, die das Programm initialisiert, d.h. in den
Anfangszustand versetzt. In R-BASIC ist das der OnStartup-Handler. Routinen,
die von Objekten direkt aufgerufen werden heißen in R-BASIC alle "Action-
Handler". Wechseln Sie in das Codefenster "BASIC-Code" und wählen Sie aus
dem Menü "Extras", "Code Bausteine" den Eintrag "Action-Handler" und dort den
Punkt "System-Action". OnStartup-Handler müssen als "SystemAction" vereinbart
werden. Geben Sie einen möglichst selbsterklärenden Namen für den Handler,
z.B. AppStart, ein. R-BASIC erstellt einen leeren Actionhandler. In den Handler
können Sie nun Ihren Initialisierungscode schreiben. Wir benutzen ein Print-Befehl
und zwei Grafikanweisungen.
SYSTEMACTION AppStart
Print "Hallo Welt"
Ellipse 10, 10, 200, 200
Rectangle 30, 30, 180, 180

END ACTION

Starten wir das Programm jetzt (F9-Taste) so sehen wir ... wieder nichts. Das liegt
daran, dass R-BASIC noch nicht weiß, wann es den Handler ausführen soll. Wir
müssen noch festlegen, dass unser Handler namens "AppStart" der "OnStartup-
Handler ist. Das passiert im UI-Code, im Application Objekt.
Application DemoApplication
 Children = DemoPrimary
 OnStartup = AppStart
END Object

Wenn wir jetzt wieder F9 drücken sehen wir endlich das Ergebnis unserer
Bemühungen.
Nachdem der OnStartup-Handler abgearbeitet ist geht das Programm in den
Wartezustand über. Damit wieder etwas passiert müssen wir etwas tun, z.B. einen
Button anklicken.

Ein neues Objekt

Fügen Sie zum UI-Code die folgenden Zeilen hinzu:

Button TestButton
Caption$ = "Drück mich"
END Object

Vergessen Sie nicht, den Testbutton in die Children-Liste des Primary-Objekts
aufzunehmen:
Children = DemoView, TestButton

Die Reihenfolge der Einträge bestimmt dabei ihre Anordnung im Primary-Objekt.
Wenn sie jetzt F9 drücken sehen sie einen zusätzlichen Schalter mit der Aufschrift

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 8

"Drück mich". Sie können ihn anklicken - aber es passiert nichts. Das liegt daran,
dass Sie ihm nicht mitgeteilt haben, was er zu tun hat.

Wenn sich etwas ereignet

Wird der Button angeklickt, so spricht man von einem Ereignis - in diesem Fall ein
Maus-Ereignis. Der Button nimmt dieses Ereignis entgegen und "weiß" was er
damit zu tun hat. Das ist der Kern der objektorientierten Programmierung: Jedes
Objekt reagiert auf Ereignisse (Maus, Tastatur, Mitteilungen von anderen
Objekten), indem es die Behandlung selbst vollständig übernimmt oder ein
weiteres Ereignis auslöst. Auch das Starten des Programms stellt ein Ereignis dar.
unser Application-Objekt reagiert auf dieses Ereignis, indem es seinen OnStartup-
Handler aufruft (siehe oben). Ein Textobjekt z.B. stellt einen eingegebenen Buch-
staben selbständig auf dem Bildschirm dar, für unseren Button aber müssen wir
eine eigene Routine (einen eigenen Handler) schreiben, die eine Aktion ausführt.
Die Verknüpfung zwischen der Routine (dem Handler) und dem Button erfolgt
wieder in UI-Code. Beim Button heißt die Instancevariable, die man dazu belegen
muss, einfach ActionHandler.

Ändern Sie den UI-Code:

Button TestButton
Caption$ = "Drück mich", 1
ActionHandler = TestAction

END Object

Die 1 hinter dem Caption$-Text bewirkt, dass der Buchstabe mit der Nummer 1
unterstrichen wird und zur Tastaturnavigation verwendet werden kann. In unserem
Fall ist das das ’r’, da die Zählung bei Null beginnt.

Actionhandler von Buttons müssen als "ButtonAction" vereinbart werden. Das teilt
dem Compiler mit, dass die Routine "TestAction" von einem Button aktiviert wird.
Jede Objektklasse hat ihren eigenen Handlertyp. Näheres dazu finden Sie bei der
Beschreibung er entsprechenden Objekte. Schreiben Sie im BASIC-Code-Fenster
(nicht im UI-Code) den ActionHandler:

ButtonAction TestAction
CLS
Print "Button meldet: Bildschirm gelöscht."

END Action

Starten Sie das Programm mit F9. Herzlichen Glückwunsch! Sie haben Ihr erstes
objektorientiertes BASIC-Programm geschrieben!

Es geht weiter...

Ändern Sie den BASIC-Code wie folgt, starten Sie das Programm erneut und
klicken Sie auf den Button.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 9

ButtonAction TestAction
sender.enabled = FALSE

END Action

Was ist passiert? "Sender" ist ein Parameter, der jedem Action-Handler
übergeben wird. Je nach Action-Handler gibt es weitere Parameter, die Sie bitte
der Beschreibung der entsprechenden Objekte entnehmen. Der Parameter
"sender" ist immer das Objekt, das den ActionHandler aktiviert hat. "Enabled" ist
eine Eigenschaft, über die jedes Objekt verfügt. Ein Objekt ist "enabled", wenn der
Nutzer damit interagieren kann, andernfalls ist es "disabled" und wird grau
dargestellt. Eine weitere wichtige Eigenschaft ist "visible" (sichtbar). Versuchen
Sie folgendes:

ButtonAction TestAction
sender.visible = FALSE

END Action

Spielen Sie ruhig etwas mit den Objekten und den ActionHandlern herum! Ändern
Sie zum Beispiel die Größe der Bitmap oder die Farben.

Anordnen von Objekten - das Geometriemanagement

Wir fügen zunächst einen zweiten Button ändern die ActionHandler wie folgt.
Vergessen Sie nicht den neuen Button als Child des Primary einzubinden!
Button TestButton2
Caption$ = "Drück mich auch", 6
ActionHandler = TestAction2

END Object

ButtonAction TestAction
FillEllipse 50, 50, 600, 350, LIGHT_GRAY
Ellipse 50, 50, 600, 350
Print "Grafik gezeichnet."

END Action

ButtonAction TestAction2
CLS
Print "Bildschirm ist gelöscht"

END Action

LIGHT_GRAY ist eine Farbkonstante, eine Zahl, die für eine Farbe steht. Näheres
zur Beschreibung von Farben finden Sie im Programmierhandbuch, Kapitel 2.8.2
(Farben).
Wenn Sie das Programm jetzt starten funktioniert es zwar, aber die links unten
angeordneten Buttons sehen nicht sehr schön aus. Wir wollen jetzt die beiden
Buttons unter der Bitmap, aber nebeneinander anordnen.

Unter GEOS, und damit auch in R-BASIC, funktioniert die Anordnung von
Objekten nicht dadurch, dass man festlegt, wo die Objekte platziert werden,

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 10

sondern wie sie angeordnet werden sollen. Man sagt nicht: platziere den Button
dort, sondern man sagt: ordne beide Buttons nebeneinander an. Eine ausführliche
Beschreibung dieses Konzepts finden Sie im Kapitel 3.3 (Geometriemanagement),
dass Sie unbedingt lesen sollten.

Versuchen Sie zunächst folgendes:
Primary DemoPrimary
 BreakButton = TRUE
 Children = DemoView, TestButton, TestButton2
 orientChildren = ORIENT_HORIZONTALLY
 SizeWindowAsDesired
END Object

Sie werden wahrscheinlich nicht zufrieden sein, weil die Buttons jetzt neben der
Bitmap sind. Die Lösung für dieses Dilemma ist, die Buttons in eine eigene
Gruppe (ein Objekt der Klasse Group) zu verschieben. Die grundlegende Idee
dahinter ist es, die Objekte innerhalb der Group nebeneinander anzuordnen
während die Group selbst unterhalb der Bitmap bleibt. Dieses Konzept ist sehr
ausführlich im Kapitel über das Geometriemanagement (siehe oben) beschrieben.
Der große Vorteil dieser Technik ist, dass GEOS die Anordnung intelligent
handelt. Man bekommt also auch dann ein gefälliges Aussehen, wenn der Nutzer
eine andere Schriftgröße oder eine andere Bildschirmauflösung verwendet, als
man selbst.

Primary DemoPrimary
BreakButton = TRUE

 Children = DemoView, BottomGroup
 SizeWindowAsDesired
END Object

Group BottomGroup
 Children = TestButton, TestButton2
 orientChildren = ORIENT_HORIZONTALLY
End Object

Das sieht schon besser aus, ist aber noch nicht perfekt. Versuchen Sie - zunächst
nacheinander und dann in beliebiger Kombination - die folgenden, fett markierten
Programmzeilen. Die Reihenfolge der Codezeilen spielt dabei keine Rolle!

Group BottomGroup
 Children = TestButton, testButton2
 orientChildren = ORIENT_HORIZONTALLY
 ExpandWidth
 justifyChildren = J_FULL ’ oder J_CENTER
 IncludeEndsInChildSpacing
 DrawInBox
End Object

Probieren Sie ruhig weitere Hints aus dem Kapitel 3.3 aus! Ich wünsche Ihnen viel
Spaß beim Probieren!

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 11

1.2 Grundlegende Begriffe

Hier sind einige der grundlegenden Begriffe erklärt, die im Handbuch immer
wieder vorkommen. Sie müssen diese Begriffe jetzt weder vollständig verstehen
noch auswendig lernen. Aber sie können dieses Kapitel zum Nachschlagen
benutzen.

Objektorientierte Programmierung (OOP)
OOP ist eine Programmierphilosophie, bei der das Programm aus einzelnen
Objekten besteht. Die Objekte verfügen über eine gewisse "Eigenintelligenz"
(Eigenschaften und Fähigkeiten), mit denen die Programmfunktionalität
realisiert wird. Zu diesem Zweck tauschen die Objekte Botschaften (Messages)
aus und reagieren auf Ereignisse (Events). Unter GEOS sind die meisten
Objekte sichtbar, wie z.B. Buttons oder Textobjekte. Es gibt aber auch
unsichtbare Objekte, wie z.B. das Application-Objekt (vgl. Kapitel 1.1).

Klassen
Jedes Objekt hat eine bestimmten "Typ" der in der OOP als Klasse bezeichnet
wird. Die Klassendefinition legt fest, welche Eigenschaften und Fähigkeiten die
Objekte dieser Klasse haben.

Objekte
Objekte sind konkrete Manifestationen einer Klasse. Welche Eigenschaften und
Fähigkeiten ein bestimmtes Objekt hat, wird durch seine Klasse bestimmt.
Fachlich korrekt spricht man davon, dass ein bestimmtes Objekt eine Instanz
einer bestimmten Klasse ist. Beispielsweise ist der Schalter "Schließen" in
einer Dialogbox eine Instanz der Klasse "Button". Es hat sich jedoch
eingebürgert vereinfachend zu sagen: Der "Schließen" Schalter ist ein Button-
Objekt.

Window-Objekte
Als Window-Objekte werden alle Objekte bezeichnet, die ein unabhängiges
Fenster (Window) auf dem Bildschirm erzeugen. Dazu gehören z.B. Dialog-
boxen und auch das Hauptfenster des Programms. Diese Fenster sind oft
verschieblich und größenveränderlich.

Instance-Variablen
Jedes Objekt muss einen bestimmten Satz an Daten speichern, um korrekt
arbeiten zu können. Beispielsweise muss jedes Objekt seine eigene Größe und
Position kennen, um sich selbst korrekt darzustellen. Welche Daten das
konkret sind, wird von der Klasse des Objekts bestimmt, die Datenwerte selbst
sind jedoch für jedes Objekt, d.h. für jede Instanz einer Klasse, verschieden.
Die von einem konkreten Objekt verwalteten Daten werden deshalb als
Instance-Variablen (englisch für Instanz-Variablen) bezeichnet.

Hints
Hints (engl. Hilfen) sind eine besondere Art von Instance Variablen. Hints
werden nur im Objekt gespeichert, wenn Sie explizit angegeben werden.
Andernfalls sind sie einfach nicht vorhanden. Das spart eine Menge Platz. Fast
alle Instance-Variablen zum Geometrie-Management sind als Hints imple-

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 12

mentiert. Wie der Name schon sagt sind Hints keine Befehle, sondern Hilfen.
Es steht einem Objekt frei, wie es die Hints konkret umsetzt. Dazu gehört auch,
dass es Hints ignorieren kann, wenn das angebracht ist.

Ereignisse (Events)
Betätigt der Nutzer eine Taste auf der Tastatur, bewegt er die Maus oder drückt
eine Maustaste, so spricht man von einem "Ereignis". Ereignisse können auch
der Start eines Programms oder vieles andere sein. GEOS registriert dieses
Ereignis und sendet eine Message (Botschaft) an die für das entsprechende
Ereignis zuständigen Objekte. Die Objekte können dann angemessen
reagieren.

Ereignisorientierte Programmierung
Dieser Begriff beschreibt, dass ein GEOS-Programm nur dann etwas tut, wenn
ein Ereignis auftritt. Dieses Verfahren ist viel effizienter als z.B. in einer Schleife
ständig die Tastatur abzufragen. OOP und ereignisorientierte Programmierung
gehen daher Hand in Hand.

Botschaften (Messages)
Die Informationen, die Objekte untereinander austauschen werden als
Messages oder auf Deutsch als Botschaften bezeichnet. Botschaften sind
eines der Kernkonzepte in der objektorientierten Programmierung.

Methoden
Die Routine, die ausgeführt wird, wenn ein Objekt eine Message erhält, wird als
"Methode" bezeichnet. Die meisten Methoden sind R-BASIC-intern, d.h. sie
sind für den R-BASIC Programmierer nicht direkt zugänglich, sondern werden
automatisch ausgeführt. Es gibt davon jedoch Ausnahmen. Wenn Sie z.B.
wollen, das eine Dialogbox auf dem Bildschirm erscheint, dann müssen Sie der
Dialog-Objekt eine Message senden, die keine Instance-Variable setzt,
sondern die Dialogbox auf den Schirm bringt. In diesem Beispiel müssen Sie
schreiben

MyDialog.Open
wobei "Open" die Methode ist, die das Objekt namens "MyDialog" auszuführen
hat, damit es auf dem Bildschirm erscheint.

Action-Handler
R-BASIC realisiert die OOP-Konzepte konzeptionell über Action-Handler.
Registriert ein Objekt ein Ereignis, z.B. das Anklicken eines Buttons, so sendet
es eine Message an den R-BASIC-Kern. Sie enthält die Information, welche
Programm-Routine ausgeführt werden soll. Diese Programm-Routine wird als
ActionHandler bezeichnet, da sie eine Aktion des Users behandelt. Der R-
BASIC Kern führt den Handler (der in R-BASIC-Code geschrieben ist) aus und
geht dann wieder auf "Stand-by" bis das nächste Ereignis eintritt.
ActionHandler können auch Botschaften an andere Objekte aussenden oder
Methoden ausführen. Beispielsweise wird die Anweisung

EndeButton.enabled = FALSE
über eine Message an den EndeButton realisiert. Der Button disabled sich
daraufhin. Die gesamte Programmfunktionalität eines BASIC-Programms steckt
also in den verschiedenen ActionHandlern.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 13

Objekt-Tree, Parents und Children
Objekte sind unter GEOS in sogenannten Bäumen (Trees) organisiert. Jedes
Objekt hat genau ein Parent (Eltern) und kann kein, ein oder mehrere Children
(Kinder) haben. Der Objekttree eines Programms dient sowohl der
Kommunikation der Objekte untereinander (was in R-BASIC meist intern
stattfindet) als auch der Organisation der Objekte auf dem Bildschirm. Details
dazu finden Sie im Anschnitt 2.1 (Arbeit mit Objekt Bäumen).

Vererbung
Der Begriff beschreibt, dass die Objektklassen voneinander abstammen. Eine
neue Klasse wird von einer Vorgängerklasse abgeleitet. Dabei "erbt" die neue
Objektklasse die Eigenschaften und Fähigkeiten seiner Vorgängerklasse. Hinzu
kommen neue Eigenschaften und Fähigkeiten, die der Vorgänger nicht hat.
Ein Beispiel: Die meisten R-BASIC-Objekte können mit einer Aufschrift
(Caption$) versehen werden. Bei Primary-Objekten erscheint sie in der
Titelzeile, bei Buttons ist es "die" Aufschrift. Es macht nun keinen Sinn, diese
Fähigkeit für jede Objektklasse von Grund auf neu zu implementieren, sondern
sie ist in einer Klasse implementiert, die im GEOS SDK als "GenericClass"
bezeichnet wird und von der die allermeisten R-BASIC-Objekte abstammen.

Folgen:
In der GenericClass ist z.B. auch das Geometrie-Management implementiert,
so dass bei allen von der GenericClass abstammenden R-BASIC-Objekten das
Geometrie-Management über die gleichen Befehle abgewickelt wird. Das gilt
auch für viele weitere grundlegende Fähigkeiten von R-BASIC-Objekten. Das
Handbuch ist deshalb so organisiert, dass die allen Objektklassen gemein-
samen Eigenschaften in separaten Kapiteln beschrieben werden. In den
Kapiteln über die konkreten Klassen werden dann nur eventuelle
Abweichungen ("überschriebene" Eigenschaften) und die neu hinzugekom-
menen Fähigkeiten, Eigenschaften und Instance-Variablen beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 14

1.3 Vereinbarungen für dieses Handbuch

In diesem Handbuch gelten einheitlich die folgenden Abkürzungen. Es wird
empfohlen zumindest diese Seiten auszudrucken.

numWert Ein numerischer Wert allgemein z.B. 12 oder –17.4
Alle grünen und nicht weiter gekennzeichneten Elemente
bedeuten einen numerischen Wert. Darunter sind z.B.

x, y, sizeX, sizeY Positions- oder Größenangaben
n Eine Anzahl oder eine Position
index Der mögliche Wertebereich eines Index beginnt immer bei Null.

Im BASIC-Code kann anstelle einer Zahl auch immer ein
numerischer Ausdruck (Variablen, Funktionen..) stehen.

"Text" Die Anführungszeichen ".." kennzeichnen eine beliebige String-
Konstante, z.B. "Ja, ich will"
Im BASIC-Code kann anstelle eines expliziten Textes auch immer
ein String-Ausdruck (Variablen, Funktionen..) stehen.

[..] Eckige Klammern kennzeichnen ein optionales Element, d.h. das
Element kann angegeben werden, muss aber nicht vorhanden
sein.

x | y Eine Alternative wird durch einen senkrechten Strich
gekennzeichnet. Z.B. visible = TRUE | FALSE bedeutet, dass
visible = TRUE oder visible = FALSE möglich ist.

TRUE R-BASIC Konstante mit dem Wert –1
Wird verwendet, wenn eine Eigenschaft "erfüllt" oder "wahr" ist.
z.B. <obj>.visible = TRUE gibt an, dass das Objekt sichtbar ist.

FALSE R-BASIC Konstante mit dem Wert 0
Wird verwendet, wenn eine Eigenschaft "nicht erfüllt" oder "falsch"
ist. z.B. <obj>.enabled = FASLE gibt an, dass der Nutzer nicht
mit dem Objekt interagieren kann (es wird i.a. "grau" dargestellt).

My.. , Demo.., Test.. Zeigen an, dass das entsprechende Element (Objekt,
Routine, ActionHandler usw.) von Programmierer selbst definiert
wurde, d.h. nicht aus R-BASIC stammt.

<objVar> Objekt-Variable

Variable vom Typ OBJECT, z.B. DIM ov as OBJECT

<obj>, <obj2> Referenz auf ein Objekt: namentlich aufgeführtes Objekt oder
Objekt-Variable. Felder und Struktur-Elemente vom Typ OBJECT
sind erlaubt. In diesem Handbuch bezeichnen wir das als "Objekt
Referenz".

<objektListe> Liste von namentlich aufgeführten Objekten

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 15

<numVar> Numerische Variable (Real, Word, Integer usw.)
auch z.B. <pos>, <index>, <breite>, usw.

<numExpr> Numerischer Ausdruck

<stringVar> String-Variable
auch z.B. <name$>, <path$>, usw.

<stringExpr> String Ausdruck

<handleVar> Handle-Variable
auch z.B. <han>, <gsHan>, usw.

<handleExpr> Handle Ausdruck

<structVar> Struktur-Variable
<structExpr> Struktur Ausdruck

<Handler> Der Name eines Action-Handlers

Sicher erkennen Sie das System dahinter, so dass Sie auch Elemente, die hier
nicht explizit aufgeführt sind, zuordnen können.

Instancevariablen werden häufig in einer Tabelle dargestellt. Beispiel:

Variable Syntax im UI-Code Im BASIC-Code
Children Children = <objektListe> nur lesen
numChildren –– nur lesen
parent –– lesen, schreiben

Dabei bedeuten:
Variable: Name der Instancevariablen
Syntax im UI-Code: Belegung der Instancevariablen im UI-Code Fenster

Die so festgelegten Werte stehen beim Programmstart
sofort zur Verfügung.

Im BASIC Code: Beschreibt, ob und wie man die Instancevariable vom
BASIC Code aus (d.h. zur Laufzeit des Programms)
ansprechen kann. Die Syntax dafür ist für alle Instance-
variablen gleich und wird weiter unten, im Abschnitt
"Syntax für Objektzugriffe", beschrieben. Eventuelle Aus-
nahmen sind bei den entsprechenden Instancevariablen
selbst beschrieben.

–– Ein Strich bedeutet, dass die Variable hier nicht verwendet
werden kann.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 16

1.4 Syntax für Objektzugriffe

Vereinbaren von Objekten

Objekte müssen im Fenster "UI-Objekte" vereinbart werden. Die Vereinbarung
beginnt der Objekt-Klasse, gefolgt vom (frei wählbaren) Namen des Objekts. Dann
folgen die Instance-Werte für dieses Objekt. Die Anweisung "END OBJECT"
beendet die Objekt-Vereinbarung.

Beispiele:
Button MyButton
Caption$ = "Durchlauf starten"
ActionHandler = DemoActionHandler

END Object

Primary MyPrimary
Children = MyButton, MyGroup, MyText

END Object

Zugriff auf Objekte

Objektzugriffe erfolgen entweder mit ihrem Namen oder über eine Objekt-Variable
(Variable vom Typ OBJECT). Zur Vereinfachung bezeichnen wir die beiden
Möglichkeiten als "Objekt-Referenz".

Beispiel:
DIM oba, obb AS OBJECT
DIM of(10) AS OBJECT ’ ein Feld von Objekt-Variablen
oba = MyButton
obb = MyPrimay
of(1) = oba
IF oba = MyButton THEN ...
IF of(1) = MyPrimay THEN ...

Lesen von Instance-Variablen im BASIC-Code

Auf Instance-Variablen wird mit einer Objekt-Referenz (namentlich aufgeführte
Objekte oder Objekt-Variablen, siehe oben), gefolgt von einem Punkt und dem
Namen der Instance-Variablen, zugegriffen.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 17

Beispiele:
DIM obb AS OBJECT
DIM x AS REAL
DIM s$ AS STRING

s$ = MyPrimay.Caption$
Print s$, MyButton.Caption$

obb = MyButton
IF obb.visible THEN ... ’ visible kann TRUE oder FLASE sein

Einige Instance-Werte (wie Children oder bitmapFormat) erwarten im UI-Code
mehr als einen Wert. Gelesen kann aber immer nur ein Wert. Deshalb muss beim
Lesen als Index angegeben werden, welcher Wert gelesen werden soll. Die
zulässigen Werte für den Index beginnen immer mit Null.

Beispiel. Im UI-Code sei vereinbart:
Primary MyPrimary
Children = Group1, View1, Group2

END Object

BitmapContent MyBitmap
bitmapFormat = 48, 32, 8

END Object

 < weitere Objekte..>

Lesen der Werte
DIM x, y, c
DIM ob, ch AS OBJECT

! Abfrage der Bitmap-Werte
x = MyBitmap.bitmapFormat (0) ’ Breite
y = MyBitmap.bitmapFormat (1) ’ Höhe
Print "Bitmap-Größe: "; x; "x"; y; "Pixel"
Print "Farbtiefe: "; ob.bitmapFormat(2); "Bit"

ch = MyPrimary.Children(0) ’ Liefert Group1
Print ch.numChildren

ch = MyPrimary.Children(1) ’ Liefert View1
Print ch.Caption$

ob = MyPrimary ’ Zur Demonstration
ch = ob.Children(2) ’ Liefert Group2

Hinweis: Kombinationen der Form
MyPrimary.Children(0).Caption$

oder ähnlich sind nicht zulässig.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 18

Schreiben in Instance-Variablen im BASIC-Code

Wie beim Lesen werden die Instance-Variablen auch beim Schreiben durch einen
Punkt von der Objekt-Referenz getrennt. Das Objekt kann auch hier namentlich
aufgeführt oder über eine Objekt-Variable referenziert werden.
Die Syntax beim Schreiben in Instance-Variablen entspricht ansonsten genau
derjenigen im UI-Code, Berechnungen mit Variablen und Funktionen sind im
Gegensatz zum UI-Code aber zulässig.

Beispiele
DIM x AS WORD

MyButton.visible = FALSE
MyButton.Caption$ = "Beenden", 1

! Neuanlegen einer Bitmap
x = 100
MyBitmap.bitmapFormat = x, x/2, 8

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 19

1.5 Vereinbarung von Action-Handlern

Action-Handler sind spezielle Unterprogramme, die aufgerufen werden, wenn ein
Ereignis eintritt, z.B. ein Button gedrückt oder mit der Maus geklickt wird.

Der Typ
Jeder Typ von Ereignissen erfordert auch einen speziellen Typ von Action-
Handlern: Das Drücken eines Buttons z.B. ButtonAction, ein Mausereignis wird
von einem Handler des Typs MouseAction behandelt.

Parameter
Jeder Typ von Action-Handlern hat einen eigenen Satz an Parametern. Allen
gemeinsam ist der erste Parameter "sender" vom Typ OBJECT. Er enthält eine
Referenz auf das Objekt, dass das Ereignis ausgelöst hat. Dann folgen bis zu drei
numerische Parameter, deren Bezeichnung und Bedeutung vom Typ des
Handlers abhängt.

Vereinbarung des Handlers
Ein Handler wird vereinbart indem der Typ des Handlers, gefolgt von einem (frei
wählbaren) Namen, angegeben wird. Die Parameter des Action-Handlers werden
beim Vereinbaren des Handlers nicht explizit angegeben. Die Anweisung END
ACTION schließt den Handler ab. Tipp: Verwenden Sie den Menüpunkt "Extras"-
"Code Bausteine"-"Action-Handler". Damit erhalten Sie neben dem Handler-Rumpf
einen Kommentarblock mit allen Parametern des Handlers.
Da Actionhandler spezielle Unterprogramme sind gelten die gleichen Regeln wie
bei SUB’s und FUNCTION’s, d.h. es können z.B. lokale Variablen definiert, andere
SUB’s oder FUNCTION’s gerufen oder Operationen mit Objekten durchgeführt
werden. Andere ActionHandler können jedoch nicht direkt aufgerufen werden.

Beispiel: Im UI-Code sei vereinbart
Button MyButton
Caption$ = "Durchlauf starten"
actionHandler = DemoHandler

END Object

Vereinbarung von "DemoHandler"
ButtonAction DemoAction
DIM x
sender.enabled = FALSE ’ MyButton "grau" zeichnen
FOR x = 10 TO 100 STEP 10

LINE x, 5, x, 100 : Pause 1
NEXT

sender.enabled = TRUE
END ACTION

Zuweisung im BASIC Code
Sie können einem Objekt zur Laufzeit (im BASIC Code) einen anderen
ActionHandler zuweisen. Die Zuweisung des speziellen Wertes NoAction bewirkt
das Löschen des Actionhandlers für das entsprechende Objekt.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Überblick - 20

MyButton.ActionHandler = DemoAction
MyButton.ActionHandler = NoAction

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 21

2 Grundlegende Konzepte

2.1 Objekte und Objekt-Bäume (Trees)

2.1.1 Überblick

Objekte sind unter GEOS in sogenannten Bäumen (Trees) organisiert. Jedes
Objekt hat genau ein Parent (Eltern) und kann kein, ein oder mehrere Children
(Kinder) haben. Der Objekt-Tree eines Programms im "klassischen" BASIC-Modus
sieht wie folgt aus (vergleiche UI-Code im Anschnitt 1.1):

DemoApplication

FileMenu

Group 1 Group 2

DemoPrimary

DemoBitmap

BreakButton ExitButton

DemoView

Die gelb hinterlegten Objekte werden dabei vom Primary-Objekt automatisch
angelegt und erscheinen daher nicht im UI-Code. Das Parent des Primary-Objekts
ist das Application-Objekt, seine Children sind das FileMenu und das Bitmap-
Objekt. Aus der Sicht des FileMenu ist sein Parent-Objekt das Primary, die
Children des FileMenu sind zwei Groups (Gruppen), die jeweils den BreakButton
bzw. den ExitButton enthalten. Das DemoBitmap-Objekt ist kein direkter Teil des
Trees, es ist das Content-Objekt des DemoView-Objekts (siehe Kapitel 4.9).

Der Objekttree eines Programms dient sowohl der Kommunikation der Objekte
untereinander (was in R-BASIC meist intern stattfindet) als auch der Anordnung
der Objekte auf dem Bildschirm. Children zeichnen sich immer in den Grenzen,
die ihnen das Parent vorgibt. Außerdem legt das Parent-Objekt fest, ob die
Children neben- oder untereinander angeordnet werden und wie sie sich den
vorhandenen Platz aufteilen. Details dazu finden Sie im Kapitel über das
Geometriemanagement.

R-BASIC unterstützt die Arbeit mit Objekt-Trees sehr ausführlich. Sie können
Informationen über das Parent und die Children eines Objekts erhalten, Objekte
aus dem Tree entfernen und an anderer Stelle einfügen.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 22

GenericClass Tree und VisualClass Tree

In R-BASIC Programmen gibt es zwei Arten von Objekt-Trees: den GenericClass
Tree und den VisualClass Tree. Gelegentlich wird auch der allgemeine Term "UI-
Tree" verwendet. Welcher Tree gemeint sein kann, ergibt sich dann aus dem
Kontext.

Der GenericClass Tree (kurz: generic Tree) enthält die "normalen" GEOS-
Objekte, wie Primary, Listen, Text-Objekte aber auch z.B. Dialogboxen. Sie
stammen alle von der GenericClass ab. GenericClass-Objekte können nur auf
dem Bildschirm erscheinen, wenn von ihnen ein vollständiger Pfad zum
Application-Objekt führt. Das bedeutet, dass das Objekt selbst, sein Parent,
dessen Parent oder ein anderes "übergeordnetes" (Parent-) Objekt letztlich mit
dem Application-Objekt verbunden ist. Mit Objekten oder Objekt Trees, die nicht
vollständig in den Tree eingebunden sind, kann man trotzdem arbeiten, d.h. man
kann Instance-Variablen lesen und schreiben. Die veränderten Werte werden
wirksam, sobald das Objekt vollständig in den Tree eingebunden ist und auf dem
Bildschirm erscheint.

Der VisualClass Tree (kurz: visual Tree) enthält Objekte, von der VisualClass
abstammen. Das Top-Objekt (oberstes Parent) ist ein VisContent oder
BitmapConten-Objekt. Der Tree erschient auf den Bildschirm, sobald das Top-
Objekt einem View-Objekt als "content" (=Inhalt) zugewiesen wird. Das View
managed dann wie der visual Tree dargestellt wird. Details dazu finden Sie im
Abschnitt über View- und Content-Objekte (Kapitel 4.9) sowie im Kapitel über die
VisualClass (Kapitel 5).

In vielen Fällen besteht der "VisualClass Tree" ausschließlich aus dem VisContent
bzw. BitmapContent-Objekt. Einfache BASIC-Programme haben oft gar keinen
VisualClass Tree.
Komplexe Programme können mehrere Visual Trees haben und machen ggf.
ausführlich von der Möglichkeit, Objekte anzulegen, wieder zu vernichten und im
Tree zu verschieben, gebrauch.

Achtung! Es ist illegal, den GenericClass Tree und den VisualClass Tree zu
mischen, d.h. in den GenericClass Tree Objekte einzufügen, die von der
VisualClass abstammen und umgekehrt. Die Verbindung passiert ausschließlich
über die "Content" Instance-Variable eines View-Objekts.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 23

2.1.2 Arbeit mit Objekten

Die hier vorgestellten Möglichkeiten sind sowohl auf den GenericClass Tree als
auch auf den VisualClass Tree anwendbar.
Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
Class$ –– nur lesen
Children Children = <objektListe> nur lesen
numChildren –– nur lesen
parent –– lesen, schreiben

Methoden

Syntax im BASIC-Code Aufgabe
<numVar> = <obj>.FindChild(<childObj>) Child suchen

Routinen

Syntax im BASIC-Code Aufgabe
<stringVar> = ObjInfo$(<obj>) interne Informationen anfordern

Class$

Class$ enthält den Namen der Objektklasse im Klartext, z.B. "MEMO", oder
"DYNMAIC_LIST". Class$ kann nur gelesen werden. Ist das Objekt kein gültiges
BASIC-Objekt, z.B. ein Null-Objekt, liefert Class$ einen leeren String.

Syntax Lesen: <stringVar> = <obj> .Class$

Children

Children legt im UI-Code fest, dass die aufgezählten Objekte Children des
aktuellen Objekts sind.

 Syntax im UI-Code Children = <objektListe>

Beispiel:
Primary MyPrimary
Children = InfoMenu, MainGroup, BitmapArea

END Object

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 24

Die hinter Children auftauchenden Objekte müssen an anderer Stelle im UI-Code
vereinbart sein. Jedes Objekt darf nur in maximal einer Children-Liste auftauchen.
Ein Objekt nirgends als Child zu spezifizieren ist ok.

Die Anzahl der Objekte in einer einzigen Childrenliste ist auf 25 begrenzt. Wenn
Sie mehr Children spezifizieren wollen können Sie mehrere Childrenanweisungen
für ein Objekt verwenden.

Beispiel:
Group MyBigGroup
Children = Button1, Group1
Children = Button2, Group2

END Object

Beachten Sie, dass der Compiler die Children-Anweisungen nicht sofort ausführt,
sondern sie zunächst auf eine Stapelspeicher (Stack) legt um sie am Ende des UI
Compilevorgangs in umgekehrter Reihenfolge auszuführen. Die beiden Children-
Anweisungen im obigen Beispiel sind also identisch mit:

Group MyBigGroup
Children = Button2, Group2, Button1, Group1

END Object

Im BASIC-Code kann lesend auf die Child-Objekte eines Objekts zugegriffen
verwenden:

Syntax Lesen: <objVar> = <obj>.Children (index)
index gibt die Nummer des Child-Objekts an
Wertebereich 0 .. numChildern – 1

Beispiel Basic-Code:
DIM obj, obj2 AS OBJECT

obj = MyPrimay.Children(0) ! erstes Child-Objekt lesen
Print obj.Caption$

numChildren

NumChildren kann nur im BASIC-Code auftreten und kann nur gelesen werden.
Es liefert die Anzahl der direkten Children des Objekts. Sollten die Child-Objekte
eigenen Children haben, werden diese nicht mitgezählt.

Syntax Lesen: <numVar> = <obj> .numChildren

Beispiel
DIM n AS WORD
n = MyPrimary.numChildren
Print "MyPrimary hat";n;"Children"

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 25

parent

Parent kann nur im BASIC-Code auftreten. Es kann gelesen und geschrieben
werden. Im UI-Code können sie das Parent nicht direkt setzen, sondern müssen
über die Children-Liste gehen.

Lesen: Parent liefert das Parent-Objekt. Sollte das Objekt kein Parent haben, wird
ein Null-Objekt zurückgegeben (analog der NullObj() Funktion).

Syntax Lesen: <objVar> = <obj> .parent

Beispiel:
DIM obj AS OBJECT

obj = MyView.parent
IF obj = NullObj() THEN
Print "MyView hat kein Parent"

ELSE
Print "Caption$ = "; obj.Caption$

END IF

Schreiben: Parent weist einem Objekt ein neues Parent-Objekt zu. Damit wird das
Objekt im UI-Tree verschoben. R-BASIC handelt alle dafür notwendigen Schritte.
Sie können auch ein Null-Parent zuweisen (mit der Funktion NullObj()). Das
Objekt wird versteckt, ist aber bereit an gleicher oder anderer Stelle wieder
eingefügt zu werden.

Syntax Schreiben: <obj> .parent = <obj2> , index
index: Position (= neue ChildNr, beginnend bei Null), an der das

Objekt eingefügt werden soll.
0: als erstes Child, 1: als 2. Child usw.
Sonderfall: –1 als letztes Child

Beispiel: Ausgangssituation im UI-Code
Group MyGroup1
Children = MyButton1, MyButton2, MyButton3, MyButton4

END Object

Group MyGroup2
Children = MyButton5

END Object

Beispiele BASIC-Code
! Button5 nach Group1 verschieben, als erstes Child
MyButton5.Parent = MyGroup1, 0

! Button5 nach Group1 verschieben, als vorletztes Child
! Die Reihenfolge ist dann

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 26

! MyButton1, MyButton2, MyButton3, MyButton5, MyButton4
MyButton5.Parent = MyGroup1, 3

! Button5 aus dem Tree entfernen
MyButton5.Parent = NullObj() , 0

! Button5 wieder zu Grpup2 hinzufügen, als letztes Child
MyButton5.Parent = MyGroup2, –1

Beachten Sie, dass sich die Child-Nummern der Objekte, die sich hinter dem
eingefügten Objekt befinden, verändern.

FindChild

Die Methode FindChild untersucht, ob zwei Objekte im Child-Parent Verhältnis
zueinander stehen.

Syntax: <numVar> = <obj>.FindChild(<childObj>)
<obj>: Variable oder Ausdruck vom Typ OBJECT
<childObj>: Variable oder Ausdruck vom Typ OBJECT

Es wird geprüft ob <childObj> ein Child von <obj> ist.
Rückgabewert:

0 .. N <childObj> ist ein Child von <obj>
Der Wert ist die Childnummer, die Zählung beginnt bei Null.

– 1 <childObj> ist kein Child von <obj>

ObjInfo$

Die Stringfunktion ObjInfo$ liefert interne Informationen über das Objekt. Sie
können die Funktion zur Fehersuche in Objekt-Trees verwenden. Der String
könnte z.B. so aussehen:

ObjReferenz=18:34, Typ=3 (BUTTON) * [Gen]
Die ObjektReferenz identifiziert ein Objekt eindeutig. Die erste Zahl beschreibt den
Objektblock, in der sich das Objekt befindet.
Der Typ beschreibt die Objekt-Klasse eindeutig.
Zusätzlich ist der Klassen-Name noch im Klartext angegeben.

Syntax: <stringVar> = ObjInfo$ (<obj>)
<obj>: Variable oder Ausdruck vom Typ OBJECT

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 27

2.1.3 Verwaltung von Objektblöcken

Diese Kapitel richtet sich an fortgeschrittene Programmierer.

R-BASIC ist daraufhin optimiert, die Verwaltung der Objektblöcke weitgehend
automatisch zu erledigen. Dieses Kapitel enthält grundlegende und
Hintergrundinformationen für den Fall, dass Sie ein Problem mit der
Objektblockgröße haben (Kapitel 2.1.4) oder dass Sie Objekte zur Laufzeit des
Programms anlegen wollen (Kapitel 2.1.5).

BASIC-Anweisungen

Syntax im BASIC-Code Aufgabe
<handleVar> = GetObjBlockHandle(<obj>) Handle eines Objektblocks lesen
<numVar> = GetObjBlockSize(<handle>) Größe eines Objektblocks lesen
<handleVar> = CreateObjBlock () Neuen Objektblock anlegen
DestroyObjBlock <handleVar> Objektblock löschen

GEOS und damit R-BASIC verwaltet den Speicher in "Blöcken" von einigen
Kilobytes Größe. Das gilt auch für Objekte. Die Instance-Daten (persönliche
Daten) eines Objekts nehmen einige 10 bis einige 100 Byte ein. Es werden daher
immer mehrere Objekte gemeinsam in einem Speicherblock abgelegt. Einen
solchen Speicherblock nennt man "Objektblock". Jedes Mal, wenn auf die
Instance-Daten eines Objekts zugegriffen werden muss, z.B. weil das Objekt sich
auf dem Schirm darstellt oder weil Sie es angeklickt haben und es auf den
Mausklick reagiert, wird der gesamte Objektblock in den Hauptspeicher geladen.

Die Aufteilung der Objekte auf Objektblöcke ist prinzipiell völlig unabhängig von
der Verbindung der Objekte im generic Tree oder im visual Tree. Auf modernen
Rechnern ist der geringe Performanceverlust, der auftritt, wenn man Objekte
"Kreuz und Quer" über viele Objektblocks verlinkt, zu vernachlässigen. Trotzdem
ist es schon aus Gründen der Übersichtlichkeit ratsam, zusammengehörende
Objekte, z.B. alle Objekte einer Dialogbox, im UI-Code zusammenhängend zu
deklarieren. R-BASIC platziert sie dann automatisch im gleichen Objektblock.

GetObjBlockHandle

Syntax: <handleVar> = GetObjBlockHandle(<obj>)
<obj>: Variable oder Ausdruck vom Typ OBJECT
<handleVar>: Variable vom Typ HANDLE

Um unter R-BASIC mit Objektblöcken arbeiten zu können, benötigen Sie ein
Handle auf den Objektblock. Die Funktion GetObjBlockHandle() liefert das
Handle des Objektblocks, in dem sich das übergebene Objekt befindet.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 28

GetObjBlockSize

Syntax: <numVar> = GetObjBlockSize(<han>)
<han>: Variable oder Ausdruck vom Typ HANDLE

Es muss das Handle eines Objektblocks sein.

Die Funktion GetObjBlockSize() liefert die aktuelle Größe des Objektblocks,
dessen Handle der Funktion übergeben wurde.

Der GEOS Speichermanager ist auf Blockgrößen von 6 kByte bis 8 kByte
optimiert. Natürlich kann er auch mit Blöcken von wenigen Bytes umgehen, z.B.
mit Objektblöcken, die nur ein einziges Objekt enthalten - das ist jedoch nicht
effizient und kostet unnötig Systemhandles (jeder Block benötigt sein eigenes
Handle). Werden die Blöcke hingegen zu groß kann es länger dauern bis der
Speichermanager einen Platz im Hauptspeicher für diesen Block gefunden hat.
Unter Umständen muss er dazu andere Blöcke, die gerade nicht benutzt werden
auf die Festplatte auslagern. Das kann dauern.
Blockgrößen von 10 oder 16 Kilobytes sind dabei noch kein echtes Problem, bei
Blockgrößen von z.B. 40 kByte oder mehr kann es jedoch zu den gefürchteten
"Hauptspeicher voll" Meldungen kommen.

Um diesbezügliche Probleme zu vermeiden geht R-BASIC beim Compilieren des
UI-Codes folgendermaßen vor:
Vor dem Anlegen eines neuen Objekts prüft es die Größe des aktuell verwendeten
Objektblocks. Sollte dieser bereits mehr als 6 kByte groß sein, so wird vor dem
Anlegen des neuen Objekts ein weiterer Objektblock angelegt. Das neue und alle
folgenden Objekte werden dann in dem neuen Objektblock gespeichert. Dabei
berücksichtigt R-BASIC, dass einige Objekte zur Laufzeit weiteren Speicher
benötigen oder benötigen könnten. Beispielsweise speichern drei der vier Text-
Objekte (Memo, InputLine und VisText) ihren Text in ihrem eigenen Objektblock.
Die Instance-Variable maxLen gibt an, wie viele Zeichen der Text maximal
enthalten kann. R-BASIC berücksichtigt das bei der Berechnung der
Objektblockgröße. Deswegen sind Objektblocks, die Text-Objekte enthalten,
anfangs häufig kleiner als 6 kByte. Ähnliches gilt für DynamicList-Objekte. Diese
erzeugen zur Laufzeit ihre eigenen Children. R-BASIC berücksichtigt das pauschal
mit 1,5 kByte, was in den meisten Fällen völlig ausreicht.

CreateObjBlock

Syntax: <handleVar> = CreateObjBlock ()

Die Funktion CreateObjBlock() legt einen neuen, leeren Objektblock an. Sie
liefert das Handle des Objektblocks zurück. Dieses benötigen Sie, wenn Sie neue
Objekte in diesem Block anlegen wollen (CreateObject(), siehe Kapitel 2.1.5) oder
den Objektblock später wieder vernichten wollen.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 29

DestroyObjBlock

Syntax: DestroyObjBlock <han>
<han>: Variable oder Ausdruck vom Typ HANDLE

Es muss das Handle eines Objektblocks sein.

Die Anweisung DestroyObjBlock vernichtet einen Objektblock und gibt den damit
verbundenen Speicher wieder frei.

Wichtig:
• Der Objektblock darf keine Objekte mehr enthalten. Verwenden Sie dazu

DestroyObject() (siehe Kapitel 2.1.5).
• Es ist dringend davon abzuraten Objektblöcke zu vernichten, die vom UI-

Compiler erzeugt wurden. Vernichten Sie nur Objektblöcke, die mit
CreateObjBlock() angelegt wurden.

2.1.4 Beeinflussung der Objektblöcke im UI-Code

Diese Kapitel richtet sich an fortgeschrittene Programmierer.

R-BASIC kümmert sich um Objektblöcke und die damit zusammenhängenden
Dinge weitgehend selbständig. Die meisten Programmierer werden daher niemals
selbst mit der Verwaltung von Objektblöcken zu tun haben.

Es gibt jedoch einige wenige Situationen die das direkte Eingreifen des
Programmierers erfordern. Das sind konkret:

• DynamicList Objekte, die grafische Elemente anzeigen.
• Zuweisungen von grafischen Captions zur Laufzeit
• Textobjekte mit sehr großen Texten

Diese sowie die dafür nötigen Hintergrundinformationen sind hier beschrieben.

UI-Anweisungen

Syntax im UI-Code Aufgabe
ForceNewObjBlock Einen neuen Objektblock anfordern

Nach dem Compilieren erhalten Sie eine Tabelle, die wie folgt aussehen könnte.
Die Spalte "Ab Zeile" enthält die Zeile im UI-Code, in der ein neuer Objektblock
angelegt wurde. Daraus können Sie ermitteln welche Objekte in welchem
Objektblock gespeichert sind. "Größe" enthält die anfängliche Größe des
Objektblocks in Byte. "Objekte" enthält die Anzahl der im Objektblock
gespeicherten Objekte. Beachten Sie, dass das Application-Objekt in einen
eigenen Objektblock compiliert wird.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 30

Objektblöcke compiliert: 3
Ab Zeile Größe Objekte
 36 4280 33
 196 1592 5
Interner Objektblock: Application

Wie bereits oben erwähnt brauchen Sie hier im Normalfall nicht einzugreifen,
insbesondere dann nicht, wenn Ihnen die Blockgrößen sehr klein erscheinen. R-
BASIC wählt einen guten Kompromiss auf anfänglicher Blockgröße und dem
möglichen Blockwachstum zur Laufzeit. Ein nachträgliches Verschieben eines
Objekts in einen anderen Block ist leider nicht möglich.

Es gibt jedoch einige Situationen, die R-BASIC nicht vorhersehen kann. Diese
sind im Folgenden erklärt. Sie beziehen sich alle auf Veränderungen der Objekte
zur Laufzeit. Als Richtwert kann gelten, dass Objektblöcke zur Laufzeit nicht
größer als 14 bis 16 kByte werden sollten. Optimal sind weniger al 10 kByte. Wie
Sie das herausbekommen ist weiter unten erklärt. Bei mehr als 20 kByte
Blockgröße ist es dringend zu empfehlen gegenzusteuern.

Fall 1: DynamicList Objekte

Ein häufiger Fall, in dem die Blockgröße kritisch anwachsen kann, sind
dynamische Listen, die grafische Elemente anzeigen. Dynamische Listen
erzeugen Ihre Children zur Laufzeit selbst. Dafür wird Platz im Objektblock
benötigt. Es zählen dabei nur die gleichzeitig sichtbaren Listeneinträge. R-BASIC
unterstellt der Liste bei der Berechnung der Objektblockgröße einen Platzbedarf
von 2 kByte, das entspricht ca. 25 gleichzeitig angezeigten Listeneinträgen mit je
20 Zeichen Text-Caption. Aber auch ein realer Bedarf von 4 oder 6 kByte sind kein
Problem - falls man nicht mehrere solcher Listen im gleichen Objektblock hat.
Ein echtes Problem können aber viele Listeneinträge mit einer Grafik sein
(Anweisung ItemGString). In diesem Fall ist es eine gute Idee das DynamicList-
Objekt ein einem eigenen Objektblock, nur für dieses Objekt, unterzubringen.
Dazu verwenden Sie die unten beschriebene Anweisung ForceNewObjBlock.

Fall 2: Grafische Captions

Auch die "Objekt-Beschriftung" (Caption$ oder grafische Captions) wird im
gleichen Objektblock gespeichert wie das Objekt selbst. Text-Captions (Caption$)
stellen dabei niemals ein Problem dar, da sie nur wenige Bytes umfassen. Wenn
sie einen Text durch einen anderen ersetzen ändert sich die Objektblockgröße nur
um wenige Bytes, ggf. wird sie sogar kleiner.
Haben Sie jedoch im UI-Code eine Text-Caption (oder gar keine) angegeben und
weisen einem Objekt zur Laufzeit eine Grafik als Caption zu (Anweisungen
CaptionIcon, CaptionPicture, CaptionImage und CaptionGString), so wird
auch diese im Objektblock des Objekts gespeichert. Wenn Sie dies bei mehreren
Objekten tun kann das den Objektblock zu stark vergrößern. Beispielsweise nimmt
ein Icon der Bitmap-Größe 48x30 Pixel im ungünstigsten Fall (TrueColor,
unkomprimiert) ca. 4 kByte ein, bei 8 Bit unkomprimiert sind es immer noch 1,4

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 31

kByte. Weitere Informationen dazu finden Sie im Kapitel 3.1 (Caption: Die Objekt-
Beschriftung).
Auch hier gilt: Weisen Sie die Grafik bereits im UI-Code zu, erkennt R-BASIC die
Größe und verteilt die fraglichen Objekte auf verschiede Objektblöcke.

Fall 3: Textobjekte

Der hier beschriebene Fall ist kommt eher selten vor, aber man sollte ihn kennen.
Wie bereits oben erwähnt speichern Textobjekte (außer LargeText) ihren Text in
ihrem eigenen Objektblock. Wie groß dieser Text werden kann hängt von der
Instance-Variablen maxLen des Textobjektes ab. Der Standardwert für maxLen ist
1024.
Wenn Sie zur Laufzeit den Wert für maxLen deutlich vergrößern (gegenüber dem
Wert, der beim Compilieren festgelegt wurde) und das auch ausnutzen (d.h. so
viel Text dort speichern) wird der Objektblock größer als vom Compiler
angenommen. Machen Sie das für viele Textobjekte aus dem gleichen Block kann
es zu einem Problem werden.
Es macht daher Sinn bei Textobjekten den Wert für maxLen im UI-Code so klein
wie möglich, aber auch so groß wie nötig zu wählen. Dann löst R-BASIC das
Problem für Sie, indem es die Objekte auf mehrere Blöcke verteilt.
Eine Verkleinerung des Wertes für maxLen zur Laufzeit stellt dagegen niemals ein
Problem dar.

Wie erkennt man, ob es ein Problem gibt?

Um Informationen über einen Objektblock zu erhalten muss man zuerst das
"Handle" des Blocks ermitteln. Die Funktion GetObjBlockHandle() liefert das
Handle des Objektblocks, in dem sich das übergebene Objekt befindet. Danach
kann man mit der Funktion GetObjBlockSize() die aktuell gültige Größe des
Objektblocks ermitteln.
Wenn Sie den Verdacht haben, dass ein Objektblock zu groß geworden ist, rufen
Sie diese beiden Routinen für ein Objekt aus diesem Block, wie im folgenden
Beispiel gezeigt:

DIM han AS HANDLE
DIM size
han = GetObjBlockHandle(MyDanamicList)
size = GetObjBlockSize (han)
MsgBox Str$(size)

Dabei ist es normal, wenn die Größe eines Objektblocks zur Laufzeit etwas größer
ist, als in der Tabelle vom Compiler angegeben. GEOS arbeitet mit den
Objektblocks. Z.B. fügt es bei einigen Objekten je nach Bedarf eigene (interne)
Instance-Werte hinzu oder löscht diese wieder. Beim Löschen wird der Speicher
zwar als "frei" markiert, der Block aber nicht unbedingt sofort verkleinert. Daher ist
es auch normal, wenn die Größe vom Mal zu unterschiedlich ist, auch wenn Sie
"gar nichts gemacht" haben. Sie können jedoch gut erkennen, ob der Objektblock
eine kritische Größe (mehr als 16 bis 20 kByte) erreicht hat oder nicht.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 32

Was kann man tun?

Der einzige Weg, Einfluss auf die Verteilung der Objekte auf die Objektblöcke zu
nehmen, ist, dem UI-Compiler anzuweisen, einen neuen Objektblock anzulegen.

ForceNewObjBlock

Syntax im UI-Code: ForceNewObjBlock

Platzieren Sie den UI-Befehl ForceNewObjBlock (Erzwinge neuen Objektblock)
je nach Situation vor oder nach dem kritischen Objekt. Es ist auch möglich die
fraglichen Objekte (oder das einzelne Objekt) in zwei ForceNewObjBlock-
Anweisungen einzuschachteln.

ForceNewObjBlock

DynamicList MyBigList
....
END Object

ForceNewObjBlock

Findet der UI-Compiler eine ForceNewObjBlock-Anweisung schließt er den aktuell
verwendeten Objektblock und legt für die folgenden Objekt einen neuen an.
Tipp: Legen Sie die fraglichen Objekte ans Ende aller UI-Anweisungen, dann
werden die davor befindlichen Objektblöcke nicht unnötig eingekürzt.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 33

2.1.5 Anlegen und Vernichten von Objekten zur Laufzeit

Diese Kapitel richtet sich an fortgeschrittene Programmierer.

Üblicher Weise legt R-BASIC die im UI-Code deklarierten Objekte an, wenn das
Programm compiliert wird. R-BASIC bietet Ihnen aber auch die Möglichkeit,
weitere Objekte zur Laufzeit anzulegen und wieder zu vernichten. Für
GenericClass Objekte (z.B. Button oder Menu) wird diese Möglichkeit eher selten
genutzt. Einige komplexe Programme, wie z.B. der Grafikbetrachter Gonzo,
nutzen aber die gebotenen Möglichkeiten für VisualClass Objekte sehr intensiv.
Gonzo legt für jede Grafikdatei, die es findet, ein eigenes Objekt an. Dieses
Kapitel beschreibt, wie man Objekte zur Laufzeit anlegt, damit arbeitet, wieder
vernichtet und was es dabei zu beachten gilt.
Beachten Sie, dass die VisContent Objekte über eingebaute Methoden verfügen,
die das Anlegen und Vernichten von VisObj-Objekten stark vereinfachen.

BASIC-Anweisungen

Syntax im BASIC-Code Aufgabe
<objVar> = CreateObject (<han>, <objClass>) Neues Objekt erzeugen
DestroyObject <obj> Objekt vernichten

Wie im Kapitel 2.1.3 beschrieben verwaltet GEOS alle Objekte in Objektblöcken.
Um ein Objekt zur Laufzeit anzulegen müssen Sie außer der Klasse des Objekts
auch den Objektblock spezifizieren, in dem das Objekt angelegt werden soll. Das
typische Vorgehen beim Arbeiten mit selbst angelegten Objekten ist im Folgenden
beschrieben. Es unterscheidet sich für GenericClass-Objekte und VisualClass-
Objekte nicht.

1. Erzeugen Sie einen neuen Objektblock mit CreateObjBlock().
2. Legen Sie die neuen Objekte mit CreateObject() an. Initialisieren Sie die

Instancevariablen und binden Sie die Objekte in den Tree ein.
3. Arbeiten Sie mit den Objekten.
4. Nachdem Sie die Objekte nicht mehr brauchen, sollen Sie sie mit

DestroyObject() vernichten. Dadurch wird der Speicher im zugehörigen
Objektblock freigegeben.

5. Am Schluss, nachdem alle Objekte im Objektblock vernichtet wurden, sollten
Sie den Objektblock mit DestroyObjBlock() vernichten.

Die Befehle CreateObjBlock() und DestroyObjBlock sind im Kapitel 2.1.3
beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 34

CreateObject

Syntax: <objVar> = CreateObject (<han>, <objClass>)
<han>: Handle eines Objektblocks
<objClass>: Bezeichnung einer Objektklasse

Die Funktion CreateObject() legt ein neues Objekt in dem Objektblock an, dessen
Handle der Funktion übergeben wurde. Als Objektklasse (dem "Typ" des Objekts)
sind alle R-BASIC Klassen, außer Application, zulässig.

Beispiele:
DIM o, p, q AS OBJECT

o = CreateObject (han, Button)
p = CreateObject (han, Dialog)
q = CreateObject (han, Menu)

Um das Objekt nutzen zu können müssen Sie noch seine Instance-Variablen
initialisieren und das Objekt in den Tree einbinden.

Ausführliches Beispiel: siehe unten

Hinweise:
• Je nach Klasse benötigt jedes Objekt einige 10 bis einige 100 Byte.

Objektblöcke sollten nicht zu groß werden. Die Idealgröße liegt zwischen
6 kByte und 8 kByte. Verwenden Sie im Zweifelsfall die Funktion
GetObjBlockSize() um die aktuelle Größe des Objektblocks zu ermitteln.
Details dazu sind im Kapitel 2.1.3 beschrieben.

• Auch wenn es möglich ist: Sie sollten keine Objekte in den Objektblocks
anlegen, die vom Compiler erzeugt wurden.

DestroyObject

Syntax: DestroyObject <obj>
<obj>: Variable oder Ausdruck vom Typ OBJECT

Das Objekt wird vernichtet.

Die Anweisung DestroyObject vernichtet ein Objekt. Damit ein Objekt vernichtet
werden kann darf es nicht mehr im Tree eingebunden oder auf andere Weise mit
anderen Objekten verbunden sein. R-BASIC erzeugt einen Laufzeitfehler, wenn
diese Bedingungen verletzt sind, um einen Absturz des Systems zu verhindern.

Hinweis:
• Auch wenn es möglich ist: Sie sollten keine Objekte vernichten, die vom

Compiler erzeugt wurden.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 35

Beispiel: Anlegen eines Objekt-Trees

DIM h as HANDLE
DIM d, t, b as OBJECT

h = CreateObjBlock()
d = CreateObject(h, Dialog)
d.Caption$ = "Neuer Dialog"
d.Parent = DemoPrimary,1

t = CreateObject (h, Memo)
t.Caption$ = "Text eingeben"
t.justifyCaption = J_TOP
t.Parent = d, 0

b = CreateObject(h, button)
b.Caption$ = "Fertig"
b.ActionHandler = TestAction
b.Parent = d,1

Beispiel: Vernichten eines Objekt-Trees
BUTTONACTION TestAction
Print "Button pressed!"
Print t.text$

b.Parent = NullObj(), 0
DestroyObject b

t.Parent = NullObj(), 0
DestroyObject t

d.Parent = NullObj(), 0
DestroyObject d

DestroyObjBlock h

END ACTION

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 36

2.2 Ausgabe von Grafik

Grafische Ausgaben auf den Schirm gehören zu den Kernaufgaben einer
Programmiersprache. R-BASIC bietet diesbezüglich eine Fülle von Möglichkeiten.
In diesem Kapitel finden Sie einen Überblick über die Möglichkeiten und die dazu
verwendeten Objekte. Unter R-BASIC erfolgt die Ausgabe von Grafik - das
schließt Textausgaben mit der Anweisung PRINT ein - immer auf das aktuelle
"Screen" Objekt. Mehr zu Screenobjekt finden sie im Kapitel 2.3 unten.

2.2.1 Objekte zur Grafikausgabe

Im Folgenden werden die zur Grafikausgabe verwendbaren Objektklassen
aufgezählt und ihre Vor- und Nachteile unter dem Aspekt der Grafik- und
Textausgabe gegenübergestellt. Eine ausführliche Beschreibung der einzelnen
Objektklassen finden sie in den folgenden Kapiteln des Objekthandbuchs.

BitmapContent

Ein BitmapContent (Container für eine Bitmap) stellt eine Bitmap bereit, in die man
Grafik und Text zeichnen kann. Üblicherweise ist das BitmapContent Objekt als
"Content" eines View Objekts gesetzt. Das ist notwendig, um die Bitmap auf den
Schirm zu zeichnen, aber es ist ausdrücklich erlaubt auch in eine Bitmap, die nicht
mit einem View Objekt verbunden ist, zu zeichnen. Die Veränderungen werden
sichtbar, wenn das BitmapContent Objekt das nächste Mal mit einem View
verbunden (als Content gesetzt) wird.

Der große Vorteil von BitmapContent Objekten ist, dass alle Grafikausgaben
automatisch gespeichert werden. Muss sich das Objekt neu darstellen erfolgt das
ohne das Zutun von BASIC Code einfach durch Neuzeichnen der Bitmap.

Nachteilig ist der relativ große Speicherbedarf. Außerdem kann es
Farbabweichungen geben, wenn die Farbtiefe der Bitmap nicht mit der der
verwendeten Zeichenbefehle übereinstimmt. Zeichnet man z.B. True-Color
Grafiken in eine 8-Bit-Bitmap werden die Farben heruntergerechnet. Da
Grafikausgaben aus Performancegründen immer parallel auf den Schirm und auf
die Bitmap erfolgen ist dieser Effekt meist erst nach einer Neudarstellung des
Objekts zu sehen, was besonders störend wirken kann.

Canvas

Ein Canvas Objekt zeichnet eine Grafik, indem es seinen OnDraw Handler aufruft.
Dieser Handler zeichnet dann die eigentliche Grafik auf den Schirm. Das Canvas-
Objekt eignet sich sehr gut für kleine, einfache Grafiken, die zur Laufzeit
gezeichnet werden können und sich nicht oder nur selten ändern. Das können z.B.
einfache Grafikbefehle oder ein Bild aus der Picture-List sein.

Von Vorteil ist die einfache Handhabung des Objekts. Außer um das Schreiben
des OnDraw Handlers muss man sich um nichts kümmern. Auch der geringe
Speicherbedarf des Objekts ist unter GEOS ein Vorteil.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 37

Im normalen (ungepufferten Modus) ist nachteilig, dass der OnDraw Handler jedes
Mal gerufen wird, wenn sich das Objekt neu darstellen muss, z.B. weil ein Teil des
Objekts durch ein Menü verdeckt war. Das ist langsam und belastet den BASIC-
Thread. Für einfache Anwendungen ist das jedoch ausreichend.
Im gepufferten Modus merkt sich das Canvas-Objekt die Grafikbefehle intern als
GString und spielt ihn mit hoher Geschwindigkeit wieder ab, wenn sich das Objekt
neu darstellen muss.

Image

Imageobjekte sind dafür ausgelegt Bilder aus eine externen Bilddatei z.B. BMP,
ICO, PCX, JPG ...) darzustellen. Sie müssen dem Objekt nur Name und
Speicherort der Datei mitteilen, um den Rest kümmert es sich allein.
Da Imageobjekte das Bild aus der Datei intern in einen GEOS Bitmap kopieren
benötigen sie ähnlich viele Speicher wie BitmapContent Objekte.

Imageobjekte sind dafür ausgelegt das Bild darzustellen. Eine Bearbeitung (wie
mit einem BitmapContent Objekt) ist nicht möglich.

VisContent

Das VisContent Objekt wird als "content" eines View Objekts in den Tree
eingebunden. Es hat einen OnDraw-Handler, so wie ein Canvas-Objekt. Deshalb
kann das VisContent-Objekt direkt Grafik und Text ausgeben. Aber üblicher Weise
erledigen die Grafikausgabe die Children des VisContent-Objekts. Das sind
Objekte der Klasse VisObj.

VisObj

Objekte der Klasse VisObj sind die Children eines VisContent Objekts. Deswegen
werden Sie immer innerhalb eines View Objekts dargestellt. Wie das Canvas-
Objekt besitzen sie einen OnDraw Handler und einen gepufferten Modus. Durch
die Darstellung innerhalb eines View ergeben sich Möglichkeiten, die mit einem
Canvas Objekt nicht möglich sind, z.B. Scrolling und Zoom. Außerdem kann man
VisObj Objekte mit der Maus positionieren.

Generic Class: Grafische Captions

Alle von der GenericClass abstammenden Objekt können kleine (!) Grafiken als
Caption darstellen (Instancevariablen CaptionImage, CaptionPicture, Caption-
GString oder CaptionIcon). Gedacht ist dieses Feature für grafische Button-
Beschriftungen und grafische Listenelemente, es eignet sich aber auch für Logos
und andere kleine Grafiken, die zur Laufzeit nicht oder nur selten geändert
werden. Wenn Sie grafische Captions zur Laufzeit verändern sollten Sie die Größe
der Grafiken im Blick haben. Details dazu finden Sie im Kapitel 3.1 (Caption: Die
Objekt-Beschriftung).

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 38

2.2.2 Konzepte zur Grafikausgabe

Dieses Kapitel enthält einen Überblick über die in R-BASIC verfügbaren Konzepte
zur Grafikausgabe. Im Einzelnen sind das

• Einfache grafische Kommandos
• PRINT und BlockGrafik
• Die Picture-List
• Graphic Strings
• Bitmaps

Einfache grafische Kommandos

Dem R-BASIC Programmierer stehen eine große Auswahl von einfachen
grafischen Kommandos wie Line, Circle, FillEllipse usw. zur Verfügung. Diese,
sowie die das dazugehörige Koordinatensystem werden ausführlich im Kapitel 2.8
(Grafik) des R-BASIC Programmierhandbuchs besprochen. Besonders hinge-
wiesen werden soll hier auf die Systemvariable graphic, über die die Eigen-
schaften aller Grafikbefehle wie Linienfarbe, Linienbreite und Flächenattribute
(z.B. Füllmuster) bis hin zum MixMode eingestellt werden können. Die daraus
resultierenden Möglichkeiten gehen weit über die klassischen BASIC Befehle wie
INK und COLOR hinaus.

PRINT und BlockGrafik

Der Befehl PRINT ist unter BASIC für alles, was mit Textausgabe auf den
Grafikschirm zusammenhängt, zuständig. Er wird ausführlich im Kapitel 2.9
(Textausgabe) des R-BASIC Programmierhandbuchs besprochen. Welche
Schriftart, Schriftgröße usw. verwendet wird, wird mit der Systemvariablen
printFont kontrolliert. Wie man darauf zugreift ist im Kapitel 2 (Verwendung von
Schriften) des Handbuchs "Spezielle Themen" beschrieben. Für die Formatierung
von Zahlen bei der Ausgabe mit Print oder dem BASIC Befehl Str$ ist die
Systemvariable numberFormat zuständig, deren Beschreibung Sie im Kapitel 1
(Formatierung von Zahlen) des Handbuchs "Spezielle Themen" finden.

Eine spezielle, dabei sehr einfache und gleichzeitig leistungsfähige Art, Grafiken
zu zeichnen, sind die sogenannten Blockgrafiken. Dabei wird der PRINT-Befehl
verwendet, statt der Buchstaben werden aber kleine Grafiken (z.B. 32x32 Pixel)
auf den Schirm gezeichnet. Jedem Buchstaben kann dabei eine eigene Grafik
zugeordnet werden, so dass sich sehr komplexe Bilder aus wenigen
Grafikelementen zeichnen lassen. Blockgrafikelemente lassen sich am
einfachsten mit dem Blockgrafik Editor, der über das Tools-Menü von R-BASIC
erreichbar ist, erstellen.
Wie man den Blockgrafik Modus einsetzt ist im Kapitel 3 (Verwendung des Block-
Grafik-Modus) des Handbuchs "Spezielle Themen" beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 39

Die Picture-List

Die Picture-List ist eine komfortable Möglichkeit Grafiken im der Codedatei selbst
unterzubringen um sie zur Laufzeit zu verwenden. Sie können diese Bilder auf den
Screen zeichnen oder als grafische Aufschrift für Objekte verwenden. Die Picture-
List wird über das Menü "Extras" - "Picture-List" verwaltet.
Eine ausführliche Beschreibung der Arbeit mit der Picture-List finden Sie im R-
BASIC Programmierhandbuch, Kapitel 2.8.6.2 (Verwendung der "Picture-List").

Graphic Strings

Ein Graphic String (im Folgenden kurz GString) ist eine Folge von Grafikbefehlen
oder Textausgaben, die gemeinsam gespeichert werden. Dieser GString kann
später beliebig oft "abgespielt" werden. Dabei werden die enthaltenen grafischen
Kommandos mit hoher Geschwindigkeit ausgeführt, viel schneller als dies als
Folge von BASIC-Anweisungen möglich ist.

GStrings sind ein tief im GEOS System verwurzeltes und sehr leistungsfähiges
Konzept. Beispielsweise erfolgt der Austausch von Grafiken zwischen
verschiedenen Programmen über die Zwischenablage immer als GStrings. Der
gepufferte Modus verschiedener BASIC Objekte (z.B. Canvas oder VisObj) ist
ebenfalls mit GStrings realisiert.

Unter R-BASIC können Sie GStrings für verschiedene Zwecke verwenden
• Aufzeichnung von Grafikanweisungen zur späteren Verwendung
• Grafische Captions für Objekte
• Grafische Einträge in Listen
• Arbeit mit der Zwischenablage

Der Zugriff auf GStrings erfolgt unter R-BASIC über Handles. Sie können GStrings
aufzeichnen, wiedergeben (auf den Screen zeichnen) oder wieder freigeben. In
einem GString können grundsätzlich alle Grafikausgaben gespeichert werden.
Das schließt explizit andere GStrings, Texte (PRINT-Anweisung) und Bitmaps
(Bilder oder Blockgrafik) ein. Andere GStrings oder Bitmaps werden dabei in den
GString kopiert. Die R-BASIC Library "VMFiles" bietet außerdem Funktionen an,
einen GString in eine Datei zu schreiben bzw. ihn von dort zu laden.

Eine ausführliche Beschreibung der Arbeit mit GStrings finden Sie im R-BASIC
Programmierhandbuch, Kapitel 2.8.5 (Arbeit mit Graphic Strings).

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 40

Bitmaps

Bitmaps sind digitalisierte Bilder. Sie bestehen aus einer rechteckigen Anordnung
von einzelnen Bildpunkten (Picture Element: Pixel). Jedem Pixel kann eine eigene
Farbe zugeordnet werden.
Innerhalb von GEOS werden Bitmaps immer im GEOS-internen Bitmapformat
gespeichert, unabhängig davon, aus welcher Quelle (z.B. welchem Dateiformat)
die Bilder stammen. Dieses interne GEOS Format erlaubt die Existenz einer
Transparenz-Maske als auch einer Palette für jede Bitmap.

Die Transparenz-Maske muss man sich als zusätzliche Farbebene vorstellen, die
neben den eigentlichen Bilddaten gespeichert wird. Dabei gibt es für jedes Pixel
genau ein Transparenzbit. Ist es gesetzt (=1) wird das entsprechende Pixel des
Bildes dargestellt. Ist es nicht gesetzt (=0) ist das Bild an dieser Stelle
durchsichtig.

Viele Bilder enthalten weniger als 3 Byte (24 Bit) pro Pixel. Ein üblicher Wert ist
z.B. 8 Bit pro Pixel. Das spart Speicher. Aber damit können sie nur 256 der
16 Mio. möglichen Farben darstellen. Welche das sind, kann mit einer Palette
festgelegt werden. Jeder Paletteneintrag besteht aus genau 3 Byte. Damit wird
jedem möglichen Farbwert des Bildes (0 ... 255 bei 8 Bit pro Pixel) eine True-Color
Farbe zugeordnet. Durch eine geschickte Wahl der Palette kann man sehr
realistische Bilder erzeugen.
Enthält ein Bild mit 8 Bit pro Pixel keine Palette wird die GEOS Standardpalette
verwendet. Diese Bilder werden etwas schneller gezeichnet, aber viele Probleme
mit der Farbdarstellung entstehen deswegen, weil die Windows-Standardpalette
nicht mit der GEOS-Palette identisch ist.
Es ist deshalb oft eine gute Idee 256-Farb-Bilder in die GEOS Palette
umzurechnen. Dazu eignet sich z.B. das GEOS Tool Sigma.

In R-BASIC erfolgt die Verwaltung einer Bitmap üblicher Weise mit einem
BitmapContent Objekt. Dieses Objekt kümmert sich selbständig um den
benötigten Speicherplatz sowie um die Darstellung der Bitmap auf dem Schirm. Es
ermöglicht es in die Bitmap zu zeichnen oder Farbwerte auszulesen und bietet
außerdem Funktionen zum Bearbeiten der Transparenz-Maske und der Palette.
Eine Beschreibung des BitmapContent Objekts finden Sie weiter hinten im
Objekthandbuch. Dort sind auch die Strukturen von Bitmap, Transparenz-Maske
und Palette beschrieben.

Zusätzlich bietet R-BASIC die Möglichkeit Bitmaps analog zu den GStrings über
Handles anzusprechen. Über diesen Weg können Bitmap zwischen Teilen des
BASIC Programms ausgetauscht und in andere Bitmaps oder in GStrings
gezeichnet werden. Die R-BASIC Library "VMFiles" bietet außerdem Funktionen
an, Bitmaps in eine Datei zu schreiben bzw. ihn von dort zu laden.
Der Bitmapzugriff über Handles ist ausführlich im Anschnitt 2.8.6.4 (Bitmaps und
Bitmap Handles) des R-BASIC Programmierhandbuchs beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 41

2.3 Arbeit mit dem Screen

Sowohl alle Grafik-Befehle als auch der Print-Befehl müssen wissen, wohin die
Ausgaben erfolgen sollen. Dieses Ausgabe-Ziel ist ein Objekt, das als Screen-
Objekt bezeichnet wird. Als Screen-Objekte können folgende Objekte dienen:

• BitmapContent
• VisContent
• VisObj
• Canvas
• Image
• PrintControl (nur während des Druckens)

Das BitmapContent Objekt ist das einzige, das global (permanent) als Screen
arbeiten kann. Damit können Sie von verschiedenen Teilen des Programms,
insbesondere von verschiedenen Action Handlern aus, in die Bitmap zeichnen.
Die anderen Objekte werden automatisch zum Screen, wenn ihr OnDraw Handler
(für PrintControl Objekte: ihr OnPrint Handler) gerufen wird. Sollte beim Aufruf des
OnDraw oder OnPrint Handlers ein globaler Screen gesetzt sein, wird dieser
deaktiviert, so lange der Handler läuft und anschießend wieder reaktiviert. Daher
können Sie vom OnDraw bzw. OnPrint Handler aus direkt Grafik oder Text
ausgeben.
Zusätzlich können Sie die genannten Objekte jederzeit temporär zum Screen
machen, indem Sie die Screen-Variable mit dem Objekt belegen. Das ist z.B. bei
der Arbeit mit der Maus sinnvoll. Sie müssen sich in diesem Fall aber selbst darum
kümmern, dass der zuvor gesetzte Screen wieder hergestellt wird, sonst kann
GEOS crashen. Beispiele dazu finden Sie in den Kapiteln zur Arbeit mit der Maus
(Spezielle Themen, Kapitel 17) und bei der Beschreibung der Objektklassen
VisContent und VisObj (Kapitel 5 im Objekthandbuch).

Sie können in R-BASIC zwischen verschiedenen globalen Screen-Objekten
wechseln. Außerdem können Sie Einstellungen am Koordinatensystem wie
Skalierung und Verschiebung vornehmen. Erfahrene Programmierer haben
außerdem die Möglichkeit komplexe Operationen mit dem Koordinatensystem
durchzuführen.

2.3.1 Die Screen-Variable

Variable Syntax im UI-Code Im BASIC-Code
Screen –– lesen, schreiben
DefaultScreen DefaultScreen ––

Die globale Variable Screen enthält das aktuelle Screen-Objekt. Sie kann im
BASIC-Code gelesen, geschrieben oder in Vergleichen verwendet werden. Auch
der direkte Zugriff auf Instance-Variablen (z.B. n = Screen.bitmapFormat(0)) ist
zulässig.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 42

Syntax Lesen: <objVar> = Screen
Schreiben: Screen = <obj>

Am Programmstart wird die Variable Screen mit demjenigen Objekt belegt, dass
die Anweisung DefaultScreen im UI-Code hat. Die Anweisung DefaultScreen ist
nur für BitmapContent Objekte zulässig.

Syntax UI-Code: DefaultScreen

Wird ein Objekt erstmalig zum Screen, so werden alle Grafik- und Font-Ein-
stellungen auf den Standardwert zurückgesetzt, das Ausgabe-Window wird auf
Maximum gesetzt und der Cursor wird links oben platziert. Die Farben werden auf
die durch den defaultColor-Wert des neuen Screen-Objekts bestimmten Werte
gesetzt. Ist kein defaultColor-Wert spezifiziert wird Schwarz auf Weiß eingestellt.
Verliert ein Objekt den Status "Screen" zu sein, so speichert es die genannten
Werte intern und stellt sie wieder her, wenn es erneut zum Screen wird. Sollte das
nicht möglich sein, weil Sie z.B. zwischenzeitlich die Bitmapgröße geändert haben,
werden wieder die Standardwerte verwendet.

Beispiel:
Umschalten zwischen den beiden Objekten MyContent1 und MyContent2.
IF Screen = MyContent1 THEN

Screen = MyContent2
ELSE
Screen = MyContent1

END IF

Wird die Variable Screen mit einem "leeren" Objekt belegt (Funktion NullObj()),
so gehen alle Grafik- und Textausgaben ins Leere.

Beispiel 1:
Screen = NullObj()

Beispiel 2:
IF Screen = NullObj() THEN Screen = MyContent1

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 43

2.3.2 Clipping

Unter Clipping versteht man, dass Grafiken und Texte nicht über die vorgegeben
Geometriegrenzen hinaus geschrieben werden. Beim Zeichnen in eine Bitmap
wird nicht über deren Rand hinaus gezeichnet, Objekte die in einem View-Objekt
sind zeichnen nicht über die Grenzen des View hinaus. GEOS und damit R-BASIC
handelt das automatisch, so dass Sie sich im Allgemeinen nicht darum kümmern
müssen. Sie haben jedoch die Möglichkeit den Bereich, in den Grafik- und
Textausgaben gehen sollen, zusätzlich einzuschränken.

ScreenSetClipRect

Die Routine ScreenSetClipRect schränkt die Ausgabe von Grafik und Text auf den
angegeben Koordinatenbereich ein.

Syntax: ScreenSetClipRect x0, y0, x1, y1
x0, y0: linke obere Ecke des Clip-Rechtecks
x1, y1: rechte untere Ecke des Clip-Rechtecks

Beispiel:
Paper LIGHT_BLUE
CLS

ScreenSetClipRect 50, 50, 150, 150
FillEllipse 15, 15, 85, 85, BLUE
FillEllipse 115, 115, 185, 185, GREEN
Rectangle 50, 50, 150, 150, black

ScreenSetClipRect 125, 25, 225, 125
Paper LIGHT_CYAN
CLS
FillEllipse 105, 5, 175, 80, YELLOW
FillEllipse 175, 75, 295, 195, LIGHT_GREEN
Rectangle 125, 25, 225, 125, BLACK

Hinweise:
• Das aktuell eingestellte Clipping-Rechteck lässt sich nicht ermitteln.
• ScreenSaveState / ScreenRestoreState (siehe nächster Abschnitt) speichern

das Clipping-Rechteck nicht. Ein nach einem ScreenSaveState ausgeführtes
ScreenSetClipRect hat auch nach dem ScreenRestoreState Gültigkeit.

• Bei einigen Objekten, z.B. einem Canvas, kann ein zu großes Clipping-Rechteck
auch dazu führen, dass das Objekt über seine Grenzen hinaus zeichnen kann.

• In den meisten Fällen stellt ScreenSetClipRect 0, 0, MaxX, MaxY das originale
Clipping-Rechteck wieder her.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 44

2.3.3 Speichern und Wiederherstellen des Screen-Status

Gelegentlich gibt es die Situation, dass man Änderungen in den Einstellungen für
Grafik und/oder Text (Farben, Font, Linienbreite ...) vornehmen will, die aber
anschließend wieder zurückgenommen werden sollen. Oft passiert das innerhalb
einer Routine oder in einem Action-Handler, der Grafiken ausgibt aber sicher-
stellen will, dass die aktuell Screen-Einstellungen nicht verändert werden. Die
Anweisung ScreenSaveState speichert alle den Screen betreffenden
Einstellungen - mit Ausnahme der BlockFonts und des Clipping-Rechtecks.
ScreenRestoreState stellt den gesicherten Zustand wieder her. Alle
zwischenzeitlich vorgenommenen Änderungen für Text und Grafik gehen verloren.

ScreenSaveState kann mehrfach hintereinander aufgerufen werden, die
Einstellungen werden von ScreenSaveState jeweils in einen eigenen
Speicherbereich kopiert und von ScreenRestoreState in der umgekehrten
Reihenfolge wieder restauriert. Dieses Vorgehen stellt sicher, dass eine Routine
die Kombination ScreenSaveState / ScreenRestoreState verwenden kann,
unabhängig davon, ob andere Routinen dies auch tun.

Beispiel: Die Routine zeichnet einen blauen Kreis ohne die aktuell eingestellten
Linieneigenschaften zu verändern.
SUB BlueCircle (x, y as integer)
ScreenSaveState
graphic.lineColor = BLUE
graphic.lineWidth = 4
Circle x, y, 50
ScreenRestoreState

END SUB

ScreenSaveState

Speichert die aktuellen Einstellungen für Grafik und Text.

Syntax: ScreenSaveState
Parameter: keine

ScreenRestoreState

Stellt die Einstellungen für Grafik und Text wieder her. Jede Routine muss genau
so viele ScreenRestoreState wie ScreenSaveState aufrufen.

Syntax: ScreenRestoreState
Parameter: keine

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 45

Hinweise:
• Wird die Systemvariable Screen neu belegt, so gibt R-BASIC den eventuell noch

von ScreenSaveState angeforderten Speicher frei, d.h. es werden genau so viele
ScreenRestoreState ausgeführt, wie es offene ScreenSaveState gibt. Erst dann
wird der Screen umgeschaltet.

• In folgenden Fällen kann ScreenRestoreState nach einem ScreenSaveState die
Daten nicht wieder herstellen und es kommt zu einem Laufzeitfehler:
1. Die Größe des Screenobjekts (z.B. der Bitmap) wurde zwischenzeitlich

geändert.
2. PC/GEOS wurde zwischenzeitlich heruntergefahren. Um diesen Fall zu

vermeiden muss jede Routine genauso viele ScreenRestoreState wie
ScreenSaveState aufrufen, weil PC/GEOS nicht herunterfahren kann,
während noch ein Handler oder eine Routine läuft.

• Die BlockFont Zeichensätze (siehe Block-Grafik-Modus, Handbuch "Spezielle
Themen", Kapitel 3) sind global. Sie werden weder vom Umschalten des
Screens noch von ScreenSaveState / ScreenRestoreState verändert.

• Das Clipping-Rechteck wird von ScreenSaveState nicht gespeichert. Ein mit
ScreenSetClipRect eingestellter Clipping-Bereich hat auch nach Screen-
RestoreState weiter Gültigkeit.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 46

2.3.4 Anpassen des Koordinatensystems

In diesem Abschnitt werden Routinen beschrieben, die einfache Operationen mit
dem Koordinatensystem durchführen. Dabei handelt es sich um Verschiebung,
Skalierung und Rotation. Diese Operationen werden als Koordinatentrans-
formationen bezeichnet. Sie wirken immer auf die nachfolgenden Grafik- oder
Text-Ausgaben. Bereits vorhandene Grafiken oder Texte werden nicht beeinflusst.

Werden mehrere Transformationen nacheinander ausgeführt, so berechnet GEOS
intern eine "resultierende" Transformation, so dass es für die Performance keinen
Unterschied macht wie viele Transformationen angewendet wurden.

Beachten Sie, dass die Reihenfolge der Transformationen wichtig ist, es ist etwas
anderes ob man erst verschiebt und dann rotiert oder umgekehrt (siehe Beispiel
unten).

Normalerweise begrenzt die PRINT-Anweisung die Ausgabe von Texten auf die
ursprünglichen Koordinaten des Screens. Wenn Sie das Koordinatensystem
geändert, z.B. nach rechts unten verschoben haben, kann Print z.B. den Zugriff
auf Bereiche links und oberhalb des neuen Nullpunkts (negative Cursor-
Koordinaten) verweigern. Sie müssen dann in den LAYOUT-Modus wechseln, in
dem alle Cursor-Restriktionen, allerdings auch der automatische Zeilenumbruch,
deaktiviert sind. Verwenden Sie dazu die Anweisung:

Print Chr$(19) ’oder gleichwertig Print "\19"

Print Chr$(17) ruft den PAGE-Modus auf, Print Chr$(18) den Scroll-Modus.

ScreenSetTranslation

Verschiebt den Ursprung des Koordinatensystems (Lage des Koordinaten-
ursprungs) um die angegebenen Werte.

Syntax: ScreenSetTranslation xMove, yMove
xMove: Verschiebung in x-Richtung
yMove: Verschiebung in y-Richtung

ScreenSetScale

Skaliert die Achsen des Koordinatensystems um die angegebenen Werte.
Negative Werte sind zulässig, sie bewirken eine Spiegelung in der ent-
sprechenden Richtung. Bezugspunkt ist immer der aktuelle Koordinatenursprung.

Syntax: ScreenSetScale xScale, yScale
xScale: Streckung in x-Richtung
yScale: Streckung in y-Richtung

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 47

ScreenSetRotation

Rotiert das Koordinatensystem um den angegebenen Winkel. Die Drehung erfolgt
um den aktuellen Koordinatenursprung

Syntax: ScreenSetRotation alpha
alpha: Drehwinkel im Gradmaß

Drehung erfolgt gegen den Uhrzeigersinn

Beispiel: Drehung um 45° nach rechts
ScreenSetRotation -45

ScreenResetTransformation

Nimmt alle Koordinatentransformationen zurück. Der Koordinatenursprung wird
nach links oben gesetzt, Drehung und Skalierung werden zurückgesetzt.

Syntax: ScreenResetTransformation

Beispiel 1: Unterschiedliche Transformationen.

Textausgabe ohne Transformation:
FontSetGeos(FID_CRANBROOK, 20)
Print "Life is ";
Print "an adventure.";
Rectangle 220, 0, 250, 30

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 48

Gedrehte und skalierte Text-Ausgabe, die Reihenfolge spielt eine Rolle!
FontSetGeos(FID_CRANBROOK, 20)
Print "Life is ";
ScreenSetScale 1, 1.7 ’ y: 170%
ScreenSetRotation -20 ’ 20° im Uhrzeigersinn
Print "an adventure.";
Rectangle 220, 0, 250, 30

Linkes Bild: Erst skaliert, dann rotiert (wie im Code gezeigt)
Rechtes Bild: Anweisungen ScreenSetScale und ScreenSetRotation vertauscht

(erst rotiert, dann skaliert)

Beispiel 2: Translation und Rotation.
Das Kreuz kennzeichnet jeweils den neuen Koordinatenursprung.
graphic.linewidth = 3
Line -70, 0, 70, 0, YELLOW
Line 0, -30, 0, 30, YELLOW

ScreenSetRotation -30
Line -70, 0, 70, 0, LIGHT_CYAN
Line 0, -30, 0, 30, LIGHT_CYAN
ScreenSetTranslation 150, 0
Line -70, 0, 70, 0, LIGHT_RED
Line 0, -30, 0, 30, LIGHT_RED
Print at 1,1;"Rot + Trans"

ScreenResetTransformation ’ wieder Ausgangssituation

’ herstellen
ScreenSetTranslation 150, 0
Line -70, 0, 70, 0, LIGHT_GRAY
Line 0, -30, 0, 30, LIGHT_GRAY
ScreenSetRotation -30
Line -70, 0, 70, 0, WHITE
Line 0, -30, 0, 30, WHITE
Print at 1,1;"Trans + Rot"

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 49

2.3.5 Komplexe Manipulation des Koordinatensystems

Hinweis: Dieses Kapitel ist etwas für erfahrene und mathematisch versierte
Programmierer. Die meisten Programmierer werden niemals mit hier dargestellten
Zusammenhängen arbeiten.

Wie bereits oben erwähnt berechnet GEOS bei Anwendung mehrerer Koordi-
natentransformationen eine "resultierende" Transformation. Dazu wird intern die
Matrizenrechnung verwendet, die dazugehörige Struktur heißt Transformations-
matrix. Sie können die Transformationsmatrix lesen, verändern, eine eigene
erstellen und sie wieder setzen. Dieses Kapitel beschreibt die dazugehörigen
Routinen ScreenGetTransMatrix, ScreenSetTransMatrix, die Struktur
TransMatrix und die mathematischen Grundlagen.

Jedes Mal, wenn GEOS einen einzelnen Punkt mit den Koordinaten (x; y) auf dem
Bildschirm darstellt, wendet es die aktuell gültige Transformationsmatrix auf
diesen Punkt an, um die Bildschirmkoordinaten (x’; y’) zu erhalten. Dieses
Verfahren wird für jeden einzelnen Punkt einer Linie, eines Buchstabens usw.
angewendet. Diese Berechnungen sind für eine schnelle Grafikausgabe optimiert
und in GEOS extrem effizient implementiert. In Matrizenschreibweise sieht das so
aus:

(x’ ; y’ ; 1) = • (x ; y ; 1)
a1 a2 0
b1 b2 0
c1 c2 1

Im Einzelnen berechnen sich die neuen Koordinaten somit folgendermaßen:

x’ = a1 * x + b1 * y + c1
y’ = b1 * x + b2 * y + c2

Beispiele für Transformation-Matrizen:

 1 0 0
 0 1 0
 0 0 1

scaleX 0 0
 0 scaleY 0
 0 0 1

Standard
Transformation Skalierung Translation

 1 0 0
 0 1 0
transX transY 1

Wird eine neue Koordinatentransformation angewendet (z.B. mit
ScreenSetTranslation), so berechnet GEOS das Kreuzprodukt der alten
Transformationsmatrix mit der neuen, wobei sich eine resultierende
Transformationsmatrix ergibt, die alle bereits vorhandenen und die neue
Koordinatentransformation enthält. Am Rechenaufwand bei der Darstellung auf
dem Bildschirm, d.h. an der Ausgabegeschwindigkeit ändert sich dadurch nichts.

Erfahrene oder ambitionierte Programmierer können ihre eigene, komplexe
Transformationsmatrix erstellen und diese mit ScreenSetTransMatrix anwenden.
Oder man sichert die aktuelle Transformationsmatrix mit ScreenGetTransMatrix
um sie später wieder zu verwenden. Dabei ist es erlaubt die Transformations-

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 50

matrix von einem Screen-Objekt zu lesen und einem anderen Screen-Objekt
zuzuweisen.

Die Struktur TransMatrix enthält die 6 variablen Elemente der Transformations-
Matrix und ist in R-BASIC folgendermaßen definiert:

STRUCT TransMatrix
a1, b1, c1 AS REAL
a2, b2, c2 AS REAL
END STRUCT

ScreenGetTransMatrix

Liest die aktuell gültige Transformationsmatrix des aktuellen Screen-Objekts aus.
Die Klammern sind erforderlich, da es sich um eine Funktion handelt, d.h. sie
liefert einen Wert zurück. Ist kein Screen-Objekt gesetzt ist das Ergebnis
unbestimmt und sollte nicht verwendet werden.

Syntax: <tm> = ScreenGetTransMatrix ()
<tm>: Variable vom Typ TransMatrix

ScreenSetTransMatrix

Wendet eine Transformationsmatrix auf den aktuellen Screen an. Ist kein Screen-
Objekt gesetzt wird die Operation ignoriert.

Syntax: ScreenSetTransMatrix (<tm>)
<tm>: Variable oder Ausdruck vom Typ TransMatrix

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 51

2.4 Objekte individualisieren

Der folgende Abschnitt setzt voraus, dass Sie sich bereits etwas im GEOS
Objektsystem auskennen und auch mit der Verwendung von Strukturen vertraut
sind.

Es gibt Situationen, in denen es nötig ist, dass ein Objekt neben den vom System
vorgegebenen Daten weitere Informationen speichern muss. Ein einfaches
Beispiel ist ein Canvas-Objekt, dass entweder einen Kreis oder ein Quadrat
zeichnen soll. Sie können die Information, ob ein Kreis oder ein Quadrat
gezeichnet werden soll, natürlich für jedes Objekt in einer eigenen globalen
Variablen speichern. Das ist aber nicht nur schlechter Stil, sondern wird bei
mehreren Objekten auch schnell sehr unübersichtlich und damit fehlernfällig.
Die bessere Lösung ist, die Information im Objekt selber zu speichern. R-BASIC
bietet Ihnen für diese Situation die Instancevariable privData. PrivData nimmt eine
Strukurvariable beliebigen Typs auf und speichert sie im Objekt selbst. Hier
können Sie z.B. ablegen, ob ein Kreis oder ein Quadrat gezeichnet werden soll.
Außerdem können Sie - wenn Sie wollen - die Größe, die Farbe und beliebige
weitere Informationen speichern.

VisObj-Objekte haben zusätzlich die Instancevariable visDataValue. Sie enthält
einen numerischen Wert (LongInt-Bereich), mit dem Sie bei Bedarf verschiedene
VisObj-Objekte auseinanderhalten können, ohne auf die relativ umständliche
Verwendung der Instancevariablen privData zurückzugreifen. Außerdem können
Sie visDataValue bereits im UI-Code zuweisen.

Fortgeschrittene Programmierer können in seltenen Situationen den Bedarf
haben, dass sie eine Routine erst dann aufrufen wollen, wenn der aktuelle
Actionhandler vollständig abgearbeitet ist. Typische Beispiele sind hier der OnPrint
Handler (bei dem man das Screen-Objekt nicht ändern darf) oder ein OnMouse~
bzw. der OnKeyPressed Handler (die meist zeitkritisch sind). R-BASIC löst dieses
Problem, indem man für Objekte eigene, private ("custom") Handler definieren
kann. Actionhandler unterbrechen sich niemals, sondern werden immer
nacheinander abgearbeitet. Der Aufruf eines solchen Handlers führt also dazu,
dass die aktuelle Routine (genauer: der komplette aktuell laufende Handler) zuerst
vollständig abgearbeitet wird bevor der neue Handler ausgeführt wird. Um einen
Custom Handler für ein Objekt festzulegen verwenden Sie die Instancevariable
customHandler. Custom Handler müssen als CustomAction deklariert sein. Um
einen Custom Handler aufzurufen verwenden Sie die Methode CustomApply.

PrivData

PrivData nimmt eine einzelne Strukturvariable (also maximal 3500 Bytes) auf.
Diese Instancevariable ist für alle Klassen definiert. PrivData ist zuweisungs-
kompatibel mit jeder Art von Struktur, es wird weder eine Typ- noch eine

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 52

Größenprüfung ausgeführt. Es ist daher vernünftig beim Schreiben und beim
Lesen der Daten den gleichen Struktur-Datentyp zu verwenden.
Schreiben: Sie müssen die Größe der zu schreibenden Daten angeben.
Lesen: Es werden so viele Bytes gelesen, wie die Variable auf der linken

Seite der Zuweisung aufnehmen kann. Enthält privData weniger
Bytes, so wird der Rest mit Nullen aufgefüllt.

Es ist zulässig, mehrfach hintereinander Strukturen verschiedenen Typs und
verschiedener Größe in die Instancevariable zu schreiben. R-BASIC optimiert
jedes Mal den verwendeten Speicher, so dass kein Platz verschwendet wird.

Syntax Schreiben: <obj>.privData = <struct>, size
<struct>: Strukturausdruck beliebigen Typs
size Größe der Struktur

Lesen: <sturctVar> = <obj>.privData
<structVar>: Strukturvariable des Typs, der beim Schreiben

 verwendet wurde.

Beispiel:
Ein Canvas-Objekt soll einen Kreis oder ein Quadrat in einer vorgegebenen Farbe
zeichnen. Wir benötigen:
- einen Strukturtyp, der die Informationen enthält,
- eine Routine, die die Werte setzt,
- ein Canvas-Objekt,
- einen OnDraw Handler für das Canvas Objekt

Der Strukturtyp sei folgendermaßen defininiert:
STRUCT ImgData
isCircle as Integer
color as Integer

End Struct

Zum Belegen der Instancewerte dient die folgende Routine. Die zweite Routine
(SetCanvasToRect) ist hier nicht aufgeführt.
SUB SetCanvasToCircle(col as Integer)
DIM pd AS ImgData
pd.isCircle = TRUE
pd.color = col

 MyCanvas.privData = pd, SIZEOF(pd)
 MyCanvas.Dirty ’ Neudarstellung auslösen
End Sub

Das Canvas-Objekt sei wie folgt definiert. Beachten Sie, dass wir privData nicht
definieren brauchen, es ist für alle Objekte automatisch verfügbar.
CANVAS MyCanvas
OnDraw = DrawFigure
fixedSize = 70, 70

End Object

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 53

Schließlich benötigen wir noch den OnDraw-Handler, der die privData-Werte
ausliest und verwendet.
DRAWACTION DrawFigure
DIM priv as ImgData

priv = sender.privData
INK priv.col
IF priv.isCircle THEN
FillEllipse 10, 10, 60, 60

ELSE
FillRect 10, 10, 60, 60

END IF
End Action

CustomHandler

CustomHandler enthält den Namen des Actionhandlers, der mit der Methode
CustomApply aufgerufen werden soll.

Syntax UI- Code: CustomHandler = <Handler>
Schreiben: <obj>.CustomHandler = <Handler>

Ein Custom Handler muss als CustomAction deklariert sein:
Handler-Typ Parameter
CustomAction (sender as object, actionData as integer)

CustomApply

Die Methode CustomApply ruft den CustomHandler eines Objekts auf. Ihr wird ein
Integer-Wert übergeben, der an den Handler weitergereicht wird.

Syntax: <obj>.CustomApply actionData
actionData: Integerwert, der an CustomHandler übergeben wird.

Beispiel (einfach, deswegen nicht sehr sinnvoll):
Ein Button mit einem ActionHandler und Primary mit einem CustomHandler.
BUTTON MyButton
Caption$ "Drück mich!"
ActionHandler = PressHandler

End Object

Primary MyPrimary
CustomHandler = CHandler

End Object

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 54

Der Actionhandler:
ButtonAction PressHandler
Print "Text 1"
MyPrimary.CustomApply 1
Print "Text 2"
MyPrimary.CustomApply -7
Print "Text 3"

End Action

Der CustomHandler wird erst ausgeführt, wenn der ActionHandler fertig ist
CustomAction CHandler
Print "DATA = ";actionData

End Action

Wenn der Nutzer den Button drückt erscheint folgendes:
Text 1
Text 2
Text 3
DATA = 1
DATA =-7

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Grundlegende Konzepte - 55

(Leerseite)

