R-BASIC

Einfach unter PC/GEOS programmieren

\CO

ol
9’

Objekt-Handbuch

) Volume 1
Uberblick, Grundlegende Konzepte

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 1

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

L LU TY 7 4
1.1 Ein Beispiel zur EinfUhrung «...eeeoeoeoiiii i, 4
1.2 Grundlegende Begriffe ... 11
1.3 Vereinbarungen fur dieses Handbuchccccooi e, 14
1.4 Syntax fUr Objektzugriffecooveereiii 16
1.5 Vereinbarung von Action-Handlern ... 19

2 Grundlegende Konzeptecccocmmmiiinneemmmiinns s 21
2.1 Objekte und Objekt-Baume (Trees) -« wwverrrrrsmmrrrssamssmssssssnnsssssnnens 21
P2 U T Y=Y 1! QST 21

2.1.2 Arbeit Mit ODJEKLENoeeeiiiiiiieieeeeeeee s 23

2.1.3 Verwaltung von Objektbldcken (*)ococuvieeiiiiiiiiii e 27

2.1.4 Beeinflussung der Objektblocke im Ul-Code (*) «-vvvrvveenieenne 29

2.1.5 Anlegen und Vernichten von Objekten zur Laufzeit (*) -........... 33

(*) Kapitel fur Fortgeschrittene

2.2 Ausgabe von Grafik «..ccoorvemrnimnenr 36
2.2.1 Objekte zur Grafikausgabeccccceeeuiiiiiiiiiiiiiiii, 36
2.2.2 Konzepte zur Grafikausgabecccoooiiiiiie, 38

2.3 Arbeit mit dem Screen ... ———— 41
2.3.1 Die Screen-Variablecccccuuiiiiiiiiiiiiiis e 41
P2 B2 1 1] o] o To [T 43
2.3.3 Speichern und Wiederherstellen des Screen-Status 44
2.3.4 Anpassen des Koordinatensystemsccccooviiininiiinnninen. 46
2.3.5 Komplexe Manipulation des Koordinatensystems 49

2.4 Objekte individualisieren «.....ccceeerirnerinrern e, 51

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Willkommen in der Welt der Objekte, Ereignisse und Botschaften

In diesem Handbuch wird beschrieben, wie Sie mit R-BASIC Programme erstellen,
die sich vollstandig ins System integrieren und sich nach auBen nicht von
"normalen" (mit dem PC/GEQOS SDK erstellten) Programmen unterscheiden.

Zu den grundlegenden Konzepten von GEOS und damit auch von R-BASIC
gehdren die objektorientierte Programmierung (OOP) und die ereignisorientierte
Programmierung. Selbst der "klassische" Modus von R-BASIC ist intern mit OOP
realisiert. Hier erfahren Sie, welche Objekte es gibt, welche Eigenschaften und
Fahigkeiten sie haben und wie Sie die nutzen kénnen.

Verweise auf andere Kapitel beziehen sich, wenn nicht explizit anderes angege-
ben, immer auf das Objekt Handbuch.

Um mit diesem Handbuch arbeiten zu kénnen miissen Sie unbedingt die
Kapitel 1.3 (Vereinbarungen fur dieses Handbuch) und 1.4 (Syntax von Ul-
Objekten) lesen. Die dort vorgestellten Sachverhalte werden in allen darauf-
folgenden Kapiteln vorausgesetzt.

Im Benutzerhandbuch wird erklart, wie man das R-BASIC Oberflache benutzt, wie
man Programme in andere Sprachen Ubersetzt und andere Dinge, die nur indirekt
mit dem eigentlichen Programmieren zu tun haben.

Grundlegenden Befehle und Konzepte, die die R-BASIC Programmiersprache
ausmachen, finden Sie im R-BASIC Programmierhandbuch. Dort erfahren Sie
auch alles uber Variablen, Schleifen, Verzweigungen, Unterprogramme und
andere grundlegende Dinge.

Das Handbuch "Spezielle Themen" widmet sich weiterfihrenden Themen, wie der
Arbeit mit Dateien oder die Verwendung von Schriften.

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

1 Uberblick

1.1 Ein Beispiel zur Einflihrung

Erstellen der grafischen Oberflache

In den meisten Féllen beginnt man ein Programm damit, dass man die grafische
Oberflache programmiert.

Starten Sie R-BASIC mit einer neuen Datei. Links unten finden Sie die verflg-
baren Code-Fenster. Wir benétigen nur die Fenster "BASIC-Code" und "UI-
Objekte". Im Fenster "DIM & DATA" werden bei gréBeren Projekten globale Ver-
einbarungen und Variablen untergebracht. Die Codefenster "Init-Code" und
"Tools" kénnen wir zun&chst ignorieren. Hier kann man Teile seines Programm-
codes ablegen um das Programm Ubersichtlicher zu halten. Ul steht fir User
Interface (Benutzerschnittstelle) und bezeichnet die Objekte, mit denen der
Benutzer des Programms interagieren kann. Das Fenster "UI-Objekte" enthélt den
Ul-Code des Programms, der beschreibt, welche Objekte es gibt und welche
Eigenschaften sie haben.

Klicken Sie nun auf "UI-Objekte", so sehen Sie ... nichts. Wir mlissen zunéchst die
gewunschten Objekte vereinbaren. Fur die ersten Versuche bendétigen wir nur ein
Programmfenster und eine Mdglichkeit, etwas auszugeben. Kopieren Sie dazu
einfach den folgenden Code in lhr "UI-Objekte" Fenster.

Application DemoApplication
Children = DemoPrimary
END Object

Primary DemoPrimary
BreakButton = TRUE
Children = DemoView
SizeWindowAsDesired

END Object

View DemoView
Content = DemoBitmap
hControl = HVC_NO LARGER THAN CONTENT + \
HVC_NO SMALLER THAN CONTENT
vControl = HVC_NO LARGER THAN CONTENT + \
HVC_NO SMALLER THAN CONTENT
END Object

BitmapContent DemoBitmap
bitmapFormat = 640, 400, 8
DefaultScreen
defaultColor = YELLOW, LIGHT BLUE

END Object

Uberblick - 4

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

R-BASIC unterstitzt das Anlegen von Objekten sehr komfortabel. Im Meni
"Extras" finden Sie den Eintrag "Code Bausteine" und dort "UI-Objekt" und "Neue
Ul-Sequenz". Bevor wir den UI-Code besprechen sollten Sie sich etwas durch das
Menl "Code Bausteine" und seine Untermenus klicken. Die Verwendung dieser
Menls wird Ihnen sehr viel Schreibarbeit ersparen! Menlpunkte, die jetzt noch
grau sind, werden aktiv, wenn Sie im Fenster "BASIC-Code" sind.

Von Klassen und Objekten

Zurlck zu unserem Ul Code. Das erste Objekt ist vom Typ (man sagt: der Klasse)
"Application" und hat den Namen DemoApplication. Dieses Objekt stellt die
Verbindung zum GEOS-System her. Jedes Programm muss genau ein solches
Objekt haben. Der Namen (hier: DemoApplication) ist frei wahlbar. Uber diesen
Namen kann man das Objekt im BASIC-Code ansprechen.

Die Zeile

Children = DemoPrimary

stellt die Verbindung zum néachsten Objekt, dem Hauptfenster (Primary-Objekt)
her. Mehr zum sogenannten Objekt-Tree finden Sie im Kapitel 2.1.
"SizeWindowAsDesired" (engl: Window-GréBe wie gewlnscht) legt fest, dass das
Primary anfangs nur so groB3 sein soll, dass alle Children gerade hineinpassen.
Ansonsten nehmen Primaries automatisch einen relativ groBen Bereich des
Bildschirms ein.

Mit END Object wird angezeigt, dass die Definition des Objekts beendet ist.

Das nachste Objekt gehért der Klasse "Primary" an und hat den Namen
"DemoPrimary". Man hatte es natirlich auch anders nennen kénnen. Das Primary-
Objekt nimmt uns sehr viel Arbeit ab, denn es erzeugt selbstandig einige Objekte:
das Dateimenl, das System-Menl links oben neben der Titelleiste und die
Minimieren-Maximieren-Schalter rechts oben. Auch das Express-Menu wird hier
platziert. Das Child (Kind) des Primary-Objekts ist ein View-Objekt, dass in
unserem Programm gemeinsam mit seinem "Content" fur alle Ausgaben auf den
Bildschirm zustandig ist.

Mit der Anweisung
BreakButton = TRUE

wird festgelegt, dass das Dateimenl einen BREAK-Schalter enthélt, mit dem man
ein "hangendes" Programm abbrechen kann. Dieser Eintrag aktiviert auch die
Tastenkombination "Strg-B" fur diese Aufgabe.

Die letzten beiden Objekte sind ein View-Objekt (Objektklasse "View" mit dem
Namen "DemoView") und ein Content-Objekt (der Klasse "BitmapContent"
namens "DemoBitmap"). Diese beiden Objekte arbeiten eng zusammen. Wahrend
das Content ausschlieBlich fur die Verwaltung der darzustellenden Grafik
zustandig ist kimmert sich das View-Objekt um das Wie, Wann und Wo. Eine
ausfuhrliche Beschreibung dieses Zusammenspiels finden Sie im Kapitel Gber das
View-Objekt (Kapitel 4.6). Dabei ist nur das View-Objekt als Child des Primary-
Objekts in den Tree eingebunden.

Uberblick - 5

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Die Zeile

Content = DemoBitmap

legt das Content-Objekt fest. Mit den Zeilen

hControl = HVC_NO LARGER THAN CONTENT + \
HVC NO SMALLER THAN CONTENT

vControl = HVC_NO LARGER THAN CONTENT + \
HVC_NO_ SMALLER_THAN CONTENT

wird das View angewiesen, seine eigene GroBe von der des Content-Objekts
abhangig zu machen, indem es sich in horizontaler (hControl) und vertikaler
Richtung (vControl) nicht gréBer (engl. large: groB) oder kleiner (engl. small: klein)
als das Content-Objekt macht. Dass stellt sicher, dass die komplette Bitmap stets
sichtbar ist. Der Vorsatz HVC__ steht flr Horizontal-Vertikal-Control.

Das Objekt "DemoBitmap" verwaltet eine editierbare Bitmap, deren Gr6Be und
Farbtiefe mit der Anweisung

bitmapFormat = 640, 400, 8

festgelegt wird. Das Objekt legt damit automatisch eine Bitmap der GroBe 640 x
400 Pixel mit 256 Farben (8 Bit pro Pixel) an. Sie brauchen sich nicht weiter um
die Verwaltung der Bitmap zu kimmern - mit der Ausnahme etwas hineinzu-
zeichnen. Das Objekt weiB3 z.B. selbst wann die Bitmap angelegt, gezeichnet oder
am Programmende vernichtet werden muss.

Damit Sie etwas in die Bitmap zeichnen kénnen legt die Anweisung

DefaultScreen

fest, dass alle Grafik- und Textausgaben standardmaBig an dieses Objekt gehen.
Mit der Anweisung

defaultColor = YELLOW, LIGHT BLUE

werden die Ausgabefarben auf "Gelb auf Blau" eingestellt.

Beachten Sie, dass das BitmapContent-Objekt "DemoBitmap" nirgends als Child
eines Objekts auftaucht, sondern nur als "Content" des View-Objekts. Das ist fir
das ordnungsgemaBe Zusammenspiel von View und Content erforderlich.

Wenn Sie nun das Programm starten (Menl "Programm", "Programm starten")
wird es compiliert und ausgefiihrt. Dabei erzeugt der Compiler die im Ul-Code
angegeben Objekte und Ubersetzt den Quelltext im "BASIC-Code" Fenster in ein
fir R-BASIC ausfihrbares Format. Um zur R-BASIC IDE zurtickzukehren wéahlen
Sie aus dem Datei-Menlu des laufenden BASIC-Programms den "Beenden"
Eintrag.

Uberblick - 6

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Ein OnStartup Handler

Aktuell sehen wir nur eine blaue Flache. Nun wollen wir etwas hineinzeichnen.
Eine sehr typische Situation ist, dass beim Programmstart automatisch eine
Routine abgearbeitet werden muss, die das Programm initialisiert, d.h. in den
Anfangszustand versetzt. In R-BASIC ist das der OnStartup-Handler. Routinen,
die von Objekten direkt aufgerufen werden heien in R-BASIC alle "Action-
Handler". Wechseln Sie in das Codefenster "BASIC-Code" und wahlen Sie aus
dem Menu "Extras", "Code Bausteine" den Eintrag "Action-Handler" und dort den
Punkt "System-Action". OnStartup-Handler missen als "SystemAction" vereinbart
werden. Geben Sie einen mdglichst selbsterklarenden Namen fir den Handler,
z.B. AppStart, ein. R-BASIC erstellt einen leeren Actionhandler. In den Handler
kénnen Sie nun lhren Initialisierungscode schreiben. Wir benutzen ein Print-Befehl
und zwei Grafikanweisungen.

SYSTEMACTION AppStart
Print "Hallo Welt"
Ellipse 10, 10, 200, 200
Rectangle 30, 30, 180, 180
END ACTION

Starten wir das Programm jetzt (F9-Taste) so sehen wir ... wieder nichts. Das liegt
daran, dass R-BASIC noch nicht wei3, wann es den Handler ausfihren soll. Wir
mussen noch festlegen, dass unser Handler namens "AppStart" der "OnStartup-
Handler ist. Das passiert im Ul-Code, im Application Objekt.

Application DemoApplication
Children = DemoPrimary
OnStartup = AppStart

END Object

Wenn wir jetzt wieder F9 dricken sehen wir endlich das Ergebnis unserer
Bemuhungen.

Nachdem der OnStartup-Handler abgearbeitet ist geht das Programm in den
Wartezustand Uber. Damit wieder etwas passiert missen wir etwas tun, z.B. einen
Button anklicken.

Ein neues Objekt

Fagen Sie zum Ul-Code die folgenden Zeilen hinzu:

Button TestButton
Caption$ = "Driick mich"
END Object

Vergessen Sie nicht, den Testbutton in die Children-Liste des Primary-Objekts
aufzunehmen:

Children = DemoView, TestButton

Die Reihenfolge der Eintrage bestimmt dabei ihre Anordnung im Primary-Objekt.
Wenn sie jetzt F9 driicken sehen sie einen zusétzlichen Schalter mit der Aufschrift

Uberblick - 7

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

"Driick mich". Sie kénnen ihn anklicken - aber es passiert nichts. Das liegt daran,
dass Sie ihm nicht mitgeteilt haben, was er zu tun hat.

Wenn sich etwas ereignet

Wird der Button angeklickt, so spricht man von einem Ereignis - in diesem Fall ein
Maus-Ereignis. Der Button nimmt dieses Ereignis entgegen und "weiB" was er
damit zu tun hat. Das ist der Kern der objektorientierten Programmierung: Jedes
Objekt reagiert auf Ereignisse (Maus, Tastatur, Mitteilungen von anderen
Objekten), indem es die Behandlung selbst vollstdndig Ubernimmt oder ein
weiteres Ereignis auslést. Auch das Starten des Programms stellt ein Ereignis dar.
unser Application-Objekt reagiert auf dieses Ereignis, indem es seinen OnStartup-
Handler aufruft (siehe oben). Ein Textobjekt z.B. stellt einen eingegebenen Buch-
staben selbstéandig auf dem Bildschirm dar, flr unseren Button aber missen wir
eine eigene Routine (einen eigenen Handler) schreiben, die eine Aktion ausflhrt.
Die Verknlupfung zwischen der Routine (dem Handler) und dem Button erfolgt
wieder in Ul-Code. Beim Button heiBt die Instancevariable, die man dazu belegen
muss, einfach ActionHandler.

Andern Sie den UI-Code:

Button TestButton
Caption$ = "Driick mich", 1
ActionHandler = TestAction
END Object

Die 1 hinter dem Caption$-Text bewirkt, dass der Buchstabe mit der Nummer 1
unterstrichen wird und zur Tastaturnavigation verwendet werden kann. In unserem
Fall ist das das ’r’, da die Zahlung bei Null beginnt.

Actionhandler von Buttons mussen als "ButtonAction" vereinbart werden. Das teilt
dem Compiler mit, dass die Routine "TestAction" von einem Button aktiviert wird.
Jede Objektklasse hat ihren eigenen Handlertyp. Naheres dazu finden Sie bei der
Beschreibung er entsprechenden Objekte. Schreiben Sie im BASIC-Code-Fenster
(nicht im UI-Code) den ActionHandler:

ButtonAction TestAction

CLS

Print "Button meldet: Bildschirm gel&scht."
END Action

Starten Sie das Programm mit F9. Herzlichen Glickwunsch! Sie haben Ihr erstes
objektorientiertes BASIC-Programm geschrieben!

Es geht weiter...

Andern Sie den BASIC-Code wie folgt, starten Sie das Programm erneut und
klicken Sie auf den Button.

Uberblick - 8

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

ButtonAction TestAction
sender.enabled = FALSE
END Action

Was ist passiert? "Sender" ist ein Parameter, der jedem Action-Handler
ubergeben wird. Je nach Action-Handler gibt es weitere Parameter, die Sie bitte
der Beschreibung der entsprechenden Objekte entnehmen. Der Parameter
"sender" ist immer das Objekt, das den ActionHandler aktiviert hat. "Enabled" ist
eine Eigenschaft, Gber die jedes Objekt verfugt. Ein Objekt ist "enabled", wenn der
Nutzer damit interagieren kann, andernfalls ist es "disabled" und wird grau
dargestellt. Eine weitere wichtige Eigenschaft ist "visible" (sichtbar). Versuchen
Sie folgendes:

ButtonAction TestAction
sender.visible = FALSE
END Action

Spielen Sie ruhig etwas mit den Objekten und den ActionHandlern herum! Andern
Sie zum Beispiel die GréBe der Bitmap oder die Farben.

Anordnen von Objekten - das Geometriemanagement

Wir flagen zunachst einen zweiten Button &ndern die ActionHandler wie folgt.
Vergessen Sie nicht den neuen Button als Child des Primary einzubinden!

Button TestButton2

Caption$ = "Driick mich auch", 6
ActionHandler = TestAction2
END Object

ButtonAction TestAction
FillEllipse 50, 50, 600, 350, LIGHT GRAY
Ellipse 50, 50, 600, 350
Print "Grafik gezeichnet."

END Action

ButtonAction TestAction2

CLS

Print "Bildschirm ist geldscht”
END Action

LIGHT_GRAY ist eine Farbkonstante, eine Zahl, die fir eine Farbe steht. Naheres
zur Beschreibung von Farben finden Sie im Programmierhandbuch, Kapitel 2.8.2
(Farben).

Wenn Sie das Programm jetzt starten funktioniert es zwar, aber die links unten
angeordneten Buttons sehen nicht sehr schon aus. Wir wollen jetzt die beiden
Buttons unter der Bitmap, aber nebeneinander anordnen.

Unter GEOS, und damit auch in R-BASIC, funktioniert die Anordnung von
Objekten nicht dadurch, dass man festlegt, wo die Objekte platziert werden,

Uberblick - 9

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

sondern wie sie angeordnet werden sollen. Man sagt nicht: platziere den Button
dort, sondern man sagt: ordne beide Buttons nebeneinander an. Eine ausfihrliche
Beschreibung dieses Konzepts finden Sie im Kapitel 3.3 (Geometriemanagement),
dass Sie unbedingt lesen sollten.

Versuchen Sie zunéchst folgendes:

Primary DemoPrimary
BreakButton = TRUE
Children = DemoView, TestButton, TestButton2
orientChildren = ORIENT_ HORIZONTALLY
SizeWindowAsDesired

END Object

Sie werden wahrscheinlich nicht zufrieden sein, weil die Buttons jetzt neben der
Bitmap sind. Die Ldsung fur dieses Dilemma ist, die Buttons in eine eigene
Gruppe (ein Objekt der Klasse Group) zu verschieben. Die grundlegende Idee
dahinter ist es, die Objekte innerhalb der Group nebeneinander anzuordnen
wahrend die Group selbst unterhalb der Bitmap bleibt. Dieses Konzept ist sehr
ausfihrlich im Kapitel Gber das Geometriemanagement (siehe oben) beschrieben.
Der groBe Vorteil dieser Technik ist, dass GEOS die Anordnung intelligent
handelt. Man bekommt also auch dann ein gefalliges Aussehen, wenn der Nutzer
eine andere SchriftgréBe oder eine andere Bildschirmauflésung verwendet, als
man selbst.

Primary DemoPrimary
BreakButton = TRUE
Children = DemoView, BottomGroup
SizeWindowAsDesired

END Object

Group BottomGroup

Children = TestButton, TestButton2
orientChildren = ORIENT_ HORIZONTALLY

End Object

Das sieht schon besser aus, ist aber noch nicht perfekt. Versuchen Sie - zunachst
nacheinander und dann in beliebiger Kombination - die folgenden, fett markierten
Programmzeilen. Die Reihenfolge der Codezeilen spielt dabei keine Rolle!

Group BottomGroup
Children = TestButton, testButton2
orientChildren = ORIENT HORIZONTALLY
ExpandWidth
justifyChildren = J_FULL ' oder J_CENTER
IncludeEndsInChildSpacing
DrawInBox

End Object

Probieren Sie ruhig weitere Hints aus dem Kapitel 3.3 aus! Ich wiinsche Ihnen viel
SpaB beim Probieren!

Uberblick - 10

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

1.2 Grundlegende Begriffe

Hier sind einige der grundlegenden Begriffe erklart, die im Handbuch immer
wieder vorkommen. Sie missen diese Begriffe jetzt weder vollstdndig verstehen
noch auswendig lernen. Aber sie kdénnen dieses Kapitel zum Nachschlagen
benutzen.

Objektorientierte Programmierung (OOP)

OORP ist eine Programmierphilosophie, bei der das Programm aus einzelnen
Objekten besteht. Die Objekte verfigen uber eine gewisse "Eigenintelligenz"
(Eigenschaften und Fé&higkeiten), mit denen die Programmfunktionalitat
realisiert wird. Zu diesem Zweck tauschen die Objekte Botschaften (Messages)
aus und reagieren auf Ereignisse (Events). Unter GEOS sind die meisten
Objekte sichtbar, wie z.B. Buttons oder Textobjekte. Es gibt aber auch
unsichtbare Objekte, wie z.B. das Application-Objekt (vgl. Kapitel 1.1).

Klassen
Jedes Objekt hat eine bestimmten "Typ" der in der OOP als Klasse bezeichnet
wird. Die Klassendefinition legt fest, welche Eigenschaften und Fahigkeiten die
Objekte dieser Klasse haben.

Objekte
Objekte sind konkrete Manifestationen einer Klasse. Welche Eigenschaften und

Fahigkeiten ein bestimmtes Objekt hat, wird durch seine Klasse bestimmt.
Fachlich korrekt spricht man davon, dass ein bestimmtes Objekt eine Instanz
einer bestimmten Klasse ist. Beispielsweise ist der Schalter "SchlieBen" in
einer Dialogbox eine Instanz der Klasse "Button". Es hat sich jedoch
eingebuirgert vereinfachend zu sagen: Der "SchlieBen" Schalter ist ein Button-
Objekt.

Window-Objekte
Als Window-Objekte werden alle Objekte bezeichnet, die ein unabhangiges
Fenster (Window) auf dem Bildschirm erzeugen. Dazu gehéren z.B. Dialog-
boxen und auch das Hauptfenster des Programms. Diese Fenster sind oft
verschieblich und gréBenveranderlich.

Instance-Variablen

Jedes Objekt muss einen bestimmten Satz an Daten speichern, um korrekt
arbeiten zu kdnnen. Beispielsweise muss jedes Objekt seine eigene GréBe und
Position kennen, um sich selbst korrekt darzustellen. Welche Daten das
konkret sind, wird von der Klasse des Objekts bestimmt, die Datenwerte selbst
sind jedoch fir jedes Objekt, d.h. fir jede Instanz einer Klasse, verschieden.
Die von einem konkreten Objekt verwalteten Daten werden deshalb als
Instance-Variablen (englisch fur Instanz-Variablen) bezeichnet.

Hints
Hints (engl. Hilfen) sind eine besondere Art von Instance Variablen. Hints
werden nur im Objekt gespeichert, wenn Sie explizit angegeben werden.
Andernfalls sind sie einfach nicht vorhanden. Das spart eine Menge Platz. Fast
alle Instance-Variablen zum Geometrie-Management sind als Hints imple-

Uberblick - 11

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

mentiert. Wie der Name schon sagt sind Hints keine Befehle, sondern Hilfen.
Es steht einem Obijekt frei, wie es die Hints konkret umsetzt. Dazu gehért auch,
dass es Hints ignorieren kann, wenn das angebracht ist.

Ereignisse (Events)

Betatigt der Nutzer eine Taste auf der Tastatur, bewegt er die Maus oder drtckt
eine Maustaste, so spricht man von einem "Ereignis". Ereignisse kénnen auch
der Start eines Programms oder vieles andere sein. GEOS registriert dieses
Ereignis und sendet eine Message (Botschaft) an die fir das entsprechende
Ereignis zusténdigen Objekte. Die Objekte kbénnen dann angemessen
reagieren.

Ereignisorientierte Programmierung
Dieser Begriff beschreibt, dass ein GEOS-Programm nur dann etwas tut, wenn
ein Ereignis auftritt. Dieses Verfahren ist viel effizienter als z.B. in einer Schleife
standig die Tastatur abzufragen. OOP und ereignisorientierte Programmierung
gehen daher Hand in Hand.

Botschaften (Messages)
Die Informationen, die Objekte untereinander austauschen werden als
Messages oder auf Deutsch als Botschaften bezeichnet. Botschaften sind
eines der Kernkonzepte in der objektorientierten Programmierung.

Methoden
Die Routine, die ausgefihrt wird, wenn ein Objekt eine Message erhalt, wird als
"Methode" bezeichnet. Die meisten Methoden sind R-BASIC-intern, d.h. sie
sind fiir den R-BASIC Programmierer nicht direkt zuganglich, sondern werden
automatisch ausgefuihrt. Es gibt davon jedoch Ausnahmen. Wenn Sie z.B.
wollen, das eine Dialogbox auf dem Bildschirm erscheint, dann mussen Sie der
Dialog-Objekt eine Message senden, die keine Instance-Variable setzt,
sondern die Dialogbox auf den Schirm bringt. In diesem Beispiel mussen Sie
schreiben
MyDialog.Open

wobei "Open" die Methode ist, die das Objekt namens "MyDialog" auszufihren
hat, damit es auf dem Bildschirm erscheint.

Action-Handler
R-BASIC realisiert die OOP-Konzepte konzeptionell Uber Action-Handler.
Registriert ein Objekt ein Ereignis, z.B. das Anklicken eines Buttons, so sendet
es eine Message an den R-BASIC-Kern. Sie enthélt die Information, welche
Programm-Routine ausgefuhrt werden soll. Diese Programm-Routine wird als
ActionHandler bezeichnet, da sie eine Aktion des Users behandelt. Der R-
BASIC Kern flihrt den Handler (der in R-BASIC-Code geschrieben ist) aus und
geht dann wieder auf "Stand-by" bis das nachste Ereignis eintritt.
ActionHandler kénnen auch Botschaften an andere Objekte aussenden oder
Methoden ausfuhren. Beispielsweise wird die Anweisung

EndeButton.enabled = FALSE

Uber eine Message an den EndeButton realisiert. Der Button disabled sich
daraufhin. Die gesamte Programmfunktionalitat eines BASIC-Programms steckt
also in den verschiedenen ActionHandlern.

Uberblick - 12

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Objekt-Tree, Parents und Children
Objekte sind unter GEOS in sogenannten Baumen (Trees) organisiert. Jedes
Objekt hat genau ein Parent (Eltern) und kann kein, ein oder mehrere Children
(Kinder) haben. Der Objekttree eines Programms dient sowohl der
Kommunikation der Objekte untereinander (was in R-BASIC meist intern
stattfindet) als auch der Organisation der Objekte auf dem Bildschirm. Details
dazu finden Sie im Anschnitt 2.1 (Arbeit mit Objekt Baumen).

Vererbung
Der Begriff beschreibt, dass die Objektklassen voneinander abstammen. Eine

neue Klasse wird von einer Vorgangerklasse abgeleitet. Dabei "erbt" die neue
Objektklasse die Eigenschaften und Féhigkeiten seiner Vorgangerklasse. Hinzu
kommen neue Eigenschaften und Fahigkeiten, die der Vorganger nicht hat.

Ein Beispiel: Die meisten R-BASIC-Objekte kénnen mit einer Aufschrift
(Caption$) versehen werden. Bei Primary-Objekten erscheint sie in der
Titelzeile, bei Buttons ist es "die" Aufschrift. Es macht nun keinen Sinn, diese
Fahigkeit fur jede Objektklasse von Grund auf neu zu implementieren, sondern
sie ist in einer Klasse implementiert, die im GEOS SDK als "GenericClass"
bezeichnet wird und von der die allermeisten R-BASIC-Objekte abstammen.

Folgen:
In der GenericClass ist z.B. auch das Geometrie-Management implementiert,

so dass bei allen von der GenericClass abstammenden R-BASIC-Objekten das
Geometrie-Management uber die gleichen Befehle abgewickelt wird. Das gilt
auch fur viele weitere grundlegende Fahigkeiten von R-BASIC-Objekten. Das
Handbuch ist deshalb so organisiert, dass die allen Objektklassen gemein-
samen Eigenschaften in separaten Kapiteln beschrieben werden. In den
Kapiteln Uber die konkreten Klassen werden dann nur eventuelle
Abweichungen ("Uberschriebene" Eigenschaften) und die neu hinzugekom-
menen Fahigkeiten, Eigenschaften und Instance-Variablen beschrieben.

Uberblick - 13

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

1.3 Vereinbarungen flir dieses Handbuch

In diesem Handbuch gelten einheitlich die folgenden Abkurzungen. Es wird
empfohlen zumindest diese Seiten auszudrucken.

numWert Ein numerischer Wert allgemein z.B. 12 oder —17.4

Alle grinen und nicht weiter gekennzeichneten Elemente
bedeuten einen numerischen Wert. Darunter sind z.B.

X, VY, sizeX, sizeY Positions- oder Gr6Benangaben

n Eine Anzahl oder eine Position

index Der mégliche Wertebereich eines Index beginnt immer bei Null.
Im BASIC-Code kann anstelle einer Zahl auch immer ein
numerischer Ausdruck (Variablen, Funktionen..) stehen.

"Text" Die Anfuhrungszeichen ".." kennzeichnen eine beliebige String-
Konstante, z.B. "Ja, ich will"
Im BASIC-Code kann anstelle eines expliziten Textes auch immer
ein String-Ausdruck (Variablen, Funktionen..) stehen.

[..] Eckige Klammern kennzeichnen ein optionales Element, d.h. das
Element kann angegeben werden, muss aber nicht vorhanden
sein.

x|y Eine Alternative wird durch einen senkrechten Strich

gekennzeichnet. Z.B. visible = TRUE | FALSE bedeutet, dass
visible = TRUE oder visible = FALSE mdglich ist.

TRUE R-BASIC Konstante mit dem Wert —1
Wird verwendet, wenn eine Eigenschaft "erflllt" oder "wahr" ist.
z.B. <obj>.visible = TRUE gibt an, dass das Objekt sichtbar ist.

FALSE R-BASIC Konstante mit dem Wert 0
Wird verwendet, wenn eine Eigenschaft "nicht erfillt" oder "falsch"
ist. z.B. <obj>.enabled = FASLE gibt an, dass der Nutzer nicht
mit dem Objekt interagieren kann (es wird i.a. "grau" dargestellt).

My.. , Demo.., Test.. Zeigen an, dass das entsprechende Element (Objekt,
Routine, ActionHandler usw.) von Programmierer selbst definiert
wurde, d.h. nicht aus R-BASIC stammt.

<objVar> Objekt-Variable
Variable vom Typ OBJECT, z.B. DIM ov as OBJECT

<obj>, <obj2> Referenz auf ein Objekt: namentlich aufgefiihrtes Objekt oder
Objekt-Variable. Felder und Struktur-Elemente vom Typ OBJECT
sind erlaubt. In diesem Handbuch bezeichnen wir das als "Objekt
Referenz".

<objektListe> Liste von namentlich aufgefihrten Objekten

Uberblick - 14

R-BASIC - Objekt-Handbuch - Vol. 1

Einfach unter PC/GEOS programmieren

<numVar> Numerische Variable (Real, Word, Integer usw.)

auch z.

B. <pos>, <index>, <breite>, usw.

<numExpr> Numerischer Ausdruck

<stringVar> String-Variable

auch z.

B. <name$>, <path$>, usw.

<stringExpr> String Ausdruck

<handleVar> Handle-Variable

auch z.

B. <han>, <gsHan>, usw.

<handleExpr> Handle Ausdruck

<structVar> Struktur-Variable
<structExpr> Struktur Ausdruck

<Handler> Der Name eines Action-Handlers

Sicher erkennen Sie das System dahinter, so dass Sie auch Elemente, die hier
nicht explizit aufgefihrt sind, zuordnen kénnen.

Instancevariablen werden haufig in einer Tabelle dargestellt. Beispiel:

Variable Syntax im Ul-Code Im BASIC-Code
Children Children = <objektListe> nur lesen
numChildren — nur lesen
parent — lesen, schreiben

Dabei bedeuten:
Variable:
Syntax im Ul-Code:

Im BASIC Code:

Name der Instancevariablen

Belegung der Instancevariablen im Ul-Code Fenster

Die so festgelegten Werte stehen beim Programmstart
sofort zur Verfligung.

Beschreibt, ob und wie man die Instancevariable vom
BASIC Code aus (d.h. zur Laufzeit des Programms)
ansprechen kann. Die Syntax dafar ist fur alle Instance-
variablen gleich und wird weiter unten, im Abschnitt
"Syntax fur Objektzugriffe", beschrieben. Eventuelle Aus-
nahmen sind bei den entsprechenden Instancevariablen
selbst beschrieben.

Ein Strich bedeutet, dass die Variable hier nicht verwendet
werden kann.

Uberblick - 15

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

1.4 Syntax fur Objektzugriffe

Vereinbaren von Objekten

Objekte mussen im Fenster "UI-Objekte" vereinbart werden. Die Vereinbarung
beginnt der Objekt-Klasse, gefolgt vom (frei wéhlbaren) Namen des Objekts. Dann
folgen die Instance-Werte fir dieses Objekt. Die Anweisung "END OBJECT"
beendet die Objekt-Vereinbarung.

Beispiele:

Button MyButton
Caption$ = "Durchlauf starten"
ActionHandler = DemoActionHandler

END Object

Primary MyPrimary
Children = MyButton, MyGroup, MyText
END Object

Zugriff auf Objekte

Objektzugriffe erfolgen entweder mit inrem Namen oder Uber eine Objekt-Variable
(Variable vom Typ OBJECT). Zur Vereinfachung bezeichnen wir die beiden
Maoglichkeiten als "Objekt-Referenz".

Beispiel:
DIM oba, obb AS OBJECT
DIM of(10) AS OBJECT ' ein Feld von Objekt-Variablen

oba = MyButton
obb = MyPrimay

of (1) = oba
IF oba = MyButton THEN ...
IF of (1) = MyPrimay THEN ...

Lesen von Instance-Variablen im BASIC-Code

Auf Instance-Variablen wird mit einer Objekt-Referenz (namentlich aufgefuhrte
Objekte oder Objekt-Variablen, siehe oben), gefolgt von einem Punkt und dem
Namen der Instance-Variablen, zugegriffen.

Uberblick - 16

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Beispiele:

DIM obb AS OBJECT
DIM X AS REAL
DIM s$ AS STRING

s$ = MyPrimay.Caption$
Print s$, MyButton.Caption$

obb = MyButton
IF obb.visible THEN ... ' visible kann TRUE oder FLASE sein

Einige Instance-Werte (wie Children oder bitmapFormat) erwarten im Ul-Code
mehr als einen Wert. Gelesen kann aber immer nur ein Wert. Deshalb muss beim
Lesen als Index angegeben werden, welcher Wert gelesen werden soll. Die
zulassigen Werte fur den Index beginnen immer mit Null.

Beispiel. Im Ul-Code sei vereinbart:

Primary MyPrimary
Children = Groupl, Viewl, Group2
END Object

BitmapContent MyBitmap
bitmapFormat = 48, 32, 8
END Object

< weitere Objekte..>

Lesen der Werte

DIM X, y, C
DIM ob, ch AS OBJECT

! Abfrage der Bitmap-Werte

X = MyBitmap.bitmapFormat (0) ' Breite

y = MyBitmap.bitmapFormat (1) ' Hohe

Print "Bitmap-GroéBe: "; x; "x"; y; "Pixel"

Print "Farbtiefe: "; ob.bitmapFormat(2); "Bit"

ch = MyPrimary.Children(0) ' Liefert Groupl

Print ch.numChildren

ch = MyPrimary.Children(1) ' Liefert Viewl
Print ch.Caption$

ob = MyPrimary ' Zur Demonstration
ch ob.Children(2) " Liefert Group2

Hinweis: Kombinationen der Form
MyPrimary.Children(0).Caption$
oder ahnlich sind nicht zulassig.

Uberblick - 17

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Schreiben in Instance-Variablen im BASIC-Code

Wie beim Lesen werden die Instance-Variablen auch beim Schreiben durch einen
Punkt von der Objekt-Referenz getrennt. Das Objekt kann auch hier namentlich
aufgefiihrt oder Uber eine Objekt-Variable referenziert werden.

Die Syntax beim Schreiben in Instance-Variablen entspricht ansonsten genau
derjenigen im Ul-Code, Berechnungen mit Variablen und Funktionen sind im
Gegensatz zum Ul-Code aber zulassig.

Beispiele
DIM x AS WORD

MyButton.visible = FALSE
MyButton.Caption$ = "Beenden", 1

! Neuanlegen einer Bitmap
x = 100
MyBitmap.bitmapFormat = x, x/2, 8

Uberblick - 18

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

1.5 Vereinbarung von Action-Handlern

Action-Handler sind spezielle Unterprogramme, die aufgerufen werden, wenn ein
Ereignis eintritt, z.B. ein Button gedrtckt oder mit der Maus geklickt wird.

Der Typ

Jeder Typ von Ereignissen erfordert auch einen speziellen Typ von Action-
Handlern: Das Drucken eines Buttons z.B. ButtonAction, ein Mausereignis wird
von einem Handler des Typs MouseAction behandelt.

Parameter

Jeder Typ von Action-Handlern hat einen eigenen Satz an Parametern. Allen
gemeinsam ist der erste Parameter "sender" vom Typ OBJECT. Er enthélt eine
Referenz auf das Objekt, dass das Ereignis ausgeldst hat. Dann folgen bis zu drei
numerische Parameter, deren Bezeichnung und Bedeutung vom Typ des
Handlers abhéangt.

Vereinbarung des Handlers

Ein Handler wird vereinbart indem der Typ des Handlers, gefolgt von einem (frei
wéahlbaren) Namen, angegeben wird. Die Parameter des Action-Handlers werden
beim Vereinbaren des Handlers nicht explizit angegeben. Die Anweisung END
ACTION schlieBt den Handler ab. Tipp: Verwenden Sie den Mentpunkt "Extras"-
"Code Bausteine"-"Action-Handler". Damit erhalten Sie neben dem Handler-Rumpf
einen Kommentarblock mit allen Parametern des Handlers.

Da Actionhandler spezielle Unterprogramme sind gelten die gleichen Regeln wie
bei SUB’s und FUNCTION's, d.h. es kédnnen z.B. lokale Variablen definiert, andere
SUB’s oder FUNCTION’s gerufen oder Operationen mit Objekten durchgefihrt
werden. Andere ActionHandler kbnnen jedoch nicht direkt aufgerufen werden.

Beispiel: Im Ul-Code sei vereinbart
Button MyButton

Caption$ = "Durchlauf starten"
actionHandler = DemoHandler
END Object

Vereinbarung von "DemoHandler"

ButtonAction DemoAction
DIM X
sender.enabled = FALSE ' MyButton "grau" zeichnen
FOR x = 10 TO 100 STEP 10
LINE x, 5, x, 100 : Pause 1
NEXT
sender.enabled = TRUE
END ACTION

Zuweisung im BASIC Code

Sie kénnen einem Objekt zur Laufzeit (im BASIC Code) einen anderen
ActionHandler zuweisen. Die Zuweisung des speziellen Wertes NoAction bewirkt
das Léschen des Actionhandlers flr das entsprechende Objekt.

Uberblick - 19

R-BASIC - Objekt-Handbuch - Vol. 1

Einfach unter PC/GEOS programmieren

DemoAction
NoAction

MyButton.ActionHandler
MyButton.ActionHandler

Uberblick - 20

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2 Grundlegende Konzepte
2.1 Objekte und Objekt-Baume (Trees)

2.1.1 Uberblick

Objekte sind unter GEOS in sogenannten Baumen (Trees) organisiert. Jedes
Objekt hat genau ein Parent (Eltern) und kann kein, ein oder mehrere Children
(Kinder) haben. Der Objekt-Tree eines Programms im "klassischen" BASIC-Modus
sieht wie folgt aus (vergleiche Ul-Code im Anschnitt 1.1):

DemoApplication

Y

DemoPrimary

4 N

FileMenu DemoView
Group 1 Group 2 :[
* * DemoBitmap
BreakButton ExitButton

Die gelb hinterlegten Objekte werden dabei vom Primary-Objekt automatisch
angelegt und erscheinen daher nicht im Ul-Code. Das Parent des Primary-Objekts
ist das Application-Objekt, seine Children sind das FileMenu und das Bitmap-
Objekt. Aus der Sicht des FileMenu ist sein Parent-Objekt das Primary, die
Children des FileMenu sind zwei Groups (Gruppen), die jeweils den BreakButton
bzw. den ExitButton enthalten. Das DemoBitmap-Objekt ist kein direkter Teil des
Trees, es ist das Content-Objekt des DemoView-Objekts (siehe Kapitel 4.9).

Der Objekitree eines Programms dient sowohl der Kommunikation der Objekte
untereinander (was in R-BASIC meist intern stattfindet) als auch der Anordnung
der Objekte auf dem Bildschirm. Children zeichnen sich immer in den Grenzen,
die ihnen das Parent vorgibt. AuBerdem legt das Parent-Objekt fest, ob die
Children neben- oder untereinander angeordnet werden und wie sie sich den
vorhandenen Platz aufteilen. Details dazu finden Sie im Kapitel Uber das
Geometriemanagement.

R-BASIC unterstitzt die Arbeit mit Objekt-Trees sehr ausfuhrlich. Sie kénnen
Informationen Uber das Parent und die Children eines Objekts erhalten, Objekte
aus dem Tree entfernen und an anderer Stelle einflgen.

Grundlegende Konzepte - 21

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

GenericClass Tree und VisualClass Tree

In R-BASIC Programmen gibt es zwei Arten von Objekt-Trees: den GenericClass
Tree und den VisualClass Tree. Gelegentlich wird auch der allgemeine Term "UI-
Tree" verwendet. Welcher Tree gemeint sein kann, ergibt sich dann aus dem
Kontext.

Der GenericClass Tree (kurz: generic Tree) enthélt die "normalen" GEOS-
Objekte, wie Primary, Listen, Text-Objekte aber auch z.B. Dialogboxen. Sie
stammen alle von der GenericClass ab. GenericClass-Objekte kénnen nur auf
dem Bildschirm erscheinen, wenn von ihnen ein vollstdndiger Pfad zum
Application-Objekt fuhrt. Das bedeutet, dass das Objekt selbst, sein Parent,
dessen Parent oder ein anderes "Ubergeordnetes" (Parent-) Objekt letztlich mit
dem Application-Objekt verbunden ist. Mit Objekten oder Objekt Trees, die nicht
vollstandig in den Tree eingebunden sind, kann man trotzdem arbeiten, d.h. man
kann Instance-Variablen lesen und schreiben. Die verédnderten Werte werden
wirksam, sobald das Objekt vollstédndig in den Tree eingebunden ist und auf dem
Bildschirm erscheint.

Der VisualClass Tree (kurz: visual Tree) enthélt Objekte, von der VisualClass
abstammen. Das Top-Objekt (oberstes Parent) ist ein VisContent oder
BitmapConten-Objekt. Der Tree erschient auf den Bildschirm, sobald das Top-
Objekt einem View-Objekt als "content" (=Inhalt) zugewiesen wird. Das View
managed dann wie der visual Tree dargestellt wird. Details dazu finden Sie im
Abschnitt Uber View- und Content-Objekte (Kapitel 4.9) sowie im Kapitel Gber die
VisualClass (Kapitel 5).

In vielen Féllen besteht der "VisualClass Tree" ausschlieBlich aus dem VisContent
bzw. BitmapContent-Objekt. Einfache BASIC-Programme haben oft gar keinen
VisualClass Tree.

Komplexe Programme kdnnen mehrere Visual Trees haben und machen ggf.
ausfuhrlich von der Méglichkeit, Objekte anzulegen, wieder zu vernichten und im
Tree zu verschieben, gebrauch.

Achtung! Es ist illegal, den GenericClass Tree und den VisualClass Tree zu

mischen, d.h. in den GenericClass Tree Objekte einzufligen, die von der
VisualClass abstammen und umgekehrt. Die Verbindung passiert ausschlieBlich
uber die "Content" Instance-Variable eines View-Objekts.

Grundlegende Konzepte - 22

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.1.2 Arbeit mit Objekten

Die hier vorgestellten Moéglichkeiten sind sowohl auf den GenericClass Tree als
auch auf den VisualClass Tree anwendbar.

Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
Class$ — nur lesen
Children Children = <objektListe> nur lesen
numChildren — nur lesen
parent — lesen, schreiben
Methoden

Syntax im BASIC-Code Aufgabe

<numVar> = <obj>.FindChild(<childObj>) | Child suchen
Routinen

Syntax im BASIC-Code Aufgabe

<stringVar> = Objinfo$(<obj>) interne Informationen anfordern
Class$

Class$ enthéalt den Namen der Objektklasse im Klartext, z.B. "MEMO", oder
"DYNMAIC_LIST". Class$ kann nur gelesen werden. Ist das Objekt kein glltiges
BASIC-Objekt, z.B. ein Null-Objekt, liefert Class$ einen leeren String.

Syntax Lesen: <stringVar> = <obj> .Class$

Children

Children legt im Ul-Code fest, dass die aufgezahlten Objekte Children des
aktuellen Objekts sind.

Syntax im Ul-Code Children = <objekiListe>

Beispiel:

Primary MyPrimary
Children = InfoMenu, MainGroup, BitmapArea
END Object

Grundlegende Konzepte - 23

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Die hinter Children auftauchenden Objekte mussen an anderer Stelle im Ul-Code
vereinbart sein. Jedes Objekt darf nur in maximal einer Children-Liste auftauchen.
Ein Objekt nirgends als Child zu spezifizieren ist ok.

Die Anzahl der Objekte in einer einzigen Childrenliste ist auf 25 begrenzt. Wenn
Sie mehr Children spezifizieren wollen kénnen Sie mehrere Childrenanweisungen
far ein Objekt verwenden.

Beispiel:
Group MyBigGroup
Children = Buttonl, Groupl
Children = Button2, Group2
END Object

Beachten Sie, dass der Compiler die Children-Anweisungen nicht sofort ausfihrt,
sondern sie zunachst auf eine Stapelspeicher (Stack) legt um sie am Ende des Ul
Compilevorgangs in umgekehrter Reihenfolge auszufihren. Die beiden Children-
Anweisungen im obigen Beispiel sind also identisch mit:

Group MyBigGroup
Children = Button2, Group2, Buttonl, Groupl
END Object

Im BASIC-Code kann lesend auf die Child-Objekte eines Objekts zugegriffen
verwenden:

Syntax Lesen: <objVar> = <obj>.Children (index)
index gibt die Nummer des Child-Objekts an
Wertebereich 0 .. numChildern — 1

Beispiel Basic-Code:
DIM obj, obj2 AS OBJECT

obj = MyPrimay.Children(0) ! erstes Child-Objekt lesen
Print obj.Caption$

numChildren

NumChildren kann nur im BASIC-Code auftreten und kann nur gelesen werden.
Es liefert die Anzahl der direkten Children des Objekts. Sollten die Child-Objekte
eigenen Children haben, werden diese nicht mitgezahlt.

Syntax Lesen: <numVar> = <obj>.numChildren

Beispiel

DIM n AS WORD
n = MyPrimary.numChildren
Print "MyPrimary hat";n;"Children"

Grundlegende Konzepte - 24

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

parent

Parent kann nur im BASIC-Code auftreten. Es kann gelesen und geschrieben
werden. Im Ul-Code kdnnen sie das Parent nicht direkt setzen, sondern muissen
uber die Children-Liste gehen.

Lesen: Parent liefert das Parent-Objekt. Sollte das Objekt kein Parent haben, wird
ein Null-Objekt zuriickgegeben (analog der NullObj() Funktion).

Syntax Lesen: <objVar> = <obj> .parent

Beispiel:
DIM obj AS OBJECT

obj = MyView.parent

IF obj = NullObj() THEN

Print "MyView hat kein Parent"
ELSE

Print "Caption$ = "; obj.Caption$

END IF

Schreiben: Parent weist einem Objekt ein neues Parent-Objekt zu. Damit wird das
Objekt im Ul-Tree verschoben. R-BASIC handelt alle dafir notwendigen Schritte.
Sie kénnen auch ein Null-Parent zuweisen (mit der Funktion NullObj()). Das
Objekt wird versteckt, ist aber bereit an gleicher oder anderer Stelle wieder
eingefligt zu werden.

Syntax Schreiben: <obj> .parent = <obj2>, index
index: Position (= neue ChildNr, beginnend bei Null), an der das
Objekt eingefligt werden soll.
0: als erstes Child, 1: als 2. Child usw.
Sonderfall: —1 als letztes Child

Beispiel: Ausgangssituation im Ul-Code

Group MyGroupl
Children = MyButtonl, MyButton2, MyButton3, MyButton4
END Object

Group MyGroup?2
Children = MyButtonb
END Object

Beispiele BASIC-Code

! Button5 nach Groupl verschieben, als erstes Child
MyButton5.Parent = MyGroupl, 0

! Button5 nach Groupl verschieben, als vorletztes Child
! Die Reihenfolge ist dann

Grundlegende Konzepte - 25

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

! MyButtonl, MyButton2, MyButton3, MyButton5, MyButton4
MyButton5.Parent = MyGroupl, 3

! Button5 aus dem Tree entfernen
MyButton5.Parent = NullObj() , O

! Button5 wieder zu Grpup2 hinzufligen, als letztes Child
MyButton5.Parent = MyGroup2, -1

Beachten Sie, dass sich die Child-Nummern der Objekte, die sich hinter dem
eingeflgten Objekt befinden, verandern.
FindChild

Die Methode FindChild untersucht, ob zwei Objekte im Child-Parent Verhaltnis
zueinander stehen.

Syntax: <numVar> = <obj>.FindChild(<childObj>)

<obj>: Variable oder Ausdruck vom Typ OBJECT

<childObj>: Variable oder Ausdruck vom Typ OBJECT

Es wird geprift ob <childObj> ein Child von <obj> ist.

Ruckgabewert:

0 .. N <childObj> ist ein Child von <obj>

Der Wert ist die Childnummer, die Z&hlung beginnt bei Null.
—1 <childObj> ist kein Child von <obj>

Objlnfo$

Die Stringfunktion Objinfo$ liefert interne Informationen Uber das Objekt. Sie
kdnnen die Funktion zur Fehersuche in Objekt-Trees verwenden. Der String
kdnnte z.B. so aussehen:

ObjReferenz=18:34, Typ=3 (BUTTON) * [Gen]
Die ObjektReferenz identifiziert ein Objekt eindeutig. Die erste Zahl beschreibt den
Objektblock, in der sich das Objekt befindet.
Der Typ beschreibt die Objekt-Klasse eindeutig.
Zusatzlich ist der Klassen-Name noch im Klartext angegeben.

Syntax: <stringVar> = Objinfo$ (<obj>)
<obj>: Variable oder Ausdruck vom Typ OBJECT

Grundlegende Konzepte - 2€

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.1.3 Verwaltung von Objektblocken
Diese Kapitel richtet sich an fortgeschrittene Programmierer.

R-BASIC ist daraufhin optimiert, die Verwaltung der Objektblécke weitgehend
automatisch zu erledigen. Dieses Kapitel enthélt grundlegende und
Hintergrundinformationen fir den Fall, dass Sie ein Problem mit der
ObjektblockgréBe haben (Kapitel 2.1.4) oder dass Sie Objekte zur Laufzeit des
Programms anlegen wollen (Kapitel 2.1.5).

BASIC-Anweisungen

Syntax im BASIC-Code Aufgabe

<handleVar> = GetObjBlockHandle(<obj>) | Handle eines Objektblocks lesen
<numVar> = GetObjBlockSize(<handle>) | GroéBe eines Objektblocks lesen
<handleVar> = CreateObjBlock () Neuen Objektblock anlegen
DestroyObjBlock <handleVar> Objektblock I6schen

GEOS und damit R-BASIC verwaltet den Speicher in "Blécken" von einigen
Kilobytes GréBe. Das gilt auch fur Objekte. Die Instance-Daten (persénliche
Daten) eines Objekts nehmen einige 10 bis einige 100 Byte ein. Es werden daher
immer mehrere Objekte gemeinsam in einem Speicherblock abgelegt. Einen
solchen Speicherblock nennt man "Objektblock". Jedes Mal, wenn auf die
Instance-Daten eines Objekts zugegriffen werden muss, z.B. weil das Objekt sich
auf dem Schirm darstellt oder weil Sie es angeklickt haben und es auf den
Mausklick reagiert, wird der gesamte Objektblock in den Hauptspeicher geladen.

Die Aufteilung der Objekte auf Objektbldcke ist prinzipiell véllig unabhéangig von
der Verbindung der Objekte im generic Tree oder im visual Tree. Auf modernen
Rechnern ist der geringe Performanceverlust, der auftritt, wenn man Objekte
"Kreuz und Quer" Uber viele Objektblocks verlinkt, zu vernachlassigen. Trotzdem
ist es schon aus Grinden der Ubersichtlichkeit ratsam, zusammengehérende
Objekte, z.B. alle Objekte einer Dialogbox, im Ul-Code zusammenhangend zu
deklarieren. R-BASIC platziert sie dann automatisch im gleichen Objektblock.

GetObjBlockHandle

Syntax: <handleVar> = GetObjBlockHandle(<obj>)
<obj>: Variable oder Ausdruck vom Typ OBJECT
<handleVar>: Variable vom Typ HANDLE

Um unter R-BASIC mit Objektblécken arbeiten zu kénnen, bendtigen Sie ein
Handle auf den Objektblock. Die Funktion GetObjBlockHandle() liefert das
Handle des Objektblocks, in dem sich das tUbergebene Objekt befindet.

Grundlegende Konzepte - 27

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

GetObjBlockSize

Syntax: <numVar> = GetObjBlockSize(<han>)
<han>: Variable oder Ausdruck vom Typ HANDLE
Es muss das Handle eines Objektblocks sein.

Die Funktion GetObjBlockSize() liefert die aktuelle GréBe des Objektblocks,
dessen Handle der Funktion Ubergeben wurde.

Der GEOS Speichermanager ist auf BlockgréBen von 6 kByte bis 8 kByte
optimiert. Naturlich kann er auch mit Blécken von wenigen Bytes umgehen, z.B.
mit Objektblécken, die nur ein einziges Objekt enthalten - das ist jedoch nicht
effizient und kostet unnétig Systemhandles (jeder Block bendétigt sein eigenes
Handle). Werden die Blocke hingegen zu groB3 kann es langer dauern bis der
Speichermanager einen Platz im Hauptspeicher flr diesen Block gefunden hat.
Unter Umstanden muss er dazu andere Blocke, die gerade nicht benutzt werden
auf die Festplatte auslagern. Das kann dauern.

BlockgréBen von 10 oder 16 Kilobytes sind dabei noch kein echtes Problem, bei
BlockgréBen von z.B. 40 kByte oder mehr kann es jedoch zu den geflrchteten
"Hauptspeicher voll" Meldungen kommen.

Um diesbezlgliche Probleme zu vermeiden geht R-BASIC beim Compilieren des
Ul-Codes folgendermaBen vor:

Vor dem Anlegen eines neuen Objekts prift es die GroBe des aktuell verwendeten
Objektblocks. Sollte dieser bereits mehr als 6 kByte groB sein, so wird vor dem
Anlegen des neuen Objekts ein weiterer Objektblock angelegt. Das neue und alle
folgenden Objekte werden dann in dem neuen Objektblock gespeichert. Dabei
berlcksichtigt R-BASIC, dass einige Objekte zur Laufzeit weiteren Speicher
bendtigen oder bendtigen kdnnten. Beispielsweise speichern drei der vier Text-
Objekte (Memo, InputLine und VisText) ihren Text in ihrem eigenen Objektblock.
Die Instance-Variable maxLen gibt an, wie viele Zeichen der Text maximal
enthalten kann. R-BASIC berlcksichtigt das bei der Berechnung der
ObjektblockgréBe. Deswegen sind Objektblocks, die Text-Objekte enthalten,
anfangs haufig kleiner als 6 kByte. Ahnliches gilt fir DynamicList-Objekte. Diese
erzeugen zur Laufzeit ihre eigenen Children. R-BASIC bericksichtigt das pauschal
mit 1,5 kByte, was in den meisten Féllen vollig ausreicht.

CreateObjBlock

Syntax: <handleVar> = CreateObjBlock ()

Die Funktion CreateObjBlock() legt einen neuen, leeren Objektblock an. Sie
liefert das Handle des Objektblocks zurick. Dieses bendtigen Sie, wenn Sie neue
Objekte in diesem Block anlegen wollen (CreateObiject(), siehe Kapitel 2.1.5) oder
den Objektblock spater wieder vernichten wollen.

Grundlegende Konzepte - 28

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

DestroyObjBlock

Syntax: DestroyObjBlock <han>
<han>: Variable oder Ausdruck vom Typ HANDLE
Es muss das Handle eines Objektblocks sein.

Die Anweisung DestroyObjBlock vernichtet einen Objektblock und gibt den damit
verbundenen Speicher wieder frei.

Wichtig:

+ Der Objektblock darf keine Objekte mehr enthalten. Verwenden Sie dazu
DestroyObject() (siehe Kapitel 2.1.5).

« Es ist dringend davon abzuraten Objektblécke zu vernichten, die vom Ul-
Compiler erzeugt wurden. Vernichten Sie nur Objekiblécke, die mit
CreateObjBlock() angelegt wurden.

2.1.4 Beeinflussung der Objektbl6cke im Ul-Code

Diese Kapitel richtet sich an fortgeschrittene Programmierer.

R-BASIC kimmert sich um Objektblécke und die damit zusammenhangenden
Dinge weitgehend selbstéandig. Die meisten Programmierer werden daher niemals
selbst mit der Verwaltung von Objektblécken zu tun haben.

Es gibt jedoch einige wenige Situationen die das direkte Eingreifen des
Programmierers erfordern. Das sind konkret:

+ DynamicList Objekte, die grafische Elemente anzeigen.

+ Zuweisungen von grafischen Captions zur Laufzeit

* Textobjekte mit sehr groBen Texten
Diese sowie die dafiir ndtigen Hintergrundinformationen sind hier beschrieben.

Ul-Anweisungen

Syntax im Ul-Code Aufgabe
ForceNewObjBlock Einen neuen Objektblock anfordern

Nach dem Compilieren erhalten Sie eine Tabelle, die wie folgt aussehen konnte.
Die Spalte "Ab Zeile" enthalt die Zeile im Ul-Code, in der ein neuer Objektblock
angelegt wurde. Daraus kénnen Sie ermitteln welche Objekte in welchem
Objektblock gespeichert sind. "GroBe" enthédlt die anfangliche GroBe des
Objektblocks in Byte. "Objekte" enthalt die Anzahl der im Objektblock
gespeicherten Objekte. Beachten Sie, dass das Application-Objekt in einen
eigenen Objektblock compiliert wird.

Grundlegende Konzepte - 29

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Objektblocke compiliert: 3

Ab Zeile GroBe Objekte
36 4280 33
196 1592 5

Interner Objektblock: Application

Wie bereits oben erwdhnt brauchen Sie hier im Normalfall nicht einzugreifen,
insbesondere dann nicht, wenn lhnen die BlockgréBen sehr klein erscheinen. R-
BASIC wahlt einen guten Kompromiss auf anfanglicher BlockgréBe und dem
moglichen Blockwachstum zur Laufzeit. Ein nachtrégliches Verschieben eines
Objekts in einen anderen Block ist leider nicht moglich.

Es gibt jedoch einige Situationen, die R-BASIC nicht vorhersehen kann. Diese
sind im Folgenden erklart. Sie beziehen sich alle auf Verédnderungen der Objekte
zur Laufzeit. Als Richtwert kann gelten, dass Objektblécke zur Laufzeit nicht
gréBer als 14 bis 16 kByte werden sollten. Optimal sind weniger al 10 kByte. Wie
Sie das herausbekommen ist weiter unten erklart. Bei mehr als 20 kByte
Blockgr6Be ist es dringend zu empfehlen gegenzusteuern.

Fall 1: DynamicList Objekte

Ein hé&ufiger Fall, in dem die BlockgroBe kritisch anwachsen kann, sind
dynamische Listen, die grafische Elemente anzeigen. Dynamische Listen
erzeugen lhre Children zur Laufzeit selbst. Dafir wird Platz im Objektblock
benétigt. Es zédhlen dabei nur die gleichzeitig sichtbaren Listeneintrdge. R-BASIC
unterstellt der Liste bei der Berechnung der ObjektblockgroBe einen Platzbedarf
von 2 kByte, das entspricht ca. 25 gleichzeitig angezeigten Listeneintragen mit je
20 Zeichen Text-Caption. Aber auch ein realer Bedarf von 4 oder 6 kByte sind kein
Problem - falls man nicht mehrere solcher Listen im gleichen Objektblock hat.

Ein echtes Problem koénnen aber viele Listeneintrdge mit einer Grafik sein
(Anweisung IltemGString). In diesem Fall ist es eine gute Idee das DynamicList-
Objekt ein einem eigenen Objektblock, nur flr dieses Objekt, unterzubringen.
Dazu verwenden Sie die unten beschriebene Anweisung ForceNewODbjBlock.

Fall 2: Grafische Captions

Auch die "Objekt-Beschriftung" (Caption$ oder grafische Captions) wird im
gleichen Objektblock gespeichert wie das Objekt selbst. Text-Captions (Caption$)
stellen dabei niemals ein Problem dar, da sie nur wenige Bytes umfassen. Wenn
sie einen Text durch einen anderen ersetzen andert sich die ObjektblockgréBe nur
um wenige Bytes, ggf. wird sie sogar kleiner.

Haben Sie jedoch im Ul-Code eine Text-Caption (oder gar keine) angegeben und
weisen einem Objekt zur Laufzeit eine Grafik als Caption zu (Anweisungen
Captionilcon, CaptionPicture, Captionlmage und CaptionGString), so wird
auch diese im Objektblock des Objekts gespeichert. Wenn Sie dies bei mehreren
Objekten tun kann das den Objektblock zu stark vergréBern. Beispielsweise nimmt
ein Icon der Bitmap-GroéBe 48x30 Pixel im ungulnstigsten Fall (TrueColor,
unkomprimiert) ca. 4 kByte ein, bei 8 Bit unkomprimiert sind es immer noch 1,4

Grundlegende Konzepte - 3C

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

kByte. Weitere Informationen dazu finden Sie im Kapitel 3.1 (Caption: Die Objekt-
Beschriftung).

Auch hier gilt: Weisen Sie die Grafik bereits im Ul-Code zu, erkennt R-BASIC die
GrbéBe und verteilt die fraglichen Objekte auf verschiede Objektblocke.

Fall 3: Textobjekte

Der hier beschriebene Fall ist kommt eher selten vor, aber man sollte ihn kennen.
Wie bereits oben erwéhnt speichern Textobjekte (auBer LargeText) ihren Text in
ihrem eigenen Objektblock. Wie groB dieser Text werden kann hangt von der
Instance-Variablen maxLen des Textobjektes ab. Der Standardwert fur maxLen ist
1024.

Wenn Sie zur Laufzeit den Wert flir maxLen deutlich vergréBern (gegeniber dem
Wert, der beim Compilieren festgelegt wurde) und das auch ausnutzen (d.h. so
viel Text dort speichern) wird der Objektblock gréBer als vom Compiler
angenommen. Machen Sie das fur viele Textobjekte aus dem gleichen Block kann
es zu einem Problem werden.

Es macht daher Sinn bei Textobjekten den Wert fir maxLen im Ul-Code so klein
wie mdglich, aber auch so groB3 wie nétig zu wahlen. Dann I6st R-BASIC das
Problem fir Sie, indem es die Objekte auf mehrere Blocke verteilt.

Eine Verkleinerung des Wertes flir maxLen zur Laufzeit stellt dagegen niemals ein
Problem dar.

Wie erkennt man, ob es ein Problem gibt?

Um Informationen Uber einen Objektblock zu erhalten muss man zuerst das
"Handle" des Blocks ermitteln. Die Funktion GetObjBlockHandle() liefert das
Handle des Objektblocks, in dem sich das Ubergebene Objekt befindet. Danach
kann man mit der Funktion GetObjBlockSize() die aktuell giltige GréBe des

Objektblocks ermitteln.
Wenn Sie den Verdacht haben, dass ein Objektblock zu groB geworden ist, rufen

Sie diese beiden Routinen fur ein Objekt aus diesem Block, wie im folgenden
Beispiel gezeigt:

DIM han AS HANDLE

DIM size
han = GetObjBlockHandle (MyDanamicList)
size = GetObjBlockSize (han)
MsgBox Str$(size)

Dabei ist es normal, wenn die GrdBe eines Objektblocks zur Laufzeit etwas gréBer
ist, als in der Tabelle vom Compiler angegeben. GEOS arbeitet mit den
Objektblocks. Z.B. fugt es bei einigen Objekten je nach Bedarf eigene (interne)
Instance-Werte hinzu oder I6scht diese wieder. Beim Léschen wird der Speicher
zwar als "frei" markiert, der Block aber nicht unbedingt sofort verkleinert. Daher ist
es auch normal, wenn die Gr6B8e vom Mal zu unterschiedlich ist, auch wenn Sie
"gar nichts gemacht" haben. Sie kénnen jedoch gut erkennen, ob der Objektblock
eine kritische GroBe (mehr als 16 bis 20 kByte) erreicht hat oder nicht.

Grundlegende Konzepte - 31

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Was kann man tun?

Der einzige Weg, Einfluss auf die Verteilung der Objekte auf die Objektblécke zu
nehmen, ist, dem Ul-Compiler anzuweisen, einen neuen Objektblock anzulegen.

ForceNewODbjBlock

Syntax im Ul-Code: ForceNewObjBlock

Platzieren Sie den Ul-Befehl ForceNewObjBlock (Erzwinge neuen Objektblock)
je nach Situation vor oder nach dem kritischen Objekt. Es ist auch méglich die
fraglichen Objekte (oder das einzelne Objekt) in zwei ForceNewObjBlock-
Anweisungen einzuschachteln.

ForceNewObjBlock
DynamicList MyBigList
END Object

ForceNewObjBlock

Findet der UI-Compiler eine ForceNewObjBlock-Anweisung schlieBt er den aktuell
verwendeten Objektblock und legt fiir die folgenden Objekt einen neuen an.

Tipp: Legen Sie die fraglichen Objekte ans Ende aller Ul-Anweisungen, dann
werden die davor befindlichen Objektblécke nicht unnétig eingekurzt.

Grundlegende Konzepte - 32

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.1.5 Anlegen und Vernichten von Objekten zur Laufzeit
Diese Kapitel richtet sich an fortgeschrittene Programmierer.

Ublicher Weise legt R-BASIC die im Ul-Code deklarierten Objekte an, wenn das
Programm compiliert wird. R-BASIC bietet lhnen aber auch die Mdglichkeit,
weitere Objekte zur Laufzeit anzulegen und wieder zu vernichten. Fur
GenericClass Objekte (z.B. Button oder Menu) wird diese Moglichkeit eher selten
genutzt. Einige komplexe Programme, wie z.B. der Grafikbetrachter Gonzo,
nutzen aber die gebotenen Mdéglichkeiten fir VisualClass Objekte sehr intensiv.
Gonzo legt fur jede Grafikdatei, die es findet, ein eigenes Objekt an. Dieses
Kapitel beschreibt, wie man Objekte zur Laufzeit anlegt, damit arbeitet, wieder
vernichtet und was es dabei zu beachten gilt.

Beachten Sie, dass die VisContent Objekte Uber eingebaute Methoden verfiigen,
die das Anlegen und Vernichten von VisObj-Objekten stark vereinfachen.

BASIC-Anweisungen

Syntax im BASIC-Code Aufgabe
<objVar> = CreateObject (<han>, <objClass>) | Neues Objekt erzeugen
DestroyObject <obj> Objekt vernichten

Wie im Kapitel 2.1.3 beschrieben verwaltet GEOS alle Objekte in Objektblécken.
Um ein Objekt zur Laufzeit anzulegen mussen Sie auBer der Klasse des Objekts
auch den Objektblock spezifizieren, in dem das Objekt angelegt werden soll. Das
typische Vorgehen beim Arbeiten mit selbst angelegten Objekten ist im Folgenden
beschrieben. Es unterscheidet sich flir GenericClass-Objekte und VisualClass-
Objekte nicht.

1. Erzeugen Sie einen neuen Objektblock mit CreateObjBlock().

2. Legen Sie die neuen Objekte mit CreateObject() an. Initialisieren Sie die
Instancevariablen und binden Sie die Objekte in den Tree ein.

3. Arbeiten Sie mit den Objekten.

4. Nachdem Sie die Objekte nicht mehr brauchen, sollen Sie sie mit
DestroyObject() vernichten. Dadurch wird der Speicher im zugehdrigen
Objektblock freigegeben.

5. Am Schluss, nachdem alle Objekte im Objektblock vernichtet wurden, sollten
Sie den Objektblock mit DestroyObjBlock() vernichten.

Die Befehle CreateObjBlock() und DestroyObjBlock sind im Kapitel 2.1.3
beschrieben.

Grundlegende Konzepte - 33

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

CreateObject

Syntax: <objVar> = CreateObject (<han>, <objClass>)
<han>: Handle eines Objektblocks
<objClass>: Bezeichnung einer Objektklasse

Die Funktion CreateObject() legt ein neues Objekt in dem Objektblock an, dessen
Handle der Funktion Ubergeben wurde. Als Objektklasse (dem "Typ" des Objekts)
sind alle R-BASIC Klassen, auBBer Application, zulassig.

Beispiele:
DIM o, p, g AS OBJECT

o = CreateObject (han, Button)
p = CreateObject (han, Dialogq)
g = CreateObject (han, Menu)

Um das Objekt nutzen zu kénnen missen Sie noch seine Instance-Variablen
initialisieren und das Objekt in den Tree einbinden.

Ausfuhrliches Beispiel: siehe unten

Hinweise:

+ Je nach Klasse benétigt jedes Objekt einige 10 bis einige 100 Byte.
Objektblécke sollten nicht zu groB werden. Die IdealgroBe liegt zwischen
6 kByte und 8kByte. Verwenden Sie im Zweifelsfall die Funktion
GetObjBlockSize() um die aktuelle GroBe des Objektblocks zu ermitteln.
Details dazu sind im Kapitel 2.1.3 beschrieben.

+ Auch wenn es mdglich ist: Sie sollten keine Objekte in den Objektblocks
anlegen, die vom Compiler erzeugt wurden.

DestroyObiject

Syntax: DestroyObject <obj>
<obj>: Variable oder Ausdruck vom Typ OBJECT
Das Objekt wird vernichtet.

Die Anweisung DestroyObject vernichtet ein Objekt. Damit ein Objekt vernichtet
werden kann darf es nicht mehr im Tree eingebunden oder auf andere Weise mit
anderen Objekten verbunden sein. R-BASIC erzeugt einen Laufzeitfehler, wenn
diese Bedingungen verletzt sind, um einen Absturz des Systems zu verhindern.

Hinweis:

+ Auch wenn es moglich ist: Sie sollten keine Objekte vernichten, die vom
Compiler erzeugt wurden.

Grundlegende Konzepte - 34

R-BASIC - Objekt-Handbuch - Vol. 1

Einfach unter PC/GEOS programmieren

Beispiel: Anlegen eines Objekt-Trees

DIM h as HANDLE
DIM d, t, b as OBJECT

h CreateObjBlock()

d CreateObject(h, Dialog)
d.Caption$ = "Neuer Dialog"
d.Parent = DemoPrimary,l

t = CreateObject (h, Memo)
t.Caption$ = "Text eingeben"
t.justifyCaption = J TOP
t.Parent = d, 0

b = CreateObject(h, button)
b.Caption$ = "Fertig"
b.ActionHandler = TestAction
b.Parent = d,1

Beispiel: Vernichten eines Objekt-Trees

BUTTONACTION TestAction
Print "Button pressed!"
Print t.textS$

b.Parent = NullObj(), O
DestroyObject b

t.Parent = NullObj(), O
DestroyObject t

d.Parent = NullObj(), O
DestroyObject d

DestroyObjBlock h

END ACTION

Grundlegende Konzepte - 35

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2 Ausgabe von Grafik

Grafische Ausgaben auf den Schirm gehdren zu den Kernaufgaben einer
Programmiersprache. R-BASIC bietet diesbezliglich eine Fulle von Mdéglichkeiten.
In diesem Kapitel finden Sie einen Uberblick (iber die Méglichkeiten und die dazu
verwendeten Objekte. Unter R-BASIC erfolgt die Ausgabe von Grafik - das
schlieBt Textausgaben mit der Anweisung PRINT ein - immer auf das aktuelle
"Screen" Objekt. Mehr zu Screenobjekt finden sie im Kapitel 2.3 unten.

2.2.1 Objekte zur Grafikausgabe

Im Folgenden werden die zur Grafikausgabe verwendbaren Objektklassen
aufgezahlt und ihre Vor- und Nachteile unter dem Aspekt der Grafik- und
Textausgabe gegenubergestellt. Eine ausfuhrliche Beschreibung der einzelnen

Objektklassen finden sie in den folgenden Kapiteln des Objekthandbuchs.

BitmapContent

Ein BitmapContent (Container fir eine Bitmap) stellt eine Bitmap bereit, in die man
Grafik und Text zeichnen kann. Ublicherweise ist das BitmapContent Objekt als
"Content" eines View Objekts gesetzt. Das ist notwendig, um die Bitmap auf den
Schirm zu zeichnen, aber es ist ausdricklich erlaubt auch in eine Bitmap, die nicht
mit einem View Objekt verbunden ist, zu zeichnen. Die Verdnderungen werden
sichtbar, wenn das BitmapContent Objekt das nachste Mal mit einem View
verbunden (als Content gesetzt) wird.

Der groBe Vorteil von BitmapContent Objekten ist, dass alle Grafikausgaben
automatisch gespeichert werden. Muss sich das Objekt neu darstellen erfolgt das
ohne das Zutun von BASIC Code einfach durch Neuzeichnen der Bitmap.

Nachteilig ist der relativ groBe Speicherbedarf. AuBerdem kann es
Farbabweichungen geben, wenn die Farbtiefe der Bitmap nicht mit der der
verwendeten Zeichenbefehle Ubereinstimmt. Zeichnet man z.B. True-Color
Grafiken in eine 8-Bit-Bitmap werden die Farben heruntergerechnet. Da
Grafikausgaben aus Performancegriinden immer parallel auf den Schirm und auf
die Bitmap erfolgen ist dieser Effekt meist erst nach einer Neudarstellung des
Objekts zu sehen, was besonders stérend wirken kann.

Canvas

Ein Canvas Objekt zeichnet eine Grafik, indem es seinen OnDraw Handler aufruft.
Dieser Handler zeichnet dann die eigentliche Grafik auf den Schirm. Das Canvas-
Objekt eignet sich sehr gut fir kleine, einfache Grafiken, die zur Laufzeit
gezeichnet werden kdnnen und sich nicht oder nur selten dndern. Das kénnen z.B.
einfache Grafikbefehle oder ein Bild aus der Picture-List sein.

Von Vorteil ist die einfache Handhabung des Objekts. AuBer um das Schreiben

des OnDraw Handlers muss man sich um nichts kimmern. Auch der geringe
Speicherbedarf des Objekts ist unter GEOS ein Vorteil.

Grundlegende Konzepte - 3€

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Im normalen (ungepufferten Modus) ist nachteilig, dass der OnDraw Handler jedes
Mal gerufen wird, wenn sich das Objekt neu darstellen muss, z.B. weil ein Teil des
Objekts durch ein Menl verdeckt war. Das ist langsam und belastet den BASIC-
Thread. Fur einfache Anwendungen ist das jedoch ausreichend.

Im gepufferten Modus merkt sich das Canvas-Objekt die Grafikbefehle intern als
GString und spielt ihn mit hoher Geschwindigkeit wieder ab, wenn sich das Objekt
neu darstellen muss.

Image

Imageobjekte sind daflr ausgelegt Bilder aus eine externen Bilddatei z.B. BMP,
ICO, PCX, JPG ..) darzustellen. Sie missen dem Objekt nur Name und
Speicherort der Datei mitteilen, um den Rest kimmert es sich allein.

Da Imageobjekte das Bild aus der Datei intern in einen GEOS Bitmap kopieren
bendtigen sie dhnlich viele Speicher wie BitmapContent Objekte.

Imageobjekte sind daflir ausgelegt das Bild darzustellen. Eine Bearbeitung (wie
mit einem BitmapContent Objekt) ist nicht méglich.

VisContent

Das VisContent Objekt wird als "content" eines View Objekts in den Tree
eingebunden. Es hat einen OnDraw-Handler, so wie ein Canvas-Objekt. Deshalb
kann das VisContent-Objekt direkt Grafik und Text ausgeben. Aber Ublicher Weise
erledigen die Grafikausgabe die Children des VisContent-Objekts. Das sind
Objekte der Klasse VisObj.

VisObij

Objekte der Klasse VisObj sind die Children eines VisContent Objekts. Deswegen
werden Sie immer innerhalb eines View Objekts dargestellt. Wie das Canvas-
Objekt besitzen sie einen OnDraw Handler und einen gepufferten Modus. Durch
die Darstellung innerhalb eines View ergeben sich Méglichkeiten, die mit einem
Canvas Objekt nicht méglich sind, z.B. Scrolling und Zoom. AuBerdem kann man
VisObj Objekte mit der Maus positionieren.

Generic Class: Grafische Captions

Alle von der GenericClass abstammenden Objekt kénnen kleine (!) Grafiken als
Caption darstellen (Instancevariablen Captionlmage, CaptionPicture, Caption-
GString oder Captionlcon). Gedacht ist dieses Feature fur grafische Button-
Beschriftungen und grafische Listenelemente, es eignet sich aber auch fir Logos
und andere kleine Grafiken, die zur Laufzeit nicht oder nur selten geéndert
werden. Wenn Sie grafische Captions zur Laufzeit verandern sollten Sie die GrdBe
der Grafiken im Blick haben. Details dazu finden Sie im Kapitel 3.1 (Caption: Die
Objekt-Beschriftung).

Grundlegende Konzepte - 37

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.2 Konzepte zur Grafikausgabe

Dieses Kapitel enthélt einen Uberblick (iber die in R-BASIC verfligbaren Konzepte
zur Grafikausgabe. Im Einzelnen sind das

+ Einfache grafische Kommandos

* PRINT und BlockGrafik

* Die Picture-List

« Graphic Strings

+ Bitmaps

Einfache grafische Kommandos

Dem R-BASIC Programmierer stehen eine groBe Auswahl von einfachen
grafischen Kommandos wie Line, Circle, FillEllipse usw. zur Verfigung. Diese,
sowie die das dazugehorige Koordinatensystem werden ausfihrlich im Kapitel 2.8
(Grafik) des R-BASIC Programmierhandbuchs besprochen. Besonders hinge-
wiesen werden soll hier auf die Systemvariable graphic, Uber die die Eigen-
schaften aller Grafikbefehle wie Linienfarbe, Linienbreite und Flachenattribute
(z.B. Fullmuster) bis hin zum MixMode eingestellt werden kénnen. Die daraus
resultierenden Mdglichkeiten gehen weit Uber die klassischen BASIC Befehle wie
INK und COLOR hinaus.

PRINT und BlockGrafik

Der Befehl PRINT ist unter BASIC fur alles, was mit Textausgabe auf den
Grafikschirm zusammenhéangt, zusténdig. Er wird ausfuhrlich im Kapitel 2.9
(Textausgabe) des R-BASIC Programmierhandbuchs besprochen. Welche
Schriftart, SchriftgréBe usw. verwendet wird, wird mit der Systemvariablen
printFont kontrolliert. Wie man darauf zugreift ist im Kapitel 2 (Verwendung von
Schriften) des Handbuchs "Spezielle Themen" beschrieben. Flr die Formatierung
von Zahlen bei der Ausgabe mit Print oder dem BASIC Befehl Str$ ist die
Systemvariable numberFormat zustandig, deren Beschreibung Sie im Kapitel 1
(Formatierung von Zahlen) des Handbuchs "Spezielle Themen" finden.

Eine spezielle, dabei sehr einfache und gleichzeitig leistungsféhige Art, Grafiken
zu zeichnen, sind die sogenannten Blockgrafiken. Dabei wird der PRINT-Befehl
verwendet, statt der Buchstaben werden aber kleine Grafiken (z.B. 32x32 Pixel)
auf den Schirm gezeichnet. Jedem Buchstaben kann dabei eine eigene Grafik
zugeordnet werden, so dass sich sehr komplexe Bilder aus wenigen
Grafikelementen zeichnen lassen. Blockgrafikelemente lassen sich am
einfachsten mit dem Blockgrafik Editor, der Uber das Tools-Menl von R-BASIC
erreichbar ist, erstellen.

Wie man den Blockgrafik Modus einsetzt ist im Kapitel 3 (Verwendung des Block-
Grafik-Modus) des Handbuchs "Spezielle Themen" beschrieben.

Grundlegende Konzepte - 38

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Die Picture-List

Die Picture-List ist eine komfortable Mdglichkeit Grafiken im der Codedatei selbst
unterzubringen um sie zur Laufzeit zu verwenden. Sie kdnnen diese Bilder auf den
Screen zeichnen oder als grafische Aufschrift fir Objekte verwenden. Die Picture-
List wird Uber das Menu "Extras" - "Picture-List" verwaltet.

Eine ausfihrliche Beschreibung der Arbeit mit der Picture-List finden Sie im R-
BASIC Programmierhandbuch, Kapitel 2.8.6.2 (Verwendung der "Picture-List").

Graphic Strings

Ein Graphic String (im Folgenden kurz GString) ist eine Folge von Grafikbefehlen
oder Textausgaben, die gemeinsam gespeichert werden. Dieser GString kann
spater beliebig oft "abgespielt" werden. Dabei werden die enthaltenen grafischen
Kommandos mit hoher Geschwindigkeit ausgefuhrt, viel schneller als dies als
Folge von BASIC-Anweisungen moglich ist.

GStrings sind ein tief im GEOS System verwurzeltes und sehr leistungsfahiges
Konzept. Beispielsweise erfolgt der Austausch von Grafiken zwischen
verschiedenen Programmen Uber die Zwischenablage immer als GStrings. Der
gepufferte Modus verschiedener BASIC Objekte (z.B. Canvas oder VisObj) ist
ebenfalls mit GStrings realisiert.

Unter R-BASIC kénnen Sie GStrings flir verschiedene Zwecke verwenden
+ Aufzeichnung von Grafikanweisungen zur spateren Verwendung
+ Grafische Captions fir Objekte
+ Grafische Eintrage in Listen
+ Arbeit mit der Zwischenablage

Der Zugriff auf GStrings erfolgt unter R-BASIC uber Handles. Sie kénnen GStrings
aufzeichnen, wiedergeben (auf den Screen zeichnen) oder wieder freigeben. In
einem GString kénnen grundséatzlich alle Grafikausgaben gespeichert werden.
Das schlieBt explizit andere GStrings, Texte (PRINT-Anweisung) und Bitmaps
(Bilder oder Blockgrafik) ein. Andere GStrings oder Bitmaps werden dabei in den
GString kopiert. Die R-BASIC Library "VMFiles" bietet auBerdem Funktionen an,
einen GString in eine Datei zu schreiben bzw. ihn von dort zu laden.

Eine ausfihrliche Beschreibung der Arbeit mit GStrings finden Sie im R-BASIC
Programmierhandbuch, Kapitel 2.8.5 (Arbeit mit Graphic Strings).

Grundlegende Konzepte - 39

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Bitmaps

Bitmaps sind digitalisierte Bilder. Sie bestehen aus einer rechteckigen Anordnung
von einzelnen Bildpunkten (Picture Element: Pixel). Jedem Pixel kann eine eigene
Farbe zugeordnet werden.

Innerhalb von GEOS werden Bitmaps immer im GEOS-internen Bitmapformat
gespeichert, unabhangig davon, aus welcher Quelle (z.B. welchem Dateiformat)
die Bilder stammen. Dieses interne GEOS Format erlaubt die Existenz einer
Transparenz-Maske als auch einer Palette fur jede Bitmap.

Die Transparenz-Maske muss man sich als zusatzliche Farbebene vorstellen, die
neben den eigentlichen Bilddaten gespeichert wird. Dabei gibt es fir jedes Pixel
genau ein Transparenzbit. Ist es gesetzt (=1) wird das entsprechende Pixel des
Bildes dargestellt. Ist es nicht gesetzt (=0) ist das Bild an dieser Stelle
durchsichtig.

Viele Bilder enthalten weniger als 3 Byte (24 Bit) pro Pixel. Ein Ublicher Wert ist
z.B. 8 Bit pro Pixel. Das spart Speicher. Aber damit kénnen sie nur 256 der
16 Mio. moéglichen Farben darstellen. Welche das sind, kann mit einer Palette
festgelegt werden. Jeder Paletteneintrag besteht aus genau 3 Byte. Damit wird
jedem moglichen Farbwert des Bildes (0 ... 255 bei 8 Bit pro Pixel) eine True-Color
Farbe zugeordnet. Durch eine geschickte Wahl der Palette kann man sehr
realistische Bilder erzeugen.

Enthélt ein Bild mit 8 Bit pro Pixel keine Palette wird die GEOS Standardpalette
verwendet. Diese Bilder werden etwas schneller gezeichnet, aber viele Probleme
mit der Farbdarstellung entstehen deswegen, weil die Windows-Standardpalette
nicht mit der GEOS-Palette identisch ist.

Es ist deshalb oft eine gute Idee 256-Farb-Bilder in die GEOS Palette
umzurechnen. Dazu eignet sich z.B. das GEOS Tool Sigma.

In R-BASIC erfolgt die Verwaltung einer Bitmap Ublicher Weise mit einem
BitmapContent Objekt. Dieses Objekt kimmert sich selbstdndig um den
bendtigten Speicherplatz sowie um die Darstellung der Bitmap auf dem Schirm. Es
ermdglicht es in die Bitmap zu zeichnen oder Farbwerte auszulesen und bietet
auBerdem Funktionen zum Bearbeiten der Transparenz-Maske und der Palette.
Eine Beschreibung des BitmapContent Objekts finden Sie weiter hinten im
Objekthandbuch. Dort sind auch die Strukturen von Bitmap, Transparenz-Maske
und Palette beschrieben.

Zusétzlich bietet R-BASIC die Moglichkeit Bitmaps analog zu den GStrings Uber
Handles anzusprechen. Uber diesen Weg kénnen Bitmap zwischen Teilen des
BASIC Programms ausgetauscht und in andere Bitmaps oder in GStrings
gezeichnet werden. Die R-BASIC Library "VMFiles" bietet auBerdem Funktionen
an, Bitmaps in eine Datei zu schreiben bzw. ihn von dort zu laden.

Der Bitmapzugriff Gber Handles ist ausfuhrlich im Anschnitt 2.8.6.4 (Bitmaps und
Bitmap Handles) des R-BASIC Programmierhandbuchs beschrieben.

Grundlegende Konzepte - 4C

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.3 Arbeit mit dem Screen

Sowohl alle Grafik-Befehle als auch der Print-Befehl missen wissen, wohin die
Ausgaben erfolgen sollen. Dieses Ausgabe-Ziel ist ein Objekt, das als Screen-
Objekt bezeichnet wird. Als Screen-Objekte kénnen folgende Objekte dienen:

+ BitmapContent

+ VisContent

* VisObj

+ Canvas

* Image

« PrintControl (nur wahrend des Druckens)

Das BitmapContent Objekt ist das einzige, das global (permanent) als Screen
arbeiten kann. Damit kénnen Sie von verschiedenen Teilen des Programms,
insbesondere von verschiedenen Action Handlern aus, in die Bitmap zeichnen.
Die anderen Objekte werden automatisch zum Screen, wenn ihr OnDraw Handler
(far PrintControl Objekte: ihr OnPrint Handler) gerufen wird. Sollte beim Aufruf des
OnDraw oder OnPrint Handlers ein globaler Screen gesetzt sein, wird dieser
deaktiviert, so lange der Handler lauft und anschieBend wieder reaktiviert. Daher
kénnen Sie vom OnDraw bzw. OnPrint Handler aus direkt Grafik oder Text
ausgeben.

Zusatzlich kénnen Sie die genannten Objekte jederzeit temporér zum Screen
machen, indem Sie die Screen-Variable mit dem Objekt belegen. Das ist z.B. bei
der Arbeit mit der Maus sinnvoll. Sie missen sich in diesem Fall aber selbst darum
kimmern, dass der zuvor gesetzte Screen wieder hergestellt wird, sonst kann
GEOQOS crashen. Beispiele dazu finden Sie in den Kapiteln zur Arbeit mit der Maus
(Spezielle Themen, Kapitel 17) und bei der Beschreibung der Objektklassen
VisContent und VisObj (Kapitel 5 im Objekthandbuch).

Sie koénnen in R-BASIC zwischen verschiedenen globalen Screen-Objekten
wechseln. AuBerdem koénnen Sie Einstellungen am Koordinatensystem wie
Skalierung und Verschiebung vornehmen. Erfahrene Programmierer haben
auBerdem die Mdglichkeit komplexe Operationen mit dem Koordinatensystem
durchzufihren.

2.3.1 Die Screen-Variable

Variable Syntax im Ul-Code Im BASIC-Code
Screen — lesen, schreiben
DefaultScreen DefaultScreen —

Die globale Variable Screen enthalt das aktuelle Screen-Objekt. Sie kann im
BASIC-Code gelesen, geschrieben oder in Vergleichen verwendet werden. Auch
der direkte Zugriff auf Instance-Variablen (z.B. n = Screen.bitmapFormat(0)) ist
zulassig.

Grundlegende Konzepte - 41

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Syntax Lesen: <objVar> = Screen
Schreiben: Screen = <obj>

Am Programmstart wird die Variable Screen mit demjenigen Objekt belegt, dass
die Anweisung DefaultScreen im Ul-Code hat. Die Anweisung DefaultScreen ist
nur fir BitmapContent Objekte zulassig.

Syntax Ul-Code: DefaultScreen

Wird ein Objekt erstmalig zum Screen, so werden alle Grafik- und Font-Ein-
stellungen auf den Standardwert zurlickgesetzt, das Ausgabe-Window wird auf
Maximum gesetzt und der Cursor wird links oben platziert. Die Farben werden auf
die durch den defaultColor-Wert des neuen Screen-Objekts bestimmten Werte
gesetzt. Ist kein defaultColor-Wert spezifiziert wird Schwarz auf WeiB3 eingestellt.
Verliert ein Objekt den Status "Screen" zu sein, so speichert es die genannten
Werte intern und stellt sie wieder her, wenn es erneut zum Screen wird. Sollte das
nicht mdglich sein, weil Sie z.B. zwischenzeitlich die BitmapgrdéBe geédndert haben,
werden wieder die Standardwerte verwendet.

Beispiel:
Umschalten zwischen den beiden Objekten MyContent1 und MyContent2.
IF Screen = MyContentl THEN
Screen = MyContent2
ELSE

Screen = MyContentl
END IF

Wird die Variable Screen mit einem "leeren" Objekt belegt (Funktion NullObj()),
so gehen alle Grafik- und Textausgaben ins Leere.

Beispiel 1:
Screen = NullObj()

Beispiel 2:
IF Screen = NullObj() THEN Screen = MyContentl

Grundlegende Konzepte - 42

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.3.2 Clipping

Unter Clipping versteht man, dass Grafiken und Texte nicht tber die vorgegeben
Geometriegrenzen hinaus geschrieben werden. Beim Zeichnen in eine Bitmap
wird nicht Uber deren Rand hinaus gezeichnet, Objekte die in einem View-Objekt
sind zeichnen nicht Uber die Grenzen des View hinaus. GEOS und damit R-BASIC
handelt das automatisch, so dass Sie sich im Allgemeinen nicht darum kimmern
mussen. Sie haben jedoch die Mdoglichkeit den Bereich, in den Grafik- und
Textausgaben gehen sollen, zusatzlich einzuschranken.

ScreenSetClipRect

Die Routine ScreenSetClipRect schrankt die Ausgabe von Grafik und Text auf den
angegeben Koordinatenbereich ein.

Syntax: ScreenSetClipRect x0, y0, x1, y1i
X0, y0: linke obere Ecke des Clip-Rechtecks
x1, y1: rechte untere Ecke des Clip-Rechtecks

Beispiel:
Paper LIGHT BLUE
CLS

ScreenSetClipRect 50, 50, 150, 150
FillEllipse 15, 15, 85, 85, BLUE
FillEllipse 115, 115, 185, 185, GREEN
Rectangle 50, 50, 150, 150, black

ScreenSetClipRect 125, 25, 225, 125

Paper LIGHT CYAN

CLS

FillEllipse 105, 5, 175, 80, YELLOW
FillEllipse 175, 75, 295, 195, LIGHT GREEN
Rectangle 125, 25, 225, 125, BLACK

Hinweise:

+ Das aktuell eingestellte Clipping-Rechteck lasst sich nicht ermitteln.

+ ScreenSaveState / ScreenRestoreState (siehe néchster Abschnitt) speichern
das Clipping-Rechteck nicht. Ein nach einem ScreenSaveState ausgefuhrtes
ScreenSetClipRect hat auch nach dem ScreenRestoreState Glltigkeit.

+ Bei einigen Objekten, z.B. einem Canvas, kann ein zu groBes Clipping-Rechteck
auch dazu fuhren, dass das Objekt tUber seine Grenzen hinaus zeichnen kann.

+ In den meisten Féllen stellt ScreenSetClipRect 0, 0, MaxX, MaxY das originale
Clipping-Rechteck wieder her.

Grundlegende Konzepte - 43

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.3.3 Speichern und Wiederherstellen des Screen-Status

Gelegentlich gibt es die Situation, dass man Anderungen in den Einstellungen fir
Grafik und/oder Text (Farben, Font, Linienbreite ...) vornehmen will, die aber
anschlieBend wieder zuriickgenommen werden sollen. Oft passiert das innerhalb
einer Routine oder in einem Action-Handler, der Grafiken ausgibt aber sicher-
stellen will, dass die aktuell Screen-Einstellungen nicht verandert werden. Die
Anweisung ScreenSaveState speichert alle den Screen Dbetreffenden
Einstellungen - mit Ausnahme der BlockFonts und des Clipping-Rechtecks.
ScreenRestoreState stellt den gesicherten Zustand wieder her. Alle
zwischenzeitlich vorgenommenen Anderungen fiir Text und Grafik gehen verloren.

ScreenSaveState kann mehrfach hintereinander aufgerufen werden, die
Einstellungen werden von ScreenSaveState jeweils in einen eigenen
Speicherbereich kopiert und von ScreenRestoreState in der umgekehrten
Reihenfolge wieder restauriert. Dieses Vorgehen stellt sicher, dass eine Routine
die Kombination ScreenSaveState / ScreenRestoreState verwenden kann,
unabhangig davon, ob andere Routinen dies auch tun.

Beispiel: Die Routine zeichnet einen blauen Kreis ohne die aktuell eingestellten

Linieneigenschaften zu verandern.

SUB BlueCircle (x, y as integer)
ScreenSaveState
graphic.lineColor
graphic.lineWidth

Circle x, y, 50
ScreenRestoreState

END SUB

BLUE
4

ScreenSaveState

Speichert die aktuellen Einstellungen fur Grafik und Text.

Syntax: ScreenSaveState
Parameter: keine

ScreenRestoreState

Stellt die Einstellungen fir Grafik und Text wieder her. Jede Routine muss genau
so viele ScreenRestoreState wie ScreenSaveState aufrufen.

Syntax: ScreenRestoreState
Parameter: keine

Grundlegende Konzepte - 44

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Hinweise:

+ Wird die Systemvariable Screen neu belegt, so gibt R-BASIC den eventuell noch
von ScreenSaveState angeforderten Speicher frei, d.h. es werden genau so viele
ScreenRestoreState ausgeflihrt, wie es offene ScreenSaveState gibt. Erst dann
wird der Screen umgeschaltet.

+ In folgenden Féllen kann ScreenRestoreState nach einem ScreenSaveState die
Daten nicht wieder herstellen und es kommt zu einem Laufzeitfehler:

1. Die GréBe des Screenobjekts (z.B. der Bitmap) wurde zwischenzeitlich
geéndert.

2. PC/GEOS wurde zwischenzeitlich heruntergefahren. Um diesen Fall zu
vermeiden muss jede Routine genauso viele ScreenRestoreState wie
ScreenSaveState aufrufen, weil PC/GEOS nicht herunterfahren kann,
wahrend noch ein Handler oder eine Routine lauft.

+ Die BlockFont Zeichensatze (siehe Block-Grafik-Modus, Handbuch "Spezielle
Themen", Kapitel 3) sind global. Sie werden weder vom Umschalten des
Screens noch von ScreenSaveState / ScreenRestoreState verandert.

+ Das Clipping-Rechteck wird von ScreenSaveState nicht gespeichert. Ein mit
ScreenSetClipRect eingestellter Clipping-Bereich hat auch nach Screen-
RestoreState weiter Gultigkeit.

Grundlegende Konzepte - 45

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.3.4 Anpassen des Koordinatensystems

In diesem Abschnitt werden Routinen beschrieben, die einfache Operationen mit
dem Koordinatensystem durchfiihren. Dabei handelt es sich um Verschiebung,
Skalierung und Rotation. Diese Operationen werden als Koordinatentrans-
formationen bezeichnet. Sie wirken immer auf die nachfolgenden Grafik- oder
Text-Ausgaben. Bereits vorhandene Grafiken oder Texte werden nicht beeinflusst.

Werden mehrere Transformationen nacheinander ausgefihrt, so berechnet GEOS
intern eine "resultierende" Transformation, so dass es flr die Performance keinen
Unterschied macht wie viele Transformationen angewendet wurden.

Beachten Sie, dass die Reihenfolge der Transformationen wichtig ist, es ist etwas
anderes ob man erst verschiebt und dann rotiert oder umgekehrt (siehe Beispiel
unten).

Normalerweise begrenzt die PRINT-Anweisung die Ausgabe von Texten auf die
urspriinglichen Koordinaten des Screens. Wenn Sie das Koordinatensystem
geéandert, z.B. nach rechts unten verschoben haben, kann Print z.B. den Zugriff
auf Bereiche links und oberhalb des neuen Nullpunkts (negative Cursor-
Koordinaten) verweigern. Sie missen dann in den LAYOUT-Modus wechseln, in
dem alle Cursor-Restriktionen, allerdings auch der automatische Zeilenumbruch,
deaktiviert sind. Verwenden Sie dazu die Anweisung:

Print Chr$(19) "oder gleichwertig Print "\19"

Print Chr$(17) ruft den PAGE-Modus auf, Print Chr$(18) den Scroll-Modus.

ScreenSetTranslation

Verschiebt den Ursprung des Koordinatensystems (Lage des Koordinaten-
ursprungs) um die angegebenen Werte.

Syntax: ScreenSetTranslation xMove, yMove
xMove: Verschiebung in x-Richtung
yMove: Verschiebung in y-Richtung

ScreenSetScale

Skaliert die Achsen des Koordinatensystems um die angegebenen Werte.
Negative Werte sind zulassig, sie bewirken eine Spiegelung in der ent-
sprechenden Richtung. Bezugspunkt ist immer der aktuelle Koordinatenursprung.

Syntax: ScreenSetScale xScale, yScale
xScale: Streckung in x-Richtung
yScale: Streckung in y-Richtung

Grundlegende Konzepte - 4€

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

ScreenSetRotation

Rotiert das Koordinatensystem um den angegebenen Winkel. Die Drehung erfolgt
um den aktuellen Koordinatenursprung

Syntax: ScreenSetRotation alpha
alpha: Drehwinkel im GradmalB
Drehung erfolgt gegen den Uhrzeigersinn

Beispiel: Drehung um 45° nach rechts

ScreenSetRotation -45

ScreenResetTransformation

Nimmt alle Koordinatentransformationen zuriick. Der Koordinatenursprung wird
nach links oben gesetzt, Drehung und Skalierung werden zurlckgesetzt.

Syntax: ScreenResetTransformation

Beispiel 1: Unterschiedliche Transformationen.

Textausgabe ohne Transformation:
FontSetGeos(FID CRANBROOK, 20)

Print "Life is ";
Print "an adventure.";
Rectangle 220, 0, 250, 30

Grundlegende Konzepte - 47

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Gedrehte und skalierte Text-Ausgabe, die Reihenfolge spielt eine Rolle!
FontSetGeos(FID CRANBROOK, 20)

Print "Life is ";
ScreenSetScale 1, 1.7 "y: 170%
ScreenSetRotation -20 ’ 20° im Uhrzeigersinn

Print "an adventure.";
Rectangle 220, 0, 250, 30

Linkes Bild: Erst skaliert, dann rotiert (wie im Code gezeigt)
Rechtes Bild: Anweisungen ScreenSetScale und ScreenSetRotation vertauscht
(erst rotiert, dann skaliert)

Beispiel 2: Translation und Rotation.
Das Kreuz kennzeichnet jeweils den neuen Koordinatenursprung.

graphic.linewidth = 3
Line -70, 0, 70, 0, YELLOW
Line 0, -30, 0, 30, YELLOW

ScreenSetRotation -30

Line -70, 0, 70, 0, LIGHT CYAN
Line 0, -30, 0, 30, LIGHT CYAN
ScreenSetTranslation 150, 0
Line -70, 0, 70, 0, LIGHT RED
Line 0, -30, 0, 30, LIGHT RED
Print at 1,1;"Rot + Trans"

ScreenResetTransformation ' wieder Ausgangssituation
' herstellen

ScreenSetTranslation 150, 0

Line -70, 0, 70, 0, LIGHT GRAY

Line 0, -30, 0, 30, LIGHT GRAY

ScreenSetRotation -30

Line -70, 0, 70, 0, WHITE

Line 0, -30, 0, 30, WHITE

Print at 1,1;"Trans + Rot"

Grundlegende Konzepte - 48

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.3.5 Komplexe Manipulation des Koordinatensystems

Hinweis: Dieses Kapitel ist etwas fir erfahrene und mathematisch versierte
Programmierer. Die meisten Programmierer werden niemals mit hier dargestellten
Zusammenhéangen arbeiten.

Wie bereits oben erwahnt berechnet GEOS bei Anwendung mehrerer Koordi-
natentransformationen eine "resultierende" Transformation. Dazu wird intern die
Matrizenrechnung verwendet, die dazugehdrige Struktur heiBt Transformations-
matrix. Sie koénnen die Transformationsmatrix lesen, veradndern, eine eigene
erstellen und sie wieder setzen. Dieses Kapitel beschreibt die dazugehdrigen
Routinen ScreenGetTransMatrix, ScreenSetTransMatrix, die Struktur
TransMatrix und die mathematischen Grundlagen.

Jedes Mal, wenn GEOS einen einzelnen Punkt mit den Koordinaten (x; y) auf dem
Bildschirm darstellt, wendet es die aktuell gultige Transformationsmatrix auf
diesen Punkt an, um die Bildschirmkoordinaten (x’; y’) zu erhalten. Dieses
Verfahren wird fur jeden einzelnen Punkt einer Linie, eines Buchstabens usw.
angewendet. Diese Berechnungen sind flr eine schnelle Grafikausgabe optimiert
und in GEOS extrem effizient implementiert. In Matrizenschreibweise sieht das so
aus:

al a2 0
Xy 1)=[b1 b2 O|«(x:y;: 1
(X5y5 1) o o (x3y; 1)
Im Einzelnen berechnen sich die neuen Koordinaten somit folgendermaBen:

xX=al*x+bl*y+ci
y=b1*x+b2*y+c2

Beispiele fur Transformation-Matrizen:

Standard Skalierung Translation
Transformation

1 00O scaleX O 0 1 0 0

0O 10 0 scaleY 0 0 1 0

0O 0 1 0 0 1 transX transY 1

Wird eine neue Koordinatentransformation angewendet (z.B. mit
ScreenSetTranslation), so berechnet GEOS das Kreuzprodukt der alten
Transformationsmatrix mit der neuen, wobei sich eine resultierende
Transformationsmatrix ergibt, die alle bereits vorhandenen und die neue
Koordinatentransformation enthélt. Am Rechenaufwand bei der Darstellung auf
dem Bildschirm, d.h. an der Ausgabegeschwindigkeit andert sich dadurch nichts.

Erfahrene oder ambitionierte Programmierer kdénnen ihre eigene, komplexe
Transformationsmatrix erstellen und diese mit ScreenSetTransMatrix anwenden.
Oder man sichert die aktuelle Transformationsmatrix mit ScreenGetTransMatrix
um sie spater wieder zu verwenden. Dabei ist es erlaubt die Transformations-

Grundlegende Konzepte - 49

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

matrix von einem Screen-Objekt zu lesen und einem anderen Screen-Objekt
zuzuweisen.

Die Struktur TransMatrix enthélt die 6 variablen Elemente der Transformations-
Matrix und ist in R-BASIC folgendermaBen definiert:

STRUCT TransMatrix
al, bl, cl AS REAL
a2, b2, c2 AS REAL
END STRUCT

ScreenGetTransMatrix

Liest die aktuell gultige Transformationsmatrix des aktuellen Screen-Objekts aus.
Die Klammern sind erforderlich, da es sich um eine Funktion handelt, d.h. sie
liefert einen Wert zurlck. Ist kein Screen-Objekt gesetzt ist das Ergebnis
unbestimmt und sollte nicht verwendet werden.

Syntax: <tm> = ScreenGetTransMatrix ()
<tm>: Variable vom Typ TransMatrix

ScreenSetTransMatrix

Wendet eine Transformationsmatrix auf den aktuellen Screen an. Ist kein Screen-
Objekt gesetzt wird die Operation ignoriert.

Syntax: ScreenSetTransMatrix (<tm>)
<tm>: Variable oder Ausdruck vom Typ TransMatrix

Grundlegende Konzepte - 5C

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.4 Objekte individualisieren

Der folgende Abschnitt setzt voraus, dass Sie sich bereits etwas im GEOS
Objektsystem auskennen und auch mit der Verwendung von Strukturen vertraut
sind.

Es gibt Situationen, in denen es nétig ist, dass ein Objekt neben den vom System
vorgegebenen Daten weitere Informationen speichern muss. Ein einfaches
Beispiel ist ein Canvas-Objekt, dass entweder einen Kreis oder ein Quadrat
zeichnen soll. Sie kénnen die Information, ob ein Kreis oder ein Quadrat
gezeichnet werden soll, natirlich fur jedes Objekt in einer eigenen globalen
Variablen speichern. Das ist aber nicht nur schlechter Stil, sondern wird bei
mehreren Objekten auch schnell sehr untbersichtlich und damit fehlernfallig.

Die bessere Ldsung ist, die Information im Objekt selber zu speichern. R-BASIC
bietet Ihnen flr diese Situation die Instancevariable privData. PrivData nimmt eine
Strukurvariable beliebigen Typs auf und speichert sie im Objekt selbst. Hier
kdnnen Sie z.B. ablegen, ob ein Kreis oder ein Quadrat gezeichnet werden soll.
AuBerdem kénnen Sie - wenn Sie wollen - die GréBe, die Farbe und beliebige
weitere Informationen speichern.

VisObj-Objekte haben zusétzlich die Instancevariable visDataValue. Sie enthalt
einen numerischen Wert (Longlint-Bereich), mit dem Sie bei Bedarf verschiedene
VisObj-Objekte auseinanderhalten kdénnen, ohne auf die relativ umstandliche
Verwendung der Instancevariablen privData zurtckzugreifen. AuBerdem kdénnen
Sie visDataValue bereits im Ul-Code zuweisen.

Fortgeschrittene Programmierer kdnnen in seltenen Situationen den Bedarf
haben, dass sie eine Routine erst dann aufrufen wollen, wenn der aktuelle
Actionhandler vollstandig abgearbeitet ist. Typische Beispiele sind hier der OnPrint
Handler (bei dem man das Screen-Objekt nicht andern darf) oder ein OnMouse~
bzw. der OnKeyPressed Handler (die meist zeitkritisch sind). R-BASIC 16st dieses
Problem, indem man fur Objekte eigene, private ("custom") Handler definieren
kann. Actionhandler unterbrechen sich niemals, sondern werden immer
nacheinander abgearbeitet. Der Aufruf eines solchen Handlers fuhrt also dazu,
dass die aktuelle Routine (genauer: der komplette aktuell laufende Handler) zuerst
vollstdndig abgearbeitet wird bevor der neue Handler ausgefihrt wird. Um einen
Custom Handler fir ein Objekt festzulegen verwenden Sie die Instancevariable
customHandler. Custom Handler missen als CustomAction deklariert sein. Um
einen Custom Handler aufzurufen verwenden Sie die Methode CustomApply.

PrivData

PrivData nimmt eine einzelne Strukturvariable (also maximal 3500 Bytes) auf.
Diese Instancevariable ist fur alle Klassen definiert. PrivData ist zuweisungs-
kompatibel mit jeder Art von Struktur, es wird weder eine Typ- noch eine

Grundlegende Konzepte - 51

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

GroBenprifung ausgefuhrt. Es ist daher verninftig beim Schreiben und beim

Lesen der Daten den gleichen Struktur-Datentyp zu verwenden.

Schreiben: Sie missen die GréBe der zu schreibenden Daten angeben.

Lesen: Es werden so viele Bytes gelesen, wie die Variable auf der linken
Seite der Zuweisung aufnehmen kann. Enthalt privData weniger
Bytes, so wird der Rest mit Nullen aufgefulit.

Es ist zuldssig, mehrfach hintereinander Strukturen verschiedenen Typs und
verschiedener GréBe in die Instancevariable zu schreiben. R-BASIC optimiert
jedes Mal den verwendeten Speicher, so dass kein Platz verschwendet wird.

Syntax Schreiben: <obj>.privData = <struct>, size
<struct>: Strukturausdruck beliebigen Typs
size GréBe der Struktur
Lesen: <sturctVar> = <obj>.privData
<structVar>: Strukturvariable des Typs, der beim Schreiben
verwendet wurde.

Beispiel:

Ein Canvas-Objekt soll einen Kreis oder ein Quadrat in einer vorgegebenen Farbe
zeichnen. Wir bendtigen:

- einen Strukturtyp, der die Informationen enthalt,

- eine Routine, die die Werte setzt,

- ein Canvas-Obijekt,

- einen OnDraw Handler fir das Canvas Objekt

Der Strukturtyp sei folgendermaBen defininiert:

STRUCT ImgData
isCircle as Integer
color as Integer

End Struct

Zum Belegen der Instancewerte dient die folgende Routine. Die zweite Routine
(SetCanvasToRect) ist hier nicht aufgefihrt.

SUB SetCanvasToCircle(col as Integer)
DIM pd AS ImgData

pd.isCircle = TRUE

pd.color = col

MyCanvas.privData = pd, SIZEOF (pd)

MyCanvas.Dirty ' Neudarstellung auslOsen
End Sub

Das Canvas-Objekt sei wie folgt definiert. Beachten Sie, dass wir privData nicht
definieren brauchen, es ist flr alle Objekte automatisch verfugbar.
CANVAS MyCanvas

OnDraw = DrawFigure

fixedSize = 70, 70
End Object

Grundlegende Konzepte - 52

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

SchlieBlich bendtigen wir noch den OnDraw-Handler, der die privData-Werte
ausliest und verwendet.

DRAWACTION DrawFigure
DIM priv as ImgData

priv = sender.privData
INK priv.col
IF priv.isCircle THEN
FillEllipse 10, 10, 60, 60
ELSE
FillRect 10, 10, 60, 60
END IF
End Action

CustomHandler

CustomHandler enthalt den Namen des Actionhandlers, der mit der Methode
CustomApply aufgerufen werden soll.

Syntax Ul- Code: CustomHandler = <Handler>
Schreiben: <obj>.CustomHandler = <Handler>

Ein Custom Handler muss als CustomAction deklariert sein:

Handler-Typ Parameter
CustomAction (sender as object, actionData as integer)
CustomApply

Die Methode CustomApply ruft den CustomHandler eines Objekts auf. lhr wird ein
Integer-Wert Gbergeben, der an den Handler weitergereicht wird.

Syntax: <obj>.CustomApply actionData
actionData: Integerwert, der an CustomHandler ubergeben wird.

Beispiel (einfach, deswegen nicht sehr sinnvoll):
Ein Button mit einem ActionHandler und Primary mit einem CustomHandler.
BUTTON MyButton
Caption$ "Driick mich!"
ActionHandler = PressHandler
End Object

Primary MyPrimary
CustomHandler = CHandler
End Object

Grundlegende Konzepte - 53

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Der Actionhandler:

ButtonAction PressHandler
Print "Text 1"
MyPrimary.CustomApply 1
Print "Text 2"
MyPrimary.CustomApply -7
Print "Text 3"

End Action

Der CustomHandler wird erst ausgefuhrt, wenn der ActionHandler fertig ist

CustomAction CHandler
Print "DATA = ";actionData

End Action

Wenn der Nutzer den Button drickt erscheint folgendes:

Grundlegende Konzepte - 54

R-BASIC - Objekt-Handbuch - Vol. 1
Einfach unter PC/GEOS programmieren

(Leerseite)

Grundlegende Konzepte - 55

