R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Objekt-Handbuch

Volume 2
Die GenericClass

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 2

Einfach unter PC/GEOS programmieren

B Die GENEIIC ClASS +erererurerarmurrururasasmsasasssussssssssssssssssssssssssssssasssssssssnsnsnsnses 60
3.1 Caption: Die Objekt-Beschriftungcc.ccevmrrmrnsennssnsseannssennenssennanns 60
3.1.1 Text-Captions ...ceeeeeiiiiiiieiiii 61
3.1.2 Grafische Captions «..c..oooeuiiiiiiiii 62
3.1.3 Die Caption-AusriChtungccccooiiiiiiieeiii e 66
3.1.4 Keyboard ShOrCULScooiiiiiiiiiiee e 67
3.2 Objekt States ---creeere e —————— 70
3.3 Geometriemanagement ..o 73
TR TR LU CY=1 g o) 1o SO 73
3.3.2 Angabe von GrdBen, Positionen und Abstandenccceeeiins 75
3.3.3 Anordnung der ODJEKEccoiiiiiiiiiii e 77
3.3.3.1 Orientierung und Ausrichtungcccoieiiiiiiiiieieeeee 77
3.3.3.2 Child SPaCINg ...cceeeeiiiiiiiiee e 81
3.3.3.3 Automatischer Umbruchccooo e 83
3.3.3.4 Vorhandenen Platz gleichméaBig verteilenc...ccoo.o. 84

3.3.4 ObJEKIGrOBE «.evvveuveeiieetieciee e 86
3.3.5 Positionierung der Objektecoocvueveiiiiiiiiiiiiic, 90
3.3.6 Spezielle ArDULEeeiiiii 92
3.3.7 Spezielle Hints fur Window-ODbjektecccceeiiiiiiiiiiiiiiie 95
3.3.7.1 Aussehen und Verhalten anpassenccccccceveeiiiiiininneenn. 95
3.3.7.2 Anfangliche GroBe festlegencccoeeviiiiiiiiin 96
3.3.7.3 Anfangliche Position festlegenccccoooviiii, 98
3.3.7.4 Window Managementccccueveiiiiiiiiiiiin i, 100

3.3.8 Hintertlrchen flr Programmierer ..., 101
3.4 Die "AppPly"-MeSSageccccerrriiirsnmmmnriinii s 105
3.4.1 Manuelles Ausldsen der Apply-Messageccoovvveeeiiiiiiiiineennn. 105

3.4.2 Delayed Mode und Status-Messagecccveeeeeiiiiiiiiiiiiieeeneene 107

R-BASIC - Objekt-Handbuch - Vol. 2

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3 Die Generic Class

Die meisten Objekte in R-BASIC stammen von der GenericClass ab. In diesem
Abschnitt finden Sie die Instance-Variablen, die allen diesen Objekten gemeinsam
sind.

3.1 Caption: Die Objekt-Beschriftung

Unter "Caption" (engl. caption = Uberschrift, Titel) versteht man in R-BASIC die
"Beschriftung" eines Objekts. Das kann ein Text oder eine kleine (!) Grafik sein. Im
Primary befindet er sich der Caption-Text in der Titelzeile, bei Buttons ist es die
Aufschrift und bei anderen Objekten ist er Uber oder neben dem Objekt
angeordnet um die Funktion oder Bedeutung des Objekts zu beschreiben. Text-
Captions weisen Sie mit der Instancevariablen Caption$ zu. Fir grafische
Captions stehen |Ihnen - je nachdem, wo die Grafik herkommt, die Methoden
Captionicon, CaptionPicture, Captionilmage und CaptionGString zur
Verfigung. Mit der Instancevariablen justifyCaption kénnen Sie in vielen Fallen
festlegen, wie die Caption relativ zum Objekt positioniert wird.

Variable Syntax im Ul-Code Im BASIC-Code
Caption$ Caption$ = "Text" [, n] lesen, schreiben
Captionlcon Captionicon = "tchr" , manufID [, flags]| nur schreiben
CaptionPicture CaptionPicture = "PictureName" nur schreiben
Captionlmage Captionlmage =[stdPath,] "File" [, num] | nur schreiben
CaptionGS — nur schreiben
justifyCaption justifyCaption = numWert lesen, schreiben
kbdShortcut kbdShortcut = numWert lesen, schreiben
kbdSearchPath kbdSearchPath = TRUE | FALSE lesen, schreiben

Bitte beachten Sie, dass Captions im gleichen Speicherblock gespeichert werden,
wie das Objekt selbst. Speicherblécke kénnen unter GEOS nicht gréBer als 64
kByte werden, meistens gibt es schon viel friher Probleme ("Hauptspeicher voll").
Grafische Captions sollten deshalb nicht gréBer als 4 kByte sein. Bei Text-
Captions (Caption$) Captions aus der TokenDatabase (Captionlcon) und GString-
Captions (CaptionGString) ist das im Allgemeinen erfullt. Normale Grafikbefehle
wie Line, Rectangle, FillEllipse usw. erfordern jeweils 10 bis 15 Byte. Texte
erfordern pro Zeichen 1 Byte.

Problematisch kénnen Captions sein, die eine Bitmap enthalten und mit zur
Laufzeit zugewiesen werden, da dies der Compiler nicht prifen kann. Bei der
Zuweisung im Ul-Code fuhrt R-BASIC bei Bitmaps eine GrdBenkontrolle aus und
warnt bei einem Speicherbedarf von mehr als 4 kByte. Captions mit mehr als
12 kByte lassen sich nicht zuweisen.

Der Speicherbedarf einer Bitmap setzt sich aus den Bitmapdaten und einer
eventuell vorhandenen Maske (Transparenz) zusammen. Fir die Bitmapdaten gilt

GenericClass-Captions - 2

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

die Formel "Breite x Héhe x Farbtiefe (in Bit pro Pixel) / 8". Flur die Maske kommen
je Zeile noch "Breite/8" Bytes hinzu, wobei jeweils auf ganze Bytes aufgerundet (!)
werden muss.

Beispiele (jeweils eine Transparenzmaske vorausgesetzt)

Abmessungen (Pixel) Farbtiefe (Bit pro Pixel) | Speicherbedarf (Byte)
48 x 30 4 900

32 x 32 8 1152

32 x 32 24 3200

64 x 64 8 4608

128 x 128 8 51200

Falls Sie vorhaben, zur Laufzeit grafische Captions zuzuweisen, die deutlich
gréBer sind als die zur Compilezeit zugewiesenen, sollten Sie der Verteilung der
Objekte auf die Objektblécke Aufmerksamkeit widmen. Details dazu finden Sie im
Kapitel 2.1.4 (Beeinflussung der Objektblécke im Ul-Code).

3.1.1 Text-Captions

Caption$

Caption$ ist der Text auf oder neben dem Objekt. Im Gegensatz zu den grafischen
Captions kann Caption$ auch gelesen werden und es kann ein
"Navigationsbuchstabe" definiert werden, der eine Tastaturnavigation durch die
Menuls ermdglicht.

Syntax UI-Code: Caption$ = "Text" [, n]
"Text" : Aufschrift
n: Nummer des hervorgehobenen Buchstaben
far Tastatur-Navigation
0 = 1. Buchstabe, 1 = zweiter Buchstabe usw.
Lesen: <stringVar> = <obj>. Caption$
Liefert den Text. Der Navigationsbuchstabe kann
nicht gelesen werden.
Schreiben: <obj>. Caption$ = "Text" [, n]

Beispiele Ul Code:
Button OKButton
0K
Caption$ = " OK " -——J
ActionHandler =
END Object

Button MyButton . Emssmwml

Caption$ = "Press mich!",
ActionHandler =
END Object

GenericClass-Captions - 3

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel BASIC-Code

DIM c$
c$ = MyButton.Caption$ JAl
OKButton.Cath..ons =) JA!" Ue§!|
MyButton.Caption$ = "yes!", 2

3.1.2 Grafische Captions
Captionicon
Weist dem Objekt ein Token aus der Token-Database als Caption zu. Captionlcon

kann im Ul Code und im BASIC Code (Schreiben) verwendet werden. Lesen im
BASIC-Code ist nicht mdglich.

Syntax Ul Code: Captionlcon = "tchr" , manufiD [, flags]
Syntax BASIC: <obj>.Captionlcon = "tchr" , manufiD [, flags]

"tchr": Tokenchars des Icons. Genau 4 Zeichen
manuflD: ManufacturerID des Icons. Datentyp WORD
flags: Icon-Flags. Siehe unten.

Das passende Bild aus der Tokendatabase Datei wird beim Aufruf von
Captionlcon in den Speicherblock des Objekts kopiert.

Gultige Werte fur "flags":

Konstante Wert Bedeutung

TOOL_ICON 1 Tool-Icon (15 x 15 Pixel) verwenden.
TINY_ICON 1 Synonym fur TOOL_ICON

SMALL_ICON 2 Kleineres Icon verwenden (oft 32x20 Pixel)
BIG_ICON 4 GrbBeres Icon verwenden (oft 64x40 Pixel)
GRAY_ICON 8 Schwarz-Weif3 Icon verwenden
RGB_ICON 16 True-Color Icon verwenden

Wird keines der Flags angegeben wird das "Standard" Icon (meist 48 x 30 Pixel,
16 Farben oder 256 Farben) verwendet.

Hinweise:

+ Ist die entsprechend den Flagbits angeforderte Kombination nicht vorhanden
sucht das System ein "mdglichst passendes" Icon aus. Das Flag "TOOL_ICON"
hat dabei Vorrang vor allen anderen Flags.

+ Sollte zum gegebenen Token ("TCHR", manufID) kein grafisches Icon
vorhanden sein wird ein Text verwendet.

+ Findet sich das Token nicht in der TokenDB zeigt R-BASIC ein Ersatzbild
("unbekanntes Icon").

+ R-BASIC Icons enthalten nur zwei Bilder: ein Standard- und ein Tool-lcon.

GenericClass-Captions - 4

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel: Das GeoWrite-Datei-lcon "WDAT, 0" enthalt Normal, Small und Big Icons

Button Buttonl
CaptionIcon = "WDAT", 0, TOOL ICON
End OBJECT

Button Button2
CaptionIcon = "WDAT", 0, SMALL_ ICON
End OBJECT

Button Button3 X
CaptionIcon = "WDAT", 0 @ ﬂl @

End OBJECT

Button Button4
CaptionIcon = "WDAT", 0, BIG_ICON
End OBJECT

CaptionPicture

CaptionPicture weist einem Objekt eine grafische "Aufschrift" zu. Die Grafik steht
in der Picture-List des Programms (oder der Library).

Die Picture-List enthélt Grafiken, die Uber ihren Namen angesprochen werden und
in der Code-Datei selbst gespeichert sind. Sie kann Uber das Menl "Extras" ->
"Picture-List" verwaltet werden. Details dazu finden Sie im Kapitel 2.8.6.2
(Verwendung der Picture-List) des R-BASIC Programmierhandbuchs.

Syntax Ul Code: CaptionPicture = "PictureName"
Syntax BASIC: <obj>.CaptionPicture = "PictureName"
"PictureName": Name der Grafik in der Picture-List

Das Bild wird beim Aufruf von CaptionPicture in den Speicherblock des Objekts

kopiert. Beachten Sie den Hinweis am Anfang des Kapitels 3.1. Zu groBe Caption-
Bilder kbnnen zum Systemabsturz flhren!

Hinweise:

+ Wird CaptionPicture im BASIC-Code gerufen setzt es die globale Variable
fileError - entweder auf Null (das Bild wurde gefunden) oder auf einen
Fehlerwert (das Bild wurde nicht gefunden).

+ Wenn CaptionPicture im Code einer Library gerufen wird bezieht sich der Name
des Bildes auf die Picture-List der Library. Das ermoglicht es unter anderem
Bilder in die Picture-List von Libraries auszulagern.

Beispiel: In der Picture-List befinden sich zwei kleine Bilder mit dem Namen
"Radioactive" und "Formel". Die Grafik "Formel" wurde mit GeoDraw erstellt und
dann uber die Zwischenablage in die Picture-List aufgenommen.

Button MyButton
CaptionPicture = "Radioactive" ®|
End OBJECT

GenericClass-Captions - 5

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Die Zuweisung der zweiten Grafik kann z.B. im Basic Code erfolgen.

¥ =% sin?{ 2.w£1) I

MyButton.CaptionPicture = "Formel"

Captionlmage

Captionlmage weist einem Objekt eine grafische "Aufschrift" zu die aus einer
externen Datei gelesen wird. Sollte die Datei mehr als ein Bild enthalten (z.B.
*.GIF, *.ICO) kénnen Sie mit dem Parameter pictNum bestimmen, welches Bild
ausgelesen wird. Das erste Bild hat immer die Nummer Null.

Syntax Ul Code: Captionlmage = [stdPath,] "Path+File" [, pictNum]
Syntax BASIC: <obj>.Captionlmage = [stdPath,] "Path+File" [, pictNum]

stdPath: Optional: Standardpfad Konstante, z.B. SP_TOP
"Path+File": Dateiname, Pfade sind zulassig
pictNum: Optional: Nummer des Bildes in der Datei

Captionlmage 6ffnet und schlieBt die Datei automatisch. Das Bild wird in den
Speicherblock des Objekts kopiert. Beachten Sie den Hinweis am Anfang des
Kapitels 3.1. Zu groBe Caption-Bilder kbnnen zum Systemabsturz fihren!

Folgende Dateiformate werden unterstitzt: JPG, BMP, ICO, PCX, GIF, TGA, RLE,
DIB, SCR, FLC, FLI und GEOS Hintergrunddateien.

Wird Captionimage im Ul-Code verwendet so gilt:

+ Wird kein Standardpfad angegeben wird die Datei im Ordner "USERDATA\R-
BASICAIMAGES" gesucht.

+ Das Bild wird in die Code-Datei kopiert, d.h. die externe Datei muss nicht in das
R-App Paket aufgenommen werden.

Wird Captionimage im BASIC-Code verwendet so gilt:

+ Wird kein Standardpfad angegeben wird die Datei im aktuellen Verzeichnis
gesucht.

+ Die externe Datei wird zur Laufzeit gedffnet, d.h. sie muss unbedingt in das R-
App Paket aufgenommen werden oder es muss auf andere Weise sichergestellt
sein, dass sie existiert.

+ Wird pictNum nicht angegeben so wird immer das erste Bild ausgelesen.

+ Die globale Variable fileError wird gesetzt - entweder auf Null (das Bild wurde
gefunden) oder auf einen Fehlerwert (die Datei wurde nicht gefunden oder sie
enthalt kein Bild).

GenericClass-Captions - 6

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel: Das PC/GEOS Icon "GWICONS5.ICO" verwenden, dass sich im
PC/GEOS Hauptverzeichnis befindet.

Button MyButton
CaptionImage = SP_TOP, "GWICON5.ICO" &—}l
End OBJECT

CaptionGString

CaptionGString weist dem Objekt eine grafische Caption zu, die vorher in einen
GString geschrieben wurde. Die Verwendung von CaptionGString ist eine der
Méglichkeiten fur ein Objekt (haufig ein Button oder eine Group) zur Laufzeit die
grafische Caption zu andern. CaptionGString wird verwendet, wenn die Grafik
nicht als vordefiniertes Bild vorliegt, sondern zur Laufzeit des Programms
gezeichnet werden muss (oder kann). Eine komplette Beschreibung der Arbeit mit
GStrings finden Sie im Kapitel 2.8.5 (Arbeit mit Graphic Strings) des R-BASIC
Programmierhandbuchs.

Syntax BASIC: <obj>.CaptionGString = <gsHandle>
<gsHandle>: Handle auf einen Graphic String.

Der GString wird beim Aufruf von CaptionGString in den Speicherblock des
Objekts kopiert. Daher sollten Sie nicht vergessen den GString nach Verwendung
wieder freizugeben. Beachten Sie den Hinweis am Anfang des Kapitels 3.1. Zu
groBe Caption-Bilder kdnnen zum Systemabsturz flhren!

Beispiel:

SUB SetNewCaption ()
DIM gsHan AS HANDLE

gsHan = StartRecordGS ()

FillEllipse 0, 0, 32, 32, LIGHT RED ' Farbig
Ellipse 0, 0, 32, 32 ' Schwarz
FillRect 9, 8, 24, 24, YELLOW

EndRecordGS gsHan O'

MyObj.CaptionGString = gsHan

FreeGS gsHan ' Nicht vergessen!
End SUB

GenericClass-Captions - 7

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.1.3 Die Caption-Ausrichtung

justifyCaption

Die Instance-Variable justifyCaption bestimmt, wo bzw. wie die Beschriftung
(Caption~) des Objekts angeordnet wird. Die folgende Tabelle enthéalt die
zuldssigen Werte. Haufig verwendet wird die Kombination J_TOP + J_CENTER,
bei Buttons auch J_CENTER alleine.

Konstante Wert Bedeutung
J_CENTER 1 Caption zentrieren
J_LEFT 2 Caption nach links
J_RIGHT 4 Caption nach rechts
J_TOP 8 Caption nach oben

Wird justifyCaption nicht gesetzt, ist es dem Objekt Uberlassen, wo die
Beschriftung angeordnet wird. In vielen Féllen entspricht dies J_LEFT. Einige
Objekte akzeptieren nicht jeden Wert, da justifyCaption als Hint implementiert ist;
z.B. ignorieren Buttons alles auBer J_CENTER. Hier hilft nur ausprobieren.
Beachten Sie, dass nur die in der Tabelle oben aufgefihrten Konstanten far
justifyCaption akzeptiert werden. Andere J_-Konstanten, die z.B. fur justifyChildren
(siehe Kapitel Geometriemanagement) definiert sind, werden ignoriert.

Beispiel
View MyView
Caption$ = "Vorschau"
justifyCaption = J TOP + J CENTER ' Mittig liber dem
Objekt
< .. weitere instances .. >
END Object

GenericClass-Captions - 8

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.1.4 Keyboard Shortcuts

Keyboard Shortcuts sind Tastenkilrzel, die auch dann wirken, wenn das ent-
sprechende MenU nicht offen ist. Typische Falle sind "Strg-C" flir Kopieren und
"Strg-P" fur Drucken. Um einen Shortcut zu definieren missen Sie auBer dem
ASCII-Code der Taste auch die "Modifier"-Taste (Strg, Shift oder Alt) angeben, die
gedruckt sein soll. Der ASCII-Code kann auch ein "erweiterter" ASCII-Code sein,
z.B. fur die Cursortasten oder F12.

Obwohl die Instancevariable kbdShortcut fir alle GenericClass Objekte definiert
ist wird sie hautséchlich fur Buttons benutzt. Die im Folgenden fir Buttons
getroffenen Aussagen sind sinngemaB auf alle andere GenericClass Objekte
Ubertragbar. Bitte beachten Sie bei der Wahl der Tastenkombination fur
kbdShortcut, dass diese vom "R-BASIC Translator" nicht gedndert werden kann.

kbdShortcut

Die Instancevariable kbdShortcut enthalt einen WORD-Wert, der ein Tastenkiirzel
beschreibt. Driickt der Nutzer die entsprechende Tastenkombination (z.B. Strg +
Z) wird der Button aktiviert, genau so, als sei er direkt angeklickt worden.

Syntax Ul-Code: kbdShortcut = numVal
Lesen: <numVar> = <obj>. kbdShortcut
Schreiben: <obj>. kbdShortcut = numVal

Die niederwertigen 8 Bit (Bit 0 bis Bit 7) enthalten den ASCII-Code der Taste bzw.
den Steuercode der Steuertaste. Die Bits 8 bis 11 sind gesetzt, wenn es sich um
eine Steuer- oder Funktionstaste handelt, ansonsten sind sie Null. Die vier hdchst-
wertigen Bits (Bit 12 bis Bit 15) enthalten "Modifier'-Tasten, die gleichzeitig
gedruckt sein mussen, damit das Kurzel aktiviert wird. Daflir sind die folgenden
Konstanten definiert (KSM = Keyboard Shortcut Modifier):

Konstante Wert hex. Bedeutung

KSM_SHIFT 4096 &h1000 | Shift Taste muss gedriickt sein
KSM_CTRL 8192 &h2000 | Strg Taste muss gedrickt sein
KSM_ALT 16384 &h4000 | Alt Taste muss gedrickt sein
KSM_PHYSICAL 32768 &h8000 Die Taste ist gemeint, nicht das

Zeichen. Das hei3t im Wesent-
lichen, dass der Shift-Lock- und
der NumLock-Status ignoriert
werden.

Hinweise:

+ Den ASCII-Code der gewinschten Taste kénnen Sie Uber die Funktion ASC()
erhalten, die auch in numerischen Ausdriicken erlaubt ist.

+ Tipp fur Fortgeschrittene: KSM_PHYSICAL bedeutet auch, dass der Scancode
der Taste ausgewertet wird. Flr den seltenen Fall, das Sie ein solches Objekt

GenericClass-Captions - 9

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

mit einem simulierten Tastaturereignis aktivieren wollen, muissen Sie die
Methode KbdEventWithScancode (anstelle von KbdEvent) verwenden. Details
dazu finden Sie im Handbuch Themen, Kapitel 14.3 (Simulieren von Tastatur-
ereignissen).

Um die gewtinschte Tasten-Kombination fiir den Shortcut zu definieren ist manch-
mal etwas Experimentieren erforderlich. Die folgenden Beispiele demonstrieren
die typischen Falle.

Beispiel: Ausschneiden (Ctrl-X) und Kopieren (Citrl-C).

Die Verwendung von KSM_PYHSICAL stellt sicher, dass die Kirzel auch
funktionieren, wenn die Shift-Lock Taste eingerastet ist. Beachten Sie, dass die
Codes der Kleinbuchstaben angegeben werden.

Button CutButton
Caption$ = "Ausschneiden", 0
ActionHandler = DoCut '’ ButtonAction
kbdShortcut = KSM CTRL + KSM PHYSICAL + ASC("x")
End OBJECT

Button CopyButton
Caption$ = "Kopieren" , 0
ActionHandler = DoCopy ' ButtonAction
kbdShortcut = KSM CTRL + KSM PHYSICAL + ASC("c")
End OBJECT

Beispiel: Umsch Ctrl A

Um die Umschalttaste in einen Shortcut aufzunehmen kénnen Sie entweder den
ASCII-Code eines GroBbuchstaben angeben oder einen Kleinbuchstaben mit dem
Flag KSM_SHIFT kombinieren. In beiden Féallen missen sie zusatzlich das Flag
KSM_PHYSICAL setzen, weil der Tastaturtreiber die Shift-Taste bereits beim
Erzeugen des ASCII-Codes verarbeitet.

kbdShortcut = KSM CTRL + KSM PHYSICAL + ASC("A")
kbdShortcut = KSM CTRL + KSM SHIFT + KSM PHYSICAL +
ASC("a")

Beispiel F12

Wenn Sie eine Steuertaste oder eine F-Taste als Shortcut setzen wollen
bendtigen Sie den entsprechenden "erweiterten" ASCII-Code. Diese Codes sind in
der Library "KeyCodes" definiert. Suchen Sie im Wizzard der Library unter
"GetKey: Steuertasten" den passenden Code heraus. Sie missen aber unbedingt
beachten, dass die Codes alle 8 héherwertigen Bits gesetzt haben. Deswegen
mussen Sie die 4 hdchstwertigen Bit mit der Operation "code AND &hFFF"
ausblenden.

GenericClass-Captions - 10

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

In der Library "KeyCodes" ist folgendes definiert:
CONST KEY F12 = &hFF8B

Ul Code
Include "KeyCodes"

Button MyButton
= oo =

kbdShortcut = KEY F12 AND &hFFF
End OBJECT

Alternativ kénnen Sie auch direkt den Code, aber ohne die héherwertigen 4 Bit,
angeben:

kbdShortcut = &hF8B

Um Strg-F12 als Shortcut zu setzen verwenden Sie eine der folgenden Zeilen. Die
Klammern sind wichtig!

kbdShortcut = (KEY F12 AND &hFFF) + KSM CTRL
bzw.

kbdShortcut = &hF8B + KSM_CTRL

Beispiel: ESC
Ein haufiger Fall ist das Verwenden der ESC-Taste fur "Abbrechen" oder
"Beenden". Die ESC-Taste ist eine erweiterte Taste und hat den Code &hFF1B.
Um die ESC-Taste einem Button als Tastenkiirzel zuzuweisen verwenden Sie
eine der folgenden Zeilen:

kbdShortcut = KEY ESC AND &hFFF
bzw.

kbdShortcut = &hF1B

kbdSearchPath

Damit die Keyboard Shortcuts arbeiten kénnen missen die entsprechenden
Objekte im "Suchpfad" fir Keyboard Shortcuts sein. Primaries, Menls und Button
sind per Default im Suchpfad. Aus Effizienzgrinden ist das fir die meisten
anderen Objekte nicht der Fall. Wenn lhre Keyboard Shortcuts nicht arbeiten
mussen Sie das Objekt, sein Parent, dessen Parent usw. in den Suchpfad
aufnehmen indem Sie die Instancevariable kbdSearchPath auf TRUE setzen.

Syntax Ul-Code: kbdSearchPath = TRUE | FALSE
Lesen: <numVar> = <obj>. kbdSearchPath
Schreiben: <obj>. kbdSearchPath = TRUE | FALSE

GenericClass-Captions - 11

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.2 Objekt States

Variable Syntax im Ul-Code Im BASIC-Code
visible visible = TRUE | FALSE lesen, schreiben
fullyVisible — nur lesen
enabled enabled = TRUE | FALSE lesen, schreiben
fullyEnabled — nur lesen
readOnly readOnly = TRUE | FALSE lesen, schreiben
Methode Aufgabe

HideDelayed visible = FALSE mit verzégertem Bildschirmupdate
ShowDelayed visible = TRUE mit verzégertem Bildschirmupdate

visible, fullyVisible,

Die Instance-Variable visible (engl.: sichtbar) bestimmt, ob das Objekt und seine
Children auf dem Schirm erscheinen oder nicht. Wenn Sie ein Objekt auf nicht
sichtbar (visible = FALSE) setzen, so wird es einschlieBlich seiner Children vom
Schirm verschwinden. Das bedeutet im Umkehrschluss, dass ein Objekt
verborgen sein kann, auch wenn es auf visible gesetzt ist. Um wirklich sichtbar zu
sein, muss ein vollstandiger Pfad von sichtbaren (visible = TRUE) Objekten bis
zum (ebenfalls sichtbaren) Application-Objekt flihren. Dieser Zustand heift
fullyVisible (= vollstandig sichtbar) und kann im BASIC-Code abgefragt werden.
Jedes Objekt, das nicht explizit auf visible = FALSE gesetzt ist, ist per Default
visible.

Syntax Ul-Code: visible = TRUE | FALSE
Lesen: <numVar> = <obj>. visible
Schreiben: <obj>.visible = TRUE | FALSE

Syntax Lesen: <numVar> = <obj>. fullyVisible

Beispiele: siehe unten.

HideDelayed, ShowDelayed

Andert man zur Laufzeit den visible-Status eines Objekts, so verschwindet das
Objekt sofort bzw. erscheint sofort. Das kann zu unerwiinschtem Flackern des
Bildschirms fuhren, z.B. wenn Sie mehrere Anderungen vornehmen oder ein
Objekt nur kurzzeitig auf visible = FALSE setzen wollen, um bestimmte
Anderungen vorzunehmen. HideDelayed setzt das Objekt auf visible = FLASE,
ohne es sofort vom Schirm zu nehmen. ShowDelayed setzt entsprechend das
Objekt auf visible = TRUE, ohne es sofort neu zu zeichnen.

GenericClass-States - 12

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

In jedem Fall wird das Objekt spatestens dann neu dargestellt (oder vom Schirm
genommen), wenn der Action-Handler, in dem die ~Delayed-Methode aufgerufen
wurde, beendet ist.

Sie kénnen HideDelayed und ShowDelayed beliebig mit dem direkten Belegen der
Instancevariable visible mischen. Die héaufigste Variante ist das Aufrufen von
HideDelayed, danach z.B. das Hinzufligen oder entfernen von Children (bis hier
passiert auf dem Bildschirm nichts) und abschlieBend setzen von visible = TRUE.
Erst jetzt stellen sich die Objekte in der neuen Konfiguration neu dar.

Syntax: <obj>. HideDelayed
<obj>. ShowDelayed

enabled, fullyEnabled

Ein Objekt ist enabled (engl.: aktiviert), wenn der Nutzer damit interagieren kann.
Objekte, die nicht enabled sind, zeichnen sich Ublicherweise in grau. Wenn Sie ein
Objekt auf nicht enabled (enabled = FALSE) setzen, so werden auch alle seiner
Children nicht enabled erscheinen, auch wenn ihre eigene Instance-Variable
enabled auf TRUE steht. Um wirklich enabled zu sein, muss ein vollstandiger Pfad
von enabled Objekten bis zum (ebenfalls enabled) Application-Objekt fluhren.
Dieser Zustand heif3t fullyEnabled (= vollstdndig enabled) und kann im BASIC-
Code abgefragt werden.

Jedes Objekt, das nicht explizit auf enabled = FALSE gesetzt ist, ist per Default
enabled.

Syntax Ul-Code: enabled = TRUE | FALSE
Lesen: <numVar> = <obj>. enabled
Schreiben: <obj>.enabled = TRUE | FALSE

Syntax Lesen: <numVar> = <obj>. fullyEnabled

Beispiele: siehe unten.

readOnly

Ein readOnly (engl.: nur lesen) Objekt ignoriert Texteingaben vom Nutzer. Das ist
nur fir Objekte, die prinzipiell Texteingaben entgegennehmen kdénnen, von
Bedeutung. Andere Objekte, wie Buttons, ignorieren den readOnly Wert. Das heiB3t
konkret, dass das Setzten einer Group oder eines ahnlichen Objekts auf readOnly
nicht dazu fihrt, dass deren Children (z.B. Texte) readOnly werden.

ReadOnly Objekte ignorieren nur Eingaben vom Nutzer, es ist daher trotzdem
moglich alle Instance-Werte eines readOnly-Objekts vom BASIC-Code aus zu
andern.

GenericClass-States - 13

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: readOnly = TRUE | FALSE
Lesen: <numVar> = <obj>. readOnly
Schreiben: <obj>.readOnly = TRUE | FALSE

Beispiele
Der Ul-Code definiert eine Gruppe, die ein readOnly Text Objekt und ein auf "nicht
enabled" gesetztes Value Objekt enthalt.
Group MyInputGroup
Children = MyText, MyValue
< .. weitere instances.. >
End Object

Memo MyText
readOnly = TRUE
text$ = "Hallo Welt!"
< .. weitere instances.. >
End Object

Value MyValue
enabled = FALSE
< .. weitere instances.. >
End Object

Der folgende BASIC-Code andert einige Dinge. Es wird vorausgesetzt, dass die
Buttons, deren ActionHandler hier implementiert werden, irgendwo definiert sind.

ButtonAction VersteckeGroup
MyGroup.visible = FALSE
End Action

ButtonAction MacheTextEditierbar
MyText.readOnly = FALSE
END Action

ButtonAction SchalteValueEnabeldStateUm
If MyValue.enabled = FALSE THEN
MyValue.enabled = TRUE
ELSE
MyValue.enabled = FALSE
END IF
END Action

ButtonAction SchreibeEtwasText

IF MyText.readOnly THEN

MyText.text$ = "Der Text ist read only."
ELSE

MyText.text$ = "Sie konnen den Text andern."
END TIF

END Action

GenericClass-States - 14

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3 Geometriemanagement

3.3.1 Uberblick

Die vernlnftige Positionierung der UI-Objekte auf dem Schirm ist eine der
aufwéandigsten Aufgaben in einer grafischen Programmierumgebung. Der
Einsteiger wird annehmen, dass es zweckmaBig sei, fir jedes Objekt die Position
und GroBe explizit anzugeben. Auch wenn dies unter GEOS mdglich ist, so ist es
fir generische Objekte jedoch eine sehr schlechte Idee. Neben dem hohen damit
verbundenen Aufwand kommt es schnell zu unschénen Resultaten, wenn der
User eine andere Bildschirmauflésung, einen anderen Textfont oder GrdBe flr den
Standard-Menu-Text in der GEOS.INI eingestellt hat. Die folgenden Bilder zeigen
einige schlechte Beispiele.

[=IEZ[Fixed Position | - [[IEZ[Fixed Position [- [
Datet || |patei |

Im linken Bild haben der Text und der Button rechts oben eine feste Position, das
Primary-Objekt wurde jedoch mit der Maus "zu klein" eingestellt. Das rechte Bild
zeigt manuell deutlich fehlplatzierte Objekte.

Diese Bilder demonstrieren die Wirkung einer festen GrdBe in Pixel flr die oberen
Buttons. Im rechten Bild wurde eine vergréBerte Systemschrift verwendet.

Die Lésung fur diese Probleme heiBt GEOS-Geometrie-Manager. Der Geometrie-
manager berechnet automatisch die GréBe und Position der Objekte, so dass sie
vollstdndig und verninftig auf dem Schirm angeordnet werden. Das passiert zur
Laufzeit des Programms, so dass unterschiedliche Textfonts und GréBen sowie
andere Randbedingungen automatisch bertcksichtigt werden. Anstatt festzulegen,
wo sich die Objekte befinden sollen und wie groB3 sie sind, geben Sie dem
Geometriemanager nur Hilfen der Form "Ordne die Objekte nebeneinander an",
"Mache das Objekt so breit wie moglich", "Zentriere die Objekte horizontal" usw.
Dieses Konzept erfordert anfangs etwas Eingewdhnung, aber Sie werden schnell

GenericClass-Geometrie - 15

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

merken, dass es sehr systematisch und intuitiv zu benutzen ist. Sehr hilfreich ist
es dabei, die Objekte in Gruppen anzuordnen und die Positionierung der Objekte
innerhalb dieser Gruppen auszufuhren.

Diese Anwendung beispielsweise besteht aus einer Group (rot, oben) und einer
Replybar (unten), die vertikal (untereinander) angeordnet sind. Die rot markierte
Gruppe besteht aus einem Text-Objekt und einer weiteren Group, hier blau
markiert. Beide Objekte sind horizontal angeordnet. Die rechte (blaue) Group
enthalt letztlich die Action-Buttons, die untereinander angeordnet sind. Sollte Sie
z.B. die Aufschrift des zweiten Buttons veradndern, so dass er breiter wird, dann
wird der Geometriemanager automatisch alle betroffenen Objekte (beide Group’s,
das Hauptfenster und die ReplyBar) verbreitern. Eine explizite GréBenangabe ist
da nur stérend.

Anweisungen an den Geometriemanager sind als "Hints" - das heiBt "Hilfen" - fr
den Geometriemanager organisiert. Das bedeutet, Sie zwingen den
Geometriemanager nicht, etwas zu tun, sondern Sie bitten ihn. Der Geometrie-
manager wird versuchen, lhre Anweisungen so gut wie mdglich umzusetzen.
Manchmal kann ihm das jedoch nicht gelingen. Beispielsweise konnten Sie
widerspruchliche Forderungen aufgestellt haben. Das ist einer der hé&ufigsten
Fehler bei diesem Konzept. Es kann aber auch sein, dass bestimmte Objekte
einige Eigenschaften oder Fahigkeiten einfach nicht unterstitzen. So ist es bei
Buttons nicht méglich, die Aufschrift (Caption$) oberhalb des Buttons anzuordnen,
die meisten anderen Objekte unterstitzen dies aber. Oder Primary-Objekte (die
Hauptfenster eines Programms) ignorieren die Vorgabe einer festen GréBe mit
"fixedSize", aber sie akzeptieren "WindowSizeFromParent". Gelegentlich kann es
daher etwas mit Probieren verbunden sein, den Geometriemanager zu Uberreden,
das zu tun, was man will.

Die Organisation der Geometrie-Eigenschaften als "Hints" hat noch eine andere
Konsequenz. Jede Eigenschaft, die Sie vorgeben, kostet einige (wenige) Bytes.
Eigenschaften, die nicht explizit angegeben werden, sind auch nicht im Objekt
gespeichert. Der Geometriemanager nimmt dann den fir das Objekt giltigen
Vorgabewert. So ordnen Groups ihre Children untereinander linksbiindig an, wenn
kein Wert fur "orientChildren" und "justifyChildren" vorgegeben wird. Intern ist das
so organisiert, dass den eigentlichen Objekt-Daten (Instance-Daten) eine Tabelle
variabler Langer folgt, in die die Geometrie-Instance-Daten (Geometrie-Hints)
abgelegt sind.

GenericClass-Geometrie - 16

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Wird z.B. kein Eintrag fur "fixedSize" vorgenommen, so sind die entsprechenden
Daten einfach nicht da, das Objekt kommt gar nicht auf die Idee, sich eine feste
GroBe zu leisten.

Bei vielen der Geometrie-Instance-Daten kann man auch abfragen, ob die Daten
prasent sind oder nicht.

3.3.2 Angabe von GréBen, Positionen und Abstanden

GroBen, Positionen oder Abstadnde werden haufig in Pixeln angegeben. Manchmal
ist das aber gar nicht sinnvoll, es ist z.B. oft viel besser zu sagen "Mache den Text
5 Textzeilen hoch". Um so etwas zu kennzeichnen wird zum eigentlichen
Zahlenwert (hier 5) eine groBe Konstante addiert, so dass GEOS weil3, das nicht
Pixel sondern Textzeilen gemeint sind. Dabei stehen die folgenden Werte zur
Verfligung:

Konstante Wert Werte gemessen in:
ST_PIXELS 0 Pixel
ST_AVG_CHAR_WIDTH 4096 mittlere Zeichenbreite
ST_MAX_CHAR_WIDTH 5120 maximale Zeichenbreite
ST_LINES_OF_TEXT 6144 Textzeilen Hohe
ST_PCT_OF_SCREEN_WIDTH | 2048 Prozent der Bildschirmbreite
ST_PCT_OF_SCREEN_HEIGHT| 3072 Prozent der Bildschirmhdhe
1024 (Reserviert, nicht benutzen!)

Grundsiétzlich gilt: Gr6Benangaben kénnen im Bereich von 0 bis 1023 (jeweils
einschlieBlich) liegen. Ausnahme bilden die _PCT_ (engl. percent: Prozent) -
Konstanten. Hier liegen die Werte sinnvollerweise von 0 bis 100.

ST_PIXELS

Dies ist der Standard. Da der Wert Null ist, muss er nicht addiert werden.
Achtung! Sie kénnen mit ST_PIXELS nur GréBen bis maximal 1023 Pixel
spezifizieren, da der Wert 1024 vom System reserviert ist!

ST_AVG_CHAR_WIDTH

Der Wert wird mit der mittleren Breite eines Text-Zeichens multipliziert. GEOS
verwendet Ublicherweise Proportionalfonts, in dem jedes Zeichen eine andere
Breite hat. Die erzeugte GréBe hangt also vom verwendeten Font ab.

ST_MAX_CHAR_WIDTH
Der Wert wird mit der Breite des breitesten Text-Zeichens multipliziert. Die
erzeugte GréBe hangt also hangt vom verwendeten Font ab.

ST_LINES_OF_TEXT

Der Wert wird mit der Hohe einer einzelnen Text-Zeile multipliziert. Die erzeugte
GroBe hangt also von der verwendeten TextgréBe ab.

GenericClass-Geometrie -17

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Anmerkung: Die Bezeichnung der Konstante wurde geandert. Die alte
Bezeichnung ST_TEXT_LINES kann weiterhin verwendet werden.

ST_PCT_OF_SCREEN_WIDTH
GréBe entspricht einem Prozentsatz der Bildschirmbreite. Das ist z.B. nutzlich fir
Dialogboxen.

ST_PCT_OF_SCREEN_HEIGHT
GréBe entspricht einem Prozentsatz der Bildschirmhdhe. Das ist z.B. nutzlich fir
Dialogboxen.

Beispiel: feste GrdBe fir ein Textobjekt vorgeben

Memo MyText
fixedSize = 45 + ST AVG CHAR WIDTH, 8 + ST LINES OF TEXT
<.. weitere Instance-Variablen.. >

END object

Hinweis: Fur Fenster-Objekte (Primary, Dialog, Display) gibt es spezielle Hints
zum Festlegen der GréBe, die sogenannten Window-Hints. Sie sind im Kapitel
3.3.7 beschrieben.

GenericClass-Geometrie -18

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.3 Anordnung der Objekte

Die Anweisungen zum Anordnen der Objekte sind die wohl am hé&ufigsten
genutzten Anweisungen im Geometriemanagement. Dabei wird dem Parent-
Objekt mitgeteilt, wie es seine Children zu organisieren hat. Sie kénnen z.B.
festlegen ob die Children neben oder untereinander angeordnet werden und wie
sie ausgerichtet werden sollen (linksblindig, rechtsbiindig, zentriert usw.). Die
folgenden Hints stehen zur Verfligung:

Hint Syntax im Ul-Code Im BASIC-Code
orientChildren orientChildren = numWert lesen, schreiben
justifyChildren justifyChildren = numWert lesen, schreiben
childSpacing childSpacing = numWert lesen, schreiben
MinimzeChildSpacing MinimzeChildSpacing —
IncludeEndsInChildSpacing | IncludeEndsInChildSpacing | —
wrapAfterChild wrapAfterChild = numWert lesen, schreiben
DivideHeightEqually DivideHeightEqually —
DivideWidthEqually DivideWidthEqually —

3.3.3.1 Orientierung und Ausrichtung

orientChildren

OrientChildren legt fest, ob die Children-Objekte nebeneinander oder
untereinander angeordnet werden.

Syntax Ul- Code: orientChildren = numWert
Lesen: <numVar> = <obj> . orientChildren
Schreiben: <obj>.orientChildren = numWert

Dabei stehen folgende Konstanten zur Verfigung. Sie kdnnen jeweils nur eine
Konstante angeben, eine Kombination (mit +) ist nicht zuléssig.

Konstante Wert Bedeutung
ORIENT_HORIZONTALLY 1 nebeneinander
ORIENT_VERTICALLY 2 untereinander
ORIENT_SAME_AS_PARENT 4 genauso, wie das Parent-
Objekt der Children
ORIENT_ON_LARGER_DIMENSION 8 nebeneinander, wenn der
Bildschirm breiter als hoch
ist, sonst untereinander

Beispiele: siehe unten

GenericClass-Geometrie - 19

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

justifyChildren

JustifyChildren legt fest, wie die Children-Objekt relativ zueinander angeordnet
werden.

Syntax Ul- Code: justifyChildren = numWert
Lesen: <numVar> = <obj> . justifyChildren
Schreiben: <obj>.justifyChildren = numWert

Dabei stehen folgende Konstanten zur Verflgung. Sie kénnen mehrere
Konstanten kombinieren (mit +), solange dies sinnvoll ist. Ungultige Werte werden
ignoriert, bei widersprichlichen Werten entscheidet der Geometriemanager.

Konstante Wert Bedeutung

J_LEFT 2 linksblndig

J_RIGHT 4 rechtsblindig

J_TOP 8 am oberen Rand

J_BOTTOM 16 am unteren Rand

J_FULL_H 64 volle Breite, horizontal

J_FULL_V 128 volle Hb6he, vertikal

J_CENTER_H 256 horizontal zentriert

J_CENTER_V 512 vertikal zentriert

J_CENTER_ON_CAPTION 1024 am Caption$ ausgerichtet

J_CENTER_ON_CAPTION_LEFT 2048 am Caption$ ausgerichtet

J_CENTER 1 wie J_CENTER_H und
J_CENTER_V gleichzeitig

J_FULL 32 wie J_FULL_H und
J_FULL_V gleichzeitig

Bemerkungen zu einigen der Konstanten:

J_FULL_H, J_FULL_V

~ Die Children sollen die volle Breite/Hohe des Parent-Objekts ausschopfen
und den freien Platz gleichméaBig zwischen sich aufteilen. Ein Beispiel finden
Sie bei den drei unteren Buttons im néchsten Bild. Das ist analog zum
Blocksatz bei einer Textverarbeitung. Dazu muss das Parent-Objekt aber
gréBer sein, als die Children erfordern. Oft missen Sie dazu die Hints
ExpandWidth bzw. ExpandHeight (siehe nachster Abschnitt) setzen.

GenericClass-Geometrie -20

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

[:l? Center On Caption |_|F I:I? Center On Caption I_IF

J_CENTER_ON_CAPTION, J_CENTER_ON_CAPTION_LEFT
Die Texte in den beiden Bildern oben sind "ON_CAPTION" ausgerichtet. Der
Ul-Code flir die obere Group im linken Bild ist:

Group TopGroup
Children = Textl, Text2, Text3
orientChildren = ORIENT VERTICALLY
justifyChildren = J CENTER ON CAPTION
END Object

Im rechten Bild dagegen ist:
justifyChildren = J CENTER_ON CAPTION LEFT

J_CENTER, J_FULL
Diese Werte werden von R-BASIC intern in die beiden _H und _V Werte
umgerechnet, d.h. statt 1 wird 256+512 und statt 32 wird 64+128 in den
Objekt-Daten gespeichert. Das ist wichtig, falls Sie den Wert flr
justifyChildren auslesen und auf bestimmte Konstanten testen wollen.

Beispiele fir ausgerichtete Objekte

Wir verwenden folgende Buttons:

Button RomanButton
Caption$ = "Roman"
END Object

Button SansButton
Caption$ = "Sans-Serif"
END Object

Button MonoButton
Caption$ = "Mono"
END Object

GenericClass-Geometrie - 21

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Gruppen zur Ausrichtung der Objekte

Group Groupl
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT VERTICALLY
justifyChildren = J LEFT
END Object

Group Group?2
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT VERTICALLY
justifyChildren = J RIGHT
END Object

Group Group3
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_ HORIZONTALLY
justifyChildren = J TOP
END Object

:

|

Group Group4
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT HORIZONTALLY

justifyChildren = J BOTTOM
END Object |

Beispiel zur Objekt-Zentrierung

Group Groupl
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT VERTICALLY
justifyChildren = J CENTER H
END Object

e
=
=

Group Group?2
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_ HORIZONTALLY

justifyChildren = J CENTER V
END Object

Group Group3
Children = MonoButton
justifyChildren = J _CENTER H + J CENTER V
END Object

[Sans-Serir] [Mono]

GenericClass-Geometrie -22

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Group Group4
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT HORIZONTALLY
justifyChildren = J CENTER V + J FULL H

' H und V beachten!

3.3.3.2 Child Spacing

Normalerweise legt der Geometriemanager die Abstdnde zwischen benachbarten
Objekten fest. Sie kdnnen durch das Setzen bestimmter Geometrie-Hints auf
diesen Prozess Einfluss nehmen.

childSpacing

ChildSpacing (engl. space: Platz, Abstand) legt einen Wert fir den Abstand
zwischen benachbarten Children fest. Ublicherweise wird der Wert in Pixeln
angegeben, Sie koénnen aber auch die Werte ST_AVG_CHAR_WIDTH,
ST_MAX_CHAR_WIDTH bzw. ST_LINES_OF_TEXT verwenden (Details dazu
siehe Kapitel 3.3.2). Per Default ist kein childSpacing Wert gesetzt.

Syntax Ul- Code: childSpacing = numWert
Lesen: <numVar> = <obj> . childSpacing
Schreiben: <obj>.childSpacing = numWert
Spezialfall: numWert = —1: Léschen eines vorher
gesetzten childSpacing Hints aus den Objekt-Daten

MinimizeChildSpacing

MinimizeChildSpacing weist den Geometriemanager an, die Children so eng wie
moglich anzuordnen, auch wenn das bedeutet, dass sie sich berthren.

Syntax Ul- Code: MinimizeChildSpacing

Beispiel

0K | change | Exit | 0K | Change | Exit

Eine Group mit 3 Buttons. Links normal, Rechts mit MinimizeChildSpacing.

GenericClass-Geometrie -23

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

IncludeEndsInChildSpacing

IncludeEndsInChildSpacing bewirkt, dass der Platz links und rechts der Children
bei der Positionsberechnung berucksichtigt wird, das linke Child also nicht ganz an
den Rand gesetzt wird.

Syntax Ul- Code: IncludeEndsInChildSpacing

Beispiel
Verschiedene Varianten von childSpacing-Werten

Group Groupl
Children = OKButton, ChangeButton, ExitButton
orientChildren = ORIENT_ HORIZONTALLY

ExpandWidth
= 0K I Change I EXit |
DrawInBox
childspacing = 4 + ST AVG _CHAR WIDTH
END Object

Group Group2
Children = OKButton, ChangeButton, ExitButton
orientChildren = ORIENT HORIZONTALLY

ExpandWidth

DrawInBox _OK | change | Exit |
childSpacing = 12 ' Pixels
IncludeEndsInChildSpacing

END Object

Group Group3
Children = OKButton, ChangeButton, ExitButton
orientChildren = ORIENT HORIZONTALLY

ExpandWidth QKI ghmme' Exﬂl

DrawInBox

justifyChildren = J FULL H
IncludeEndsInChildSpacing
END Object

GenericClass-Geometrie -24

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.3.3 Automatischer Umbruch

wrapAfterChild

StandardméBig ordnen alle Groups, deren Children nebeneinander angeordnet
sind (dazu zahlen auch Reply Bars), alle Children in einer Reihe an. Der Hint
wrapAfterChild erlaubt es, die Children in mehreren Reihen anzuordnen. Damit
dies ordentlich funktioniert ist es oft nétig, der Group und ggf. ihren Parents auch
den Hint ExpandWidth zu geben.

Syntax Ul- Code: wrapAfterChild = numWert
Lesen: <numVar> = <obj>. wrapAfterChild
Schreiben: <obj>.wrapAfterChild = numWert
numWert = — 1: Automatischer Modus
numWert = 0: Hint aus Objektdaten I6schen
numWert =1 .. N : Umbrechen nach N Children

Automatischer Modus:
Es werden so viele Children nebeneinander angeordnet, wie Platz ist. Gege-
benenfalls werden weitere Reihen eréffnet.

Umbrechen nach N Children:
Achtung! Verhalt sich fir normale Groups und fir ReplyBars unterschiedlich!
Normale Groups: Der erste Umbruch erfolgt friihestens nach N Children. Ist
ausreichend Platz erfolgt der erste Umbruch nach Bedarf. Die weiteren
Umbriche folgen nach Bedarf.
Reply Bars: Der Umbruch erfolgt immer nach N children. Auch die n&chsten
Umbriche erfolgen nach jeweils N children.

Hinweis: Der Hint ist nicht auf Primaries, DisplayGroups und Displays anwendbar.
Verwenden Sie ggf. eine Group als Zwischenobjekt.

Beispiel Ul- Code:
Group AGroup

Caption$ = "Action:"

justifyCaption = J_TOP

Children = buttonl, button2, button3
orientChildren = orient horizontally
wrapAfterChild = -1

ExpandWidth

END Object

Group AReplyBar
MakeReplyBar
Children = button4, button5, button6
wrapAfterChild = 1
END Object

GenericClass-Geometrie -25

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Nehmen wir an, die Groups befinden sich in einem Primary-Objekt. Zoomt man
dieses erhélt man die folgenden Bilder:

[FEE[ceometry [=[F
e

3.3.3.4 Vorhandenen Platz gleichmaBig verteilen

DivideWidthEqually

Dieser Hint legt fest, dass sich die Children die vorhandene Breite gleichmaBig
untereinander aufteilen sollen. Damit das funktioniert, missen alle Children den
Hint ExpandWidth gesetzt haben. Auch das Objekt selber sollte ExpandWidth
gesetzt haben.

Syntax Ul- Code: DivideWidthEqually

DivideHeightEqually

Dieser Hint legt fest, dass sich die Children die Héhe gleichm&Big untereinander
aufteilen sollen. Damit das funktioniert, missen alle Children den Hint
ExpandHeight gesetzt haben. Auch das Objekt selber sollte ExpandHeight
gesetzt haben.

Syntax Ul- Code: DivideHeightEqually

GenericClass-Geometrie -26

R-BASIC - Objekt-Handbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Beispiel:

0K

| change | Exit |

0K

ghange

[Exit [

Die Group befinde sich in einem gréBenveranderlichen Primary-Objekt. Im rechten
Bild wurde nur die Breite des Primary Objekts mit der Maus verandert. Hier ist der

Ul-Code dazu:

Group BottomGroup
Children =
orientChildren =
DivideWidthEqually
ExpandWidth
DrawInBox
END Object

Button OKButton

Button ChangeButton

Button ExitButton

Caption$ = " OK ", 1
justifyCaption = J CENTER
ExpandWidth

END Object

Caption$ = " Change ", 1
justifyCaption = J CENTER
ExpandWidth

END Object

Caption$ = " Exit ", 1
justifyCaption = J CENTER
ExpandWidth

END Object

OKButton, ChangeButton, ExitButton
ORIENT HORIZONTALLY

GenericClass-Geometrie -27

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.4 ObjektgroBe

Das Vorschreiben einer bestimmten ObjekigréBe kann sehr oft hilfreich sein, um
das Aussehen Ihres Programms den Erfordernissen anpassen. Gerade bei Listen,
Text-Objekten und View’s kann eine GréBenvorgabe erforderlich sein. Bedenken
Sie aber, dass der Nutzer lhres Programms eine andere Bildschirmauflésung oder
eine andere GroBe fur die Systemtexte eingestellt haben kann. Die Verwendung
von GréBenangaben, die das bericksichtigen (z.B. ST_LINES_OF_TEXT,
ST_AVG_CHAR_WIDTH, siehe Kapitel 3.3.2) ist daher oft eine gute Idee.
Beachten Sie, dass es fur Fenster-Objekte, wie z.B. Primaries, weitere Geometrie-
Hints gibt, die "Window-Hints" wie z.B.
SizeWindowAsDesired

Grundsatzlich gilt, dass Sie die GrdBe eines generischen Objekts nur dann
vorschreiben sollten, wenn es unbedingt erforderlich ist. Dabei stehen lhnen die
folgenden Mdglichkeiten zur Verfligung.

Hint Syntax im Ul-Code Im BASIC-Code
ExpandWidth ExpandWidth —
ExpandHeight ExpandHeight —
NoWiderThanChildren NoWiderThanChildren —
NoHigherThanChildren NoHigherThanChildren —

initialSize initialSize = x, y [, count] lesen, schreiben
minimumSize minimumSize = x, y [, count] | lesen, schreiben
maximumsSize maximumSize = x,y [, count]| lesen, schreiben
fixedSize fixedSize = x, y [, count] lesen, schreiben
xSize — nur lesen

ySize — nur lesen

ExpandWidth, ExpandHeight

Diese Hints bestimmen, dass das Objekt seine Breite (ExpandWidth) bzw. seine
Hoéhe (ExpandHeight) so groB machen soll, dass der gesamte vom Parent zur
Verfigung gestellte Platz ausgenutzt wird. Oftmals hat auch das Parent den
entsprechenden Hints gesetzt.

Syntax Ul- Code: ExpandWidth
ExpandHeight

NoWiderThanChildren, NoHigherThanChildren

Diese Hints bestimmen, dass ein Objekt nicht gréBer werden soll, als nétig ist um
seine Children aufzunehmen.
Anmerkung: Primaries ignorieren NoWiderThanChildren.

GenericClass-Geometrie -28

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Syntax Ul- Code: NoWiderThanChildren
NoHigherThanChildren

initialSize, minimumSize, maximumSize

Diese Hints legen die anféngliche (initialSize), minimale (minimumSize) bzw.
maximale (maximumSize) eines Objekts fest. Das ist haufig natzlich fur groBen-
veranderliche Groups, Dialoge, View-Objekte usw., die die Hints ExpandWidth
und / oder ExpandHeight gesetzt haben. Primary-Objekte unterstiitzen die ~Size-
Hints jedoch nicht.

Syntax: siehe fixedSize

fixedSize

Das ist der wohl am haufigsten verwendete Size-Hint. Er gibt dem Objekt eine
feste GroBe. Achten Sie bei der Auswahl der GréBenangabe auf eine zweck-

maBige "Grundeinheit", z.B. ST_LINES_OF_TEXT oder ST_AVG_CHAR_WIDTH.
Details dazu finden Sie im Abschnitt 3.3.2.

Syntax Ul- Code: fixedSize = width , height [, count]
width: Breite des Objekts
height: H6he des Objekts
count: falls angebracht: "Zahler"
Lesen: <numVar> = <obj>.fixedSize (n)

n =0: Breite
n=1: Héhe
n=2: Count

n = 3: Test ob der Hint gesetzt ist (TRUE)
oder nicht (FALSE)
Schreiben: <obj>.fixedSize = width , height [, count]
Spezialfall: width oder height = —1: Léschen des Hints.

Beachten Sie, dass es sich um Hints (Hilfen fir den Geometriemanager) handelt.
Einige Objekte ignorieren diese Werte. Falls das ein Problem darstellt, ist eine
haufig geeignete Lbésung, das Objekt in eine Group einzuschlieBen. Groups
unterstutzen alle diese Hints.

GenericClass-Geometrie -29

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel:

Group InfoGroup
Children = InfoText, MoreInfoButton
orientChildren = ORIENT VERTICALLY
ExpandWidth
ExpandHeight
DrawInBox
END Object

Memo InfoText
Caption$ = "Information eingeben"
fixedSize = 40 + ST AVG CHAR WIDTH, 5 + ST LINES OF TEXT
END Object

Button MoreInfoButton
Caption$ ="Mehr Infos"
justifyCaption = J CENTER
ExpandWidth
END Object

Der Parameter "count" wird bei Objekten verwendet, die
eine Anzahl an "Unterobjekten" darstellen. Der typische
Fall sind "scrollbare" Listen, wie im Beispiel dargestellt.
Die Liste ist 15 Zeichen breit, 10 Textzeilen hoch und
stellt 10 Eintrage gleichzeitig dar.

DynamicList dynlist
caption$= "DynamicList"
justifycaption = J TOP
< L.0>
fixedSize = 15 + ST AVG_CHAR WIDTH, \

10 + ST LINES OF TEXT, 10
END Object

xSize, ySize

Diese Werte liefern die aktuelle Gr6Be des Objekts in Pixeln. Dabei verwenden sie
eine GEOS-internen Struktur, die im PC/GEOS-SDK "visBounds" heif3t. Diese
Struktur speichert die Position und GréBe des Rechtecks, dass das gesamte
Objekt umschlieBt. Das umfasst auch einen eventuell automatisch um das Objekt

GenericClass-Geometrie - 30

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

gezogenen Rahmen oder die "Seiten" eines Buttons. Deswegen kdénnen die von
xSize und ySize gelieferten Werte gréBer sein, als Sie mit fixedSize festgelegt
haben. AuBerdem sind die Werte nur glltig, solange das Objekt auch dem Schirm
ist. Dabei darf es auch im Hintergrund oder von anderen Objekten verdeckt sein.
Aber fur Objekte, die auf visible = FALSE gesetzt oder nicht im generic Tree sind,
sind die Werte mdglicherweise ungultig.

Syntax Lesen: <numVar> = <obj>.xSize
<numVar> = <obj>.ySize

Anmerkung: Die Instancevariablen xSize und ySize sind nicht nur fur Generic-
Class Objekte, sondern auch fir VisualClass Objekte (siehe Kapitel 5 des
Objekthandbuchs) definiert.

GenericClass-Geometrie - 31

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.5 Positionierung der Objekte

Die Positionierung der generischen Objekte ist eine der elementaren Aufgaben
des Geometriemanagers. Sie sollten hier nur eingreifen, wenn es unbedingt sein
muss. Folgende Méglichkeiten zur Verfigung:

Hint Syntax im Ul-Code Im BASIC-Code

placeObject placeObject = numWert lesen, schreiben

fixedPosition fixedPosition = x, y lesen, schreiben

xPosition — nur lesen

yPosition — nur lesen
placeObject

Dieser Hint ermdglicht es Ihnen, Objekte an Stellen zu platzieren, auf die Sie sonst
keinen Zugriff hatten. Dazu stehen die folgenden Konstanten zur Verfligung. Sie
durfen jeweils nur eine Konstante verwenden, eine Kombination (mit +) ist nicht
zulassig.

Konstante Wert Bedeutung
MENU_BAR 1 Objekt in der Menilileiste platzieren
REPLY_BAR 2 Objekt in der Replybar platzieren
TITLE_BAR_LEFT 4 Objekt links in der Titelzeile platzieren
TITLE_BAR_RIGHT] 8 Objekt rechts in der Titelzeile platzieren
16 - 512 reserviert fur Views. Siehe dort.
MENU_BAR

Platziert das Objekt in der Menlizeile eines Primary-Objekts. Das Objekt muss
dazu direktes Child des Primary-Objekts sein.

REPLY_BAR

Platziert das Objekt in einer automatisch erzeugten Replybar eines Dialog-
Objekts. Das Objekt muss dazu direktes Child des Dialog-Objekts sein. Existiert
keine automatisch erzeugte Replybar, so ist dieser Wert wirkungslos.

TITLE_BAR_LEFT, TITLE_BAR_RIGHT

Platziert das Objekt auf der linken (TITLE_BAR_LEFT) oder der rechten
(TITLE_BAR_RIGHT) Seite der Titelzeile eines Primary- oder Display-Objekts.
Das Objekt muss dazu direktes Child des Primary- oder Display-Objekts sein.

Syntax Ul- Code: placeObject = position
position: Wert aus der Tabelle oben
Lesen: <numVar> = <obj>.placeObject
Schreiben: <obj>.placeObject = position
Spezialfall: position = 0: Léschen des Hints.

GenericClass-Geometrie - 32

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

fixedPosition

Dieser Hint schreibt die Position eines Objekts relativ zu seinem Parent fest.
FixedPosition ist extrem hoch priorisiert. Verwenden Sie diesen Hint fir
generische Objekte nur im &uBersten Notfall, da der Geometriemanager ihn auch
dann befolgt, wenn er unsinnige Ergebnisse hervorruft und Teile des
automatischen Geometriemanagements auB3er Kraft gesetzt werden kénnen.

Syntax Ul- Code: fixedPosition = xPos , yPos
Lesen: <numVar> = <obj>.fixedPosition (n)
n=0: xPos
n=1: yPos
n =2: Test ob der Hint gesetzt ist (TRUE)
oder nicht (FALSE)
Schreiben: <obj>.fixedPosition = xPos , yPos
Spezialfall: xPos oder yPos = —1: Léschen des Hints.

xPosition, yPosition

Diese Werte liefern die aktuelle Position des Objekts. Dabei verwenden sie eine
GEOS-internen Struktur, die im PC/GEOS-SDK "visBounds" hei3t. Damit gelten
die gleichen Einschréankungen, die bei xSize und ySize oben beschrieben wurden.
Die mit xPosition und yPosition gelesenen Werte werden fir generische Objekte
regelméaBig von den eventuell mit fixedPosition gesetzten Werten abweichen, da
fixedPosition die Position relativ zum Parent-Objekt setzt, die visBounds sich
jedoch Ublicherweise auf das zugehdrige "Window" (Primary, Dialog..) beziehen.

Syntax Lesen: <numVar> = <obj>.xPosition
<numVar> = <obj>.yPosition

Anmerkung: Die Instancevariablen xPosition und yPosition sind nicht nur fir
GenericClass Objekte sondern auch fir VisualClass Objekte (siehe Kapitel 5 des
Objekthandbuchs) definiert.

GenericClass-Geometrie - 33

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.6 Spezielle Attribute

Die hier beschriebenen Hints sind zwar auf GenericClass Ebene definiert, zeigen
jedoch nicht bei allen Objekten eine Wirkung. Die Objekte, fur die sie am
h&ufigsten verwendet werden sind unten jeweils mit angegeben.

Hint Syntax im Ul-Code Im BASIC-Code
DrawlInBox DrawInBox —
MakeToolbox MakeToolbox —
MakeReplyBar MakeReplyBar —
tColor tColor = color lesen, schreiben
bgColor bgColor = col1, col2 lesen, schreiben
NoSeparatorLine NoSeparatorLine —

DrawlInBox

Dieser Hint zeichnet einen Rahmen um ein Objekt. Er wird sehr haufig fur Group-
Objekte und Listen-Objekte verwendet.

Syntax Ul-Code: DrawlnBox

MakeToolbox

Dieser Hint bewirkt, dass das ein Group-Objekt seine Children als "Werkzeug-
leiste" (engl. tool box = Werkzeugkasten) darstellt. Viele Objekte stellen sich als
"Tool" anders dar, wobei die Funktionalitat aber nicht geéndert wird.

Syntax Ul-Code: MakeToolbox

Beispiele:
Eine Group mit DrawlnBox gesetzt. Rechts ist auBerdem MakeToolbox gesetzt.

Der Ul-Code dazu:

Group AReplyBar
Children OKButton, ExitButton
orientChildren ORIENT HORIZONTALLY
DrawInBox
ExpandWidth
MakeToolbox
END Object

GenericClass-Geometrie - 34

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Ein Listen-Objekt (RadioButtonGroup), links ohne, rechts mit MakeToolBox:
I: Eigenschaften auswahlen

I: Eigenschaften auswahlen
-0-|-1-]-2-[-3- -4-][-5-

. Bnwende || Schiesen |

MakeReplyBar

Eine ReplyBar ist die Kontroll-Leiste mit den Buttons OK, Abbrechen usw., die sich
in vielen Dialogboxen findet. Die Children werden automatisch auf eine spezielle
Weise angeordnet.

Syntax Ul-Code: MakeReplyBar

Group AReplyBar
Children = OKButton, ExitButton

MakeReplyBar _
END Object I |

tColor, bgColor

Einige Objekte, insbesondere Buttons und Listeneintrdge von scrollbaren Listen,
unterstltzen farbigen Caption-Text (tColor) und farbige Hintergriinde (bgColor). Es
gibt dabei zwei Hintergrundfarben: eine fir den "unselektierten" und eine fir den
"selektierten" Zustand.

Syntax Ul-Code: tColor = color
color: Text-Farbe. Es muss eine Indexfarbe sein.
RGB-Farben werden nicht unterstitzt.
bgColor = coli, col2
col1: Unselektierte Farbe. (ebenfalls nur Indexfarbe)
col2: Selektierte Farbe. (ebenfalls nur Indexfarbe)
Lesen: <numVar> = <obj>.tColor
Liefert —1, wenn Hint nicht gesetzt ist
<numVar> = <obj>.bgColor (n)
n=0: unselektierte Farbe (col1)

GenericClass-Geometrie - 35

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

n=1: selektierte Farbe (col2)
Liefert —1, wenn Hint nicht gesetzt ist
Schreiben: <obj>.tColor = color
color = —1 I6scht den Hint
<obj>.bgColor = coli, col2
col1 oder col2 = —1 I16scht den Hint

NoSeparatorLine

Dieser Hint beeinflusst nur Groups, die in ein Menu eingebunden sind. Per Default
werden sie durch eine Trennlinie abgegrenzt. Damit bekommt das Menu eine
bessere Struktur. Dieser Hint entfernt diese Trennlinie.

Syntax Ul-Code: NoSeparatorLine

GenericClass-Geometrie - 36

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.7 Spezielle Hints fir Window-Objekte

Die hier beschriebenen Hints sind zwar auf GenericClass Ebene definiert, zeigen
jedoch nur bei Window-Objekten wie Primaries, Displays und Dialogen eine
Wirkung. Ob ein bestimmter Hint in einer konkreten Situation die beabsichtigte
Wirkung hat missen Sie ausprobieren.

Far Primaries wird z.B. sehr h&ufig der Hint SizeWindowAsDesired verwendet
um die Gr6Be des Programmfensters auf das erforderliche MafB3 zu beschranken.

3.3.7.1 Aussehen und Verhalten anpassen

Hint Syntax im Ul-Code Im BASIC-Code

NoSysMenu NoSysMenu —

NoTitleBar NoTitleBar —

WindowNotMovable WindowNotMovable —
NoSysMenu

NoSysMenu entfernt das Systemmenu von einem Window-Objekt. Achtung! Mit
dem Systemmenu entfernen Sie eventuell den Zugriff auf wichtige Funktionen des
Programms!

Syntax Ul-Code: NoSysMenu

NoTitleBar

NoTitleBar entfernt die Titelzeile von einem Window-Objekt. Achtung! Mit der
Titelzeile entfernen Sie eventuell den Zugriff auf wichtige Funktionen des
Programms!

Syntax Ul-Code: NoTitleBar
Beispiel
== titesar [||@F TileBar
Datei Datei .
JE A e
» Datei |

Ein Primary-Objekt: links normal, rechts mit NoSysMenu gesetzt und unten mit
NoTitleBar gesetzt (die Icons im Hintergrund sind jetzt sichtbar).

GenericClass-Geometrie - 37

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Der UI-Code fir das rechte Bild sieht so aus:

Primary APrimary
SizeWindowAsDesired
NoTitleBar
Caption$ = "Title Bar"
' wird ignoriert, weil es keine Title Bar mehr gibt :-)
<io 0. >
END Object

WindowNotMovable

Dieser Hint verhindert, dass ein Fenster, dass normalerweise auf dem Bildschirm
verschieblich ist, nicht mehr verschoben werden kann. Sie sollten diesen Hint
vorsichtig einsetzten.

Syntax Ul-Code: WindowNotMovable

3.3.7.2 Anfangliche GroBe festlegen

Die hier beschriebenen Hints legen die GréBe eines Fenster-Objekts fest, wenn es
erstmalig ged6ffnet wird. Sie sind nur im Ul Code zulassig.

Hint Syntax im Ul-Code

SizeWindowAsDesired SizeWindowAsDesired

ExtendWindowToBottomRight ExtendWindowToBottomRight

ExtendWindowNearBottomRight ExtendWindowNearBottomRight

WindowSizeFromParent WindowSizeFromParent = relX, relY

WindowSizeFromScreen WindowSizeFromScreen = relX, relY
SizeWindowAsDesired

Dieser Hint verhindert, dass Fenster, oftmals ein Primary-Objekt, am Anfang
gréBer wird, als die Children es bendtigen.

Syntax Ul-Code: SizeWindowAsDesired

ExtendWindowToBottomRight

Bewirkt, dass sich das Fenster beim erstmaligen Offnen soweit vergréBert, dass
es bis an den rechten und den unteren Rand des Parent Windows reicht.

Syntax Ul-Code: ExtendWindowToBottomRight

GenericClass-Geometrie - 38

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

ExtendWindowNearBottomRight

Wie ExtendWindowToBottomRight, nur dass unten ein kleiner Bereich freige-
lassen wird.

Syntax Ul-Code: ExtendWindowNearBottomRight

WindowSizeFromParent

Dieser Hint bewirkt, dass die GréBe eines neu getffneten Fensters relativ zu
seinem Parent-Window festgelegt wird. Beachten Sie, dass das nicht identisch mit
dem Parent-Objekt im GenericClass Tree sein muss. Fur Dialoge und Primaries ist
das Parent Window z.B. der Bildschirm, fir Displays ist es die DisplayGroup.

Syntax Ul-Code: WindowSizeFromParent = relX, relY
relX, relY: relative Gr6Be in Prozent
Erlaubte Werte: Null bis 100, jeweils einschlieBlich

WindowSizeFromScreen

Dieser Hint bewirkt, dass die GréBe eines neu gedffneten Fensters relativ zum
gesamten Bildschirm festgelegt wird.

Syntax Ul-Code: WindowSizeFromScreen = relX, relY
relX, relY: relative Gr6Be in Prozent
Erlaubte Werte: Null bis 100, jeweils einschlieBlich

GenericClass-Geometrie -39

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.7.3 Anfangliche Position festlegen

Die hier beschriebenen Hints legen die Position eines Fenster-Objekts fest, wenn
es erstmalig gedffnet wird. Sie sind nur im Ul-Code zulassig.

Hint Syntax im Ul-Code
PositionWindowAtMouse PositionWindowAtMouse
WindowPositionFromParent WindowPositionFromParent = relX, relY
StaggerWindow StaggerWindow

CenterWindow CenterWindow

TileWindow TileWindow

WindowNoConstraints WindowNoConstraints

PositionWindowAtMouse

Dieser Hint bewirkt, dass linke obere Ecke eines Fensters, z.B. eines Dialogs oder
eines Primary, beim Offnen an der aktuellen Mausposition steht. Das wir haufig fur
KontextmenuUs genutzt.

Syntax Ul-Code: PositionWindowAtMouse

WindowPositionFromParent

Dieser Hint bewirkt, dass die Position eines neu getffneten Fensters relativ zu
seinem Parent-Window festgelegt wird. Beachten Sie, dass das nicht identisch mit
dem Parent-Objekt im GenericClass Tree sein muss. Fur Dialoge und Primaries ist
das Parent Window z.B. der Bildschirm, fir Displays ist es die DisplayGroup.

Syntax Ul-Code: WindowPositionFromParent = relX, relY
relX, relY: relative Position in Prozent
Erlaubte Werte: Null bis 100, jeweils einschlieBlich

StaggerWindow, CenterWindow, TileWindow

Diese Hints bewirken, dass mehrere Fenster innerhalb eines Parent-Windows (fur
Displays z.B. die DisplayGroup), die einen dieser Hints gesetzt haben, auf
bestimmte Weise angeordnet werden.

StaggerWindow Uberlappend (engl. staggered: gestaffelt)

CenterWindow zentriert

TileWindow Platz aufteilen

Syntax Ul-Code: StaggerWindow
CenterWindow
TileWindow

GenericClass-Geometrie -40

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

WindowNoConstraints

Dieser Hint entfernt alle Einschrédnkungen (engl.: constraints) bezuglich der

Fensterpositionierung. Er sollte nur als letzter Versuch benutzt werden, um ein
Fenster zu positionieren.

Syntax Ul-Code: WindowNoConstraints

GenericClass-Geometrie -41

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.7.4 Window Management

Methode Aufgabe

BringToTop Window nach vorne holen

LowerToBottom Window nach hinten stellen

MoveWin Window verschieben

ResizeWin Windows GréBe dndern
BringToTop

Diese Methode bringt das betroffene Fenster nach vorne. Das Fenster erhélt
automatisch den Focus.

Syntax Basic-Code: <obj>.BringToTop

LowerToBottom

Diese Methode stellt das betroffene Fenster nach hinten. Es verliert automatisch
den Focus, falls es ihn besaB.

Syntax Basic-Code: <obj>.LowerToBottom

MoveWin

Diese Methode verschiebt das Window an eine bestimmte Position. Die Position
kann in Pixeln angegeben werden (Parameter mode nicht angegeben oder Null)
oder als Prozentwert der GroBe des Ubergeordneten Windows (Parameter mode
ungleich Null).

Syntax Basic-Code: <obj>.MoveWin xPos, yPos [, mode]

ResizeWin

Diese Methode andert die GrdBe eines Window-Objekts. Die neue GrdBe kann in
Pixeln angegeben werden (Parameter mode nicht angegeben oder Null) oder als
Prozentwert der GroBe des ubergeordneten Windows (Parameter mode ungleich
Null).

Syntax Basic-Code: <obj>.ResizeWin xPos, yPos [, mode]

ResizeWin arbeitet unter Umstédnden nicht, wenn Sie widersprichliche An-
weisungen geben, z.B. gleichzeitig fixedSize oder SizeWindowAsDesired setzen.

GenericClass-Geometrie -42

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.3.8 Hintertlirchen fiir Programmierer

Die in den letzten Abschnitten besprochenen Hints, wie z.B. ExpandWidth oder
NoTitleBar sind nur im Ul-Code verfligbar:

Button MyButton
Caption$ = "Driick mich"
ExpandWidth ! Maximale Breite einnehmen
End Object

Die "normale" Syntax von R-BASIC erlaubt es nicht, dass sie zur Laufzeit gesetzt
oder geléscht werden. Das ist im Normalfall auch nicht notwendig. Wenn Sie
jedoch beispielsweise zur Laufzeit eigene Objekte anlegen (vgl. Kapitel 2.1.5)
kdnnte auch der Bedarf bestehen, solche Hints zu setzen. R-BASIC bietet zur
Lésung dieses Problems zwei Befehle an: einen, mit dem ein sonst nur im Ul-
Code verfugbarer Hint gesetzt werden kann und einen, mit dem er geléscht wird.

Befehl - Syntax im BASIC-Code Aufgabe
ObjAddHint <obj>, code [, adr, size] Setzen eines Ul Hints
ObjRemoveHint <obj>, code L&schen eines Ul Hints

Diesen Befehlen wird nicht etwa der Name des Hints Ubergeben, sondern sein
numerischer Code. Was auf den ersten Blick etwas umstéandlich wirkt hat einen
wesentlichen Vorteil: Sie kdnnen auf diese Weise R-BASIC Objekten auch
Instance-Variablen bzw. Hints geben, die zwar im PC/GEOS-SDK definiert
aber in R-BASIC nicht bekannt sind. Die folgende Tabelle enthélt eine paar der
haufiger verwendeten Geometrie-Hints, eine vollstandige Liste der Codes der in R-
BASIC definierten Hints finden Sie im Anhang, Kapitel E. Weitere Codes kénnen
Sie mit dem PC/GEOS-SDK bzw. der PC/GEOS-SDK-Dokumentation erhalten.

Einige haufiger verwendete Ul-Hint Codes. Weitere Codes finden Sie im Anhang.

Ul - Instance Variable bzw. Hint numerischer Code
MinimizeChildSpacing 25068
IncludeEndsInChildSpacing 24728
ExpandWidth 24712
ExpandHeight 24708
DrawinBox 24704
MakeToolBox 24976
MakeReplyBar 24744
SizeWindowAsDesired 24936
PrimaryFullScreen 27136
DisplayCurrentSelection 26652

GenericClass-Geometrie -43

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Wenn sie dfter mit diesen beiden Funktionen arbeiten, kdnnen Sie sich flir die von
Ihnen verwendeten Hints natlirlich Konstanten definieren. Beachten Sie, dass ich
deren Namen von denen der Instance-Variablen unterscheiden missen, damit der
Compiler sie auseinanderhalten kann.

CONST Draw_In Box = 24704
CONST C_MakeToolBox = 24976

Warnung! ObjAddHint und ObjRemoveHint fuhren keinerlei Fehlerkontrollen aus,
die Parameter werden direkt an die entsprechenden PC/GEOS-SDK-Routinen
weitergereicht. Insbesondere wird nicht abgepruft ob:

+ der Ubergebene Code uUberhaupt glltig ist

+ der Ubergebene Code fir das konkrete Objekt giiltig ist

+ die Datenwerte, falls es welche gibt, zum Code passen.

Im gunstigsten Fall werden die fehlerhaften Werte oder Codes ignoriert, im un-
gunstigsten Fall kann es zum Systemabsturz kommen.

Hinweis fur PC/GEOS-SDK-Programmierer: ObjAddHint und ObjRemoveHint
verwenden intern die Messages MSG_META_ADD_VAR_DATA bzw.
MSG_META_DELETE_VAR_DATA. Sie kénnen also alles machen, was Sie im
PC/GEOS-SDK mit diesen beiden Messages machen kdnnen. Das Flag
VDF_SAVE_TO_STATE wird jeweils gesetzt. Beide Befehle setzen die Objekte
bei Bedarf "not usable" und nehmen dies, wenn nétig, auch wieder zurlck.

ObjAddHint

Syntax im BASIC Code: ObjAddHint <ob>, code [, adr, size]
<obj> Referenz auf ein Objekt
code numerischer Code des Hints
adr Adresse, falls der Hint Datenwerte bendtige
size GroBe dieser Datenwerte

Der Befehl ObjAddHint fligt einen Hint oder eine Instance-Variable zu einem
Objekt hinzu. Verwenden Sie diesen Befehl, wenn die R-BASIC Syntax ansonsten
das Setzen des Hints oder der Instance-Variablen zur Laufzeit nicht zuldsst oder
Sie einen Hint setzen wollen, der von R-BASIC nicht unterstitzt wird.

Sie kénnen den Befehl auf alle Objekte anwenden. Er arbeitet sowohl mit
GenericClass- als auch auf VisClass-Objekten, egal ob sie vom Compiler oder zur
Laufzeit angelegt wurden.

GenericClass-Geometrie -44

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel: Hinzufligen der Hints ExpandWidth und ExpandHeight zu einem Objekt
und MakeToolBox zu einem anderen.

DIM ob as OBJECT

ObjAddHint MyGroup, 24712
ObjAddHint MyGroup, 24708

ob = MyOtherObject
ObjAddHint ob, 24976

Ein komplexeres Beispiel finden Sie unten.

ObjRemoveHint

Syntax im BASIC Code: ObjRemoveHint <obj>, code
<obj> Referenz auf ein Objekt
code numerischer Code des Hints

Der Befehl ObjRemoveHint entfernt einen Hint oder eine Instance-Variable von
einem Objekt. Verwenden Sie diesen Befehl, wenn die R-BASIC Syntax
ansonsten das Loschen des Hints oder der Instance-Variablen zur Laufzeit nicht
zuldsst oder Sie einen Hint entfernen wollen, der von R-BASIC nicht unterstiitzt
wird.

Sie kénnen den Befehl auf alle Objekte anwenden. Er arbeitet sowohl mit
GenericClass- als auch auf VisClass-Objekten, egal ob sie vom Compiler oder zur
Laufzeit angelegt wurden. Es ist auch zuldssig ObjRemoveHint fur eine Hint zu
rufen, der gar nicht gesetzt ist.

Beispiel: Entfernen der Hints DrawlnBox, MakeToolBox und MakeReplyBar von
diversen Objekten.

DIM ob as OBJECT

ObjRemoveHint MyGroup, 24704
ObjRemoveHint MyGroup.parent, 24976

ob = MyButton
ObjRemoveHint ob.parent, 24744

GenericClass-Geometrie -45

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Komplexes Beispiel

Nehmen wir an, Sie waren ein PC/GEOS-SDK-Programmierer. Sie wissen daher,

dass die R-BASIC Instance-Variable bgColor Uber den SDK-Hint

HINT_GADGET_BACKGROUND_COLORS realisiert ist. Mit Hilfe des SDK haben

Sie erfahren, dass

+ HINT_GADGET_BACKGROUND_COLORS eine numerische Konstante mit
dem Wert (Code) 25072 ist.

+ es 4 Byte als Datenwerte bendtigt - zwei Farbwerte fur den Vordergrund und
zwei fir den Hintergrund.

R-BASIC erwartet dagegen nur zwei Farbwerte, es setzt fur die beiden Vorder-

grundfarben und fur die beiden Hintergrundfarben jeweils den gleichen Wert.

Sie wollen das nun andern und alle vier Farben verwenden. Dazu mussen Sie die
Datenwerte mit dem Befehl POKE oder einem seiner Verwandten in den R-BASIC
Speicher schreiben. Welche Adresse Sie dazu verwenden ist egal, nehmen wir an,
Sie entscheiden sich fir 100.

Die Befehlsfolge sieht dann so aus:

POKE 100, RED
POKE 101, YELLOW
POKE 102, CYAN
POKE 103, BLUE

ObjAddHint MyButton, 25072, 100, 4

Sie erhalten einen Button, dessen Hintergrundfarbe im ungedrlckten Zustand ein
Punktraster aus Rot und Gelb ist, im gedrlickten Zustand ist es ein Raster aus
Blau und Cyan.

Auf diese Weise konnen Sie R-BASIC Objekten auch Eigenschaften unter-
schieben, die von R-BASIC selbst nicht unterstitzt werden.

GenericClass-Geometrie - 46

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3.4 Die "Apply"-Message

Einige R-BASIC Objekte enthalten Informationen oder Daten, die vom Nutzer
geandert werden kbnnen und dann "zur Anwendung" gebracht werden, indem das
Objekt eine Message aussendet (d.h. den zugehoérigen ActionHandler aufruft).
Diese Message heif3t "Apply-Message" bzw. der Handler "ApplyHandler" (engl. to
apply: anwenden). Das sind konkret die folgenden Objekt-Klassen. Eine
ausfihrliche Beschreibung der Objekte finden Sie im Kapitel 4 dieses Handbuchs.

+ Das Number-Objekt stellt eine Zahl dar, die vom Nutzer verandert werden kann.
Drickt der Nutzer im Eingabefeld des Text-Objekts die Enter-Taste oder klickt er
auf die "Pfeile", so wird die Apply-Message gesendet, d.h. der ApplyHandler wird

aufgerufen.
* Die Text-Objekte Memo und InputLine enthalten einen Text. Driickt der Nutzer

z.B. im InputLine Objekt die Enter-Taste, so wird die Apply-Message gesendet.
* Die Listen-Objekte OptionGroup, RadioButtonGroup und DynamicList. Hier
wird die Apply-Message gesendet wenn der Nutzer einen Listeneintrag anwahlt.

Neben einem ApplyHandler besitzen diese Objektklassen auch eine Status-
Handler, der im "delayed Mode" (siehe nachstes Kapitel) benétigt wird.

Instancevariable Syntax im Ul-Code Im BASIC-Code
ApplyHandler ApplyHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben

3.4.1 Manuelles Auslosen der Apply-Message

Die ApplyHandler der oben angegebenen Objekte sind bei den entsprechenden
Objekten definiert und werden dort ausfihrlich besprochen, da sie je nach Objekt
unterschiedliche Parameter haben.

Es gibt jedoch eine auf GenericClass-Ebene definierte Methode und zwei
dazugehdrige Instance-Variablen, die ein manuelles auslésen der Apply-Message
bei Bedarf, d.h. vom BASIC-Code aus, erméglicht.

Methoden:
Methode Aufgabe
Apply Auslosen der Apply-Message

Syntax BASIC-Code: <obj>.Apply

Instance-Variablen
Hint Syntax im Ul-Code Im BASIC-Code
ApplyEvenlfNotModified ApplyEvenlfNotModified —
ApplyEvenlfNotEnabled ApplyEvenlfNotEnabled —

GenericClass-Apply -47

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: ApplyEvenlfNotModified
ApplyEvenlfNotEnabled

Apply

Die Methode Apply fordert ein Objekt auf, seine Apply-Message zu senden (d.h.
seinen ApplyHandler aufzurufen). Objekte, die von Hause aus keinen
ApplyHandler haben (wie z.B. Group’s, Dialog- und Primary-Objekte) reichen
diese Methode an ihre Children weiter. Das heiBBt konkret, dass es ausreicht die
Apply-Methode eines Group-Objekts aufzurufen und alle seine Children bzw.
deren Children usw. senden ihre Apply-Message aus, falls sie eine besitzen.
Dieses Konzept ist bei genauerer Betrachtung extrem leistungsféhig, da man sich
dadurch viel Arbeit ersparen kann.

Wichtig 1: Die oben angegeben Objekte (Number, Text- und Listen-Objekte)
senden ihre Apply-Message nur dann aus, wenn sie "modified" (geéndert) sind.
Andert der Nutzer das Objekt, klickt er z.B. einen Listeneintrag an, so passiert das
automatisch. Vom Basic-Code aus muissen wir aber i.A. selbst dafur sorgen, das
Objekt auf "modified" zu setzen. Alle betroffenen Objekte besitzen eine
entsprechende Instance-Variable.

Wichtig 2: Nachdem das Objekt seine Apply-Message ausgesendet hat wird der
"modified"-Zustand automatisch zuriickgesetzt.

Beispiel: Nehmen wir an, wir haben eine Listen-Objekt namens DefaultOptions.
Von diesem soll beim Programmstart ein bestimmter Eintrag selektiert werden, der
z.B. aus einer Datei gelesen wurde und daher nicht von vorneherein bekannt ist.
Dann soll die Liste ihre Apply-Message aussenden um den Rest des Programms
uber ihren Zustand zu informieren. Das Belegen der passenden Instance-Variable
namens "selection" macht die Liste aber nicht "modified". Damit sie ihre Apply-
Message aussendet mussen wir das selbst tun. Das Ganze verpacken wir in eine
SUB namens InitList:

SUB InitList (entry as INTEGER)
DefaultOptions.selection = entry
DefaultOptions.modified = TRUE
DefaultOptions.Apply
END SUB

ApplyEvenlfNotModified, ApplyEvenlfNotEnabled

Wie oben erwahnt muss ein Objekt, dass eine Apply-Message aussenden soll
"modified" sein. Die Hints ApplyEvenlfNotModified bzw. ApplyEvenlfNot-
Enabled sorgen dafiir, dass ein Objekt seine Apply-Message beim Aufruf der
Apply-Methode auch dann aussendet, wenn es nicht "modified" oder sogar nicht

GenericClass-Apply -48

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

"enabled" ist. Diese Hints sind zwar auf GenericClass-Level definiert, zeigen aber
nur bei den Objekten, die auch Uber einen Apply-Handler verfligen, eine Wirkung.

3.4.2 Delayed Mode und Status-Message

Das im Folgenden beschriebenen Eigenschaften und Verhaltensweisen von
Objekten sind - richtig eingesetzt - sehr leistungsféhig und kénnen dem Program-
mierer viel Arbeit ersparen, sie erfordern jedoch ein gutes Uberblickswissen iiber
das R-BASIC Objektsystem. Sie sind daher eher etwas fiir den fortgeschrittenen
Programmierer. Meistens ist die gleiche Funktionalitdt auch anders, dann aller-
dings mit etwas mehr Programmcode, erreichbar.

Wie oben erwéahnt senden die anfangs aufgefihrten Objekte (Number, Text- und
Listen-Objekte) ihre Apply-Message sofort aus, wenn der Nutzer z.B. eine
Listeneintrag auswahlt oder auf einen "Pfeil" eines Number-Objekts klickt. Es gibt
jedoch auch Situationen, in denen dieses sofortige Reagieren nicht erwinscht ist.
In einem komplexen Dialog, in dem z.B. Farbe, Form und GroéBe eines Objekts
eingestellt werden, kann es sinnvoll sein, dass der Nutzer zunéachst alle
Einstellungen vornimmt und diese Einstellungen dann "auf einmal" angewendet
werden sollen. Hinzu kommt, dass gegebenenfalls zwei oder mehrere Objekte
voneinander abhéngen. In einen "Drucken" Dialog z.B. muss sichergestellt
werden, dass die erste zu druckende Seitennummer nicht gréBer als die letzte zu
druckende Seitennummer ist. Die entsprechenden Number-Objekte missen also
miteinander kommunizieren, ohne dass die Anderungen "angewendet" (d.h. die
Seiten gedruckt) werden. In R-BASIC wird dieses Verhalten als Delayed Mode
bezeichnet (engl. to delay: verzbégern). Die eigentliche Apply-Message der
betroffenen Objekte wird verzégert, namlich erst auf Anforderung, ausgesendet.
Statt ihrer Apply-Message senden die entsprechenden Objekte zunéchst eine
sogenannte Status-Message aus, d.h. es wird der StatusHandler aufgerufen.
Dieser kann genutzt werden, um andere Objekte zu informieren. Die
entsprechende Instance-Variable (StatusHandler) ist genau wie der ApplyHandler
bei den jeweiligen Objekten definiert.

Instance-Variable Syntax im Ul-Code Im BASIC-Code
MakeDelayedApply | MakeDelayedApply —

Syntax Ul-Code: MakeDelayedApply

Die auf GenericClass-Ebene definierte Instance-Variable MakeDelayedApply
versetzt ein Objekt und seine Children in den Delayed Mode. Sehr haufig ist es
deshalb so, dass ein Group-Objekt diese Anweisung im Ul-Code erhélt, so das
alle seine Children, deren Children usw. im Delayed Mode arbeiten. Um die Apply-
Message der betroffenen Objekte auszusenden reicht es, die Apply-Methode des
Group-Objekts aufzurufen, da diese, wie im vorherigen Abschnitt beschrieben, an
alle Children weitergegeben wird.

GenericClass-Apply -49

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel: Eine Gruppe von Objekten innerhalb der Group "BottomGroup" arbeitet
im Delayed Mode. Die beiden Number-Objekte kommunizieren Uber Status-
Handler miteinander. Der ApplyButton 16st ein "Anwenden" (Aufruf der
ApplyHandler) aus.

Ul-Code

Group BottomGroup
Children = Memol, RightGroup
orientChildren = ORIENT HORIZONTALLY

DrawInBox

MakeDelayedApply '’ wird an die Children
' weitergereicht

END Object

Group RightGroup
Children = Numberl, Number2, ApplyButton
orientChildren = ORIENT VERTICALLY
justifyChildren = J RIGHT + J BOTTOM
ExpandHeight
END Object

Number Numberl
Caption$ = "Von
ApplyHandler = NumberVonHandler
StatusHandler = StatusNuml
END Object

"

Number Number?2
Caption$ = "Bis
ApplyHandler = NumberBisHandler
StatusHandler = StatusNum2

"

END Object
Note:

Button. App]_E/Bll:'ltton) Hier Text eingeben ... - ,07 m

Caption$ = Anwenden

ActionHandler = DoApply Bis [0 AY]

END Object Hnu.lendenl
Memo Memol

Caption$ = "Note:"

justifyCaption = J TOP

text$ ="Hier Text eingeben ..."

fixedSize = 30 + ST _AVG_CHAR WIDTH, 5 + ST LINES_ OF TEXT
ApplyHandler = txtAction
END Object

GenericClass-Apply -50

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Basic-Code

NUMBERACTION NumberVonHandler
Print "Von:";value
END ACTION

NUMBERACTION NumberBisHandler
Print "Bis:";value
END ACTION

NUMBERACTION StatusNuml
IF value > Number2.value THEN

Number2.value = value
Number2.modified = TRUE " wurde verandert!
END IF

END ACTION

NUMBERACTION StatusNum2
IF value < Numberl.value THEN
Numberl.value = value
Numberl.modified = TRUE ' wurde verandert!

END IF
END ACTION

BUTTONACTION DoApply
BottomGroup.Apply

END Action

Wenn Sie dieses Beispiel testen werden Sie feststellen, dass
+ Die ApplyHandler nur gerufen werden, wenn das entsprechende Objekt vorher
geandert (modifiziert) wurde.
+ Ein zweites Anklicken des ApplyButtons nichts bewirkt, es sei denn, Sie haben
eins der Objekte zwischendurch wieder geéndert.
Das ist aus Performance-Griinden so und liegt daran, dass, wie letzten Abschnitt
beschrieben, ApplyHandler nur gerufen werden, wenn das Objekt "modified" ist.
Wenn Sie mdchten, dass die ApplyHandler auf jeden Fall gerufen werden, egal ob
das Objekt modified ist oder nicht, kénnen Sie die Hints ApplyEvenlfNotModified
bzw. ApplyEvenlfNotEnabled aus dem letzten Kapitel verwenden.

Beispiel UI-Code

Number Number?2
Caption$ = "Bis
ApplyHandler = NumberBisHandler
StatusHandler = StatusNum2
ApplyEvenIfNotModified

END Object

n

Bei Bedarf ist es mdglich, die StatusMessage manuell auszulésen. Dazu wird die
Methode SendStatus verwendet. Diese Methode ist fir die oben genannten
Objektklassen definiert. Das sind: Number, Memo, InputLine, OptionGroup,
RadioButtonGroup und DynamicList.

GenericClass-Apply -51

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Methode Aufgabe
SendStatus Auslésen der Status-Message

Syntax BASIC-Code: <obj>.SendStatus

Hinweis fir Dialog-Objekte: Natirlich kbnnen Sie ganze Dialogboxen mit dem Hint
MakeDelayedApply in den Delayed Mode versetzen. Haufig ist es aber besser
stattdessen die Dialog-Instance-Variable dialogType auf den Wert
DT_DELAYED_APPLY zu setzen. Dadurch erzeugt der Dialog automatisch einen
Apply-Button, und nimmt Ihnen auch sonst viel Arbeit ab. Eine ausfihrliche
Beschreibung zum Dialog-Objekt finden Sie im Kapitel 4.6, der Delayed Mode fur
Dialoge ist im Kapitel 4.6.6.5 beschrieben.

Schlussbemerkung: Der Delayed Mode ist angebracht und sehr effektiv, wenn die
betroffenen Objekte ihre Apply-Message einzeln und unabhéangig voneinander
senden sollen. Fur den Fall, dass Sie erst die Informationen von allen beteiligten
Objekten sammeln mulssen, bevor Sie fortfahren kdnnen, ist es eventuell
sinnvoller den Objekten gar keinen ApplyHandler zu geben und die Informationen
direkt von den Objekten abzufragen, wie in folgendem Codebeispiel gezeigt:

BUTTONACTION DoApply

DIM von, bis, info$
von = Numberl.value
bis Number2.value
info$ = Memol.text$
<.. Auswertung ..>
END Action

GenericClass-Apply -52

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

GenericClass-Apply -53

