

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 2
Die GenericClass

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

3 Die Generic Class ... 60

3.1 Caption: Die Objekt-Beschriftung .. 60
3.1.1 Text-Captions ... 61
3.1.2 Grafische Captions ... 62
3.1.3 Die Caption-Ausrichtung ... 66
3.1.4 Keyboard Shortcuts .. 67

3.2 Objekt States .. 70

3.3 Geometriemanagement ... 73
3.3.1 Überblick ... 73
3.3.2 Angabe von Größen, Positionen und Abständen 75
3.3.3 Anordnung der Objekte .. 77

3.3.3.1 Orientierung und Ausrichtung ... 77
3.3.3.2 Child Spacing .. 81
3.3.3.3 Automatischer Umbruch ... 83
3.3.3.4 Vorhandenen Platz gleichmäßig verteilen 84

3.3.4 Objektgröße .. 86
3.3.5 Positionierung der Objekte ... 90
3.3.6 Spezielle Attribute ... 92
3.3.7 Spezielle Hints für Window-Objekte ... 95

3.3.7.1 Aussehen und Verhalten anpassen 95
3.3.7.2 Anfängliche Größe festlegen .. 96
3.3.7.3 Anfängliche Position festlegen ... 98
3.3.7.4 Window Management ... 100

3.3.8 Hintertürchen für Programmierer .. 101

3.4 Die "Apply"-Message .. 105
3.4.1 Manuelles Auslösen der Apply-Message 105
3.4.2 Delayed Mode und Status-Message ... 107

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 2

3 Die Generic Class

Die meisten Objekte in R-BASIC stammen von der GenericClass ab. In diesem
Abschnitt finden Sie die Instance-Variablen, die allen diesen Objekten gemeinsam
sind.

3.1 Caption: Die Objekt-Beschriftung

Unter "Caption" (engl. caption = Überschrift, Titel) versteht man in R-BASIC die
"Beschriftung" eines Objekts. Das kann ein Text oder eine kleine (!) Grafik sein. Im
Primary befindet er sich der Caption-Text in der Titelzeile, bei Buttons ist es die
Aufschrift und bei anderen Objekten ist er über oder neben dem Objekt
angeordnet um die Funktion oder Bedeutung des Objekts zu beschreiben. Text-
Captions weisen Sie mit der Instancevariablen Caption$ zu. Für grafische
Captions stehen Ihnen - je nachdem, wo die Grafik herkommt, die Methoden
CaptionIcon, CaptionPicture, CaptionImage und CaptionGString zur
Verfügung. Mit der Instancevariablen justifyCaption können Sie in vielen Fällen
festlegen, wie die Caption relativ zum Objekt positioniert wird.

Variable Syntax im UI-Code Im BASIC-Code
Caption$ Caption$ = "Text" [, n] lesen, schreiben
CaptionIcon CaptionIcon = "tchr" , manufID [, flags] nur schreiben
CaptionPicture CaptionPicture = "PictureName" nur schreiben
CaptionImage CaptionImage =[stdPath,] "File" [, num] nur schreiben
CaptionGS –– nur schreiben
justifyCaption justifyCaption = numWert lesen, schreiben
kbdShortcut kbdShortcut = numWert lesen, schreiben
kbdSearchPath kbdSearchPath = TRUE | FALSE lesen, schreiben

Bitte beachten Sie, dass Captions im gleichen Speicherblock gespeichert werden,
wie das Objekt selbst. Speicherblöcke können unter GEOS nicht größer als 64
kByte werden, meistens gibt es schon viel früher Probleme ("Hauptspeicher voll").
Grafische Captions sollten deshalb nicht größer als 4 kByte sein. Bei Text-
Captions (Caption$) Captions aus der TokenDatabase (CaptionIcon) und GString-
Captions (CaptionGString) ist das im Allgemeinen erfüllt. Normale Grafikbefehle
wie Line, Rectangle, FillEllipse usw. erfordern jeweils 10 bis 15 Byte. Texte
erfordern pro Zeichen 1 Byte.

Problematisch können Captions sein, die eine Bitmap enthalten und mit zur
Laufzeit zugewiesen werden, da dies der Compiler nicht prüfen kann. Bei der
Zuweisung im UI-Code führt R-BASIC bei Bitmaps eine Größenkontrolle aus und
warnt bei einem Speicherbedarf von mehr als 4 kByte. Captions mit mehr als
12 kByte lassen sich nicht zuweisen.

Der Speicherbedarf einer Bitmap setzt sich aus den Bitmapdaten und einer
eventuell vorhandenen Maske (Transparenz) zusammen. Für die Bitmapdaten gilt

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 3

die Formel "Breite x Höhe x Farbtiefe (in Bit pro Pixel) / 8". Für die Maske kommen
je Zeile noch "Breite/8" Bytes hinzu, wobei jeweils auf ganze Bytes aufgerundet (!)
werden muss.

Beispiele (jeweils eine Transparenzmaske vorausgesetzt)
Abmessungen (Pixel) Farbtiefe (Bit pro Pixel) Speicherbedarf (Byte)
48 x 30 4 900
32 x 32 8 1152
32 x 32 24 3200
64 x 64 8 4608
128 x 128 8 51200

Falls Sie vorhaben, zur Laufzeit grafische Captions zuzuweisen, die deutlich
größer sind als die zur Compilezeit zugewiesenen, sollten Sie der Verteilung der
Objekte auf die Objektblöcke Aufmerksamkeit widmen. Details dazu finden Sie im
Kapitel 2.1.4 (Beeinflussung der Objektblöcke im UI-Code).

3.1.1 Text-Captions

Caption$

Caption$ ist der Text auf oder neben dem Objekt. Im Gegensatz zu den grafischen
Captions kann Caption$ auch gelesen werden und es kann ein
"Navigationsbuchstabe" definiert werden, der eine Tastaturnavigation durch die
Menüs ermöglicht.

Syntax UI-Code: Caption$ = "Text" [, n]
"Text" : Aufschrift
n: Nummer des hervorgehobenen Buchstaben
 für Tastatur-Navigation
 0 = 1. Buchstabe, 1 = zweiter Buchstabe usw.

Lesen: <stringVar> = <obj>. Caption$
Liefert den Text. Der Navigationsbuchstabe kann
nicht gelesen werden.

Schreiben: <obj>. Caption$ = "Text" [, n]

Beispiele UI Code:
Button OKButton
Caption$ = " OK "
ActionHandler =
END Object

Button MyButton
Caption$ = "Press mich!", 0
ActionHandler =
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 4

Beispiel BASIC-Code
DIM c$
c$ = MyButton.Caption$
OKButton.Caption$ = " JA! "
MyButton.Caption$ = "yes!", 2

3.1.2 Grafische Captions

CaptionIcon

Weist dem Objekt ein Token aus der Token-Database als Caption zu. CaptionIcon
kann im UI Code und im BASIC Code (Schreiben) verwendet werden. Lesen im
BASIC-Code ist nicht möglich.

Syntax UI Code: CaptionIcon = "tchr" , manufID [, flags]
Syntax BASIC: <obj>.CaptionIcon = "tchr" , manufID [, flags]

"tchr": Tokenchars des Icons. Genau 4 Zeichen
manufID: ManufacturerID des Icons. Datentyp WORD
flags: Icon-Flags. Siehe unten.

Das passende Bild aus der Tokendatabase Datei wird beim Aufruf von
CaptionIcon in den Speicherblock des Objekts kopiert.

Gültige Werte für "flags":

Konstante Wert Bedeutung
TOOL_ICON 1 Tool-Icon (15 x 15 Pixel) verwenden.
TINY_ICON 1 Synonym für TOOL_ICON
SMALL_ICON 2 Kleineres Icon verwenden (oft 32x20 Pixel)
BIG_ICON 4 Größeres Icon verwenden (oft 64x40 Pixel)
GRAY_ICON 8 Schwarz-Weiß Icon verwenden
RGB_ICON 16 True-Color Icon verwenden

Wird keines der Flags angegeben wird das "Standard" Icon (meist 48 x 30 Pixel,
16 Farben oder 256 Farben) verwendet.

Hinweise:
 • Ist die entsprechend den Flagbits angeforderte Kombination nicht vorhanden

sucht das System ein "möglichst passendes" Icon aus. Das Flag "TOOL_ICON"
hat dabei Vorrang vor allen anderen Flags.

 • Sollte zum gegebenen Token ("TCHR", manufID) kein grafisches Icon
vorhanden sein wird ein Text verwendet.

 • Findet sich das Token nicht in der TokenDB zeigt R-BASIC ein Ersatzbild
("unbekanntes Icon").

 • R-BASIC Icons enthalten nur zwei Bilder: ein Standard- und ein Tool-Icon.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 5

Beispiel: Das GeoWrite-Datei-Icon "WDAT, 0" enthält Normal, Small und Big Icons
Button Button1
CaptionIcon = "WDAT", 0, TOOL_ICON

End OBJECT

Button Button2
CaptionIcon = "WDAT", 0, SMALL_ICON

End OBJECT

Button Button3
CaptionIcon = "WDAT", 0

End OBJECT

Button Button4
CaptionIcon = "WDAT", 0, BIG_ICON

End OBJECT

CaptionPicture

CaptionPicture weist einem Objekt eine grafische "Aufschrift" zu. Die Grafik steht
in der Picture-List des Programms (oder der Library).
Die Picture-List enthält Grafiken, die über ihren Namen angesprochen werden und
in der Code-Datei selbst gespeichert sind. Sie kann über das Menü "Extras" ->
"Picture-List" verwaltet werden. Details dazu finden Sie im Kapitel 2.8.6.2
(Verwendung der Picture-List) des R-BASIC Programmierhandbuchs.

Syntax UI Code: CaptionPicture = "PictureName"
Syntax BASIC: <obj>.CaptionPicture = "PictureName"

"PictureName": Name der Grafik in der Picture-List

Das Bild wird beim Aufruf von CaptionPicture in den Speicherblock des Objekts
kopiert. Beachten Sie den Hinweis am Anfang des Kapitels 3.1. Zu große Caption-
Bilder können zum Systemabsturz führen!

Hinweise:
• Wird CaptionPicture im BASIC-Code gerufen setzt es die globale Variable

fileError - entweder auf Null (das Bild wurde gefunden) oder auf einen
Fehlerwert (das Bild wurde nicht gefunden).

• Wenn CaptionPicture im Code einer Library gerufen wird bezieht sich der Name
des Bildes auf die Picture-List der Library. Das ermöglicht es unter anderem
Bilder in die Picture-List von Libraries auszulagern.

Beispiel: In der Picture-List befinden sich zwei kleine Bilder mit dem Namen
"Radioactive" und "Formel". Die Grafik "Formel" wurde mit GeoDraw erstellt und
dann über die Zwischenablage in die Picture-List aufgenommen.
Button MyButton
CaptionPicture = "Radioactive"

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 6

Die Zuweisung der zweiten Grafik kann z.B. im Basic Code erfolgen.

MyButton.CaptionPicture = "Formel"

CaptionImage

CaptionImage weist einem Objekt eine grafische "Aufschrift" zu die aus einer
externen Datei gelesen wird. Sollte die Datei mehr als ein Bild enthalten (z.B.
*.GIF, *.ICO) können Sie mit dem Parameter pictNum bestimmen, welches Bild
ausgelesen wird. Das erste Bild hat immer die Nummer Null.

Syntax UI Code: CaptionImage = [stdPath,] "Path+File" [, pictNum]
Syntax BASIC: <obj>.CaptionImage = [stdPath,] "Path+File" [, pictNum]

stdPath: Optional: Standardpfad Konstante, z.B. SP_TOP
"Path+File": Dateiname, Pfade sind zulässig
pictNum: Optional: Nummer des Bildes in der Datei

CaptionImage öffnet und schließt die Datei automatisch. Das Bild wird in den
Speicherblock des Objekts kopiert. Beachten Sie den Hinweis am Anfang des
Kapitels 3.1. Zu große Caption-Bilder können zum Systemabsturz führen!

Folgende Dateiformate werden unterstützt: JPG, BMP, ICO, PCX, GIF, TGA, RLE,
DIB, SCR , FLC, FLI und GEOS Hintergrunddateien.

Wird CaptionImage im UI-Code verwendet so gilt:
• Wird kein Standardpfad angegeben wird die Datei im Ordner "USERDATA\R-

BASIC\IMAGES" gesucht.
• Das Bild wird in die Code-Datei kopiert, d.h. die externe Datei muss nicht in das

R-App Paket aufgenommen werden.

Wird CaptionImage im BASIC-Code verwendet so gilt:
• Wird kein Standardpfad angegeben wird die Datei im aktuellen Verzeichnis

gesucht.
• Die externe Datei wird zur Laufzeit geöffnet, d.h. sie muss unbedingt in das R-

App Paket aufgenommen werden oder es muss auf andere Weise sichergestellt
sein, dass sie existiert.

• Wird pictNum nicht angegeben so wird immer das erste Bild ausgelesen.
• Die globale Variable fileError wird gesetzt - entweder auf Null (das Bild wurde

gefunden) oder auf einen Fehlerwert (die Datei wurde nicht gefunden oder sie
enthält kein Bild).

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 7

Beispiel: Das PC/GEOS Icon "GWICON5.ICO" verwenden, dass sich im
PC/GEOS Hauptverzeichnis befindet.
Button MyButton
CaptionImage = SP_TOP, "GWICON5.ICO"

End OBJECT

CaptionGString

CaptionGString weist dem Objekt eine grafische Caption zu, die vorher in einen
GString geschrieben wurde. Die Verwendung von CaptionGString ist eine der
Möglichkeiten für ein Objekt (häufig ein Button oder eine Group) zur Laufzeit die
grafische Caption zu ändern. CaptionGString wird verwendet, wenn die Grafik
nicht als vordefiniertes Bild vorliegt, sondern zur Laufzeit des Programms
gezeichnet werden muss (oder kann). Eine komplette Beschreibung der Arbeit mit
GStrings finden Sie im Kapitel 2.8.5 (Arbeit mit Graphic Strings) des R-BASIC
Programmierhandbuchs.

Syntax BASIC: <obj>.CaptionGString = <gsHandle>
<gsHandle>: Handle auf einen Graphic String.

Der GString wird beim Aufruf von CaptionGString in den Speicherblock des
Objekts kopiert. Daher sollten Sie nicht vergessen den GString nach Verwendung
wieder freizugeben. Beachten Sie den Hinweis am Anfang des Kapitels 3.1. Zu
große Caption-Bilder können zum Systemabsturz führen!

Beispiel:
SUB SetNewCaption ()
DIM gsHan AS HANDLE

gsHan = StartRecordGS ()
FillEllipse 0, 0, 32, 32, LIGHT_RED ’ Farbig
Ellipse 0, 0, 32, 32 ’ Schwarz
FillRect 9, 8, 24, 24, YELLOW
EndRecordGS gsHan

MyObj.CaptionGString = gsHan

FreeGS gsHan ’ Nicht vergessen!
End SUB

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 8

3.1.3 Die Caption-Ausrichtung

justifyCaption

Die Instance-Variable justifyCaption bestimmt, wo bzw. wie die Beschriftung
(Caption~) des Objekts angeordnet wird. Die folgende Tabelle enthält die
zulässigen Werte. Häufig verwendet wird die Kombination J_TOP + J_CENTER,
bei Buttons auch J_CENTER alleine.

Konstante Wert Bedeutung
J_CENTER 1 Caption zentrieren
J_LEFT 2 Caption nach links
J_RIGHT 4 Caption nach rechts
J_TOP 8 Caption nach oben

Wird justifyCaption nicht gesetzt, ist es dem Objekt überlassen, wo die
Beschriftung angeordnet wird. In vielen Fällen entspricht dies J_LEFT. Einige
Objekte akzeptieren nicht jeden Wert, da justifyCaption als Hint implementiert ist;
z.B. ignorieren Buttons alles außer J_CENTER. Hier hilft nur ausprobieren.
Beachten Sie, dass nur die in der Tabelle oben aufgeführten Konstanten für
justifyCaption akzeptiert werden. Andere J_-Konstanten, die z.B. für justifyChildren
(siehe Kapitel Geometriemanagement) definiert sind, werden ignoriert.

Beispiel
View MyView
Caption$ = "Vorschau"
justifyCaption = J_TOP + J_CENTER ’ Mittig über dem
Objekt
< .. weitere instances .. >
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 9

3.1.4 Keyboard Shortcuts

Keyboard Shortcuts sind Tastenkürzel, die auch dann wirken, wenn das ent-
sprechende Menü nicht offen ist. Typische Fälle sind "Strg-C" für Kopieren und
"Strg-P" für Drucken. Um einen Shortcut zu definieren müssen Sie außer dem
ASCII-Code der Taste auch die "Modifier"-Taste (Strg, Shift oder Alt) angeben, die
gedrückt sein soll. Der ASCII-Code kann auch ein "erweiterter" ASCII-Code sein,
z.B. für die Cursortasten oder F12.

Obwohl die Instancevariable kbdShortcut für alle GenericClass Objekte definiert
ist wird sie hautsächlich für Buttons benutzt. Die im Folgenden für Buttons
getroffenen Aussagen sind sinngemäß auf alle andere GenericClass Objekte
übertragbar. Bitte beachten Sie bei der Wahl der Tastenkombination für
kbdShortcut, dass diese vom "R-BASIC Translator" nicht geändert werden kann.

kbdShortcut

Die Instancevariable kbdShortcut enthält einen WORD-Wert, der ein Tastenkürzel
beschreibt. Drückt der Nutzer die entsprechende Tastenkombination (z.B. Strg +
Z) wird der Button aktiviert, genau so, als sei er direkt angeklickt worden.

Syntax UI-Code: kbdShortcut = numVal
Lesen: <numVar> = <obj>. kbdShortcut
Schreiben: <obj>. kbdShortcut = numVal

Die niederwertigen 8 Bit (Bit 0 bis Bit 7) enthalten den ASCII-Code der Taste bzw.
den Steuercode der Steuertaste. Die Bits 8 bis 11 sind gesetzt, wenn es sich um
eine Steuer- oder Funktionstaste handelt, ansonsten sind sie Null. Die vier höchst-
wertigen Bits (Bit 12 bis Bit 15) enthalten "Modifier"-Tasten, die gleichzeitig
gedrückt sein müssen, damit das Kürzel aktiviert wird. Dafür sind die folgenden
Konstanten definiert (KSM = Keyboard Shortcut Modifier):

Konstante Wert hex. Bedeutung
KSM_SHIFT 4096 &h1000 Shift Taste muss gedrückt sein
KSM_CTRL 8192 &h2000 Strg Taste muss gedrückt sein
KSM_ALT 16384 &h4000 Alt Taste muss gedrückt sein
KSM_PHYSICAL 32768 &h8000 Die Taste ist gemeint, nicht das

Zeichen. Das heißt im Wesent-
lichen, dass der Shift-Lock- und
der NumLock-Status ignoriert
werden.

Hinweise:
• Den ASCII-Code der gewünschten Taste können Sie über die Funktion ASC()

erhalten, die auch in numerischen Ausdrücken erlaubt ist.
• Tipp für Fortgeschrittene: KSM_PHYSICAL bedeutet auch, dass der Scancode

der Taste ausgewertet wird. Für den seltenen Fall, das Sie ein solches Objekt

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 10

mit einem simulierten Tastaturereignis aktivieren wollen, müssen Sie die
Methode KbdEventWithScancode (anstelle von KbdEvent) verwenden. Details
dazu finden Sie im Handbuch Themen, Kapitel 14.3 (Simulieren von Tastatur-
ereignissen).

Um die gewünschte Tasten-Kombination für den Shortcut zu definieren ist manch-
mal etwas Experimentieren erforderlich. Die folgenden Beispiele demonstrieren
die typischen Fälle.

Beispiel: Ausschneiden (Ctrl-X) und Kopieren (Ctrl-C).
Die Verwendung von KSM_PYHSICAL stellt sicher, dass die Kürzel auch
funktionieren, wenn die Shift-Lock Taste eingerastet ist. Beachten Sie, dass die
Codes der Kleinbuchstaben angegeben werden.
Button CutButton
Caption$ = "Ausschneiden", 0
ActionHandler = DoCut ’ ButtonAction
kbdShortcut = KSM_CTRL + KSM_PHYSICAL + ASC("x")

End OBJECT

Button CopyButton
Caption$ = "Kopieren" , 0
ActionHandler = DoCopy ’ ButtonAction
kbdShortcut = KSM_CTRL + KSM_PHYSICAL + ASC("c")

End OBJECT

Beispiel: Umsch Ctrl A
Um die Umschalttaste in einen Shortcut aufzunehmen können Sie entweder den
ASCII-Code eines Großbuchstaben angeben oder einen Kleinbuchstaben mit dem
Flag KSM_SHIFT kombinieren. In beiden Fällen müssen sie zusätzlich das Flag
KSM_PHYSICAL setzen, weil der Tastaturtreiber die Shift-Taste bereits beim
Erzeugen des ASCII-Codes verarbeitet.

kbdShortcut = KSM_CTRL + KSM_PHYSICAL + ASC("A")
kbdShortcut = KSM_CTRL + KSM_SHIFT + KSM_PHYSICAL +
ASC("a")

Beispiel F12
Wenn Sie eine Steuertaste oder eine F-Taste als Shortcut setzen wollen
benötigen Sie den entsprechenden "erweiterten" ASCII-Code. Diese Codes sind in
der Library "KeyCodes" definiert. Suchen Sie im Wizzard der Library unter
"GetKey: Steuertasten" den passenden Code heraus. Sie müssen aber unbedingt
beachten, dass die Codes alle 8 höherwertigen Bits gesetzt haben. Deswegen
müssen Sie die 4 höchstwertigen Bit mit der Operation "code AND &hFFF"
ausblenden.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Captions - 11

In der Library "KeyCodes" ist folgendes definiert:
CONST KEY_F12 = &hFF8B

UI Code
Include "KeyCodes"

Button MyButton
< ... >
kbdShortcut = KEY_F12 AND &hFFF

End OBJECT

Alternativ können Sie auch direkt den Code, aber ohne die höherwertigen 4 Bit,
angeben:

kbdShortcut = &hF8B

Um Strg-F12 als Shortcut zu setzen verwenden Sie eine der folgenden Zeilen. Die
Klammern sind wichtig!

kbdShortcut = (KEY_F12 AND &hFFF) + KSM_CTRL
bzw.
kbdShortcut = &hF8B + KSM_CTRL

Beispiel: ESC
Ein häufiger Fall ist das Verwenden der ESC-Taste für "Abbrechen" oder
"Beenden". Die ESC-Taste ist eine erweiterte Taste und hat den Code &hFF1B.
Um die ESC-Taste einem Button als Tastenkürzel zuzuweisen verwenden Sie
eine der folgenden Zeilen:

kbdShortcut = KEY_ESC AND &hFFF
bzw.
kbdShortcut = &hF1B

kbdSearchPath

Damit die Keyboard Shortcuts arbeiten können müssen die entsprechenden
Objekte im "Suchpfad" für Keyboard Shortcuts sein. Primaries, Menüs und Button
sind per Default im Suchpfad. Aus Effizienzgründen ist das für die meisten
anderen Objekte nicht der Fall. Wenn Ihre Keyboard Shortcuts nicht arbeiten
müssen Sie das Objekt, sein Parent, dessen Parent usw. in den Suchpfad
aufnehmen indem Sie die Instancevariable kbdSearchPath auf TRUE setzen.

Syntax UI-Code: kbdSearchPath = TRUE | FALSE
Lesen: <numVar> = <obj>. kbdSearchPath
Schreiben: <obj>. kbdSearchPath = TRUE | FALSE

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-States - 12

3.2 Objekt States

Variable Syntax im UI-Code Im BASIC-Code
visible visible = TRUE | FALSE lesen, schreiben
fullyVisible –– nur lesen
enabled enabled = TRUE | FALSE lesen, schreiben
fullyEnabled –– nur lesen
readOnly readOnly = TRUE | FALSE lesen, schreiben

Methode Aufgabe
HideDelayed visible = FALSE mit verzögertem Bildschirmupdate
ShowDelayed visible = TRUE mit verzögertem Bildschirmupdate

visible, fullyVisible,

Die Instance-Variable visible (engl.: sichtbar) bestimmt, ob das Objekt und seine
Children auf dem Schirm erscheinen oder nicht. Wenn Sie ein Objekt auf nicht
sichtbar (visible = FALSE) setzen, so wird es einschließlich seiner Children vom
Schirm verschwinden. Das bedeutet im Umkehrschluss, dass ein Objekt
verborgen sein kann, auch wenn es auf visible gesetzt ist. Um wirklich sichtbar zu
sein, muss ein vollständiger Pfad von sichtbaren (visible = TRUE) Objekten bis
zum (ebenfalls sichtbaren) Application-Objekt führen. Dieser Zustand heißt
fullyVisible (= vollständig sichtbar) und kann im BASIC-Code abgefragt werden.
Jedes Objekt, das nicht explizit auf visible = FALSE gesetzt ist, ist per Default
visible.

Syntax UI-Code: visible = TRUE | FALSE
Lesen: <numVar> = <obj>. visible
Schreiben: <obj>.visible = TRUE | FALSE

Syntax Lesen: <numVar> = <obj>. fullyVisible

Beispiele: siehe unten.

HideDelayed, ShowDelayed

Ändert man zur Laufzeit den visible-Status eines Objekts, so verschwindet das
Objekt sofort bzw. erscheint sofort. Das kann zu unerwünschtem Flackern des
Bildschirms führen, z.B. wenn Sie mehrere Änderungen vornehmen oder ein
Objekt nur kurzzeitig auf visible = FALSE setzen wollen, um bestimmte
Änderungen vorzunehmen. HideDelayed setzt das Objekt auf visible = FLASE,
ohne es sofort vom Schirm zu nehmen. ShowDelayed setzt entsprechend das
Objekt auf visible = TRUE, ohne es sofort neu zu zeichnen.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-States - 13

In jedem Fall wird das Objekt spätestens dann neu dargestellt (oder vom Schirm
genommen), wenn der Action-Handler, in dem die ~Delayed-Methode aufgerufen
wurde, beendet ist.
Sie können HideDelayed und ShowDelayed beliebig mit dem direkten Belegen der
Instancevariable visible mischen. Die häufigste Variante ist das Aufrufen von
HideDelayed, danach z.B. das Hinzufügen oder entfernen von Children (bis hier
passiert auf dem Bildschirm nichts) und abschließend setzen von visible = TRUE.
Erst jetzt stellen sich die Objekte in der neuen Konfiguration neu dar.

Syntax: <obj>. HideDelayed
 <obj>. ShowDelayed

enabled, fullyEnabled

Ein Objekt ist enabled (engl.: aktiviert), wenn der Nutzer damit interagieren kann.
Objekte, die nicht enabled sind, zeichnen sich üblicherweise in grau. Wenn Sie ein
Objekt auf nicht enabled (enabled = FALSE) setzen, so werden auch alle seiner
Children nicht enabled erscheinen, auch wenn ihre eigene Instance-Variable
enabled auf TRUE steht. Um wirklich enabled zu sein, muss ein vollständiger Pfad
von enabled Objekten bis zum (ebenfalls enabled) Application-Objekt führen.
Dieser Zustand heißt fullyEnabled (= vollständig enabled) und kann im BASIC-
Code abgefragt werden.
Jedes Objekt, das nicht explizit auf enabled = FALSE gesetzt ist, ist per Default
enabled.

Syntax UI-Code: enabled = TRUE | FALSE
Lesen: <numVar> = <obj>. enabled
Schreiben: <obj>.enabled = TRUE | FALSE

Syntax Lesen: <numVar> = <obj>. fullyEnabled

Beispiele: siehe unten.

readOnly

Ein readOnly (engl.: nur lesen) Objekt ignoriert Texteingaben vom Nutzer. Das ist
nur für Objekte, die prinzipiell Texteingaben entgegennehmen können, von
Bedeutung. Andere Objekte, wie Buttons, ignorieren den readOnly Wert. Das heißt
konkret, dass das Setzten einer Group oder eines ähnlichen Objekts auf readOnly
nicht dazu führt, dass deren Children (z.B. Texte) readOnly werden.
ReadOnly Objekte ignorieren nur Eingaben vom Nutzer, es ist daher trotzdem
möglich alle Instance-Werte eines readOnly-Objekts vom BASIC-Code aus zu
ändern.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-States - 14

Syntax UI-Code: readOnly = TRUE | FALSE
Lesen: <numVar> = <obj>. readOnly
Schreiben: <obj>.readOnly = TRUE | FALSE

Beispiele
Der UI-Code definiert eine Gruppe, die ein readOnly Text Objekt und ein auf "nicht
enabled" gesetztes Value Objekt enthält.
Group MyInputGroup
Children = MyText, MyValue
< .. weitere instances.. >
End Object

Memo MyText
readOnly = TRUE
text$ = "Hallo Welt!"
< .. weitere instances.. >
End Object

Value MyValue
enabled = FALSE
< .. weitere instances.. >
End Object

Der folgende BASIC-Code ändert einige Dinge. Es wird vorausgesetzt, dass die
Buttons, deren ActionHandler hier implementiert werden, irgendwo definiert sind.

ButtonAction VersteckeGroup
MyGroup.visible = FALSE
End Action

ButtonAction MacheTextEditierbar
MyText.readOnly = FALSE
END Action

ButtonAction SchalteValueEnabeldStateUm
If MyValue.enabled = FALSE THEN
MyValue.enabled = TRUE

ELSE
MyValue.enabled = FALSE

END IF
END Action

ButtonAction SchreibeEtwasText
IF MyText.readOnly THEN
MyText.text$ = "Der Text ist read only."

ELSE
MyText.text$ = "Sie können den Text ändern."

END IF
END Action

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 15

3.3 Geometriemanagement

3.3.1 Überblick

Die vernünftige Positionierung der UI-Objekte auf dem Schirm ist eine der
aufwändigsten Aufgaben in einer grafischen Programmierumgebung. Der
Einsteiger wird annehmen, dass es zweckmäßig sei, für jedes Objekt die Position
und Größe explizit anzugeben. Auch wenn dies unter GEOS möglich ist, so ist es
für generische Objekte jedoch eine sehr schlechte Idee. Neben dem hohen damit
verbundenen Aufwand kommt es schnell zu unschönen Resultaten, wenn der
User eine andere Bildschirmauflösung, einen anderen Textfont oder Größe für den
Standard-Menü-Text in der GEOS.INI eingestellt hat. Die folgenden Bilder zeigen
einige schlechte Beispiele.

Im linken Bild haben der Text und der Button rechts oben eine feste Position, das
Primary-Objekt wurde jedoch mit der Maus "zu klein" eingestellt. Das rechte Bild
zeigt manuell deutlich fehlplatzierte Objekte.

Diese Bilder demonstrieren die Wirkung einer festen Größe in Pixel für die oberen
Buttons. Im rechten Bild wurde eine vergrößerte Systemschrift verwendet.

Die Lösung für diese Probleme heißt GEOS-Geometrie-Manager. Der Geometrie-
manager berechnet automatisch die Größe und Position der Objekte, so dass sie
vollständig und vernünftig auf dem Schirm angeordnet werden. Das passiert zur
Laufzeit des Programms, so dass unterschiedliche Textfonts und Größen sowie
andere Randbedingungen automatisch berücksichtigt werden. Anstatt festzulegen,
wo sich die Objekte befinden sollen und wie groß sie sind, geben Sie dem
Geometriemanager nur Hilfen der Form "Ordne die Objekte nebeneinander an",
"Mache das Objekt so breit wie möglich", "Zentriere die Objekte horizontal" usw.
Dieses Konzept erfordert anfangs etwas Eingewöhnung, aber Sie werden schnell

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 16

merken, dass es sehr systematisch und intuitiv zu benutzen ist. Sehr hilfreich ist
es dabei, die Objekte in Gruppen anzuordnen und die Positionierung der Objekte
innerhalb dieser Gruppen auszuführen.

Diese Anwendung beispielsweise besteht aus einer Group (rot, oben) und einer
Replybar (unten), die vertikal (untereinander) angeordnet sind. Die rot markierte
Gruppe besteht aus einem Text-Objekt und einer weiteren Group, hier blau
markiert. Beide Objekte sind horizontal angeordnet. Die rechte (blaue) Group
enthält letztlich die Action-Buttons, die untereinander angeordnet sind. Sollte Sie
z.B. die Aufschrift des zweiten Buttons verändern, so dass er breiter wird, dann
wird der Geometriemanager automatisch alle betroffenen Objekte (beide Group’s,
das Hauptfenster und die ReplyBar) verbreitern. Eine explizite Größenangabe ist
da nur störend.

Anweisungen an den Geometriemanager sind als "Hints" - das heißt "Hilfen" - für
den Geometriemanager organisiert. Das bedeutet, Sie zwingen den
Geometriemanager nicht, etwas zu tun, sondern Sie bitten ihn. Der Geometrie-
manager wird versuchen, Ihre Anweisungen so gut wie möglich umzusetzen.
Manchmal kann ihm das jedoch nicht gelingen. Beispielsweise könnten Sie
widersprüchliche Forderungen aufgestellt haben. Das ist einer der häufigsten
Fehler bei diesem Konzept. Es kann aber auch sein, dass bestimmte Objekte
einige Eigenschaften oder Fähigkeiten einfach nicht unterstützen. So ist es bei
Buttons nicht möglich, die Aufschrift (Caption$) oberhalb des Buttons anzuordnen,
die meisten anderen Objekte unterstützen dies aber. Oder Primary-Objekte (die
Hauptfenster eines Programms) ignorieren die Vorgabe einer festen Größe mit
"fixedSize", aber sie akzeptieren "WindowSizeFromParent". Gelegentlich kann es
daher etwas mit Probieren verbunden sein, den Geometriemanager zu überreden,
das zu tun, was man will.

Die Organisation der Geometrie-Eigenschaften als "Hints" hat noch eine andere
Konsequenz. Jede Eigenschaft, die Sie vorgeben, kostet einige (wenige) Bytes.
Eigenschaften, die nicht explizit angegeben werden, sind auch nicht im Objekt
gespeichert. Der Geometriemanager nimmt dann den für das Objekt gültigen
Vorgabewert. So ordnen Groups ihre Children untereinander linksbündig an, wenn
kein Wert für "orientChildren" und "justifyChildren" vorgegeben wird. Intern ist das
so organisiert, dass den eigentlichen Objekt-Daten (Instance-Daten) eine Tabelle
variabler Länger folgt, in die die Geometrie-Instance-Daten (Geometrie-Hints)
abgelegt sind.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 17

Wird z.B. kein Eintrag für "fixedSize" vorgenommen, so sind die entsprechenden
Daten einfach nicht da, das Objekt kommt gar nicht auf die Idee, sich eine feste
Größe zu leisten.
Bei vielen der Geometrie-Instance-Daten kann man auch abfragen, ob die Daten
präsent sind oder nicht.

3.3.2 Angabe von Größen, Positionen und Abständen

Größen, Positionen oder Abstände werden häufig in Pixeln angegeben. Manchmal
ist das aber gar nicht sinnvoll, es ist z.B. oft viel besser zu sagen "Mache den Text
5 Textzeilen hoch". Um so etwas zu kennzeichnen wird zum eigentlichen
Zahlenwert (hier 5) eine große Konstante addiert, so dass GEOS weiß, das nicht
Pixel sondern Textzeilen gemeint sind. Dabei stehen die folgenden Werte zur
Verfügung:

Konstante Wert Werte gemessen in:
ST_PIXELS 0 Pixel
ST_AVG_CHAR_WIDTH 4096 mittlere Zeichenbreite
ST_MAX_CHAR_WIDTH 5120 maximale Zeichenbreite

 ST_LINES_OF_TEXT 6144 Textzeilen Höhe
ST_PCT_OF_SCREEN_WIDTH 2048 Prozent der Bildschirmbreite
ST_PCT_OF_SCREEN_HEIGHT 3072 Prozent der Bildschirmhöhe

1024 (Reserviert, nicht benutzen!)

Grundsätzlich gilt: Größenangaben können im Bereich von 0 bis 1023 (jeweils
einschließlich) liegen. Ausnahme bilden die _PCT_ (engl. percent: Prozent) -
Konstanten. Hier liegen die Werte sinnvollerweise von 0 bis 100.

ST_PIXELS
Dies ist der Standard. Da der Wert Null ist, muss er nicht addiert werden.
Achtung! Sie können mit ST_PIXELS nur Größen bis maximal 1023 Pixel
spezifizieren, da der Wert 1024 vom System reserviert ist!

ST_AVG_CHAR_WIDTH
Der Wert wird mit der mittleren Breite eines Text-Zeichens multipliziert. GEOS
verwendet üblicherweise Proportionalfonts, in dem jedes Zeichen eine andere
Breite hat. Die erzeugte Größe hängt also vom verwendeten Font ab.

ST_MAX_CHAR_WIDTH
Der Wert wird mit der Breite des breitesten Text-Zeichens multipliziert. Die
erzeugte Größe hängt also hängt vom verwendeten Font ab.

ST_LINES_OF_TEXT
Der Wert wird mit der Höhe einer einzelnen Text-Zeile multipliziert. Die erzeugte
Größe hängt also von der verwendeten Textgröße ab.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 18

Anmerkung: Die Bezeichnung der Konstante wurde geändert. Die alte
Bezeichnung ST_TEXT_LINES kann weiterhin verwendet werden.

ST_PCT_OF_SCREEN_WIDTH
Größe entspricht einem Prozentsatz der Bildschirmbreite. Das ist z.B. nützlich für
Dialogboxen.

ST_PCT_OF_SCREEN_HEIGHT
Größe entspricht einem Prozentsatz der Bildschirmhöhe. Das ist z.B. nützlich für
Dialogboxen.

Beispiel: feste Größe für ein Textobjekt vorgeben
Memo MyText
fixedSize = 45 + ST_AVG_CHAR_WIDTH, 8 + ST_LINES_OF_TEXT
<.. weitere Instance-Variablen.. >

END object

Hinweis: Für Fenster-Objekte (Primary, Dialog, Display) gibt es spezielle Hints
zum Festlegen der Größe, die sogenannten Window-Hints. Sie sind im Kapitel
3.3.7 beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 19

3.3.3 Anordnung der Objekte

Die Anweisungen zum Anordnen der Objekte sind die wohl am häufigsten
genutzten Anweisungen im Geometriemanagement. Dabei wird dem Parent-
Objekt mitgeteilt, wie es seine Children zu organisieren hat. Sie können z.B.
festlegen ob die Children neben oder untereinander angeordnet werden und wie
sie ausgerichtet werden sollen (linksbündig, rechtsbündig, zentriert usw.). Die
folgenden Hints stehen zur Verfügung:

Hint Syntax im UI-Code Im BASIC-Code
orientChildren orientChildren = numWert lesen, schreiben
justifyChildren justifyChildren = numWert lesen, schreiben
childSpacing childSpacing = numWert lesen, schreiben
MinimzeChildSpacing MinimzeChildSpacing –––
IncludeEndsInChildSpacing IncludeEndsInChildSpacing –––
wrapAfterChild wrapAfterChild = numWert lesen, schreiben
DivideHeightEqually DivideHeightEqually –––
DivideWidthEqually DivideWidthEqually –––

3.3.3.1 Orientierung und Ausrichtung

orientChildren

OrientChildren legt fest, ob die Children-Objekte nebeneinander oder
untereinander angeordnet werden.

Syntax UI- Code: orientChildren = numWert
Lesen: <numVar> = <obj> . orientChildren
Schreiben: <obj>.orientChildren = numWert

Dabei stehen folgende Konstanten zur Verfügung. Sie können jeweils nur eine
Konstante angeben, eine Kombination (mit +) ist nicht zulässig.

Konstante Wert Bedeutung
ORIENT_HORIZONTALLY 1 nebeneinander
ORIENT_VERTICALLY 2 untereinander
ORIENT_SAME_AS_PARENT 4 genauso, wie das Parent-

Objekt der Children
ORIENT_ON_LARGER_DIMENSION 8 nebeneinander, wenn der

Bildschirm breiter als hoch
ist, sonst untereinander

Beispiele: siehe unten

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 20

justifyChildren

JustifyChildren legt fest, wie die Children-Objekt relativ zueinander angeordnet
werden.

Syntax UI- Code: justifyChildren = numWert
Lesen: <numVar> = <obj> . justifyChildren
Schreiben: <obj>.justifyChildren = numWert

Dabei stehen folgende Konstanten zur Verfügung. Sie können mehrere
Konstanten kombinieren (mit +), solange dies sinnvoll ist. Ungültige Werte werden
ignoriert, bei widersprüchlichen Werten entscheidet der Geometriemanager.

Konstante Wert Bedeutung
J_LEFT 2 linksbündig
J_RIGHT 4 rechtsbündig
J_TOP 8 am oberen Rand
J_BOTTOM 16 am unteren Rand
J_FULL_H 64 volle Breite, horizontal
J_FULL_V 128 volle Höhe, vertikal
J_CENTER_H 256 horizontal zentriert
J_CENTER_V 512 vertikal zentriert
J_CENTER_ON_CAPTION 1024 am Caption$ ausgerichtet
J_CENTER_ON_CAPTION_LEFT 2048 am Caption$ ausgerichtet
J_CENTER 1 wie J_CENTER_H und

 J_CENTER_V gleichzeitig
J_FULL 32 wie J_FULL_H und

 J_FULL_V gleichzeitig

Bemerkungen zu einigen der Konstanten:

J_FULL_H, J_FULL_V
Die Children sollen die volle Breite/Höhe des Parent-Objekts ausschöpfen
und den freien Platz gleichmäßig zwischen sich aufteilen. Ein Beispiel finden
Sie bei den drei unteren Buttons im nächsten Bild. Das ist analog zum
Blocksatz bei einer Textverarbeitung. Dazu muss das Parent-Objekt aber
größer sein, als die Children erfordern. Oft müssen Sie dazu die Hints
ExpandWidth bzw. ExpandHeight (siehe nächster Abschnitt) setzen.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 21

J_CENTER_ON_CAPTION, J_CENTER_ON_CAPTION_LEFT
Die Texte in den beiden Bildern oben sind "ON_CAPTION" ausgerichtet. Der
UI-Code für die obere Group im linken Bild ist:

Group TopGroup
Children = Text1, Text2, Text3
orientChildren = ORIENT_VERTICALLY
justifyChildren = J_CENTER_ON_CAPTION

END Object

Im rechten Bild dagegen ist:
justifyChildren = J_CENTER_ON_CAPTION_LEFT

J_CENTER, J_FULL
Diese Werte werden von R-BASIC intern in die beiden _H und _V Werte
umgerechnet, d.h. statt 1 wird 256+512 und statt 32 wird 64+128 in den
Objekt-Daten gespeichert. Das ist wichtig, falls Sie den Wert für
justifyChildren auslesen und auf bestimmte Konstanten testen wollen.

Beispiele für ausgerichtete Objekte

Wir verwenden folgende Buttons:
Button RomanButton
Caption$ = "Roman"
END Object

Button SansButton
Caption$ = "Sans-Serif"
END Object

Button MonoButton
Caption$ = "Mono"
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 22

Gruppen zur Ausrichtung der Objekte
Group Group1
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_VERTICALLY
justifyChildren = J_LEFT
END Object

Roman

Sans-Serif

Mono

Group Group2
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_VERTICALLY
justifyChildren = J_RIGHT
END Object

Roman

Sans-Serif

Mono

Group Group3
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_HORIZONTALLY
justifyChildren = J_TOP
END Object

Sans-Serif MonoRoman

Group Group4
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_HORIZONTALLY
justifyChildren = J_BOTTOM
END Object Roman Sans-Serif Mono

Beispiel zur Objekt-Zentrierung
Group Group1
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_VERTICALLY
justifyChildren = J_CENTER_H
END Object

Roman

Sans-Serif

Mono

Group Group2
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_HORIZONTALLY
justifyChildren = J_CENTER_V
END Object Roman Sans-Serif Mono

Group Group3
Children = MonoButton
justifyChildren = J_CENTER_H + J_CENTER_V
END Object

Mono

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 23

Group Group4
Children = RomanButton, SansButton, MonoButton
orientChildren = ORIENT_HORIZONTALLY
justifyChildren = J_CENTER_V + J_FULL_H

’ H und V beachten!
END Object Roman Sans-Serif Mono

3.3.3.2 Child Spacing

Normalerweise legt der Geometriemanager die Abstände zwischen benachbarten
Objekten fest. Sie können durch das Setzen bestimmter Geometrie-Hints auf
diesen Prozess Einfluss nehmen.

childSpacing

ChildSpacing (engl. space: Platz, Abstand) legt einen Wert für den Abstand
zwischen benachbarten Children fest. Üblicherweise wird der Wert in Pixeln
angegeben, Sie können aber auch die Werte ST_AVG_CHAR_WIDTH,
ST_MAX_CHAR_WIDTH bzw. ST_LINES_OF_TEXT verwenden (Details dazu
siehe Kapitel 3.3.2). Per Default ist kein childSpacing Wert gesetzt.

Syntax UI- Code: childSpacing = numWert
Lesen: <numVar> = <obj> . childSpacing
Schreiben: <obj>.childSpacing = numWert

Spezialfall: numWert = –1: Löschen eines vorher
gesetzten childSpacing Hints aus den Objekt-Daten

MinimizeChildSpacing

MinimizeChildSpacing weist den Geometriemanager an, die Children so eng wie
möglich anzuordnen, auch wenn das bedeutet, dass sie sich berühren.

Syntax UI- Code: MinimizeChildSpacing

Beispiel

Eine Group mit 3 Buttons. Links normal, Rechts mit MinimizeChildSpacing.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 24

IncludeEndsInChildSpacing

IncludeEndsInChildSpacing bewirkt, dass der Platz links und rechts der Children
bei der Positionsberechnung berücksichtigt wird, das linke Child also nicht ganz an
den Rand gesetzt wird.

Syntax UI- Code: IncludeEndsInChildSpacing

Beispiel
Verschiedene Varianten von childSpacing-Werten
Group Group1
Children = OKButton, ChangeButton, ExitButton
orientChildren = ORIENT_HORIZONTALLY
ExpandWidth

DrawInBox
childSpacing = 4 + ST_AVG_CHAR_WIDTH
END Object

Group Group2
Children = OKButton, ChangeButton, ExitButton
orientChildren = ORIENT_HORIZONTALLY
ExpandWidth
DrawInBox
childSpacing = 12 ’ Pixels
IncludeEndsInChildSpacing
END Object

Group Group3
Children = OKButton, ChangeButton, ExitButton
orientChildren = ORIENT_HORIZONTALLY
ExpandWidth

DrawInBox
justifyChildren = J_FULL_H
IncludeEndsInChildSpacing
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 25

3.3.3.3 Automatischer Umbruch

wrapAfterChild

Standardmäßig ordnen alle Groups, deren Children nebeneinander angeordnet
sind (dazu zählen auch Reply Bars), alle Children in einer Reihe an. Der Hint
wrapAfterChild erlaubt es, die Children in mehreren Reihen anzuordnen. Damit
dies ordentlich funktioniert ist es oft nötig, der Group und ggf. ihren Parents auch
den Hint ExpandWidth zu geben.

Syntax UI- Code: wrapAfterChild = numWert
Lesen: <numVar> = <obj>. wrapAfterChild
Schreiben: <obj>.wrapAfterChild = numWert

numWert = – 1: Automatischer Modus
numWert = 0: Hint aus Objektdaten löschen
numWert = 1 .. N : Umbrechen nach N Children

Automatischer Modus:
Es werden so viele Children nebeneinander angeordnet, wie Platz ist. Gege-
benenfalls werden weitere Reihen eröffnet.

Umbrechen nach N Children:
Achtung! Verhält sich für normale Groups und für ReplyBars unterschiedlich!
Normale Groups: Der erste Umbruch erfolgt frühestens nach N Children. Ist
ausreichend Platz erfolgt der erste Umbruch nach Bedarf. Die weiteren
Umbrüche folgen nach Bedarf.
Reply Bars: Der Umbruch erfolgt immer nach N children. Auch die nächsten
Umbrüche erfolgen nach jeweils N children.

Hinweis: Der Hint ist nicht auf Primaries, DisplayGroups und Displays anwendbar.
Verwenden Sie ggf. eine Group als Zwischenobjekt.

Beispiel UI- Code:
Group AGroup
Caption$ = "Action:"
justifyCaption = J_TOP
Children = button1, button2, button3
orientChildren = orient_horizontally
wrapAfterChild = –1
ExpandWidth
END Object

Group AReplyBar
MakeReplyBar
Children = button4, button5, button6
wrapAfterChild = 1
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 26

Nehmen wir an, die Groups befinden sich in einem Primary-Objekt. Zoomt man
dieses erhält man die folgenden Bilder:

3.3.3.4 Vorhandenen Platz gleichmäßig verteilen

DivideWidthEqually

Dieser Hint legt fest, dass sich die Children die vorhandene Breite gleichmäßig
untereinander aufteilen sollen. Damit das funktioniert, müssen alle Children den
Hint ExpandWidth gesetzt haben. Auch das Objekt selber sollte ExpandWidth
gesetzt haben.

Syntax UI- Code: DivideWidthEqually

DivideHeightEqually

Dieser Hint legt fest, dass sich die Children die Höhe gleichmäßig untereinander
aufteilen sollen. Damit das funktioniert, müssen alle Children den Hint
ExpandHeight gesetzt haben. Auch das Objekt selber sollte ExpandHeight
gesetzt haben.

Syntax UI- Code: DivideHeightEqually

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 27

Beispiel:

Die Group befinde sich in einem größenveränderlichen Primary-Objekt. Im rechten
Bild wurde nur die Breite des Primary Objekts mit der Maus verändert. Hier ist der
UI-Code dazu:
Group BottomGroup
Children = OKButton, ChangeButton, ExitButton
orientChildren = ORIENT_HORIZONTALLY
DivideWidthEqually
ExpandWidth
DrawInBox
END Object

Button OKButton
Caption$ = " OK ", 1
justifyCaption = J_CENTER
ExpandWidth
END Object

Button ChangeButton
Caption$ = " Change ", 1
justifyCaption = J_CENTER
ExpandWidth
END Object

Button ExitButton
Caption$ = " Exit ", 1
justifyCaption = J_CENTER
ExpandWidth
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 28

3.3.4 Objektgröße

Das Vorschreiben einer bestimmten Objektgröße kann sehr oft hilfreich sein, um
das Aussehen Ihres Programms den Erfordernissen anpassen. Gerade bei Listen,
Text-Objekten und View’s kann eine Größenvorgabe erforderlich sein. Bedenken
Sie aber, dass der Nutzer Ihres Programms eine andere Bildschirmauflösung oder
eine andere Größe für die Systemtexte eingestellt haben kann. Die Verwendung
von Größenangaben, die das berücksichtigen (z.B. ST_LINES_OF_TEXT,
ST_AVG_CHAR_WIDTH, siehe Kapitel 3.3.2) ist daher oft eine gute Idee.
Beachten Sie, dass es für Fenster-Objekte, wie z.B. Primaries, weitere Geometrie-
Hints gibt, die "Window-Hints" wie z.B.

SizeWindowAsDesired

Grundsätzlich gilt, dass Sie die Größe eines generischen Objekts nur dann
vorschreiben sollten, wenn es unbedingt erforderlich ist. Dabei stehen Ihnen die
folgenden Möglichkeiten zur Verfügung.

Hint Syntax im UI-Code Im BASIC-Code
ExpandWidth ExpandWidth ––
ExpandHeight ExpandHeight ––
NoWiderThanChildren NoWiderThanChildren ––
NoHigherThanChildren NoHigherThanChildren ––
initialSize initialSize = x, y [, count] lesen, schreiben
minimumSize minimumSize = x, y [, count] lesen, schreiben
maximumSize maximumSize = x, y [, count] lesen, schreiben
fixedSize fixedSize = x, y [, count] lesen, schreiben
xSize –– nur lesen
ySize –– nur lesen

ExpandWidth, ExpandHeight

Diese Hints bestimmen, dass das Objekt seine Breite (ExpandWidth) bzw. seine
Höhe (ExpandHeight) so groß machen soll, dass der gesamte vom Parent zur
Verfügung gestellte Platz ausgenutzt wird. Oftmals hat auch das Parent den
entsprechenden Hints gesetzt.

Syntax UI- Code: ExpandWidth
 ExpandHeight

NoWiderThanChildren, NoHigherThanChildren

Diese Hints bestimmen, dass ein Objekt nicht größer werden soll, als nötig ist um
seine Children aufzunehmen.
Anmerkung: Primaries ignorieren NoWiderThanChildren.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 29

Syntax UI- Code: NoWiderThanChildren
 NoHigherThanChildren

initialSize, minimumSize, maximumSize

Diese Hints legen die anfängliche (initialSize), minimale (minimumSize) bzw.
maximale (maximumSize) eines Objekts fest. Das ist häufig nützlich für größen-
veränderliche Groups, Dialoge, View-Objekte usw., die die Hints ExpandWidth
und / oder ExpandHeight gesetzt haben. Primary-Objekte unterstützen die ~Size-
Hints jedoch nicht.

Syntax: siehe fixedSize

fixedSize

Das ist der wohl am häufigsten verwendete Size-Hint. Er gibt dem Objekt eine
feste Größe. Achten Sie bei der Auswahl der Größenangabe auf eine zweck-
mäßige "Grundeinheit", z.B. ST_LINES_OF_TEXT oder ST_AVG_CHAR_WIDTH.
Details dazu finden Sie im Abschnitt 3.3.2.

Syntax UI- Code: fixedSize = width , height [, count]
width: Breite des Objekts
height: Höhe des Objekts
count: falls angebracht: "Zähler"

Lesen: <numVar> = <obj>.fixedSize (n)
n = 0: Breite
n = 1: Höhe
n = 2: Count
n = 3: Test ob der Hint gesetzt ist (TRUE)

 oder nicht (FALSE)
Schreiben: <obj>.fixedSize = width , height [, count]

Spezialfall: width oder height = –1: Löschen des Hints.

Beachten Sie, dass es sich um Hints (Hilfen für den Geometriemanager) handelt.
Einige Objekte ignorieren diese Werte. Falls das ein Problem darstellt, ist eine
häufig geeignete Lösung, das Objekt in eine Group einzuschließen. Groups
unterstützen alle diese Hints.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 30

Beispiel:

Group InfoGroup
Children = InfoText, MoreInfoButton
orientChildren = ORIENT_VERTICALLY
ExpandWidth
ExpandHeight
DrawInBox
END Object

Memo InfoText
Caption$ = "Information eingeben"
fixedSize = 40 + ST_AVG_CHAR_WIDTH, 5 + ST_LINES_OF_TEXT
END Object

Button MoreInfoButton
Caption$ ="Mehr Infos"
justifyCaption = J_CENTER
ExpandWidth
END Object

Der Parameter "count" wird bei Objekten verwendet, die
eine Anzahl an "Unterobjekten" darstellen. Der typische
Fall sind "scrollbare" Listen, wie im Beispiel dargestellt.
Die Liste ist 15 Zeichen breit, 10 Textzeilen hoch und
stellt 10 Einträge gleichzeitig dar.

DynamicList dynlist
caption$= "DynamicList"
justifycaption = J_TOP
< ... >
fixedSize = 15 + ST_AVG_CHAR_WIDTH, \

 10 + ST_LINES_OF_TEXT, 10
END Object

xSize, ySize

Diese Werte liefern die aktuelle Größe des Objekts in Pixeln. Dabei verwenden sie
eine GEOS-internen Struktur, die im PC/GEOS-SDK "visBounds" heißt. Diese
Struktur speichert die Position und Größe des Rechtecks, dass das gesamte
Objekt umschließt. Das umfasst auch einen eventuell automatisch um das Objekt

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 31

gezogenen Rahmen oder die "Seiten" eines Buttons. Deswegen können die von
xSize und ySize gelieferten Werte größer sein, als Sie mit fixedSize festgelegt
haben. Außerdem sind die Werte nur gültig, solange das Objekt auch dem Schirm
ist. Dabei darf es auch im Hintergrund oder von anderen Objekten verdeckt sein.
Aber für Objekte, die auf visible = FALSE gesetzt oder nicht im generic Tree sind,
sind die Werte möglicherweise ungültig.

Syntax Lesen: <numVar> = <obj>.xSize
<numVar> = <obj>.ySize

Anmerkung: Die Instancevariablen xSize und ySize sind nicht nur für Generic-
Class Objekte, sondern auch für VisualClass Objekte (siehe Kapitel 5 des
Objekthandbuchs) definiert.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 32

3.3.5 Positionierung der Objekte

Die Positionierung der generischen Objekte ist eine der elementaren Aufgaben
des Geometriemanagers. Sie sollten hier nur eingreifen, wenn es unbedingt sein
muss. Folgende Möglichkeiten zur Verfügung:

Hint Syntax im UI-Code Im BASIC-Code
placeObject placeObject = numWert lesen, schreiben
fixedPosition fixedPosition = x, y lesen, schreiben
xPosition –– nur lesen
yPosition –– nur lesen

placeObject

Dieser Hint ermöglicht es Ihnen, Objekte an Stellen zu platzieren, auf die Sie sonst
keinen Zugriff hätten. Dazu stehen die folgenden Konstanten zur Verfügung. Sie
dürfen jeweils nur eine Konstante verwenden, eine Kombination (mit +) ist nicht
zulässig.

Konstante Wert Bedeutung
MENU_BAR 1 Objekt in der Menüleiste platzieren
REPLY_BAR 2 Objekt in der Replybar platzieren
TITLE_BAR_LEFT 4 Objekt links in der Titelzeile platzieren
TITLE_BAR_RIGHT 8 Objekt rechts in der Titelzeile platzieren

16 - 512 reserviert für Views. Siehe dort.

MENU_BAR
Platziert das Objekt in der Menüzeile eines Primary-Objekts. Das Objekt muss
dazu direktes Child des Primary-Objekts sein.

REPLY_BAR
Platziert das Objekt in einer automatisch erzeugten Replybar eines Dialog-
Objekts. Das Objekt muss dazu direktes Child des Dialog-Objekts sein. Existiert
keine automatisch erzeugte Replybar, so ist dieser Wert wirkungslos.

TITLE_BAR_LEFT, TITLE_BAR_RIGHT
Platziert das Objekt auf der linken (TITLE_BAR_LEFT) oder der rechten
(TITLE_BAR_RIGHT) Seite der Titelzeile eines Primary- oder Display-Objekts.
Das Objekt muss dazu direktes Child des Primary- oder Display-Objekts sein.

Syntax UI- Code: placeObject = position
position: Wert aus der Tabelle oben

Lesen: <numVar> = <obj>.placeObject
Schreiben: <obj>.placeObject = position

Spezialfall: position = 0: Löschen des Hints.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 33

fixedPosition

Dieser Hint schreibt die Position eines Objekts relativ zu seinem Parent fest.
FixedPosition ist extrem hoch priorisiert. Verwenden Sie diesen Hint für
generische Objekte nur im äußersten Notfall, da der Geometriemanager ihn auch
dann befolgt, wenn er unsinnige Ergebnisse hervorruft und Teile des
automatischen Geometriemanagements außer Kraft gesetzt werden können.

Syntax UI- Code: fixedPosition = xPos , yPos
Lesen: <numVar> = <obj>.fixedPosition (n)

n = 0: xPos
n = 1: yPos
n = 2: Test ob der Hint gesetzt ist (TRUE)

 oder nicht (FALSE)
Schreiben: <obj>.fixedPosition = xPos , yPos

Spezialfall: xPos oder yPos = –1: Löschen des Hints.

xPosition, yPosition

Diese Werte liefern die aktuelle Position des Objekts. Dabei verwenden sie eine
GEOS-internen Struktur, die im PC/GEOS-SDK "visBounds" heißt. Damit gelten
die gleichen Einschränkungen, die bei xSize und ySize oben beschrieben wurden.
Die mit xPosition und yPosition gelesenen Werte werden für generische Objekte
regelmäßig von den eventuell mit fixedPosition gesetzten Werten abweichen, da
fixedPosition die Position relativ zum Parent-Objekt setzt, die visBounds sich
jedoch üblicherweise auf das zugehörige "Window" (Primary, Dialog..) beziehen.

Syntax Lesen: <numVar> = <obj>.xPosition
<numVar> = <obj>.yPosition

Anmerkung: Die Instancevariablen xPosition und yPosition sind nicht nur für
GenericClass Objekte sondern auch für VisualClass Objekte (siehe Kapitel 5 des
Objekthandbuchs) definiert.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 34

3.3.6 Spezielle Attribute

Die hier beschriebenen Hints sind zwar auf GenericClass Ebene definiert, zeigen
jedoch nicht bei allen Objekten eine Wirkung. Die Objekte, für die sie am
häufigsten verwendet werden sind unten jeweils mit angegeben.

Hint Syntax im UI-Code Im BASIC-Code
DrawInBox DrawInBox ––
MakeToolbox MakeToolbox ––
MakeReplyBar MakeReplyBar ––
tColor tColor = color lesen, schreiben
bgColor bgColor = col1, col2 lesen, schreiben
NoSeparatorLine NoSeparatorLine ––

DrawInBox

Dieser Hint zeichnet einen Rahmen um ein Objekt. Er wird sehr häufig für Group-
Objekte und Listen-Objekte verwendet.

Syntax UI-Code: DrawInBox

MakeToolbox

Dieser Hint bewirkt, dass das ein Group-Objekt seine Children als "Werkzeug-
leiste" (engl. tool box = Werkzeugkasten) darstellt. Viele Objekte stellen sich als
"Tool" anders dar, wobei die Funktionalität aber nicht geändert wird.

Syntax UI-Code: MakeToolbox

Beispiele:
Eine Group mit DrawInBox gesetzt. Rechts ist außerdem MakeToolbox gesetzt.

Der UI-Code dazu:
Group AReplyBar
Children = OKButton, ExitButton
orientChildren = ORIENT_HORIZONTALLY
DrawInBox
ExpandWidth
MakeToolbox
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 35

Ein Listen-Objekt (RadioButtonGroup), links ohne, rechts mit MakeToolBox:

MakeReplyBar

Eine ReplyBar ist die Kontroll-Leiste mit den Buttons OK, Abbrechen usw., die sich
in vielen Dialogboxen findet. Die Children werden automatisch auf eine spezielle
Weise angeordnet.

Syntax UI-Code: MakeReplyBar

Group AReplyBar
Children = OKButton, ExitButton
MakeReplyBar
END Object

tColor, bgColor

Einige Objekte, insbesondere Buttons und Listeneinträge von scrollbaren Listen,
unterstützen farbigen Caption-Text (tColor) und farbige Hintergründe (bgColor). Es
gibt dabei zwei Hintergrundfarben: eine für den "unselektierten" und eine für den
"selektierten" Zustand.

Syntax UI-Code: tColor = color
color: Text-Farbe. Es muss eine Indexfarbe sein.
 RGB-Farben werden nicht unterstützt.

bgColor = col1, col2
col1: Unselektierte Farbe. (ebenfalls nur Indexfarbe)
col2: Selektierte Farbe. (ebenfalls nur Indexfarbe)

Lesen: <numVar> = <obj>.tColor
Liefert –1, wenn Hint nicht gesetzt ist

<numVar> = <obj>.bgColor (n)
n = 0: unselektierte Farbe (col1)

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 36

n = 1: selektierte Farbe (col2)
Liefert –1, wenn Hint nicht gesetzt ist

Schreiben: <obj>.tColor = color
color = –1 löscht den Hint

<obj>.bgColor = col1, col2
col1 oder col2 = –1 löscht den Hint

NoSeparatorLine

Dieser Hint beeinflusst nur Groups, die in ein Menü eingebunden sind. Per Default
werden sie durch eine Trennlinie abgegrenzt. Damit bekommt das Menü eine
bessere Struktur. Dieser Hint entfernt diese Trennlinie.

Syntax UI-Code: NoSeparatorLine

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 37

3.3.7 Spezielle Hints für Window-Objekte

Die hier beschriebenen Hints sind zwar auf GenericClass Ebene definiert, zeigen
jedoch nur bei Window-Objekten wie Primaries, Displays und Dialogen eine
Wirkung. Ob ein bestimmter Hint in einer konkreten Situation die beabsichtigte
Wirkung hat müssen Sie ausprobieren.

Für Primaries wird z.B. sehr häufig der Hint SizeWindowAsDesired verwendet
um die Größe des Programmfensters auf das erforderliche Maß zu beschränken.

3.3.7.1 Aussehen und Verhalten anpassen

Hint Syntax im UI-Code Im BASIC-Code
NoSysMenu NoSysMenu ––
NoTitleBar NoTitleBar ––
WindowNotMovable WindowNotMovable ––

NoSysMenu

NoSysMenu entfernt das Systemmenu von einem Window-Objekt. Achtung! Mit
dem Systemmenu entfernen Sie eventuell den Zugriff auf wichtige Funktionen des
Programms!

Syntax UI-Code: NoSysMenu

NoTitleBar

NoTitleBar entfernt die Titelzeile von einem Window-Objekt. Achtung! Mit der
Titelzeile entfernen Sie eventuell den Zugriff auf wichtige Funktionen des
Programms!

Syntax UI-Code: NoTitleBar

Beispiel

Ein Primary-Objekt: links normal, rechts mit NoSysMenu gesetzt und unten mit
NoTitleBar gesetzt (die Icons im Hintergrund sind jetzt sichtbar).

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 38

Der UI-Code für das rechte Bild sieht so aus:
Primary APrimary
SizeWindowAsDesired
NoTitleBar
Caption$ = "Title Bar"
’ wird ignoriert, weil es keine Title Bar mehr gibt :-)

<.. .. >
END Object

WindowNotMovable

Dieser Hint verhindert, dass ein Fenster, dass normalerweise auf dem Bildschirm
verschieblich ist, nicht mehr verschoben werden kann. Sie sollten diesen Hint
vorsichtig einsetzten.

Syntax UI-Code: WindowNotMovable

3.3.7.2 Anfängliche Größe festlegen

Die hier beschriebenen Hints legen die Größe eines Fenster-Objekts fest, wenn es
erstmalig geöffnet wird. Sie sind nur im UI Code zulässig.

Hint Syntax im UI-Code
SizeWindowAsDesired SizeWindowAsDesired
ExtendWindowToBottomRight ExtendWindowToBottomRight
ExtendWindowNearBottomRight ExtendWindowNearBottomRight
WindowSizeFromParent WindowSizeFromParent = relX, relY
WindowSizeFromScreen WindowSizeFromScreen = relX, relY

SizeWindowAsDesired

Dieser Hint verhindert, dass Fenster, oftmals ein Primary-Objekt, am Anfang
größer wird, als die Children es benötigen.

Syntax UI-Code: SizeWindowAsDesired

ExtendWindowToBottomRight

Bewirkt, dass sich das Fenster beim erstmaligen Öffnen soweit vergrößert, dass
es bis an den rechten und den unteren Rand des Parent Windows reicht.

Syntax UI-Code: ExtendWindowToBottomRight

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 39

ExtendWindowNearBottomRight

Wie ExtendWindowToBottomRight, nur dass unten ein kleiner Bereich freige-
lassen wird.

Syntax UI-Code: ExtendWindowNearBottomRight

WindowSizeFromParent

Dieser Hint bewirkt, dass die Größe eines neu geöffneten Fensters relativ zu
seinem Parent-Window festgelegt wird. Beachten Sie, dass das nicht identisch mit
dem Parent-Objekt im GenericClass Tree sein muss. Für Dialoge und Primaries ist
das Parent Window z.B. der Bildschirm, für Displays ist es die DisplayGroup.

Syntax UI-Code: WindowSizeFromParent = relX, relY
relX, relY: relative Größe in Prozent

Erlaubte Werte: Null bis 100, jeweils einschließlich

WindowSizeFromScreen

Dieser Hint bewirkt, dass die Größe eines neu geöffneten Fensters relativ zum
gesamten Bildschirm festgelegt wird.

Syntax UI-Code: WindowSizeFromScreen = relX, relY
relX, relY: relative Größe in Prozent

Erlaubte Werte: Null bis 100, jeweils einschließlich

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 40

3.3.7.3 Anfängliche Position festlegen

Die hier beschriebenen Hints legen die Position eines Fenster-Objekts fest, wenn
es erstmalig geöffnet wird. Sie sind nur im UI-Code zulässig.

Hint Syntax im UI-Code
PositionWindowAtMouse PositionWindowAtMouse
WindowPositionFromParent WindowPositionFromParent = relX, relY
StaggerWindow StaggerWindow
CenterWindow CenterWindow
TileWindow TileWindow
WindowNoConstraints WindowNoConstraints

PositionWindowAtMouse

Dieser Hint bewirkt, dass linke obere Ecke eines Fensters, z.B. eines Dialogs oder
eines Primary, beim Öffnen an der aktuellen Mausposition steht. Das wir häufig für
Kontextmenüs genutzt.

Syntax UI-Code: PositionWindowAtMouse

WindowPositionFromParent

Dieser Hint bewirkt, dass die Position eines neu geöffneten Fensters relativ zu
seinem Parent-Window festgelegt wird. Beachten Sie, dass das nicht identisch mit
dem Parent-Objekt im GenericClass Tree sein muss. Für Dialoge und Primaries ist
das Parent Window z.B. der Bildschirm, für Displays ist es die DisplayGroup.

Syntax UI-Code: WindowPositionFromParent = relX, relY
relX, relY: relative Position in Prozent

Erlaubte Werte: Null bis 100, jeweils einschließlich

StaggerWindow, CenterWindow, TileWindow

Diese Hints bewirken, dass mehrere Fenster innerhalb eines Parent-Windows (für
Displays z.B. die DisplayGroup), die einen dieser Hints gesetzt haben, auf
bestimmte Weise angeordnet werden.

StaggerWindow überlappend (engl. staggered: gestaffelt)
CenterWindow zentriert
TileWindow Platz aufteilen

Syntax UI-Code: StaggerWindow
CenterWindow
TileWindow

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 41

WindowNoConstraints

Dieser Hint entfernt alle Einschränkungen (engl.: constraints) bezüglich der
Fensterpositionierung. Er sollte nur als letzter Versuch benutzt werden, um ein
Fenster zu positionieren.

Syntax UI-Code: WindowNoConstraints

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 42

3.3.7.4 Window Management

Methode Aufgabe
BringToTop Window nach vorne holen
LowerToBottom Window nach hinten stellen
MoveWin Window verschieben
ResizeWin Windows Größe ändern

BringToTop

Diese Methode bringt das betroffene Fenster nach vorne. Das Fenster erhält
automatisch den Focus.

Syntax Basic-Code: <obj>.BringToTop

LowerToBottom

Diese Methode stellt das betroffene Fenster nach hinten. Es verliert automatisch
den Focus, falls es ihn besaß.

Syntax Basic-Code: <obj>.LowerToBottom

MoveWin

Diese Methode verschiebt das Window an eine bestimmte Position. Die Position
kann in Pixeln angegeben werden (Parameter mode nicht angegeben oder Null)
oder als Prozentwert der Größe des übergeordneten Windows (Parameter mode
ungleich Null).

Syntax Basic-Code: <obj>.MoveWin xPos, yPos [, mode]

ResizeWin

Diese Methode ändert die Größe eines Window-Objekts. Die neue Größe kann in
Pixeln angegeben werden (Parameter mode nicht angegeben oder Null) oder als
Prozentwert der Größe des übergeordneten Windows (Parameter mode ungleich
Null).

Syntax Basic-Code: <obj>.ResizeWin xPos, yPos [, mode]

ResizeWin arbeitet unter Umständen nicht, wenn Sie widersprüchliche An-
weisungen geben, z.B. gleichzeitig fixedSize oder SizeWindowAsDesired setzen.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 43

3.3.8 Hintertürchen für Programmierer

Die in den letzten Abschnitten besprochenen Hints, wie z.B. ExpandWidth oder
NoTitleBar sind nur im UI-Code verfügbar:

Button MyButton
Caption$ = "Drück mich"
ExpandWidth ! Maximale Breite einnehmen
End Object

Die "normale" Syntax von R-BASIC erlaubt es nicht, dass sie zur Laufzeit gesetzt
oder gelöscht werden. Das ist im Normalfall auch nicht notwendig. Wenn Sie
jedoch beispielsweise zur Laufzeit eigene Objekte anlegen (vgl. Kapitel 2.1.5)
könnte auch der Bedarf bestehen, solche Hints zu setzen. R-BASIC bietet zur
Lösung dieses Problems zwei Befehle an: einen, mit dem ein sonst nur im UI-
Code verfügbarer Hint gesetzt werden kann und einen, mit dem er gelöscht wird.

Befehl - Syntax im BASIC-Code Aufgabe
ObjAddHint <obj>, code [, adr, size] Setzen eines UI Hints
ObjRemoveHint <obj>, code Löschen eines UI Hints

Diesen Befehlen wird nicht etwa der Name des Hints übergeben, sondern sein
numerischer Code. Was auf den ersten Blick etwas umständlich wirkt hat einen
wesentlichen Vorteil: Sie können auf diese Weise R-BASIC Objekten auch
Instance-Variablen bzw. Hints geben, die zwar im PC/GEOS-SDK definiert
aber in R-BASIC nicht bekannt sind. Die folgende Tabelle enthält eine paar der
häufiger verwendeten Geometrie-Hints, eine vollständige Liste der Codes der in R-
BASIC definierten Hints finden Sie im Anhang, Kapitel E. Weitere Codes können
Sie mit dem PC/GEOS-SDK bzw. der PC/GEOS-SDK-Dokumentation erhalten.

Einige häufiger verwendete UI-Hint Codes. Weitere Codes finden Sie im Anhang.

UI - Instance Variable bzw. Hint numerischer Code

MinimizeChildSpacing 25068
IncludeEndsInChildSpacing 24728
ExpandWidth 24712
ExpandHeight 24708

DrawInBox 24704
MakeToolBox 24976
MakeReplyBar 24744

SizeWindowAsDesired 24936
PrimaryFullScreen 27136

DisplayCurrentSelection 26652

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 44

Wenn sie öfter mit diesen beiden Funktionen arbeiten, können Sie sich für die von
Ihnen verwendeten Hints natürlich Konstanten definieren. Beachten Sie, dass ich
deren Namen von denen der Instance-Variablen unterscheiden müssen, damit der
Compiler sie auseinanderhalten kann.

CONST Draw_In_Box = 24704
CONST C_MakeToolBox = 24976

Warnung! ObjAddHint und ObjRemoveHint führen keinerlei Fehlerkontrollen aus,
die Parameter werden direkt an die entsprechenden PC/GEOS-SDK-Routinen
weitergereicht. Insbesondere wird nicht abgeprüft ob:
• der übergebene Code überhaupt gültig ist
• der übergebene Code für das konkrete Objekt gültig ist
• die Datenwerte, falls es welche gibt, zum Code passen.
Im günstigsten Fall werden die fehlerhaften Werte oder Codes ignoriert, im un-
günstigsten Fall kann es zum Systemabsturz kommen.

Hinweis für PC/GEOS-SDK-Programmierer: ObjAddHint und ObjRemoveHint
verwenden intern die Messages MSG_META_ADD_VAR_DATA bzw.
MSG_META_DELETE_VAR_DATA. Sie können also alles machen, was Sie im
PC/GEOS-SDK mit diesen beiden Messages machen können. Das Flag
VDF_SAVE_TO_STATE wird jeweils gesetzt. Beide Befehle setzen die Objekte
bei Bedarf "not usable" und nehmen dies, wenn nötig, auch wieder zurück.

ObjAddHint

Syntax im BASIC Code: ObjAddHint <ob>, code [, adr, size]
<obj> Referenz auf ein Objekt
code numerischer Code des Hints
adr Adresse, falls der Hint Datenwerte benötige
size Größe dieser Datenwerte

Der Befehl ObjAddHint fügt einen Hint oder eine Instance-Variable zu einem
Objekt hinzu. Verwenden Sie diesen Befehl, wenn die R-BASIC Syntax ansonsten
das Setzen des Hints oder der Instance-Variablen zur Laufzeit nicht zulässt oder
Sie einen Hint setzen wollen, der von R-BASIC nicht unterstützt wird.

Sie können den Befehl auf alle Objekte anwenden. Er arbeitet sowohl mit
GenericClass- als auch auf VisClass-Objekten, egal ob sie vom Compiler oder zur
Laufzeit angelegt wurden.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 45

Beispiel: Hinzufügen der Hints ExpandWidth und ExpandHeight zu einem Objekt
und MakeToolBox zu einem anderen.
DIM ob as OBJECT

ObjAddHint MyGroup, 24712
ObjAddHint MyGroup, 24708

ob = MyOtherObject
ObjAddHint ob, 24976

Ein komplexeres Beispiel finden Sie unten.

ObjRemoveHint

Syntax im BASIC Code: ObjRemoveHint <obj>, code
<obj> Referenz auf ein Objekt
code numerischer Code des Hints

Der Befehl ObjRemoveHint entfernt einen Hint oder eine Instance-Variable von
einem Objekt. Verwenden Sie diesen Befehl, wenn die R-BASIC Syntax
ansonsten das Löschen des Hints oder der Instance-Variablen zur Laufzeit nicht
zulässt oder Sie einen Hint entfernen wollen, der von R-BASIC nicht unterstützt
wird.

Sie können den Befehl auf alle Objekte anwenden. Er arbeitet sowohl mit
GenericClass- als auch auf VisClass-Objekten, egal ob sie vom Compiler oder zur
Laufzeit angelegt wurden. Es ist auch zulässig ObjRemoveHint für eine Hint zu
rufen, der gar nicht gesetzt ist.

Beispiel: Entfernen der Hints DrawInBox, MakeToolBox und MakeReplyBar von
diversen Objekten.
DIM ob as OBJECT

ObjRemoveHint MyGroup, 24704
ObjRemoveHint MyGroup.parent, 24976

ob = MyButton
ObjRemoveHint ob.parent, 24744

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Geometrie - 46

Komplexes Beispiel

Nehmen wir an, Sie wären ein PC/GEOS-SDK-Programmierer. Sie wissen daher,
dass die R-BASIC Instance-Variable bgColor über den SDK-Hint
HINT_GADGET_BACKGROUND_COLORS realisiert ist. Mit Hilfe des SDK haben
Sie erfahren, dass
• HINT_GADGET_BACKGROUND_COLORS eine numerische Konstante mit

dem Wert (Code) 25072 ist.
• es 4 Byte als Datenwerte benötigt - zwei Farbwerte für den Vordergrund und

zwei für den Hintergrund.
R-BASIC erwartet dagegen nur zwei Farbwerte, es setzt für die beiden Vorder-
grundfarben und für die beiden Hintergrundfarben jeweils den gleichen Wert.

Sie wollen das nun ändern und alle vier Farben verwenden. Dazu müssen Sie die
Datenwerte mit dem Befehl POKE oder einem seiner Verwandten in den R-BASIC
Speicher schreiben. Welche Adresse Sie dazu verwenden ist egal, nehmen wir an,
Sie entscheiden sich für 100.

Die Befehlsfolge sieht dann so aus:

POKE 100, RED
POKE 101, YELLOW
POKE 102, CYAN
POKE 103, BLUE

ObjAddHint MyButton, 25072, 100, 4

Sie erhalten einen Button, dessen Hintergrundfarbe im ungedrückten Zustand ein
Punktraster aus Rot und Gelb ist, im gedrückten Zustand ist es ein Raster aus
Blau und Cyan.

Auf diese Weise können Sie R-BASIC Objekten auch Eigenschaften unter-
schieben, die von R-BASIC selbst nicht unterstützt werden.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Apply - 47

3.4 Die "Apply"-Message

Einige R-BASIC Objekte enthalten Informationen oder Daten, die vom Nutzer
geändert werden können und dann "zur Anwendung" gebracht werden, indem das
Objekt eine Message aussendet (d.h. den zugehörigen ActionHandler aufruft).
Diese Message heißt "Apply-Message" bzw. der Handler "ApplyHandler" (engl. to
apply: anwenden). Das sind konkret die folgenden Objekt-Klassen. Eine
ausführliche Beschreibung der Objekte finden Sie im Kapitel 4 dieses Handbuchs.

• Das Number-Objekt stellt eine Zahl dar, die vom Nutzer verändert werden kann.
Drückt der Nutzer im Eingabefeld des Text-Objekts die Enter-Taste oder klickt er
auf die "Pfeile", so wird die Apply-Message gesendet, d.h. der ApplyHandler wird
aufgerufen.

• Die Text-Objekte Memo und InputLine enthalten einen Text. Drückt der Nutzer
z.B. im InputLine Objekt die Enter-Taste, so wird die Apply-Message gesendet.

• Die Listen-Objekte OptionGroup, RadioButtonGroup und DynamicList. Hier
wird die Apply-Message gesendet wenn der Nutzer einen Listeneintrag anwählt.

Neben einem ApplyHandler besitzen diese Objektklassen auch eine Status-
Handler, der im "delayed Mode" (siehe nächstes Kapitel) benötigt wird.

Instancevariable Syntax im UI-Code Im BASIC-Code
ApplyHandler ApplyHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben

3.4.1 Manuelles Auslösen der Apply-Message

Die ApplyHandler der oben angegebenen Objekte sind bei den entsprechenden
Objekten definiert und werden dort ausführlich besprochen, da sie je nach Objekt
unterschiedliche Parameter haben.

Es gibt jedoch eine auf GenericClass-Ebene definierte Methode und zwei
dazugehörige Instance-Variablen, die ein manuelles auslösen der Apply-Message
bei Bedarf, d.h. vom BASIC-Code aus, ermöglicht.

Methoden:
Methode Aufgabe
Apply Auslösen der Apply-Message

Syntax BASIC-Code: <obj>.Apply

Instance-Variablen
Hint Syntax im UI-Code Im BASIC-Code
ApplyEvenIfNotModified ApplyEvenIfNotModified ––
ApplyEvenIfNotEnabled ApplyEvenIfNotEnabled ––

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Apply - 48

Syntax UI-Code: ApplyEvenIfNotModified
ApplyEvenIfNotEnabled

Apply

Die Methode Apply fordert ein Objekt auf, seine Apply-Message zu senden (d.h.
seinen ApplyHandler aufzurufen). Objekte, die von Hause aus keinen
ApplyHandler haben (wie z.B. Group’s, Dialog- und Primary-Objekte) reichen
diese Methode an ihre Children weiter. Das heißt konkret, dass es ausreicht die
Apply-Methode eines Group-Objekts aufzurufen und alle seine Children bzw.
deren Children usw. senden ihre Apply-Message aus, falls sie eine besitzen.
Dieses Konzept ist bei genauerer Betrachtung extrem leistungsfähig, da man sich
dadurch viel Arbeit ersparen kann.

Wichtig 1: Die oben angegeben Objekte (Number, Text- und Listen-Objekte)
senden ihre Apply-Message nur dann aus, wenn sie "modified" (geändert) sind.
Ändert der Nutzer das Objekt, klickt er z.B. einen Listeneintrag an, so passiert das
automatisch. Vom Basic-Code aus müssen wir aber i.A. selbst dafür sorgen, das
Objekt auf "modified" zu setzen. Alle betroffenen Objekte besitzen eine
entsprechende Instance-Variable.

Wichtig 2: Nachdem das Objekt seine Apply-Message ausgesendet hat wird der
"modified"-Zustand automatisch zurückgesetzt.

Beispiel: Nehmen wir an, wir haben eine Listen-Objekt namens DefaultOptions.
Von diesem soll beim Programmstart ein bestimmter Eintrag selektiert werden, der
z.B. aus einer Datei gelesen wurde und daher nicht von vorneherein bekannt ist.
Dann soll die Liste ihre Apply-Message aussenden um den Rest des Programms
über ihren Zustand zu informieren. Das Belegen der passenden Instance-Variable
namens "selection" macht die Liste aber nicht "modified". Damit sie ihre Apply-
Message aussendet müssen wir das selbst tun. Das Ganze verpacken wir in eine
SUB namens InitList:

SUB InitList (entry as INTEGER)
DefaultOptions.selection = entry
DefaultOptions.modified = TRUE
DefaultOptions.Apply
END SUB

ApplyEvenIfNotModified, ApplyEvenIfNotEnabled

Wie oben erwähnt muss ein Objekt, dass eine Apply-Message aussenden soll
"modified" sein. Die Hints ApplyEvenIfNotModified bzw. ApplyEvenIfNot-
Enabled sorgen dafür, dass ein Objekt seine Apply-Message beim Aufruf der
Apply-Methode auch dann aussendet, wenn es nicht "modified" oder sogar nicht

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Apply - 49

"enabled" ist. Diese Hints sind zwar auf GenericClass-Level definiert, zeigen aber
nur bei den Objekten, die auch über einen Apply-Handler verfügen, eine Wirkung.

3.4.2 Delayed Mode und Status-Message

Das im Folgenden beschriebenen Eigenschaften und Verhaltensweisen von
Objekten sind - richtig eingesetzt - sehr leistungsfähig und können dem Program-
mierer viel Arbeit ersparen, sie erfordern jedoch ein gutes Überblickswissen über
das R-BASIC Objektsystem. Sie sind daher eher etwas für den fortgeschrittenen
Programmierer. Meistens ist die gleiche Funktionalität auch anders, dann aller-
dings mit etwas mehr Programmcode, erreichbar.

Wie oben erwähnt senden die anfangs aufgeführten Objekte (Number, Text- und
Listen-Objekte) ihre Apply-Message sofort aus, wenn der Nutzer z.B. eine
Listeneintrag auswählt oder auf einen "Pfeil" eines Number-Objekts klickt. Es gibt
jedoch auch Situationen, in denen dieses sofortige Reagieren nicht erwünscht ist.
In einem komplexen Dialog, in dem z.B. Farbe, Form und Größe eines Objekts
eingestellt werden, kann es sinnvoll sein, dass der Nutzer zunächst alle
Einstellungen vornimmt und diese Einstellungen dann "auf einmal" angewendet
werden sollen. Hinzu kommt, dass gegebenenfalls zwei oder mehrere Objekte
voneinander abhängen. In einen "Drucken" Dialog z.B. muss sichergestellt
werden, dass die erste zu druckende Seitennummer nicht größer als die letzte zu
druckende Seitennummer ist. Die entsprechenden Number-Objekte müssen also
miteinander kommunizieren, ohne dass die Änderungen "angewendet" (d.h. die
Seiten gedruckt) werden. In R-BASIC wird dieses Verhalten als Delayed Mode
bezeichnet (engl. to delay: verzögern). Die eigentliche Apply-Message der
betroffenen Objekte wird verzögert, nämlich erst auf Anforderung, ausgesendet.
Statt ihrer Apply-Message senden die entsprechenden Objekte zunächst eine
sogenannte Status-Message aus, d.h. es wird der StatusHandler aufgerufen.
Dieser kann genutzt werden, um andere Objekte zu informieren. Die
entsprechende Instance-Variable (StatusHandler) ist genau wie der ApplyHandler
bei den jeweiligen Objekten definiert.

Instance-Variable Syntax im UI-Code Im BASIC-Code
MakeDelayedApply MakeDelayedApply ––

Syntax UI-Code: MakeDelayedApply

Die auf GenericClass-Ebene definierte Instance-Variable MakeDelayedApply
versetzt ein Objekt und seine Children in den Delayed Mode. Sehr häufig ist es
deshalb so, dass ein Group-Objekt diese Anweisung im UI-Code erhält, so das
alle seine Children, deren Children usw. im Delayed Mode arbeiten. Um die Apply-
Message der betroffenen Objekte auszusenden reicht es, die Apply-Methode des
Group-Objekts aufzurufen, da diese, wie im vorherigen Abschnitt beschrieben, an
alle Children weitergegeben wird.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Apply - 50

Beispiel: Eine Gruppe von Objekten innerhalb der Group "BottomGroup" arbeitet
im Delayed Mode. Die beiden Number-Objekte kommunizieren über Status-
Handler miteinander. Der ApplyButton löst ein "Anwenden" (Aufruf der
ApplyHandler) aus.

UI-Code
Group BottomGroup
Children = Memo1, RightGroup
orientChildren = ORIENT_HORIZONTALLY
DrawInBox
MakeDelayedApply ’ wird an die Children

’ weitergereicht
END Object

Group RightGroup
Children = Number1, Number2, ApplyButton
orientChildren = ORIENT_VERTICALLY
justifyChildren = J_RIGHT + J_BOTTOM
ExpandHeight
END Object

Number Number1
Caption$ = "Von "
ApplyHandler = NumberVonHandler
StatusHandler = StatusNum1
END Object

Number Number2
Caption$ = "Bis "
ApplyHandler = NumberBisHandler
StatusHandler = StatusNum2
END Object

Button ApplyButton
Caption$ = " Anwenden"
ActionHandler = DoApply
END Object

Memo Memo1
Caption$ = "Note:"
justifyCaption = J_TOP
text$ ="Hier Text eingeben ..."
fixedSize = 30 + ST_AVG_CHAR_WIDTH, 5 + ST_LINES_OF_TEXT
ApplyHandler = txtAction
END Object

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Apply - 51

Basic-Code
NUMBERACTION NumberVonHandler
Print "Von:";value
END ACTION

NUMBERACTION NumberBisHandler
Print "Bis:";value
END ACTION

NUMBERACTION StatusNum1
IF value > Number2.value THEN
Number2.value = value
Number2.modified = TRUE ’ wurde verändert!
END IF

END ACTION

NUMBERACTION StatusNum2
IF value < Number1.value THEN
Number1.value = value
Number1.modified = TRUE ’ wurde verändert!
END IF

END ACTION

BUTTONACTION DoApply
BottomGroup.Apply
END Action

Wenn Sie dieses Beispiel testen werden Sie feststellen, dass
• Die ApplyHandler nur gerufen werden, wenn das entsprechende Objekt vorher

geändert (modifiziert) wurde.
• Ein zweites Anklicken des ApplyButtons nichts bewirkt, es sei denn, Sie haben

eins der Objekte zwischendurch wieder geändert.
Das ist aus Performance-Gründen so und liegt daran, dass, wie letzten Abschnitt
beschrieben, ApplyHandler nur gerufen werden, wenn das Objekt "modified" ist.
Wenn Sie möchten, dass die ApplyHandler auf jeden Fall gerufen werden, egal ob
das Objekt modified ist oder nicht, können Sie die Hints ApplyEvenIfNotModified
bzw. ApplyEvenIfNotEnabled aus dem letzten Kapitel verwenden.

Beispiel UI-Code
Number Number2
Caption$ = "Bis "
ApplyHandler = NumberBisHandler
StatusHandler = StatusNum2
ApplyEvenIfNotModified
END Object

Bei Bedarf ist es möglich, die StatusMessage manuell auszulösen. Dazu wird die
Methode SendStatus verwendet. Diese Methode ist für die oben genannten
Objektklassen definiert. Das sind: Number, Memo, InputLine, OptionGroup,
RadioButtonGroup und DynamicList.

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Apply - 52

Methode Aufgabe
SendStatus Auslösen der Status-Message

Syntax BASIC-Code: <obj>.SendStatus

Hinweis für Dialog-Objekte: Natürlich können Sie ganze Dialogboxen mit dem Hint
MakeDelayedApply in den Delayed Mode versetzen. Häufig ist es aber besser
stattdessen die Dialog-Instance-Variable dialogType auf den Wert
DT_DELAYED_APPLY zu setzen. Dadurch erzeugt der Dialog automatisch einen
Apply-Button, und nimmt Ihnen auch sonst viel Arbeit ab. Eine ausführliche
Beschreibung zum Dialog-Objekt finden Sie im Kapitel 4.6, der Delayed Mode für
Dialoge ist im Kapitel 4.6.6.5 beschrieben.

Schlussbemerkung: Der Delayed Mode ist angebracht und sehr effektiv, wenn die
betroffenen Objekte ihre Apply-Message einzeln und unabhängig voneinander
senden sollen. Für den Fall, dass Sie erst die Informationen von allen beteiligten
Objekten sammeln müssen, bevor Sie fortfahren können, ist es eventuell
sinnvoller den Objekten gar keinen ApplyHandler zu geben und die Informationen
direkt von den Objekten abzufragen, wie in folgendem Codebeispiel gezeigt:

BUTTONACTION DoApply
DIM von, bis, info$
von = Number1.value
bis = Number2.value
info$ = Memo1.text$
<.. Auswertung ..>
END Action

R-BASIC - Objekt-Handbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GenericClass-Apply - 53

(Leerseite)

