R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Objekt-Handbuch

Volume 3
Application, Primary, Button, Group, Menu

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 3

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4 Verfiigbare Generic Objekt Klassen -..coooeniiiccee e, 116
4.1 Application .o ——————— 116
4.1.1 LongName, Benutzer Notizen und Tokenscccceveeiviiiinninnn 118
4.1.2 Actionhandler des Application Objektscccccoviiiiiiiiiiiiiinee 121
4.1.3 Starten und Beenden eines Programmsccccccovviiiiieeeennneenne 123
4.1.3.1 Programmstartccccoemmmiiiiiiiiieic e 124
4.1.3.2 Programmendeeeeeeeeiiiiiiiiieeecce e, 126

414 Arbeit Mit DOKUMENTEN encnieiiieeee e 128
4.1.5 Uberwachung der Zwischenablage -........cccovmeeeeiiini. 131
4.1.6 Der Busy-Status . .cceeeeemiimiiiiiiii 132
L o] 1 1T 134
T = 11 1 (o o . 139
€ o T U o 144

YN 11 (=Y o L 146

R-BASIC - Objekt-Handbuch - Vol. 3

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4 Verfiigbare Generic Objekt Klassen

In diesem Abschnitt werden die einzelnen generischen Objektklassen, die in R-
BASIC verfugbar sind, im Detail beschrieben. Einige dieser Objekte sind sehr
einfach zu benutzen, kbnnen aber trotzdem sehr komplexe Funktionen ausfihren.
Da alle diese Objekte von der GenericClass abstammen erben sie sdmtliche in
den vorherigen Kapiteln besprochenen Instance-Variablen. Sie sollten auBerdem
die in Kapitel 2 beschriebenen Konzepte kennen, um die damit verbundenen
Details zu verstehen.

4.1 Application

Dieses Objekt stellt die Verbindung zum GEQOS-System her und ist das top
Parent-Objekt fur alle anderen generischen BASIC-Objekte ihres Programms.
Jedes BASIC-Programm muss genau ein Application-Objekt haben. Direktes Child
des Application-Objekts ist im allgemeinen ein Primary-Objekt.

Abstammung:
GenericClass —#{ Application

Die Definition eines einfachen Application-Objekts sieht z.B. so aus

Application MyApp
Children = MyPrimary
END OBJECT

MyApp ist der Name des Application-Objekts, unter dem es bei Bedarf im BASIC-
Code angesprochen werden kann. Das ist fur Application Objekte jedoch nur
selten notig.

Das Application-Objekt selbst erscheint nicht auf dem Bildschirm. Es ergibt daher
keinen Sinn, ihm eine Caption$ zugeben, auch wenn das syntaktisch méglich ist.

Tastaturhandling

Sie kdnnen sich in das Tastaturhandling einklinken, indem Sie einen Tastatur-
handler fir das Application-Objekt schreiben. Dazu werden die folgenden
Instancevariablen unterstitzt:

Actionhandler Instancevariablen Methoden
OnKeyPresed inputFlags —

Der OnKeyPressed-Handler muss als KeyboardAction deklariert werden. Eine
ausfuhrliche Beschreibung, wie man einen Tastaturhandler schreibt und was es
dabei zu beachten gilt, finden Sie im Handbuch "Spezielle Themen", Kapitel 14.

Application - 116

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Das Schreiben eines Tastaturhandlers fiur das Application-Objekt ist eine sehr
einfache Methode, wenn ein "globaler" Tastaturhandler geeignet ist. Das ist z.B.
far viele Spielprogramme der Fall.

Focus und Target

Das Application-Objekt ist ein Knoten in der Focus- und Target-Hierarchie. Es ist
moglich zu Uberwachen, ob ein Application-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas fur
erfahrene Programmierer und nur in wenigen Féllen notwendig. Eine Ausnahme
bildet die Implementation von speziellen Menlis wie dem "Bearbeiten" Menu.
Diesem Thema ist deswegen ein eigenes Kapitel ("Spezielle Themen", Kapitel 13)
gewidmet.

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
Onlnit Onlnit = <Handler> —
OnStartup OnStartup = <Handler> —
OnExit OnExit = <Handler> —
OnClpChange OnClpChange = <Handler> nur schreiben
OnConnection OnConnection = <Handler> nur schreiben
LongName$ LongName$ = "Name" —
userNotes$ userNotes$ = "Text" —
crNote$ crNote$ = "Text" —
AppToken AppToken = "<chars>",<numVal> | —
DocToken DocToken = "<chars>",<numVal> | —
ExtraToken ExtraToken = "<chars>",<numVal>| —
Methoden:
Methode Aufgabe
MarkBusy Busy-Status aktivieren
MarkNotBusy Busy-Status verlassen
HoldUplInput Usereingaben zwischenspeichern
Resumelnput Zwischengespeicherte Usereingaben ausfihren
Ignorelnput Alle Usereingaben ignorieren
Acceptinput Usereingaben wieder akzeptieren
Action-Handler-Typen:
Handler-Typ Parameter
SystemAction (sender as object, flags as word, dataFile$ as String(250))

Application - 117

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Konstanten fur Parameter "flags"

Konstante Wert Bedeutung

AF_FOR_PRINT 1 Datei zum Drucken Ubergeben
AF_RESTORE 2 Wiederherstellung nach System Shutdown
AF_DATA_FILE 4 Datendatei wurde Ubergeben
AF_SHUTDOWN 8 GEOQOS fahrt herunter

Eine ausfuhrliche Beschreibung der einzelnen Flags finden Sie im néchsten
Kapitel.

4.1.1 LongName, Benutzer Notizen und Tokens

Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
LongName$ LongName$ = "Name" —
userNotes$ userNotes$ = "Text" —
crNote$ crNote$ = "Text" —
AppToken AppToken = "<chars>",<numVar> | —
DocToken DocToken = "<chars>",<numVar> | —
ExtraToken ExtraToken = "<chars>",<numVar>| —
LongName$

Der "LongName$" ist der eigentliche Name des Programms, mit dem es im
GeoManager und im Expressmenu erscheint. Er wird bendtigt, wenn Sie ein
"Eigenstandiges Programm" anlegen, um es an andere Nutzer weiterzugeben. In
den meisten Fallen wird die Instancevariable LongName$ jedoch gar nicht explizit
gesetzt. R-BASIC verwendet dafir standardmaBig den Namen I|hres BASIC
Programms. Setzen Sie einen abweichenden Wert flir "LongName$", falls das
fertige Programm unter einem anderen Namen im GeoManager erscheinen soll.

userNotes$

Die userNotes$ sind die Dokument-Notizen, die Im GeoManager angesehen und
geandert werden kénnen. Sie kbnnen bis zu 99 Zeichen lang sein, wobei
Zeilenumbriche als ein Zeichen gezahlt werden.

crNote$

crNote$ definiert eine bis zu 32 Zeichen lange Copyright-Notiz. Sie wird in den
Dateiheader des Programms geschrieben und nicht im GeoManager angezeigt.

Application - 118

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

AppToken

AppToken spezifiziert das Icon (Symbol-Bild), dass der GeoManager fir das
Programm anzeigt. Es wird benétigt, wenn Sie ein "Eigensténdiges Programm"
anlegen, um es an andere Nutzer weiterzugeben. AppToken ist vom Typ
GeodeToken, d.h. es besteht aus 4 Buchstaben und einer Zahl zwischen 0 und
65535, der sogenannten "Manufacturer-ID".

Beispiel:
Application MyApp
Children = MyPrimary
AppToken = "BPdm",16600
userNotes$ = "Version 2.0, Jan. 2013"
crNote$ = "(c) by Rabe-Soft 01/2013"
END OBJECT

Jedes Programm bendétigt ein eigenes Token. Wenn Sie ein "eigenstandiges
Programm" erzeugen (also ein Programm, das auch ohne R-BASIC lauffahig ist),
kopiert R-BASIC das Icon-Bild aus der Token Database in das fertige BASIC
Programm. Das bedeutet folgendes:
+ Dass durch AppToken spezifizierte Token muss sich beim Anlegen des
eigenstandigen Programms in ihrer Token Database befinden.
 Benutzt ein User Ihr Programm, so installiert das Programm automatisch sein
AppToken in der Token Database, falls es dort noch nicht existiert. Hier

verhélt sich ein R-BASIC Programm genau wie ein mit dem PC/GEOS-SDK
geschriebenes Programm.

+ Spezifizieren Sie kein AppToken verwendet R-BASIC ein "Standard-Token".

Sie kénnen fir AppToken sowohl ein Token aus einer existierenden Icon-
sammlung verwenden als auch ein eigenes Icon erstellen.

Um ein eigenes Icon zu erstellen kénnen Sie das Programm "lconEditor"
verwenden, der das Icon direkt in die Token Database exportieren kann. Dazu
benétigen Sie eine eigene Manufacturer-ID. Im Kapitel 3.4 "Uber die
Manufacturer-ID" im R-BASIC Benutzer Handbuch wird beschrieben, wie Sie eine
Manufacturer-ID erhalten kénnen.

Zu einem "Token" (4 Zeichen + Manufacturer-ID) gehéren Ublicherweise mehrere
Icon-Bilder. R-BASIC unterstitzt genau zwei Bilder pro Token:

Das Erste ist das eigentliche Icon. Es wird vom GeoManager bei der Anzeige des
Programms verwendet. Es ist tblicher Weise 48x30 Pixel gro und hat 16 oder
256 Farben. Das Zweite ist das "Tool" lcon und wird z.B. fir das Expressmenu
benutzt. Es ist Ublicherweise 15x15 Pixel groB und kann ebenfalls 16 oder 265
Farben haben. Im Abschnitt "Eigenstdndige Programme anlegen" des R-BASIC
Benutzer Handbuchs finden sie eine ausfihrliche Beschreibung wie Sie zum
Erstellen eigener Icons vorgehen kénnen.

Application - 119

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

DocToken

Wenn Ihr Programm mit Dokumenten arbeitet, kbnnen Sie diesen ein eigenes
Token zuweisen (bei DOS-Dateien in der GEOS.INI, bei VM-Dateien Uber das
Attribut "Token"). Um sicherzustellen, dass sich das Token auch in der Token
Database befindet, kénnen Sie die Instancevariable DocToken verwenden. R-
BASIC wird - wie beim AppToken - beim Anlegen des eigenstandigen Programms
die beiden zum DocToken gehérenden Iconbilder in das BASIC-Programm
kopieren. Das BASIC-Programm installiert dann das DocToken gemeinsam mit
dem AppToken in der Token Database. Mehr macht das R-BASIC Programm
nicht! Es bleibt Ihnen Gberlassen ob und wie Sie das DocToken verwenden.

ExtraToken

Far den unwahrscheinlichen Fall, dass Sie ein weiteres Token bendétigen, kénnen
Sie ein ExtraToken spezifizieren, dass dann gemeinsam mit dem AppToken und
dem DocToken in das BASIC-Programm kopiert und von diesem bei Bedarf in die
Token Database installiert wird.

Application - 120

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.1.2 Actionhandler des Application Objekts

Alle Actionhandler des Application-Objekts mussen als SystemAction deklariert
sein. Der Parameter sender enthélt dabei immer das Application Objekt, die
Parameter flags und dataFile$ sind im Folgenden beschrieben.

Der Parameter flags

Der Parameter "flags" (engl. Flagge) enthalt zusatzliche Informationen, die unter
gewissen Umstanden von Bedeutung sein konnten. Es handelt sich dabei um
einzelne Bits, die gesetzt sein kbnnen oder eben nicht. Um abzufragen, ob ein
bestimmtes Flag gesetzt ist verwenden Sie die logische AND Operation und
prufen Sie, ob das Resultat Null ist oder nicht. Vergessen Sie die Klammern nicht!

! Priifen ob AF DATA FILE gesetzt ist
IF flags AND AF DATA FILE THEN ...

' gleichbedeutend mit
IF (flags AND AF DATA FILE) <> 0 THEN ...

oder:

! Priifen ob AF_DATA FILE NICHT gesetzt ist
IF (flags AND AF DATA FILE) = 0 THEN ...

Beachten Sie folgendes:
+ Verwenden Sie nicht den NOT Operator

z.B. H—NOT-(ftags AND-AFDATATHLEE) THEN—
oder tH—ftags AND-NOT-AFDATATFLE) THEN—

Der Operator NOT fuhrt eine bitweise Negation aus, was gemeinsam mit
dem AND Operator in den meisten Féllen zur Aussage "wahr" (d.h. ungleich
Null) fahrt. Ein solcher Fehler ist selbst fir Profis sehr schwer zu finden.

« Verwenden Sie niemals ein einfaches "=" (if flags=AF_DATA_FILE), da sie
nie sicher sein kbnnen ob noch andere Flags gesetzt sind! Mdglicherweise
werden von spateren Versionen zusétzliche Flags bereitgestellt, die gesetzt
sein konnten!

AF_DATA _FILE: Dieses Flag zeigt an, dass dem Handler eine Datendatei
Ubergeben wurde (Parameter dataFile$ enthalt dann den Pfad zur Datei).
Die Abfrage dieses Flags ist schneller als das Prufen der Stringldnge mit
Len(dataFile$). Len(dataFile$) > Null zeigt ebenfalls an, dass eine
Datendatei Ubergeben wurde.

AF_FOR_PRINT: Dieses Flag kann nur gesetzt sein, wenn auch eine Datendatei
ubergeben wurde (AF_DATA_FILE gesetzt). Es zeigt an, dass der Nutzer
die Datei nicht durch einen Doppelklick sondern Uber das Menu "Drucken"
des Geomanagers gebffnet hat. Sie kdnnen z.B. entscheiden, dass Sie die
Datei ignorieren wollen (weil Ihr Programm gar nicht drucken kann) oder
eine andere Sonderaktion durchfiihren, wenn das sinnvoll ist.

AF_RESTORE: Dieses Flag kann nur im Onlnit oder im OnStartup Handler
gesetzt sein. Es zeigt an, dass das Programm beim letzten Herunterfahren
von PC/GEOS noch offen war und jetzt, beim Systemneustart, wieder-
hergestellt (engl.: restored) wird. Mdglicherweise méchten Sie in diesem

Application - 121

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Fall bestimmte Initialisierungsschritte auslassen oder stattdessen andere
ausfuhren.

AF_SHUTDOWN: Dieses Flag wird nur dem OnExit Handler Gbergeben und zeigt
an, dass sich lhr Programm schlieBt, weil PC/GEOS heruntergefahren wird,
nicht weil das Programm normal beendet wurde. Sie kénnen dann z.B.
Werte, die einen System-Restart Uberleben sollen in eine Datei sichern und
beim wieder Hochfahren des Systems (AF_RESTORE im OnStartup bzw.
Onlnit Handler gesetzt) wieder auslesen. Es ist aber ein besserer Stil (und
meist auch einfacher) Ihr Programm gleich so zu schreiben, dass dies nicht
notig ist.

Der Parameter dataFile$

Sie kdnnen R-BASIC Programme wie alle anderen GEOS Programme auch durch
einen entsprechenden Eintrag in der GEOS.INI (filenameTokens) mit DOS
Dateien bzw. durch Setzten des "Creator" Attributs in VM-Dateien auch mit VM-
Dateien verknlUpfen. Der Geomanager stellt beim Doppelklick auf eine so
verknlpfte Datei eine Verbindung zum zugehérigen Programm her und Ubergibt
ihm den Namen und den Pfad zur Datei. Der Parameter "dataFile$" enthalt dann
den vollstdndigen Pfad zu der an das Programm Ubergebenen Datendatei (z.B.
"DAGEOS\DOCUMENTAINFO.FOQ"). In diesem Fall ist auch immer das Flag
AF_DATA_FILE im Parameter "flags" gesetzt. Wurde keine Datendatei ubergeben
so enthalt dataFile$ einen Leerstring und das Flag AF_DATA_FILE ist nicht
gesetzt.

Hinweis: Fur den Zugriff auf den Inhalt von VM-Dateien mlssen Sie die VMFiles
Library einbinden.

Application - 122

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.1.3 Starten und Beenden eines Programms

Das Application Objekt stellt nicht nur die Verbindung zum GEOS System her, es

erledigt auch alle Aufgaben, die beim Starten und Beenden eines BASIC
Programms anfallen. Dazu gehért insbesondere, das Ausfihren des Programm-
codes zu starten.

R-BASIC erlaubt es, Programmcode zu schreiben, der nicht Teil einer Routine
(SUB oder FUNCTION) oder eines Actionhandlers ist. Alle "klassischen" BASIC
Programme und auch viele R-BASIC Beispiele machen davon Gebrauch. Dieser
sogenannte "klassische Code" wird beim Start des Programms automatisch
ausgefuhrt.

Beispiel: Ein "Hallo Welt" Programm im klassischen BASIC
ClassicCode

CLS

Print : Print

Print "Hallo Welt"

Print "Willkommen bei R-BASIC!"

Die Anweisung ClassicCode bewirkt drei Dinge:

+ Das Scheiben von Code auB3erhalb von Routinen wird zugelassen.

+ Es werden automatisch ein paar Objekte angelegt, so dass Grafik und Text
ausgegeben werden kbnnen.

+ Dieser "klassische" Code wird beim Start des Programms automatisch
ausgefuhrt.

Flr ein objektorientiertes Programm ist das nicht nur ein schlechter Stil, sondern
es fehlt z.B. die Mdglichkeit speziellen Code am Programmende automatisch
auszufihren. Das Application Objekt unterstitzt deswegen mehrere Action-
handler, die am Programmstart bzw. am Programmende ausgefihrt werden.

Application - 123

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.1.3.1 Programmstart

Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
Onlnit Onlnit = <Handler> —
OnStartup OnStartup = <Handler> —

Wenn ein BASIC Programm startet werden die folgenden Schritte in der hier
angegebenen Reihenfolge ausgefuhrt:

1. Die Objekte werden geladen und vollstandig initialisiert, erscheinen aber
noch nicht auf dem Schirm.

2. Wenn vorhanden wird der Onlnit Handler ausgefihrt. Dieser Handler kann
bereits mit den Objekten interagieren und Dinge erledigen, die vor allen
anderen erledigt werden mussen.

3. Die Objekte erscheinen auf dem Schirm.

4. Wenn vorhanden wird der OnClpChange Handler ausgeflhrt.

5. Wenn es Objekte gibt, die einen OnDraw Handler oder einen QueryHandler
haben, werden diese Handler jetzt ausgefiihrt, damit diese Objekte korrekt
dargestellt werden.

6. Wenn vorhanden wird der OnStartup Handler ausgefihrt. Wenn Sie nicht
sicher sind, ob eine Aktion in den Onlnit oder den OnStartup Handler
gehdrt, wahlen Sie den OnStartup Handler.

7. Wenn vorhanden wird jetzt der "klassische Code" ausgefinhrt.

Nach diesen Schritten ist das Programm bereit fir weitere Ereignisse.

OnStartup

Der OnStartup Handler ist der Ubliche Platz fur den Initialisierungscode lhres
Programms. Der oben dargestellte "klassische" Code wurde in der (besseren)
objektorientierte Version so aussehen. Die erste Codezeile im Starthandler
verhindert, dass die Grafikausgabe nach einem Neustart von GEOS mit
laufendem BASIC-Programm erneut ausgefiihrt wird. Sie sollten immer im Blick
haben, was im OnStartup bzw. Onlnit Handler passiert, wenn GEOS bei
laufendem Programm neu gestartet wird. Typische Fehler sind hier z.B. das
Initialisieren von Objekten mit vorgegebenen Werte - womit bereits von Nutzer
verdnderte Werte Uberschrieben werden - oder das erneute Anwenden von
Koordinatentransformationen oder grafischen Ausgaben.

Ul Code:

Application MyApp
Children = MyPrimary
OnStartup = StartHandler

END OBJECT

Application - 124

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

BASIC Code:

SystemAction StartHandler
IF flags AND AF RESTORE THEN RETURN
CLS
Print : Print
Print "Hallo Welt"
Print "Willkommen bei R-BASIC!"
END Action

Wenn das R-BASIC Programm mit einem Dateityp verknUpft ist und durch Doppel-
klick auf eine verknupfte Datei gestartet wird, dann enthélt der Parameter
dataFile$ den vollstandigen Pfad zu dieser Datei. Andernfalls enthalt dataFile$
einen Leerstring. Details dazu sind im Abschnitt zur Arbeit mit Dokumenten (siehe
unten) beschrieben.

Im Parameter flags kénnen eines oder mehrere der Flags AF_FOR_PRINT,
AF_RESTORE oder AF_DATA_FILE gesetzt sein.

OnlInit

In einigen Fallen kann es nétig sein bereits BASIC Code auszufiihren, wenn noch
kein Objekt auf dem Schirm ist. Typisch ist z.B. das Offnen von Dateien und das
Einlesen von Daten, die fur Objekte bendtigt werden, die bereits beim Programm-
start sichtbar sind. Der Onlnit Handler ist immer der allererste BASIC Handler, der
ausgefuhrt wird. Beispiel:

Ul Code

Application MyApp
Children = MyPrimary
OnInit = InitHandler

OnExit = ExitHandler ' Siehe Abschnitt Programmende
END OBJECT
BASIC Code
DIM f AS FILE " globale Variable

SYSTEMACTION InitHandler

DIM anz as word
f = FileOpen "MyData.TXT"
IF f = NullFile() THEN f = CreateNewDataFile
anz = FindAnzahlDatenInFile(f)
MyDynamicList.count = anz

END Action

Wir nehmen in diesem Beispiel an, dass die Routinen CreateNewDataFile und
FindAnzahlDatenInFile sowie die DynamicList MyDynamicList anderswo im Code
definiert sind.

Application - 125

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Hinweise:

+ Die meisten Programme benétigen keinen Onlnit Handler.

+ Wahrend der Onlnit Handler ausgefuhrt wird sind noch keine Objekte auf
dem Schirm. Sie erscheinen erst wenn der Onlnit Handler abgearbeitet ist.
Sehr umfangreiche (lange laufende) Oninit Handler verzégern deswegen den
"gefuhlten" Programmstart

+ Prinzipiell gibt es keine Einschrankungen bezlglich der in einem Oninit
Handler verwendbaren Befehle. Insbesondere ist es zulassig mit Objekten zu
interagieren, deren Instancevariablen zu lesen oder zu andern.

+ Der Onlnit-Handler wird auch beim Neustart von GEOS bei laufendem
BASIC-Programm ausgefuhrt. Mit der Codezeile

IF flags AND AF RESTORE THEN RETURN
kénnen Sie verhindern, dass in diesem unerwunschter Initialierungscode
erneut ausgefuhrt wird.

+ Vermeiden Sie die Verwendung von "klassischen" Interaktionsbefehlen wie
INPUT oder InKey$ im Onlnit Handler. Das erzeugt nur Chaos.

+ Wenn Sie nicht sicher sind, ob sie den Onlnit oder den OnStartup Handler
verwenden sollen, wahlen Sie zunachst den OnStartup Handler. Nur wenn
Sie mit dem Ergebnis nicht zufrieden sind verschieben Sie Teile des Codes in
den Onlnit Handler.

Wenn das R-BASIC Programm mit einem Dateityp verknUpft ist und durch Doppel-
klick auf eine verknupfte Datei gestartet wird, dann enthalt der Parameter
dataFile$ den vollstandigen Pfad zu dieser Datei. Andernfalls enthélt dataFile$

einen Leerstring. Details dazu sind im Abschnitt zur Arbeit mit Dokumenten (siehe
unten) beschrieben.

Im Parameter flags kdnnen eines oder mehrere der Flags AF_FOR_PRINT,
AF_RESTORE oder AF_DATA_FILE gesetzt sein.

4.1.3.2 Programmende

Instance-Variablen:
Variable Syntax im Ul-Code Im BASIC-Code
OnEXxit OnExit = <Handler> —

Ein BASIC Programm kann durch den Mendieintrag "Beende ..." oder durch den
BASIC Befehl EXIT beendet werden. Auch im Falle eines Laufzeitfehlers wird das

Programm automatisch beendet. In allen diesen Fallen erledigt das Application
Objekt die folgenden Schritte:

1. Wenn vorhanden wird der OnExit Handler ausgefiihrt. Sie kénnen hier z.B.
abfragen, ob geénderte Daten gespeichert werden sollen.

2. Die Objekte werden vom Schirm genommen, bleiben aber noch intakt.

3. Die Event-Warteschlage wird geleert. Events, die noch in der Warteschlange
stehen, werden nicht mehr ausgefuhrt, d.h. die dazugehérigen Handler
werden nicht mehr gerufen.

4. Die Objekte und internen Datenstrukturen werden aufgerdumt.

Application - 126

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Hinweise:
« Der OnExit Handler (wenn vorhanden) wird auch dann ausgefihrt, wenn es
vorher einen Laufzeitfehler gegeben hat.
+ Beim Herunterfahren von PC/GEQS die globalen BASIC Variablen nicht auto-
matisch gesichert. Sie sollten ihre Programme grundsatzlich so schreiben dass
dies nicht nétig ist - oder Sie missen sich selbst darum kimmern.

OnEXxit

Der OnExit Handler wird automatisch ausgefihrt, wenn das Programm
geschlossen wird. Er muss als SystemAction deklariert sein. Sie sollten im
OnExit Handler alle Ressourcen freigeben (z.B. Dateien schlieBen) die Sie im
Onlnit oder im OnStartup Handler angefordert haben.

Beispiel (bezieht sich auf den Code des Onlnit Handlers oben):
SYSTEMACTION ExitHandler

FileClose f

f = NullFile()
END Action

Im Parameter flags kann das Flag AF_SHUTDOWN gesetzt sein. In diesem Fall
darf man keine Messageboxen oder Dialoge aktivieren, sonst hdngt das System.

Beispiel 2: Die SUB’s DoSaveData (Daten speichern) und DoCloseFile (Datei
SchlieBen) mussen irgendwo anders definiert sein.
SYSTEMACTION ExitHandler

IF (flags AND AF _SHUTDOWN) = 0 THEN

IF QuestionBox ("Daten speichern?") = YES THEN DoSaveData
End IF
DoCloseFile

END Action

Application - 127

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.1.4 Arbeit mit Dokumenten

Im Handbuch "Spezielle Themen", Kapitel 15 finden Sie eine ausfihrliche
Beschreibung, wie man ein komplettes Dokument-Interface implementiert.

Instance-Variablen:
Variable Syntax im Ul-Code Im BASIC-Code
OnConnection OnConnection = <Handler> nur schreiben

Sie kénnen R-BASIC Programme durch einen entsprechenden Eintrag in der
GEOS.INI (filenameTokens) mit DOS Dateien bzw. durch Setzten des "Creator"
Attributs in GEOS-Dateien auch mit GEOS-Dateien verknlpfen. "Startet" der
Nutzer eine solche Datei z.B. durch Doppelklick im Geomanager so wird die Datei
im Parameter dataFile$ (vgl. Kapitel 4.1.1) je nach Situation an den Onlnit bzw.
den OnStartup oder an den OnConnection Handler Gbergeben. Gemeinsam mit
dem OnStartup Handler (seltener mit dem Onlnit Handler) kénnen Sie mit dem
OnConnection Handler die Arbeit mit Dokumenten organisieren.

OnConnection

Der OnConnection Handler wird gerufen, wenn ein anderes Programm (z.B. der
Geomanager) einer Verbindung (Connection) zum BASIC Programm herstellt und
der Oninit bzw. OnStartup Handler nicht in Frage kommt, da das BASIC
Programm bereits l4uft. Ublicher Weise wird eine solche Connection hergestellt,
wenn das BASIC Programm mit einem Dateityp verknUpft ist und der Nutzer eine
so verknipfte Datei im Geomanager durch Doppelklick startet.

Dabei gelten die folgenden Regeln:
« Wenn ein R-BASIC Programm durch Doppelklick auf eine verknlpfte Datei
gestartet wird, so wird der Pfad zu dieser Datei sowohl dem Onlnit als auch
dem OnStartup Handler im Parameter dataFile$ (ibergeben. OnConnection
wird beim Offnen des Programms nicht gerufen!

+ Doppelklickt der Nutzer eine verknupfte Datei jedoch wahrend das R-BASIC
Programm lauft wird der OnConnection Handler gerufen, wobei auch hier der
Parameter dataFile$ den vollstandigen Pfad zur Ubergebenen Datei (z.B.
"DAGEOS\DOCUMENT\DEMO.RBF") enthalt.

+ In beiden Féllen ist im Parameter flags das Flag AF_DATA_FILE gesetzt, das
Flag AF_FOR_PRINT kann zusétzlich gesetzt sein.

Achtung! Es ist denkbar, wenn auch sehr unwahrscheinlich, dass andere
Programme (auBer dem Geomanager) eine Verbindung zu lhrem BASIC
Programm herstellen. In diesem Fall kann ebenfalls eine Datendatei Ubergeben
werden, haufiger ist jedoch, dass in diesem Fall keine Datei Ubergeben wird.
Prifen Sie in ihnrem OnConnection Handler also immer das Bit AF_DATA_FILE
(bzw. die Lange von dataFile$) ab!

Application - 128

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel

Nehmen wir an, Sie mdchten einen Viewer fir R-BASIC Blockgrafik Fontdateien
(RBF-Dateien) schreiben. Der Viewer soll beim Doppelklick auf eine RBF-Datei
gestartet werden bzw., wenn er bereits lauft, die angeklickte Datei anzeigen. Dazu
nehmen wir folgendes als gegeben an:
* Es existiert eine globale Dateivariable f. Diese referenziert die offene Fontdatei.
* Die selbst geschriebene Routine DisplayFontData zeigt die gewlnschten
Inhalte an.

DECL SUB DisplayFontData(fh as FILE)

+ Der Geomanager zeigt RBF-Dateien mit dem Token "Font",5 an.
* |hr Viewer hat das Token "RbfV",16600.

In der GEOS.INI muss sich die folgende Verknlpfung befinden:

[fileManager]
filenameTokens = {
* RBF="Font",5,"RbfV",16600

Ausschnitt aus dem Ul Code:

Application RBFViewerApplication
OonStartup = ViewerStartupHandler
OnConnection = ViewerNewFileHandler
OnExit = ViewerExitHandler
AppToken = "RbfvV",16600
DocToken = "Font",5

End OBJECT

Der passende BASIC Code dazu:

SYSTEMACTION ViewerStartupHandler
! Priifen ob eine Datei iibergeben wurde
IF Len(dataFile$) THEN

f = FileOpen (dataFile$, "r") ! Nur Lesen reicht.
DisplayFontData (f)
End IF

! Alternativ konnte man auch AF DATA FILE priifen
! IF flags AND AF DATA FILE THEN ...
END Action

SYSTEMACTION ViewerNewFileHandler
! Priifen ob iiberhaupt eine Datei i{ibergeben wurde
IF (flags AND AF DATA FILE) = 0 THEN return
! eventuell offene Datei schlieBen
IF f <> NullFile() THEN FileClose(f)
! Neue Datei anzeigen
f = FileOpen (dataFile$, "r")
DisplayFontData(f)

Application - 129

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

END Action

SYSTEMACTION ViewerExitHandler
IF f <> NullFile() THEN FileClose(f)
END Action

Bei Bedarf kédnnen Sie noch ein Dateimenii (Buttons "Offnen" und "SchlieBen")
hinzuflgen.

Application - 130

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.1.5 Uberwachung der Zwischenablage

OnClpChange

Um in R-BASIC z.B. ein "Bearbeiten" Menl zu implementieren missen Sie
wissen, wenn jemand etwas ins Clipboard kopiert und was es ist. Dann kdénnen
Sie z.B. einen "Einfligen" Schalter enablen oder disablen. Fur dieses Zweck
verfigt das Application Objekt Uber einen speziellen Actionhandler, der immer
dann aufgerufen wird, wenn sich im Clipboard etwas tut. Der ActionHandler muss
als "SystemAction" implementiert sein.

Im Ul Code:

Application DemoApplication
Children = DemoPrimary
OonClpChange = ClpChangeHandler

END Object

' folgende Objekte sollen existieren:
BitmapContent DemoBitmap
Button PasteButton

Im BASIC Code:

14

' Der Handler enabled oder disabled den Einfiigen Button

14

SYSTEMACTION ClpChangeHandler

DIM ok
ok = DemoBitmap.ClpTestPaste
IF ok THEN
PasteButton.enabled = TRUE
ELSE
PasteButton.enabled = FALSE
END IF

END Action

Der OnClpChange Handler wird automatisch immer dann aufgerufen, wenn sich
die Daten im Clipboard andern. Die Ubergebenen Parameter sind hier ohne
Bedeutung und sollten ignoriert werden. Details zur Arbeit mit dem Clipboard und
dem OnClpChange Handler erfahren Sie im Kapitel "Arbeit mit der Zwischen-
ablage" und insbesondere im Abschnitt "Das Clipboard Gberwachen"

Application - 131

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.1.6 Der Busy-Status

Gelegentlich kommt es vor, dass Ihr Programm "beschaftigt" ist und nicht sofort
auf weitere Usereingaben reagieren kann. Der Ubliche Weg, dies dem User
deutlich machen ist, den Mauszeiger zu einer "Sanduhr" werden zu lassen. Fur
diesen Zweck gibt es den "Busy" (= beschéftigt) Status. Je nachdem, ob sie
wahrend dessen auf die Usereingaben reagieren kénnen oder wollen gibt es
verschiede Wege, den Busy-Status zu aktivieren.

Methoden:
Methode Aufgabe
MarkBusy Busy-Status aktivieren
MarkNotBusy Busy-Status verlassen
HoldUplInput Usereingaben zwischenspeichern
Resumelnput Zwischengespeicherte Usereingaben ausfihren
Ignorelnput Alle Usereingaben ignorieren
Acceptinput Usereingaben wieder akzeptieren
Syntax BASIC-Code: <obj>.MarkBusy

<obj>.MarkNotBusy

Selten genutzte Methoden:
<obj>.HoldUplInput
<obj>.Resumelnput

<obj>.Ignorelnput
<obj>.Acceptinput

Wichtig! Alle hier aufgefihrten Methoden sind kumulativ, das heiBt sie kénnen
mehrfach hintereinander ausgefihrt werden und z.B. zu jedem MarkBusy wird ein
eigenes MarkNotBusy benétigt.

DemoAppliacation.MarkBusy " jetzt busy
DemoAppliacation.MarkBusy ' 2x busy
DemoAppliacation.MarkNotBusy ' immer noch busy
DemoAppliacation.MarkNotBusy ' jetzt nicht mehr

MarkBusy, MarkNotBusy

Der Aufruf von MarkBusy lasst den Mauszeiger zu einer Sanduhr werden, um
anzuzeigen, dass das Programm beschéftigt ist. Ansonsten passiert nichts, der
Nutzer kann weiterhin Objekte anklicken und z.B. Texte eingeben.

MarkNotBusy nimmt ein MarkBusy zurtck.

Application - 132

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

HoldUplInput, Resumelnput

HoldUplnput weist die Ul an, Usereingaben nicht sofort an das Programm
weiterzuleiten, sondern zwischenzuspeichern. Dabei wird der Mauszeiger nicht
zur Sanduhr. Ublicher Weise wird deshalb HoldUplnput gemeinsam mit MarkBusy
verwendet. Resumelnput weist die Ul an, die zwischengespeicherten
Usereingaben an das Programm weiterzuleiten, so dass sie behandelt werden
kénnen.

Verwenden Sie die beiden Methoden nur, wenn Sie keine andere Mdglichkeit
sehen, da der Nutzer schnell den Eindruck bekommen kann, das lhr Programm
"hangt".

Ignorelnput, Acceptinput

Ignorelnput weist die Ul an, alle folgenden Eingaben zu blockieren. Acceptinput
hebt diesen Zustand wieder auf. Alle zwischen Ignorelnput und Acceptinput
erfolgten Eingaben (z.B. Klicks auf einen Button) sind verloren. Verwenden Sie
diese Befehle nur als allerletzten Ausweg!

Application - 133

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.2 Primary

—-| Primary
Objekte der Klasse Primary sind die "Hauptfenster" [[Datei

des Programms. Primaries haben links oben ein
System-Menl, rechts oben die Schalter fir
"Minimieren" und "Maximieren" sowie bei Bedarf
einen "Hilfe" Schalter (Fragezeichen).

Im Allgemeinen hat jedes BASIC Programm genau ein Primary-Objekt.

Focus und Target

Das Primary-Objekt ist ein Knoten in der Focus- und Target-Hierarchie. Es ist
moglich zu Uberwachen, ob ein Primary-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas fir
erfahrene Programmierer und nur in wenigen Fallen notwendig. Eine Ausnahme
bildet die Implementation von speziellen MenlUs wie dem "Bearbeiten" Menda.
Diesem Thema ist deswegen ein eigenes Kapitel ("Spezielle Themen", Kapitel 13)
gewidmet.

Abstammung:
GenericClass =9 Display —> Primary

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
BreakButton BreakButton = TRUE —
FileMenuChildren FileMenuChildren = <objektListe> | —
Caption2$ — lesen, schreiben
PrimaryFullScreen PrimaryFullScreen —
NoFileMenu NoFileMenu —
NoExpressMenu NoExpressMenu —
PrimaryNoHelpButton| PrimaryNoHelpButton —

Spezielle Action-Handler: keine

BreakButton

Oftmals, besonders wahrend der Fehlersuche, ist es erwunscht, einen laufenden
Action-Handler abbrechen zu kénnen, ohne gleich GEOS abzuwirgen. Das kann
z.B. bei einer versehentlichen Endlosschleife der Fall sein, das Programm "hangt".
Diese BREAK (Unterbrechung) genannte Funktion ist typisch fir BASIC-
Programme, bei "richtigen" GEOS-Programmen aber nicht vorhanden.

Primary - 134

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Das BreakButton-Statement fligt einen Break-Schalter zum Dateimenu des
Primaries hinzu und aktiviert gleichzeitig die Tastenkombination Strg-B zum
Ausldsen eines BREAK.

Syntax Ul-Code: BreakButton = TRUE

FileMenuChildren

Jedes Primary hat automatisch ein Datei-Menl. Dort ist per Default nur der
"Beenden" Button enthalten. Haufig méchte man dort aber weitere Eintréage
vorsehen, z.B. zur Arbeit mit Dateien oder den Copyright-Dialog ("Uber ... "). Das
FileMenuChildren-Statement fligt die angegeben Objekte als Children in das
Dateimenu ein.

Syntax Ul-Code FileMenuChildren = <ObjektListe>

Beispiel:
Die in der Liste angegeben Objekt mussen natlrlich extra vereinbart werden:

Primary MainPrimary

Children = ...

FileMenuChildren = AboutBox, SaveFileButton, LoadFileButton
END OBJECT

Die Anzahl der Objekte in einer einzigen FileMenuChildren-Liste ist auf 25
begrenzt. Wenn Sie mehr Children spezifizieren wollen kénnen Sie, wie bei der
Children-Anweisung, siehe Kapitel 2.1.2, mehrere FileMenuChildren-Anweisungen
far ein Objekt verwenden.

Caption2$

Die Instancevariable Caption2$ erganzt die Titelzeile des Primaryobjekts um einen
weiteren Text. Ublicher Weise wird Caption2$ verwendet um den Namen des
aktuellen Dokuments in der Titelzeile des Programms anzuzeigen. Caption2$
kann nicht im Ul-Code verwendet werden.

Syntax Lesen: <stringVar> = <obj> . Caption2$
Schreiben: <obj>.Caption2$ = "text"

Primary - 135

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Anpassen des Primary-Objekts

Das Primary-Objekt stammt von der GenericClass ab und erbt deswegen alle
Fahigkeiten und Eigenschaften dieser Klasse. Das trifft insbesondere fur die
Geometrie-Fahigkeiten zu, wie z.B.

orientChildren

justifyChildren

MinimizeChildSpacing

DivideHeightEqually

DivideWidthEqually

childSpacing

Von besonderer Bedeutung fur Primaries sind die Windows-Hints wie z.B.
SizeWindowAsDesired
NoTitleBar
NoSysMenu

Von der Klasse Display erbt das Primary die folgenden Instancevariablen. Eine
ausfihrliche Beschreibung finden Sie im Kapitel 4.18.2 bei der Beschreibung der
Display Klasse. Die Instancevariablen userDismissable, OnClose sowie die
Methode Close werden nicht vererbt, das Primary Objekt implementiert hier sein
eigenes Handling.

Variable Syntax im Ul-Code Im BASIC-Code
minimizedState minimizedState = TRUE | FALSE lesen, schreiben
MinimizedOnStartup | MinimizedOnStartup —
NotMinimizable NotMinimizable —
maximizedState maximizedState = TRUE | FALSE lesen, schreiben
MaximizedOnStartup | MaximizedOnStartup —
NotMaximizable NotMaximizable —
NotResizable NotResizable —
NotRestorable NotRestorable —

Zusétzlich besitzen Primaries einige eigene Geometrieféhigkeiten.

PrimaryFullScreen

Die Anweisung bewirkt, dass das Primary groBe Teile des Bildschirms einnimmt,
so wie die "groBen" Applikationen "GeoWrite" und "GeoDraw". Unten bleibt ein
Rand fur iconisierte Applikationen.

Syntax Ul-Code: PrimaryFullScreen

Primary - 136

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel:

Primary MyPrimary
Children =
PrimaryFullScreen

END Object

NoFileMenu

Die Anweisung verhindert, dass das Primary ein Datei-Menl hat. Es ist aber
unwirksam, wenn es (gleichzeitig mit FileMenuChildren oder BreakButton
verwendet wird, da diese ein Dateimenl zwingend erfordern.

Syntax Ul-Code: NoFileMenu

NoExpressMenu

Die Anweisung verhindert, dass sich das Express-Menu in der Titelzeile des
Primaries ansiedelt.

Syntax Ul-Code: NoExpressMenu

Beispiel:

Primary Primary2
Children =
NoExpressMenu
NoFileMenu

END Object

PrimaryNoHelpButton

Syntax Ul-Code: PrimaryNoHelpButton

Wenn |hr Programm eine Hilfedatei hat, ist es sinnvoll dem Primary den
HelpContext "TOC" (Table Of Contents = Inhaltsverzeichnis) zu geben, damit das
Hilfesystem das Inhaltsverzeichnis findet.

Primary MyPrimary
Children =
helpContext$ ="TOC"

END Object

Diese Anweisung erzeugt jedoch gleichzeitig den Hilfebutton in der Titelzeile des
Primaryobjekts (i.a ein blaues Fragezeichen). Wenn dies im Ausnahmefall st6rt
kénnen Sie es mit dem Hint PrimaryNoHelpButton unterdriicken.

Primary - 137

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beachten Sie, dass der Name der Hilfedatei (Eintrag helpFile$) immer im
Applicationobjekt erfolgen sollte, damit der vom Hilfesystem im Hilfefenster
bereitgestellte Button "Inhalt" funktioniert.

Primary MyPrimary
Children =
helpContext$ ="TOC"
PrimaryNoHelpButton

END Object

Besonderheiten des Primary Objekts

« Wenn Sie einem Primary keine Caption$ geben, so wird automatisch der
Name des Programms genommen.

« Primary-Objekte sollten standig im Objekttree eingebunden sein, Primaries, die
kein Parent-Objekt haben, kdénnten die Systemstabilitdt beeinflussen.
Verwenden Sie die Anweisung "myPrimary.visible = FALSE" bzw. im Ul-Code
"visible = FALSE", wenn sie ein Primary-Objekt verstecken wollen.

+ Es ist mdglich, wenn auch selten verwendet, dass ein Programm mehr als ein
Primary-Objekt hat. Achtung: Sie sollten niemals mehrere BreakButton
Statements verwenden, auch wenn Sie mehr als ein Primary haben.

+ Primaries sind Window-Objekte. Es gibt eine Menge Window-orientierte Hints
und Methoden, die auf GenericClass Level definiert sind und mit Primaries
zusammenarbeiten. Beispiele sind SizeWindowAsDesired, NoSysMenu,
ExtendWindowToBottomRight, CenterWindow und ResizeWin.

Primary - 138

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.3 Button

Ein Button ist eine Schaltflache, die mit der

Maus angeklickt oder mit der Tastatur aktiviert — — it
werden kann. —_I ﬂl Exi |

Buttons werden fir Menu-Eintrage oder als alleinstehende Schalter verwendet.

Abstammung:
GenericClass Button

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code

ActionHandler ActionHandler = <Handler> nur schreiben
ActionHandler = BringUpHelp —

actionData actionData = numWert lesen, schreiben

interactionCommand | interactionCommand = numWert lesen, schreiben

BringsUpWindow BringsUpWindow —

IsDestructive IsDestructive —

unhandledEvents — nur lesen

Methoden:

Methode Aufgabe

Activate Auslésen des Buttons, als ob darauf geklickt wurde

Action-Handler-Typen:
Handler-Typ Parameter
ButtonAction (sender as object, actionData as integer)

ActionHandler

Die Instance-Variable ActionHandler enthalt den Namen des aufzurufenden
Actionhandlers. Dieser muss als ButtonAction vereinbart sein. Der Wert wird
ublicherweise im Ul-Code gesetzt.

Bei Bedarf kann er auch zur Laufzeit (im BASIC-Code) gesetzt, aber nicht gelesen
werden.

Syntax Ul- Code: ActionHandler = <Handler>
Schreiben: <obj>.ActionHandler = <Handler>

Beispiel: siehe unten

Button - 139

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: ActionHandler = BringUpHelp

Diese spezielle Syntax weist dem Button den von R-BASIC vordefinierten "Offne
die Hilfe" Handler zu. Wenn der Nutzer auf den Button klickt durchsucht der
Handler den generic Tree nach einem Help Context und dem Namen einer
Hilfedatei. Dazu durchsucht er zunachst den Button und dann der Reihe nach sein
Parent, dessen Parent usw. AbschlieBend 6ffnet er die entsprechende Seite der
Hilfe. Sehr oft hat daher der Button selbst einen Help Context gesetzt wahrend die
Hilfedatei vom Application Objekt bezogen wird. Dieses Verhalten kann man
nutzen um ein HilfemenU aufzubauen, dass spezielle Hilfeseiten direkt Uber
Menueintrage anzuspringen.
Button HelpButton

Caption$="Hilfe zu irgend etwas"

ActionHandler = BringUpHelp

helpContext$ ="Helpl"

End Object
Natirlich kann man jedem Button auch eine eigene Hilfedatei zuordnen
(helpFile$=..), wenn man das will.

actionData

Die Instance-Variable actionData enthalt einen Integer-Wert, der bei Bedarf zur
Identifizierung des Buttons oder sonstigen Zwecken herangezogen werden kann.
Der Standard-Fall ist jedoch, dass der actionData-Wert nicht benutzt wird.

Syntax Ul- Code: actionData = numWert
Lesen: <numVar> = <obj> . actionData
Schreiben: <obj>.actionData = numWert

ButtonAction

Action-Handler fiir Buttons missen als ButtonAction definiert werden.
Parameter: sender: Das Button-Objekt, das den Handler aktiviert hat
actionData: actionData-Wert des Buttons
Null, falls der Wert nicht gesetzt ist.

Beispiel 1: einfacher Button

Ul-Code:
Button MyButton
Caption$ = "OK", 0
ActionHandler = OKPressed
END Object

Button - 140

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

BASIC-Code:

ButtonAction OKPressed

< .. diverser Code ..>
MsgBox "Operation erfolgreich."

END ACTION

Beispiel 2: Verwendung des actionData-Wertes

Ul-Code:
Button TestButton
Caption$ = "Press mich"

actionData = 255
ActionHandler = Handlerl
END OBJECT

BASIC-Code:

ButtonAction Handlerl
DIM x, y as word
X = actionData/2
y = actionData + 12
MsgBox "Gefundene Werte:"+ Str$(actionData)+ Str$(x) + Str$(y)

END ACTION

interactionCommand

Sehr haufig missen Buttons in einer Dialogbox standardisierte Aktionen auslésen,
wie z.B. das SchlieBen des Dialogs. Oder es ist notig, dass eine Dialogbox einen
Wert zurlckgibt, z.B. ob der Nutzer auf "Ja", "Nein" oder "Abbrechen" geklickt hat.
Fir diesen Zweck kann man einem Button einen "Interactions-Kommando" - Wert
(einen WORD-Wert) zuordnen, so dass das GEOS-System automatisch weif3, was
es zu tun hat.

Syntax Ul- Code: interactionCommand = numWert
Lesen: <numVar> = <obj> . interactionCommand
Schreiben: <obj>.interactionCommand = numWert

Da die Verwendung von interactionCommand-Werten nur im Zusammenhang
mit Dialogboxen sinnvoll ist, werden sie dort ausfuhrlich besprochen. Zur
Vereinfachung finden Sie unten trotzdem eine Tabelle der verfligbaren Interaction-
Command-Werte. Beachten Sie, dass ein Button nur entweder einen action-
Handler oder ein interactionCommand haben kann. Die Zuweisung des Einen im
BASIC-Code I6scht jeweils das Andere.

Button - 141

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

interactionCommand | Wert Bedeutung

IC_CLOSE 1 Dialog schlieBen

IC_APPLY 3 Anderungen anwenden

IC_RESET 4 Dialog zurlcksetzen

IC_OK 5 Verwendet fur "OK"

IC_YES 6 Verwendet fur "Ja"

IC_NO 7 Verwendet fur "Nein"

IC_STOP 8 Verwendet flr "Stop" oder "Abbrechen"

IC_HELP 10 Button ersetzt den "Hilfe" Button
BringsUpWindow

Dieser Hint platziert eine Ellipse "..." hinter dem Button-Text um anzuzeigen, dass
der Button eine Dialogbox oder &hnliches auf den Schirm bringt. Damit sieht ein
Menteintrag genau so aus, als sei die Dialogbox das direkte Child des Meniis.

Syntax Ul-Code: BringsUpWindow

IsDestructive

Ahnlich wie der Hint CannotBeDefault fiir Groups soll IsDestructive verhindern,
dass der Nutzer den Button als "Default-Aktion" per Enter- oder Leertaste aktiviert.
Verwenden Sie diesen Hint, wenn der Button eine potentiell geféhrliche
(destruktive) Aktion ausldst.

Syntax Ul-Code: IsDestructive

unhandledEvents

Enthalt, wie oft der Button "aktiviert" wurde (z.B. durch Anklicken mit der Maus),
ohne dass der zugehOrige ActionHandler aufgerufen werden konnte. Dass
passiert i.A. wenn noch ein anderer ActionHandler lauft, wahrend der Button
aktiviert wurde. Da alle ActionHandler nacheinander (im gleichen Thread)
abgearbeitet werden sie in der Reihenfolge abgearbeitet in der sie auftreten, ohne
sich gegenseitig zu unterbrechen.

Achtung! Die Instancevariable unhandledEvents enthalt immer den Wert Null,
wenn dem Button kein ActionHandler zugewiesen wurde.

Sie kénnen diese Instancevariable benutzen, wenn Sie einen lang andauernden
Prozess vorzeitig abbrechen wollen, aber daflir keinen Progress-Dialog (siehe
Kapitel 4.6.6.4) einsetzen méchten. Bedenken Sie aber, dass die entsprechenden
Ereignisse bereits in der Ereigniswarteschlage (Event queue) abgelegt sind und
daher auf jeden Fall spater noch abgearbeitet werden.

Button - 142

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Syntax BASIC-Code: <numVar> =<obj>.unhandledEvents

Activate

Diese Methode bewirkt, dass der Button aktiviert wird, so als ob der User direkt
darauf geklickt hat. Der Action-Handler oder das InteractionCommand des Buttons
wird ausgefihrt.

Syntax BASIC-Code: <obj>.Activate

Beispiel:

IF x > 0 THEN MyButton.Activate

Button - 143

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.4 Group

Groups (Gruppen) haben einen Hauptzweck: Sie dienen dazu andere Objekte
anzuordnen. Durch die geschickte Verwendung von Groups geben Sie als
Programmierer ihrem Programm das Aussehen, das Sie wiinschen.

= | Geometry =

Datei

Diese Anwendung, die Sie vielleicht aus
dem Kapitel Uber das Geometriemana-

gement kennen, besteht aus einer I —
Group (rot, oben’) und einer Reply-Bar M
(unten, ebenfalls ein Group-Objekt), die _Action 2|
vertikal (untereinander) angeordnet sind. Action 4 |
Die rot markierte Gruppe besteht aus

einem Text-Objekt und einer weiteren | oK Exit

Group, hier blau markiert. I Lexit |

Beide Objekte sind horizontal angeordnet. Die rechte (blaue) Group enthélt
letztlich die Action-Buttons, die untereinander angeordnet sind.

Abstammung
GenericClass —9 Group

Spezielle Instance-Variablen:
Hint Syntax im Ul-Code Im BASIC-Code
CannotBeDefault CannotBeDefault —

CannotBeDefault

Sehr haufig, z.B. in Dialog-Boxen, gibt es einen Button oder ein anderes Objekt,
dass Uber den Standard-Weg "Leertaste" oder "Entertaste" aktiviert wird. Viele
Nutzer neigen dazu, beim Erscheinen einer Dialogbox erst einmal auf "Enter" zu
dricken und damit diesen "Default"-Button zu aktivieren. Der Hint
CannotBeDefault verhindert, dass die Children der Group Uber diesen Weg "per
Default" aktiviert werden kénnen. Sie kbnnen Groups mit diesem Hint versehen,
wenn die darin enthaltenen Objekte (z.B. Buttons) potentiell gefahrliche Aktionen
auslésen kdénnen.

Syntax Ul-Code: CannotBeDefault

Groups stammen von der GenericClass ab und erben damit alle Eigenschaften
und Fahigkeiten dieser Klasse. Besonders interessant sind in diesem
Zusammenhang die Féhigkeiten zum Geometriemanagement, die im Kapitel 3.3
ausfuhrlich besprochen und von Group-Objekten sehr h&ufig verwendet werden.
Der Einfachheit halber sind die aus der Sicht einer Group wichtigsten - aber nicht
alle - Hints zum Geometriemanagement hier noch einmal aufgefuhrt:

Group - 144

R-BASIC - Objekt-Handbuch - Vol. 3

Einfach unter PC/GEOS programmieren

Anordnung der Children

Hint

Syntax im Ul-Code

Im BASIC-Code

orientChildren

orientChildren = numWert

lesen, schreiben

justifyChildren

justifyChildren = numWert

lesen, schreiben

childSpacing

childSpacing = numWert

lesen, schreiben

MinimzeChildSpacing

MinimzeChildSpacing

IncludeEndsInChildSpacing

IncludeEndsInChildSpacing

wrapAfterChild

wrapAfterChild = numWert

lesen, schreiben

ObjektgréBe

Hint

Syntax im Ul-Code

Im BASIC-Code

DivideHeightEqually

DivideHeightEqually

DivideWidthEqually

DivideWidthEqually

ExpandWidth ExpandWidth —
ExpandHeight ExpandHeight —
initialSize initialSize = x, y [, count] lesen, schreiben

minimumSize

minimumSize = x, y [, count]

lesen, schreiben

maximumSize

maximumSize = x, y [, count]

lesen, schreiben

fixedSize

fixedSize = x, y [, count]

lesen, schreiben

Spezielle Attribute

Hint Syntax im Ul-Code Im BASIC-Code
DrawInBox DrawInBox —
MakeToolbox MakeToolbox —
MakeReplyBar MakeReplyBar —

NoSeparatorLine

NoSeparatorLine

Group - 145

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

4.5 Menu

Menuls sind der Ubliche Weg, auf dem der Nutzer unterschiedliche Programm-
funktionen anwéahlen kann.

Abstammung:
GenericClass > Group — Menu

Spezielle Instance-Variablen: keine

Die Menu-Eintrage sind die Children eines
Menus. In vielen Féllen sind dies Buttons.

Verschachtelte Menls (Sub-Menls, siehe

i Main | Bild) erhalten Sie, wenn sie andere Menus als

m — MenuU-Eintrdge verwenden. Verwenden Sie
Read Dialoge als Menu-Eintrdge erzeugt das
Write System selbstandig einen Button im Mend,
:""e . = der den Dialog 6ffnet. Sie durfen jedoch auch
emo uialog...

beliebige andere Objekte, etwa Groups oder

, Listen-Objekte als Children von Menus
i VEWVENden.

Groups erzeugen automatisch einen Trennstrich, um sich vom Rest des Menus

abzuheben. Winschen Sie diesen nicht, so verwenden Sie den Hint

NoSeparatorLine flr die Group.

Beispiel: Ul-Code-Fragment fir das im Bild gezeigte Men(. Naturlich missen alle
Buttons einen Action-Handler haben, auch wenn sie hier nicht aufgefihrt sind. Die
Trennung von Ul-Anweisungen mit einem Doppelpunkt ist, genau wie im BASIC-
Code, erlaubt.

Menu MainMenu
Caption$ = "Main"
Children = ReadButton, WriteButton, SubMenu, DemoDialog
END Object

Menu Submenu

Caption$ = "More"

Children = LoadButton, SaveButton

END Object
Button ReadButton

Caption$ = "Read"

ActionHandler = ReadHandler

END Object
Button WriteButton : Caption$ = "Write" : END Object
Button LoadButton : Caption$ = "Load" : END Object
Button SaveButton : Caption$ = "Save" : END Object

Dialog DemoDialog

Caption$ = "Demo Dialog"
dialogType = DT NOTIFICATION ' siehe ndchstes Kapitel
END Object

Menu - 146

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

(Leerseite)

Menu - 147

