

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 3
Application, Primary, Button, Group, Menu

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4 Verfügbare Generic Objekt Klassen ... 116

4.1 Application ... 116
4.1.1 LongName, Benutzer Notizen und Tokens 118
4.1.2 Actionhandler des Application Objekts ... 121
4.1.3 Starten und Beenden eines Programms 123

4.1.3.1 Programmstart .. 124
4.1.3.2 Programmende ... 126

4.1.4 Arbeit mit Dokumenten ... 128
4.1.5 Überwachung der Zwischenablage .. 131
4.1.6 Der Busy-Status ... 132

4.2 Primary .. 134

4.3 Button ... 139

4.4 Group .. 144

4.5 Menu ... 146

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 116

4 Verfügbare Generic Objekt Klassen

In diesem Abschnitt werden die einzelnen generischen Objektklassen, die in R-
BASIC verfügbar sind, im Detail beschrieben. Einige dieser Objekte sind sehr
einfach zu benutzen, können aber trotzdem sehr komplexe Funktionen ausführen.
Da alle diese Objekte von der GenericClass abstammen erben sie sämtliche in
den vorherigen Kapiteln besprochenen Instance-Variablen. Sie sollten außerdem
die in Kapitel 2 beschriebenen Konzepte kennen, um die damit verbundenen
Details zu verstehen.

4.1 Application

Dieses Objekt stellt die Verbindung zum GEOS-System her und ist das top
Parent-Objekt für alle anderen generischen BASIC-Objekte ihres Programms.
Jedes BASIC-Programm muss genau ein Application-Objekt haben. Direktes Child
des Application-Objekts ist im allgemeinen ein Primary-Objekt.

Abstammung:
GenericClass Application

Die Definition eines einfachen Application-Objekts sieht z.B. so aus

Application MyApp
Children = MyPrimary

END OBJECT

MyApp ist der Name des Application-Objekts, unter dem es bei Bedarf im BASIC-
Code angesprochen werden kann. Das ist für Application Objekte jedoch nur
selten nötig.

Das Application-Objekt selbst erscheint nicht auf dem Bildschirm. Es ergibt daher
keinen Sinn, ihm eine Caption$ zugeben, auch wenn das syntaktisch möglich ist.

Tastaturhandling

Sie können sich in das Tastaturhandling einklinken, indem Sie einen Tastatur-
handler für das Application-Objekt schreiben. Dazu werden die folgenden
Instancevariablen unterstützt:

Actionhandler Instancevariablen Methoden
OnKeyPresed inputFlags ––

Der OnKeyPressed-Handler muss als KeyboardAction deklariert werden. Eine
ausführliche Beschreibung, wie man einen Tastaturhandler schreibt und was es
dabei zu beachten gilt, finden Sie im Handbuch "Spezielle Themen", Kapitel 14.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 117

Das Schreiben eines Tastaturhandlers für das Application-Objekt ist eine sehr
einfache Methode, wenn ein "globaler" Tastaturhandler geeignet ist. Das ist z.B.
für viele Spielprogramme der Fall.

Focus und Target

Das Application-Objekt ist ein Knoten in der Focus- und Target-Hierarchie. Es ist
möglich zu überwachen, ob ein Application-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas für
erfahrene Programmierer und nur in wenigen Fällen notwendig. Eine Ausnahme
bildet die Implementation von speziellen Menüs wie dem "Bearbeiten" Menü.
Diesem Thema ist deswegen ein eigenes Kapitel ("Spezielle Themen", Kapitel 13)
gewidmet.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnInit OnInit = <Handler> ––
OnStartup OnStartup = <Handler> ––
OnExit OnExit = <Handler> ––
OnClpChange OnClpChange = <Handler> nur schreiben
OnConnection OnConnection = <Handler> nur schreiben
LongName$ LongName$ = "Name" ––
userNotes$ userNotes$ = "Text" ––
crNote$ crNote$ = "Text" ––
AppToken AppToken = "<chars>",<numVal> ––
DocToken DocToken = "<chars>",<numVal> ––
ExtraToken ExtraToken = "<chars>",<numVal> ––

Methoden:
Methode Aufgabe
MarkBusy Busy-Status aktivieren
MarkNotBusy Busy-Status verlassen
HoldUpInput Usereingaben zwischenspeichern
ResumeInput Zwischengespeicherte Usereingaben ausführen
IgnoreInput Alle Usereingaben ignorieren
AcceptInput Usereingaben wieder akzeptieren

Action-Handler-Typen:
Handler-Typ Parameter
SystemAction (sender as object, flags as word, dataFile$ as String(250))

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 118

Konstanten für Parameter "flags"
Konstante Wert Bedeutung
AF_FOR_PRINT 1 Datei zum Drucken übergeben
AF_RESTORE 2 Wiederherstellung nach System Shutdown
AF_DATA_FILE 4 Datendatei wurde übergeben
AF_SHUTDOWN 8 GEOS fährt herunter

Eine ausführliche Beschreibung der einzelnen Flags finden Sie im nächsten
Kapitel.

4.1.1 LongName, Benutzer Notizen und Tokens

Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
LongName$ LongName$ = "Name" ––
userNotes$ userNotes$ = "Text" ––
crNote$ crNote$ = "Text" ––
AppToken AppToken = "<chars>",<numVar> ––
DocToken DocToken = "<chars>",<numVar> ––
ExtraToken ExtraToken = "<chars>",<numVar> ––

LongName$

Der "LongName$" ist der eigentliche Name des Programms, mit dem es im
GeoManager und im Expressmenü erscheint. Er wird benötigt, wenn Sie ein
"Eigenständiges Programm" anlegen, um es an andere Nutzer weiterzugeben. In
den meisten Fällen wird die Instancevariable LongName$ jedoch gar nicht explizit
gesetzt. R-BASIC verwendet dafür standardmäßig den Namen Ihres BASIC
Programms. Setzen Sie einen abweichenden Wert für "LongName$", falls das
fertige Programm unter einem anderen Namen im GeoManager erscheinen soll.

userNotes$

Die userNotes$ sind die Dokument-Notizen, die Im GeoManager angesehen und
geändert werden können. Sie können bis zu 99 Zeichen lang sein, wobei
Zeilenumbrüche als ein Zeichen gezählt werden.

crNote$

crNote$ definiert eine bis zu 32 Zeichen lange Copyright-Notiz. Sie wird in den
Dateiheader des Programms geschrieben und nicht im GeoManager angezeigt.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 119

AppToken

AppToken spezifiziert das Icon (Symbol-Bild), dass der GeoManager für das
Programm anzeigt. Es wird benötigt, wenn Sie ein "Eigenständiges Programm"
anlegen, um es an andere Nutzer weiterzugeben. AppToken ist vom Typ
GeodeToken, d.h. es besteht aus 4 Buchstaben und einer Zahl zwischen 0 und
65535, der sogenannten "Manufacturer-ID".

Beispiel:
Application MyApp
Children = MyPrimary
AppToken = "BPdm",16600
userNotes$ = "Version 2.0, Jan. 2013"
crNote$ = "(c) by Rabe-Soft 01/2013"

END OBJECT

Jedes Programm benötigt ein eigenes Token. Wenn Sie ein "eigenständiges
Programm" erzeugen (also ein Programm, das auch ohne R-BASIC lauffähig ist),
kopiert R-BASIC das Icon-Bild aus der Token Database in das fertige BASIC
Programm. Das bedeutet folgendes:

• Dass durch AppToken spezifizierte Token muss sich beim Anlegen des
eigenständigen Programms in ihrer Token Database befinden.

• Benutzt ein User Ihr Programm, so installiert das Programm automatisch sein
AppToken in der Token Database, falls es dort noch nicht existiert. Hier
verhält sich ein R-BASIC Programm genau wie ein mit dem PC/GEOS-SDK
geschriebenes Programm.

• Spezifizieren Sie kein AppToken verwendet R-BASIC ein "Standard-Token".

Sie können für AppToken sowohl ein Token aus einer existierenden Icon-
sammlung verwenden als auch ein eigenes Icon erstellen.
Um ein eigenes Icon zu erstellen können Sie das Programm "IconEditor"
verwenden, der das Icon direkt in die Token Database exportieren kann. Dazu
benötigen Sie eine eigene Manufacturer-ID. Im Kapitel 3.4 "Über die
Manufacturer-ID" im R-BASIC Benutzer Handbuch wird beschrieben, wie Sie eine
Manufacturer-ID erhalten können.

Zu einem "Token" (4 Zeichen + Manufacturer-ID) gehören üblicherweise mehrere
Icon-Bilder. R-BASIC unterstützt genau zwei Bilder pro Token:
Das Erste ist das eigentliche Icon. Es wird vom GeoManager bei der Anzeige des
Programms verwendet. Es ist üblicher Weise 48x30 Pixel groß und hat 16 oder
256 Farben. Das Zweite ist das "Tool" Icon und wird z.B. für das Expressmenü
benutzt. Es ist üblicherweise 15x15 Pixel groß und kann ebenfalls 16 oder 265
Farben haben. Im Abschnitt "Eigenständige Programme anlegen" des R-BASIC
Benutzer Handbuchs finden sie eine ausführliche Beschreibung wie Sie zum
Erstellen eigener Icons vorgehen können.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 120

DocToken

Wenn Ihr Programm mit Dokumenten arbeitet, können Sie diesen ein eigenes
Token zuweisen (bei DOS-Dateien in der GEOS.INI, bei VM-Dateien über das
Attribut "Token"). Um sicherzustellen, dass sich das Token auch in der Token
Database befindet, können Sie die Instancevariable DocToken verwenden. R-
BASIC wird - wie beim AppToken - beim Anlegen des eigenständigen Programms
die beiden zum DocToken gehörenden Iconbilder in das BASIC-Programm
kopieren. Das BASIC-Programm installiert dann das DocToken gemeinsam mit
dem AppToken in der Token Database. Mehr macht das R-BASIC Programm
nicht! Es bleibt Ihnen überlassen ob und wie Sie das DocToken verwenden.

ExtraToken

Für den unwahrscheinlichen Fall, dass Sie ein weiteres Token benötigen, können
Sie ein ExtraToken spezifizieren, dass dann gemeinsam mit dem AppToken und
dem DocToken in das BASIC-Programm kopiert und von diesem bei Bedarf in die
Token Database installiert wird.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 121

4.1.2 Actionhandler des Application Objekts

Alle Actionhandler des Application-Objekts müssen als SystemAction deklariert
sein. Der Parameter sender enthält dabei immer das Application Objekt, die
Parameter flags und dataFile$ sind im Folgenden beschrieben.

Der Parameter flags

Der Parameter "flags" (engl. Flagge) enthält zusätzliche Informationen, die unter
gewissen Umständen von Bedeutung sein könnten. Es handelt sich dabei um
einzelne Bits, die gesetzt sein können oder eben nicht. Um abzufragen, ob ein
bestimmtes Flag gesetzt ist verwenden Sie die logische AND Operation und
prüfen Sie, ob das Resultat Null ist oder nicht. Vergessen Sie die Klammern nicht!

! Prüfen ob AF_DATA_FILE gesetzt ist
IF flags AND AF_DATA_FILE THEN ...

’ gleichbedeutend mit
IF (flags AND AF_DATA_FILE) <> 0 THEN ...

oder:
! Prüfen ob AF_DATA_FILE NICHT gesetzt ist
IF (flags AND AF_DATA_FILE) = 0 THEN ...

Beachten Sie folgendes:
• Verwenden Sie nicht den NOT Operator

z.B. IF NOT (flags AND AF_DATA_FILE) THEN ...
oder IF flags AND NOT AF_DATA_FILE) THEN ...
Der Operator NOT führt eine bitweise Negation aus, was gemeinsam mit
dem AND Operator in den meisten Fällen zur Aussage "wahr" (d.h. ungleich
Null) führt. Ein solcher Fehler ist selbst für Profis sehr schwer zu finden.

• Verwenden Sie niemals ein einfaches "=" (if flags=AF_DATA_FILE), da sie
nie sicher sein können ob noch andere Flags gesetzt sind! Möglicherweise
werden von späteren Versionen zusätzliche Flags bereitgestellt, die gesetzt
sein könnten!

AF_DATA_FILE: Dieses Flag zeigt an, dass dem Handler eine Datendatei
übergeben wurde (Parameter dataFile$ enthält dann den Pfad zur Datei).
Die Abfrage dieses Flags ist schneller als das Prüfen der Stringlänge mit
Len(dataFile$). Len(dataFile$) > Null zeigt ebenfalls an, dass eine
Datendatei übergeben wurde.

AF_FOR_PRINT: Dieses Flag kann nur gesetzt sein, wenn auch eine Datendatei
übergeben wurde (AF_DATA_FILE gesetzt). Es zeigt an, dass der Nutzer
die Datei nicht durch einen Doppelklick sondern über das Menü "Drucken"
des Geomanagers geöffnet hat. Sie können z.B. entscheiden, dass Sie die
Datei ignorieren wollen (weil Ihr Programm gar nicht drucken kann) oder
eine andere Sonderaktion durchführen, wenn das sinnvoll ist.

AF_RESTORE: Dieses Flag kann nur im OnInit oder im OnStartup Handler
gesetzt sein. Es zeigt an, dass das Programm beim letzten Herunterfahren
von PC/GEOS noch offen war und jetzt, beim Systemneustart, wieder-
hergestellt (engl.: restored) wird. Möglicherweise möchten Sie in diesem

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 122

Fall bestimmte Initialisierungsschritte auslassen oder stattdessen andere
ausführen.

AF_SHUTDOWN: Dieses Flag wird nur dem OnExit Handler übergeben und zeigt
an, dass sich Ihr Programm schließt, weil PC/GEOS heruntergefahren wird,
nicht weil das Programm normal beendet wurde. Sie können dann z.B.
Werte, die einen System-Restart überleben sollen in eine Datei sichern und
beim wieder Hochfahren des Systems (AF_RESTORE im OnStartup bzw.
OnInit Handler gesetzt) wieder auslesen. Es ist aber ein besserer Stil (und
meist auch einfacher) Ihr Programm gleich so zu schreiben, dass dies nicht
nötig ist.

Der Parameter dataFile$

Sie können R-BASIC Programme wie alle anderen GEOS Programme auch durch
einen entsprechenden Eintrag in der GEOS.INI (filenameTokens) mit DOS
Dateien bzw. durch Setzten des "Creator" Attributs in VM-Dateien auch mit VM-
Dateien verknüpfen. Der Geomanager stellt beim Doppelklick auf eine so
verknüpfte Datei eine Verbindung zum zugehörigen Programm her und übergibt
ihm den Namen und den Pfad zur Datei. Der Parameter "dataFile$" enthält dann
den vollständigen Pfad zu der an das Programm übergebenen Datendatei (z.B.
"D:\GEOS\DOCUMENT\INFO.FOO"). In diesem Fall ist auch immer das Flag
AF_DATA_FILE im Parameter "flags" gesetzt. Wurde keine Datendatei übergeben
so enthält dataFile$ einen Leerstring und das Flag AF_DATA_FILE ist nicht
gesetzt.
Hinweis: Für den Zugriff auf den Inhalt von VM-Dateien müssen Sie die VMFiles
Library einbinden.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 123

4.1.3 Starten und Beenden eines Programms

Das Application Objekt stellt nicht nur die Verbindung zum GEOS System her, es
erledigt auch alle Aufgaben, die beim Starten und Beenden eines BASIC
Programms anfallen. Dazu gehört insbesondere, das Ausführen des Programm-
codes zu starten.

R-BASIC erlaubt es, Programmcode zu schreiben, der nicht Teil einer Routine
(SUB oder FUNCTION) oder eines Actionhandlers ist. Alle "klassischen" BASIC
Programme und auch viele R-BASIC Beispiele machen davon Gebrauch. Dieser
sogenannte "klassische Code" wird beim Start des Programms automatisch
ausgeführt.
Beispiel: Ein "Hallo Welt" Programm im klassischen BASIC
ClassicCode
CLS
Print : Print
Print "Hallo Welt"
Print "Willkommen bei R-BASIC!"

Die Anweisung ClassicCode bewirkt drei Dinge:
• Das Scheiben von Code außerhalb von Routinen wird zugelassen.
• Es werden automatisch ein paar Objekte angelegt, so dass Grafik und Text

ausgegeben werden können.
• Dieser "klassische" Code wird beim Start des Programms automatisch

ausgeführt.

Für ein objektorientiertes Programm ist das nicht nur ein schlechter Stil, sondern
es fehlt z.B. die Möglichkeit speziellen Code am Programmende automatisch
auszuführen. Das Application Objekt unterstützt deswegen mehrere Action-
handler, die am Programmstart bzw. am Programmende ausgeführt werden.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 124

4.1.3.1 Programmstart

Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnInit OnInit = <Handler> ––
OnStartup OnStartup = <Handler> ––

Wenn ein BASIC Programm startet werden die folgenden Schritte in der hier
angegebenen Reihenfolge ausgeführt:

1. Die Objekte werden geladen und vollständig initialisiert, erscheinen aber
noch nicht auf dem Schirm.

2. Wenn vorhanden wird der OnInit Handler ausgeführt. Dieser Handler kann
bereits mit den Objekten interagieren und Dinge erledigen, die vor allen
anderen erledigt werden müssen.

3. Die Objekte erscheinen auf dem Schirm.
4. Wenn vorhanden wird der OnClpChange Handler ausgeführt.
5. Wenn es Objekte gibt, die einen OnDraw Handler oder einen QueryHandler

haben, werden diese Handler jetzt ausgeführt, damit diese Objekte korrekt
dargestellt werden.

6. Wenn vorhanden wird der OnStartup Handler ausgeführt. Wenn Sie nicht
sicher sind, ob eine Aktion in den OnInit oder den OnStartup Handler
gehört, wählen Sie den OnStartup Handler.

7. Wenn vorhanden wird jetzt der "klassische Code" ausgeführt.

Nach diesen Schritten ist das Programm bereit für weitere Ereignisse.

OnStartup

Der OnStartup Handler ist der übliche Platz für den Initialisierungscode Ihres
Programms. Der oben dargestellte "klassische" Code würde in der (besseren)
objektorientierte Version so aussehen. Die erste Codezeile im Starthandler
verhindert, dass die Grafikausgabe nach einem Neustart von GEOS mit
laufendem BASIC-Programm erneut ausgeführt wird. Sie sollten immer im Blick
haben, was im OnStartup bzw. OnInit Handler passiert, wenn GEOS bei
laufendem Programm neu gestartet wird. Typische Fehler sind hier z.B. das
Initialisieren von Objekten mit vorgegebenen Werte - womit bereits von Nutzer
veränderte Werte überschrieben werden - oder das erneute Anwenden von
Koordinatentransformationen oder grafischen Ausgaben.

UI Code:
Application MyApp
Children = MyPrimary
OnStartup = StartHandler

END OBJECT

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 125

BASIC Code:
SystemAction StartHandler
IF flags AND AF_RESTORE THEN RETURN
CLS
Print : Print
Print "Hallo Welt"
Print "Willkommen bei R-BASIC!"
END Action

Wenn das R-BASIC Programm mit einem Dateityp verknüpft ist und durch Doppel-
klick auf eine verknüpfte Datei gestartet wird, dann enthält der Parameter
dataFile$ den vollständigen Pfad zu dieser Datei. Andernfalls enthält dataFile$
einen Leerstring. Details dazu sind im Abschnitt zur Arbeit mit Dokumenten (siehe
unten) beschrieben.
Im Parameter flags können eines oder mehrere der Flags AF_FOR_PRINT,
AF_RESTORE oder AF_DATA_FILE gesetzt sein.

OnInit

In einigen Fällen kann es nötig sein bereits BASIC Code auszuführen, wenn noch
kein Objekt auf dem Schirm ist. Typisch ist z.B. das Öffnen von Dateien und das
Einlesen von Daten, die für Objekte benötigt werden, die bereits beim Programm-
start sichtbar sind. Der OnInit Handler ist immer der allererste BASIC Handler, der
ausgeführt wird. Beispiel:

UI Code
Application MyApp
Children = MyPrimary
OnInit = InitHandler
OnExit = ExitHandler ’ Siehe Abschnitt Programmende

END OBJECT

BASIC Code
DIM f AS FILE ’ globale Variable

SYSTEMACTION InitHandler
DIM anz as word
 f = FileOpen "MyData.TXT"
 IF f = NullFile() THEN f = CreateNewDataFile
 anz = FindAnzahlDatenInFile(f)
 MyDynamicList.count = anz
END Action

Wir nehmen in diesem Beispiel an, dass die Routinen CreateNewDataFile und
FindAnzahlDatenInFile sowie die DynamicList MyDynamicList anderswo im Code
definiert sind.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 126

Hinweise:
• Die meisten Programme benötigen keinen OnInit Handler.
• Während der OnInit Handler ausgeführt wird sind noch keine Objekte auf

dem Schirm. Sie erscheinen erst wenn der OnInit Handler abgearbeitet ist.
Sehr umfangreiche (lange laufende) OnInit Handler verzögern deswegen den
"gefühlten" Programmstart

• Prinzipiell gibt es keine Einschränkungen bezüglich der in einem OnInit
Handler verwendbaren Befehle. Insbesondere ist es zulässig mit Objekten zu
interagieren, deren Instancevariablen zu lesen oder zu ändern.

• Der OnInit-Handler wird auch beim Neustart von GEOS bei laufendem
BASIC-Programm ausgeführt. Mit der Codezeile

IF flags AND AF_RESTORE THEN RETURN
können Sie verhindern, dass in diesem unerwünschter Initialierungscode
erneut ausgeführt wird.

• Vermeiden Sie die Verwendung von "klassischen" Interaktionsbefehlen wie
INPUT oder InKey$ im OnInit Handler. Das erzeugt nur Chaos.

• Wenn Sie nicht sicher sind, ob sie den OnInit oder den OnStartup Handler
verwenden sollen, wählen Sie zunächst den OnStartup Handler. Nur wenn
Sie mit dem Ergebnis nicht zufrieden sind verschieben Sie Teile des Codes in
den OnInit Handler.

Wenn das R-BASIC Programm mit einem Dateityp verknüpft ist und durch Doppel-
klick auf eine verknüpfte Datei gestartet wird, dann enthält der Parameter
dataFile$ den vollständigen Pfad zu dieser Datei. Andernfalls enthält dataFile$
einen Leerstring. Details dazu sind im Abschnitt zur Arbeit mit Dokumenten (siehe
unten) beschrieben.
Im Parameter flags können eines oder mehrere der Flags AF_FOR_PRINT,
AF_RESTORE oder AF_DATA_FILE gesetzt sein.

4.1.3.2 Programmende

Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnExit OnExit = <Handler> ––

Ein BASIC Programm kann durch den Menüeintrag "Beende ..." oder durch den
BASIC Befehl EXIT beendet werden. Auch im Falle eines Laufzeitfehlers wird das
Programm automatisch beendet. In allen diesen Fällen erledigt das Application
Objekt die folgenden Schritte:

1. Wenn vorhanden wird der OnExit Handler ausgeführt. Sie können hier z.B.
abfragen, ob geänderte Daten gespeichert werden sollen.

2. Die Objekte werden vom Schirm genommen, bleiben aber noch intakt.
3. Die Event-Warteschlage wird geleert. Events, die noch in der Warteschlange

stehen, werden nicht mehr ausgeführt, d.h. die dazugehörigen Handler
werden nicht mehr gerufen.

4. Die Objekte und internen Datenstrukturen werden aufgeräumt.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 127

Hinweise:
• Der OnExit Handler (wenn vorhanden) wird auch dann ausgeführt, wenn es

vorher einen Laufzeitfehler gegeben hat.
• Beim Herunterfahren von PC/GEOS die globalen BASIC Variablen nicht auto-

matisch gesichert. Sie sollten ihre Programme grundsätzlich so schreiben dass
dies nicht nötig ist - oder Sie müssen sich selbst darum kümmern.

OnExit

Der OnExit Handler wird automatisch ausgeführt, wenn das Programm
geschlossen wird. Er muss als SystemAction deklariert sein. Sie sollten im
OnExit Handler alle Ressourcen freigeben (z.B. Dateien schließen) die Sie im
OnInit oder im OnStartup Handler angefordert haben.

Beispiel (bezieht sich auf den Code des OnInit Handlers oben):
SYSTEMACTION ExitHandler
 FileClose f
 f = NullFile()
END Action

Im Parameter flags kann das Flag AF_SHUTDOWN gesetzt sein. In diesem Fall
darf man keine Messageboxen oder Dialoge aktivieren, sonst hängt das System.

Beispiel 2: Die SUB’s DoSaveData (Daten speichern) und DoCloseFile (Datei
Schließen) müssen irgendwo anders definiert sein.
SYSTEMACTION ExitHandler
 IF (flags AND AF_SHUTDOWN) = 0 THEN

IF QuestionBox ("Daten speichern?") = YES THEN DoSaveData
 End IF
 DoCloseFile
END Action

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 128

4.1.4 Arbeit mit Dokumenten

Im Handbuch "Spezielle Themen", Kapitel 15 finden Sie eine ausführliche
Beschreibung, wie man ein komplettes Dokument-Interface implementiert.

Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnConnection OnConnection = <Handler> nur schreiben

Sie können R-BASIC Programme durch einen entsprechenden Eintrag in der
GEOS.INI (filenameTokens) mit DOS Dateien bzw. durch Setzten des "Creator"
Attributs in GEOS-Dateien auch mit GEOS-Dateien verknüpfen. "Startet" der
Nutzer eine solche Datei z.B. durch Doppelklick im Geomanager so wird die Datei
im Parameter dataFile$ (vgl. Kapitel 4.1.1) je nach Situation an den OnInit bzw.
den OnStartup oder an den OnConnection Handler übergeben. Gemeinsam mit
dem OnStartup Handler (seltener mit dem OnInit Handler) können Sie mit dem
OnConnection Handler die Arbeit mit Dokumenten organisieren.

OnConnection

Der OnConnection Handler wird gerufen, wenn ein anderes Programm (z.B. der
Geomanager) einer Verbindung (Connection) zum BASIC Programm herstellt und
der OnInit bzw. OnStartup Handler nicht in Frage kommt, da das BASIC
Programm bereits läuft. Üblicher Weise wird eine solche Connection hergestellt,
wenn das BASIC Programm mit einem Dateityp verknüpft ist und der Nutzer eine
so verknüpfte Datei im Geomanager durch Doppelklick startet.

Dabei gelten die folgenden Regeln:
• Wenn ein R-BASIC Programm durch Doppelklick auf eine verknüpfte Datei

gestartet wird, so wird der Pfad zu dieser Datei sowohl dem OnInit als auch
dem OnStartup Handler im Parameter dataFile$ übergeben. OnConnection
wird beim Öffnen des Programms nicht gerufen!

• Doppelklickt der Nutzer eine verknüpfte Datei jedoch während das R-BASIC
Programm läuft wird der OnConnection Handler gerufen, wobei auch hier der
Parameter dataFile$ den vollständigen Pfad zur übergebenen Datei (z.B.
"D:\GEOS\DOCUMENT\DEMO.RBF") enthält.

• In beiden Fällen ist im Parameter flags das Flag AF_DATA_FILE gesetzt, das
Flag AF_FOR_PRINT kann zusätzlich gesetzt sein.

Achtung! Es ist denkbar, wenn auch sehr unwahrscheinlich, dass andere
Programme (außer dem Geomanager) eine Verbindung zu Ihrem BASIC
Programm herstellen. In diesem Fall kann ebenfalls eine Datendatei übergeben
werden, häufiger ist jedoch, dass in diesem Fall keine Datei übergeben wird.
Prüfen Sie in ihrem OnConnection Handler also immer das Bit AF_DATA_FILE
(bzw. die Länge von dataFile$) ab!

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 129

Beispiel

Nehmen wir an, Sie möchten einen Viewer für R-BASIC Blockgrafik Fontdateien
(RBF-Dateien) schreiben. Der Viewer soll beim Doppelklick auf eine RBF-Datei
gestartet werden bzw., wenn er bereits läuft, die angeklickte Datei anzeigen. Dazu
nehmen wir folgendes als gegeben an:

• Es existiert eine globale Dateivariable f. Diese referenziert die offene Fontdatei.
• Die selbst geschriebene Routine DisplayFontData zeigt die gewünschten

Inhalte an.

DECL SUB DisplayFontData(fh as FILE)

• Der Geomanager zeigt RBF-Dateien mit dem Token "Font",5 an.
• Ihr Viewer hat das Token "RbfV",16600.

In der GEOS.INI muss sich die folgende Verknüpfung befinden:
[fileManager]
filenameTokens = {
 *.RBF="Font",5,"RbfV",16600
....

}

Ausschnitt aus dem UI Code:
Application RBFViewerApplication
OnStartup = ViewerStartupHandler
OnConnection = ViewerNewFileHandler
OnExit = ViewerExitHandler
AppToken = "RbfV",16600
DocToken = "Font",5
....

End OBJECT

Der passende BASIC Code dazu:
SYSTEMACTION ViewerStartupHandler
! Prüfen ob eine Datei übergeben wurde
IF Len(dataFile$) THEN
f = FileOpen (dataFile$, "r") ! Nur Lesen reicht.
DisplayFontData (f)
End IF

! Alternativ könnte man auch AF_DATA_FILE prüfen
! IF flags AND AF_DATA_FILE THEN ...

END Action

SYSTEMACTION ViewerNewFileHandler
! Prüfen ob überhaupt eine Datei übergeben wurde
IF (flags AND AF_DATA_FILE) = 0 THEN return
! eventuell offene Datei schließen
IF f <> NullFile() THEN FileClose(f)
! Neue Datei anzeigen
f = FileOpen (dataFile$, "r")
DisplayFontData(f)

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 130

END Action

SYSTEMACTION ViewerExitHandler
IF f <> NullFile() THEN FileClose(f)

END Action

Bei Bedarf können Sie noch ein Dateimenü (Buttons "Öffnen" und "Schließen")
hinzufügen.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 131

4.1.5 Überwachung der Zwischenablage

OnClpChange

Um in R-BASIC z.B. ein "Bearbeiten" Menü zu implementieren müssen Sie
wissen, wenn jemand etwas ins Clipboard kopiert und was es ist. Dann können
Sie z.B. einen "Einfügen" Schalter enablen oder disablen. Für dieses Zweck
verfügt das Application Objekt über einen speziellen Actionhandler, der immer
dann aufgerufen wird, wenn sich im Clipboard etwas tut. Der ActionHandler muss
als "SystemAction" implementiert sein.

Im UI Code:
Application DemoApplication
 Children = DemoPrimary
 OnClpChange = ClpChangeHandler
END Object

’ folgende Objekte sollen existieren:
BitmapContent DemoBitmap
Button PasteButton

Im BASIC Code:
’
’ Der Handler enabled oder disabled den Einfügen Button
’
SYSTEMACTION ClpChangeHandler
DIM ok
ok = DemoBitmap.ClpTestPaste
IF ok THEN
PasteButton.enabled = TRUE
ELSE
PasteButton.enabled = FALSE
END IF

END Action

Der OnClpChange Handler wird automatisch immer dann aufgerufen, wenn sich
die Daten im Clipboard ändern. Die übergebenen Parameter sind hier ohne
Bedeutung und sollten ignoriert werden. Details zur Arbeit mit dem Clipboard und
dem OnClpChange Handler erfahren Sie im Kapitel "Arbeit mit der Zwischen-
ablage" und insbesondere im Abschnitt "Das Clipboard überwachen"

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 132

4.1.6 Der Busy-Status

Gelegentlich kommt es vor, dass Ihr Programm "beschäftigt" ist und nicht sofort
auf weitere Usereingaben reagieren kann. Der übliche Weg, dies dem User
deutlich machen ist, den Mauszeiger zu einer "Sanduhr" werden zu lassen. Für
diesen Zweck gibt es den "Busy" (= beschäftigt) Status. Je nachdem, ob sie
während dessen auf die Usereingaben reagieren können oder wollen gibt es
verschiede Wege, den Busy-Status zu aktivieren.

Methoden:
Methode Aufgabe
MarkBusy Busy-Status aktivieren
MarkNotBusy Busy-Status verlassen
HoldUpInput Usereingaben zwischenspeichern
ResumeInput Zwischengespeicherte Usereingaben ausführen
IgnoreInput Alle Usereingaben ignorieren
AcceptInput Usereingaben wieder akzeptieren

Syntax BASIC-Code: <obj>.MarkBusy
<obj>.MarkNotBusy

Selten genutzte Methoden:
<obj>.HoldUpInput
<obj>.ResumeInput

<obj>.IgnoreInput
<obj>.AcceptInput

Wichtig! Alle hier aufgeführten Methoden sind kumulativ, das heißt sie können
mehrfach hintereinander ausgeführt werden und z.B. zu jedem MarkBusy wird ein
eigenes MarkNotBusy benötigt.

DemoAppliacation.MarkBusy ’ jetzt busy
DemoAppliacation.MarkBusy ’ 2x busy
DemoAppliacation.MarkNotBusy ’ immer noch busy
DemoAppliacation.MarkNotBusy ’ jetzt nicht mehr

MarkBusy, MarkNotBusy

Der Aufruf von MarkBusy lässt den Mauszeiger zu einer Sanduhr werden, um
anzuzeigen, dass das Programm beschäftigt ist. Ansonsten passiert nichts, der
Nutzer kann weiterhin Objekte anklicken und z.B. Texte eingeben.
MarkNotBusy nimmt ein MarkBusy zurück.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Application - 133

HoldUpInput, ResumeInput

HoldUpInput weist die UI an, Usereingaben nicht sofort an das Programm
weiterzuleiten, sondern zwischenzuspeichern. Dabei wird der Mauszeiger nicht
zur Sanduhr. Üblicher Weise wird deshalb HoldUpInput gemeinsam mit MarkBusy
verwendet. ResumeInput weist die UI an, die zwischengespeicherten
Usereingaben an das Programm weiterzuleiten, so dass sie behandelt werden
können.
Verwenden Sie die beiden Methoden nur, wenn Sie keine andere Möglichkeit
sehen, da der Nutzer schnell den Eindruck bekommen kann, das Ihr Programm
"hängt".

IgnoreInput, AcceptInput

IgnoreInput weist die UI an, alle folgenden Eingaben zu blockieren. AcceptInput
hebt diesen Zustand wieder auf. Alle zwischen IgnoreInput und AcceptInput
erfolgten Eingaben (z.B. Klicks auf einen Button) sind verloren. Verwenden Sie
diese Befehle nur als allerletzten Ausweg!

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Primary - 134

4.2 Primary

Objekte der Klasse Primary sind die "Hauptfenster"
des Programms. Primaries haben links oben ein
System-Menü, rechts oben die Schalter für
"Minimieren" und "Maximieren" sowie bei Bedarf
einen "Hilfe" Schalter (Fragezeichen).
Im Allgemeinen hat jedes BASIC Programm genau ein Primary-Objekt.

Focus und Target

Das Primary-Objekt ist ein Knoten in der Focus- und Target-Hierarchie. Es ist
möglich zu überwachen, ob ein Primary-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas für
erfahrene Programmierer und nur in wenigen Fällen notwendig. Eine Ausnahme
bildet die Implementation von speziellen Menüs wie dem "Bearbeiten" Menü.
Diesem Thema ist deswegen ein eigenes Kapitel ("Spezielle Themen", Kapitel 13)
gewidmet.

Abstammung:
GenericClass Display Primary

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
BreakButton BreakButton = TRUE ––
FileMenuChildren FileMenuChildren = <objektListe> ––
Caption2$ –– lesen, schreiben
PrimaryFullScreen PrimaryFullScreen ––
NoFileMenu NoFileMenu ––
NoExpressMenu NoExpressMenu ––
PrimaryNoHelpButton PrimaryNoHelpButton ––

Spezielle Action-Handler: keine

BreakButton

Oftmals, besonders während der Fehlersuche, ist es erwünscht, einen laufenden
Action-Handler abbrechen zu können, ohne gleich GEOS abzuwürgen. Das kann
z.B. bei einer versehentlichen Endlosschleife der Fall sein, das Programm "hängt".
Diese BREAK (Unterbrechung) genannte Funktion ist typisch für BASIC-
Programme, bei "richtigen" GEOS-Programmen aber nicht vorhanden.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Primary - 135

Das BreakButton-Statement fügt einen Break-Schalter zum Dateimenü des
Primaries hinzu und aktiviert gleichzeitig die Tastenkombination Strg-B zum
Auslösen eines BREAK.

Syntax UI-Code: BreakButton = TRUE

FileMenuChildren

Jedes Primary hat automatisch ein Datei-Menü. Dort ist per Default nur der
"Beenden" Button enthalten. Häufig möchte man dort aber weitere Einträge
vorsehen, z.B. zur Arbeit mit Dateien oder den Copyright-Dialog ("Über ... "). Das
FileMenuChildren-Statement fügt die angegeben Objekte als Children in das
Dateimenü ein.

Syntax UI-Code FileMenuChildren = <ObjektListe>

Beispiel:
Die in der Liste angegeben Objekt müssen natürlich extra vereinbart werden:
Primary MainPrimary
Children = ...
FileMenuChildren = AboutBox, SaveFileButton, LoadFileButton

END OBJECT

Die Anzahl der Objekte in einer einzigen FileMenuChildren-Liste ist auf 25
begrenzt. Wenn Sie mehr Children spezifizieren wollen können Sie, wie bei der
Children-Anweisung, siehe Kapitel 2.1.2, mehrere FileMenuChildren-Anweisungen
für ein Objekt verwenden.

Caption2$

Die Instancevariable Caption2$ ergänzt die Titelzeile des Primaryobjekts um einen
weiteren Text. Üblicher Weise wird Caption2$ verwendet um den Namen des
aktuellen Dokuments in der Titelzeile des Programms anzuzeigen. Caption2$
kann nicht im UI-Code verwendet werden.

Syntax Lesen: <stringVar> = <obj> . Caption2$
Schreiben: <obj>.Caption2$ = "text"

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Primary - 136

Anpassen des Primary-Objekts

Das Primary-Objekt stammt von der GenericClass ab und erbt deswegen alle
Fähigkeiten und Eigenschaften dieser Klasse. Das trifft insbesondere für die
Geometrie-Fähigkeiten zu, wie z.B.

orientChildren
justifyChildren
MinimizeChildSpacing
DivideHeightEqually
DivideWidthEqually
childSpacing

Von besonderer Bedeutung für Primaries sind die Windows-Hints wie z.B.
SizeWindowAsDesired
NoTitleBar
NoSysMenu

Von der Klasse Display erbt das Primary die folgenden Instancevariablen. Eine
ausführliche Beschreibung finden Sie im Kapitel 4.18.2 bei der Beschreibung der
Display Klasse. Die Instancevariablen userDismissable, OnClose sowie die
Methode Close werden nicht vererbt, das Primary Objekt implementiert hier sein
eigenes Handling.

Variable Syntax im UI-Code Im BASIC-Code
minimizedState minimizedState = TRUE | FALSE lesen, schreiben
MinimizedOnStartup MinimizedOnStartup ––
NotMinimizable NotMinimizable ––
maximizedState maximizedState = TRUE | FALSE lesen, schreiben
MaximizedOnStartup MaximizedOnStartup ––
NotMaximizable NotMaximizable ––
NotResizable NotResizable ––
NotRestorable NotRestorable ––

Zusätzlich besitzen Primaries einige eigene Geometriefähigkeiten.

PrimaryFullScreen

Die Anweisung bewirkt, dass das Primary große Teile des Bildschirms einnimmt,
so wie die "großen" Applikationen "GeoWrite" und "GeoDraw". Unten bleibt ein
Rand für iconisierte Applikationen.

Syntax UI-Code: PrimaryFullScreen

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Primary - 137

Beispiel:
Primary MyPrimary
Children =
PrimaryFullScreen

END Object

NoFileMenu

Die Anweisung verhindert, dass das Primary ein Datei-Menü hat. Es ist aber
unwirksam, wenn es gleichzeitig mit FileMenuChildren oder BreakButton
verwendet wird, da diese ein Dateimenü zwingend erfordern.

Syntax UI-Code: NoFileMenu

NoExpressMenu

Die Anweisung verhindert, dass sich das Express-Menü in der Titelzeile des
Primaries ansiedelt.

Syntax UI-Code: NoExpressMenu

Beispiel:
Primary Primary2
Children =
NoExpressMenu
NoFileMenu

END Object

PrimaryNoHelpButton

Syntax UI-Code: PrimaryNoHelpButton

Wenn Ihr Programm eine Hilfedatei hat, ist es sinnvoll dem Primary den
HelpContext "TOC" (Table Of Contents = Inhaltsverzeichnis) zu geben, damit das
Hilfesystem das Inhaltsverzeichnis findet.

Primary MyPrimary
Children =
helpContext$ ="TOC"

END Object

Diese Anweisung erzeugt jedoch gleichzeitig den Hilfebutton in der Titelzeile des
Primaryobjekts (i.a ein blaues Fragezeichen). Wenn dies im Ausnahmefall stört
können Sie es mit dem Hint PrimaryNoHelpButton unterdrücken.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Primary - 138

Beachten Sie, dass der Name der Hilfedatei (Eintrag helpFile$) immer im
Applicationobjekt erfolgen sollte, damit der vom Hilfesystem im Hilfefenster
bereitgestellte Button "Inhalt" funktioniert.

Primary MyPrimary
Children =
helpContext$ ="TOC"
PrimaryNoHelpButton

END Object

Besonderheiten des Primary Objekts

• Wenn Sie einem Primary keine Caption$ geben, so wird automatisch der
Name des Programms genommen.

• Primary-Objekte sollten ständig im Objekttree eingebunden sein, Primaries, die
kein Parent-Objekt haben, könnten die Systemstabilität beeinflussen.
Verwenden Sie die Anweisung "myPrimary.visible = FALSE" bzw. im UI-Code
"visible = FALSE", wenn sie ein Primary-Objekt verstecken wollen.

• Es ist möglich, wenn auch selten verwendet, dass ein Programm mehr als ein
Primary-Objekt hat. Achtung: Sie sollten niemals mehrere BreakButton
Statements verwenden, auch wenn Sie mehr als ein Primary haben.

• Primaries sind Window-Objekte. Es gibt eine Menge Window-orientierte Hints
und Methoden, die auf GenericClass Level definiert sind und mit Primaries
zusammenarbeiten. Beispiele sind SizeWindowAsDesired, NoSysMenu,
ExtendWindowToBottomRight, CenterWindow und ResizeWin.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Button - 139

4.3 Button

Ein Button ist eine Schaltfläche, die mit der
Maus angeklickt oder mit der Tastatur aktiviert
werden kann.
Buttons werden für Menü-Einträge oder als alleinstehende Schalter verwendet.

Abstammung:
GenericClass Button

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
ActionHandler ActionHandler = <Handler> nur schreiben

ActionHandler = BringUpHelp ––
actionData actionData = numWert lesen, schreiben
interactionCommand interactionCommand = numWert lesen, schreiben
BringsUpWindow BringsUpWindow ––
IsDestructive IsDestructive ––
unhandledEvents –– nur lesen

Methoden:
Methode Aufgabe
Activate Auslösen des Buttons, als ob darauf geklickt wurde

Action-Handler-Typen:
Handler-Typ Parameter
ButtonAction (sender as object, actionData as integer)

ActionHandler

Die Instance-Variable ActionHandler enthält den Namen des aufzurufenden
Actionhandlers. Dieser muss als ButtonAction vereinbart sein. Der Wert wird
üblicherweise im UI-Code gesetzt.
Bei Bedarf kann er auch zur Laufzeit (im BASIC-Code) gesetzt, aber nicht gelesen
werden.

Syntax UI- Code: ActionHandler = <Handler>
Schreiben: <obj>.ActionHandler = <Handler>

Beispiel: siehe unten

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Button - 140

Syntax UI-Code: ActionHandler = BringUpHelp

Diese spezielle Syntax weist dem Button den von R-BASIC vordefinierten "Öffne
die Hilfe" Handler zu. Wenn der Nutzer auf den Button klickt durchsucht der
Handler den generic Tree nach einem Help Context und dem Namen einer
Hilfedatei. Dazu durchsucht er zunächst den Button und dann der Reihe nach sein
Parent, dessen Parent usw. Abschließend öffnet er die entsprechende Seite der
Hilfe. Sehr oft hat daher der Button selbst einen Help Context gesetzt während die
Hilfedatei vom Application Objekt bezogen wird. Dieses Verhalten kann man
nutzen um ein Hilfemenü aufzubauen, dass spezielle Hilfeseiten direkt über
Menüeinträge anzuspringen.
Button HelpButton
Caption$="Hilfe zu irgend etwas"
ActionHandler = BringUpHelp
helpContext$ ="Help1"
End Object

Natürlich kann man jedem Button auch eine eigene Hilfedatei zuordnen
(helpFile$=..), wenn man das will.

actionData

Die Instance-Variable actionData enthält einen Integer-Wert, der bei Bedarf zur
Identifizierung des Buttons oder sonstigen Zwecken herangezogen werden kann.
Der Standard-Fall ist jedoch, dass der actionData-Wert nicht benutzt wird.

Syntax UI- Code: actionData = numWert
Lesen: <numVar> = <obj> . actionData
Schreiben: <obj>.actionData = numWert

ButtonAction

Action-Handler für Buttons müssen als ButtonAction definiert werden.
Parameter: sender: Das Button-Objekt, das den Handler aktiviert hat

actionData: actionData-Wert des Buttons
Null, falls der Wert nicht gesetzt ist.

Beispiel 1: einfacher Button

UI-Code:
Button MyButton
Caption$ = "OK", 0
ActionHandler = OKPressed

END Object

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Button - 141

BASIC-Code:
ButtonAction OKPressed
< .. diverser Code ..>
MsgBox "Operation erfolgreich."

END ACTION

Beispiel 2: Verwendung des actionData-Wertes

UI-Code:
Button TestButton
Caption$ = "Press mich"
actionData = 255
ActionHandler = Handler1

END OBJECT

BASIC-Code:
ButtonAction Handler1
DIM x, y as word
x = actionData/2
y = actionData + 12
MsgBox "Gefundene Werte:"+ Str$(actionData)+ Str$(x) + Str$(y)

END ACTION

interactionCommand

Sehr häufig müssen Buttons in einer Dialogbox standardisierte Aktionen auslösen,
wie z.B. das Schließen des Dialogs. Oder es ist nötig, dass eine Dialogbox einen
Wert zurückgibt, z.B. ob der Nutzer auf "Ja", "Nein" oder "Abbrechen" geklickt hat.
Für diesen Zweck kann man einem Button einen "Interactions-Kommando" - Wert
(einen WORD-Wert) zuordnen, so dass das GEOS-System automatisch weiß, was
es zu tun hat.

Syntax UI- Code: interactionCommand = numWert
Lesen: <numVar> = <obj> . interactionCommand
Schreiben: <obj>.interactionCommand = numWert

Da die Verwendung von interactionCommand-Werten nur im Zusammenhang
mit Dialogboxen sinnvoll ist, werden sie dort ausführlich besprochen. Zur
Vereinfachung finden Sie unten trotzdem eine Tabelle der verfügbaren Interaction-
Command-Werte. Beachten Sie, dass ein Button nur entweder einen action-
Handler oder ein interactionCommand haben kann. Die Zuweisung des Einen im
BASIC-Code löscht jeweils das Andere.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Button - 142

interactionCommand Wert Bedeutung
IC_CLOSE 1 Dialog schließen
IC_APPLY 3 Änderungen anwenden
IC_RESET 4 Dialog zurücksetzen
IC_OK 5 Verwendet für "OK"
IC_YES 6 Verwendet für "Ja"
IC_NO 7 Verwendet für "Nein"
IC_STOP 8 Verwendet für "Stop" oder "Abbrechen"
IC_HELP 10 Button ersetzt den "Hilfe" Button

BringsUpWindow

Dieser Hint platziert eine Ellipse "..." hinter dem Button-Text um anzuzeigen, dass
der Button eine Dialogbox oder ähnliches auf den Schirm bringt. Damit sieht ein
Menüeintrag genau so aus, als sei die Dialogbox das direkte Child des Menüs.

Syntax UI-Code: BringsUpWindow

IsDestructive

Ähnlich wie der Hint CannotBeDefault für Groups soll IsDestructive verhindern,
dass der Nutzer den Button als "Default-Aktion" per Enter- oder Leertaste aktiviert.
Verwenden Sie diesen Hint, wenn der Button eine potentiell gefährliche
(destruktive) Aktion auslöst.

Syntax UI-Code: IsDestructive

unhandledEvents

Enthält, wie oft der Button "aktiviert" wurde (z.B. durch Anklicken mit der Maus),
ohne dass der zugehörige ActionHandler aufgerufen werden konnte. Dass
passiert i.A. wenn noch ein anderer ActionHandler läuft, während der Button
aktiviert wurde. Da alle ActionHandler nacheinander (im gleichen Thread)
abgearbeitet werden sie in der Reihenfolge abgearbeitet in der sie auftreten, ohne
sich gegenseitig zu unterbrechen.
Achtung! Die Instancevariable unhandledEvents enthält immer den Wert Null,
wenn dem Button kein ActionHandler zugewiesen wurde.
Sie können diese Instancevariable benutzen, wenn Sie einen lang andauernden
Prozess vorzeitig abbrechen wollen, aber dafür keinen Progress-Dialog (siehe
Kapitel 4.6.6.4) einsetzen möchten. Bedenken Sie aber, dass die entsprechenden
Ereignisse bereits in der Ereigniswarteschlage (Event queue) abgelegt sind und
daher auf jeden Fall später noch abgearbeitet werden.

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Button - 143

Syntax BASIC-Code: <numVar> =<obj>.unhandledEvents

Activate

Diese Methode bewirkt, dass der Button aktiviert wird, so als ob der User direkt
darauf geklickt hat. Der Action-Handler oder das InteractionCommand des Buttons
wird ausgeführt.

Syntax BASIC-Code: <obj>.Activate

Beispiel:
IF x > 0 THEN MyButton.Activate

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Group - 144

4.4 Group

Groups (Gruppen) haben einen Hauptzweck: Sie dienen dazu andere Objekte
anzuordnen. Durch die geschickte Verwendung von Groups geben Sie als
Programmierer ihrem Programm das Aussehen, das Sie wünschen.

Diese Anwendung, die Sie vielleicht aus
dem Kapitel über das Geometriemana-
gement kennen, besteht aus einer
Group (rot, oben) und einer Reply-Bar
(unten, ebenfalls ein Group-Objekt), die
vertikal (untereinander) angeordnet sind.
Die rot markierte Gruppe besteht aus
einem Text-Objekt und einer weiteren
Group, hier blau markiert.
Beide Objekte sind horizontal angeordnet. Die rechte (blaue) Group enthält
letztlich die Action-Buttons, die untereinander angeordnet sind.

Abstammung
GenericClass Group

Spezielle Instance-Variablen:
Hint Syntax im UI-Code Im BASIC-Code
CannotBeDefault CannotBeDefault ––

CannotBeDefault

Sehr häufig, z.B. in Dialog-Boxen, gibt es einen Button oder ein anderes Objekt,
dass über den Standard-Weg "Leertaste" oder "Entertaste" aktiviert wird. Viele
Nutzer neigen dazu, beim Erscheinen einer Dialogbox erst einmal auf "Enter" zu
drücken und damit diesen "Default"-Button zu aktivieren. Der Hint
CannotBeDefault verhindert, dass die Children der Group über diesen Weg "per
Default" aktiviert werden können. Sie können Groups mit diesem Hint versehen,
wenn die darin enthaltenen Objekte (z.B. Buttons) potentiell gefährliche Aktionen
auslösen können.

Syntax UI-Code: CannotBeDefault

Groups stammen von der GenericClass ab und erben damit alle Eigenschaften
und Fähigkeiten dieser Klasse. Besonders interessant sind in diesem
Zusammenhang die Fähigkeiten zum Geometriemanagement, die im Kapitel 3.3
ausführlich besprochen und von Group-Objekten sehr häufig verwendet werden.
Der Einfachheit halber sind die aus der Sicht einer Group wichtigsten - aber nicht
alle - Hints zum Geometriemanagement hier noch einmal aufgeführt:

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Group - 145

Anordnung der Children

Hint Syntax im UI-Code Im BASIC-Code
orientChildren orientChildren = numWert lesen, schreiben
justifyChildren justifyChildren = numWert lesen, schreiben
childSpacing childSpacing = numWert lesen, schreiben
MinimzeChildSpacing MinimzeChildSpacing –––
IncludeEndsInChildSpacing IncludeEndsInChildSpacing –––
wrapAfterChild wrapAfterChild = numWert lesen, schreiben

Objektgröße

Hint Syntax im UI-Code Im BASIC-Code
DivideHeightEqually DivideHeightEqually –––
DivideWidthEqually DivideWidthEqually –––
ExpandWidth ExpandWidth ––
ExpandHeight ExpandHeight ––
initialSize initialSize = x, y [, count] lesen, schreiben
minimumSize minimumSize = x, y [, count] lesen, schreiben
maximumSize maximumSize = x, y [, count] lesen, schreiben
fixedSize fixedSize = x, y [, count] lesen, schreiben

Spezielle Attribute

Hint Syntax im UI-Code Im BASIC-Code
DrawInBox DrawInBox ––
MakeToolbox MakeToolbox ––
MakeReplyBar MakeReplyBar ––
NoSeparatorLine NoSeparatorLine ––

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Menu - 146

4.5 Menu

Menüs sind der übliche Weg, auf dem der Nutzer unterschiedliche Programm-
funktionen anwählen kann.

Abstammung:
GenericClass Group Menu

Spezielle Instance-Variablen: keine
Die Menü-Einträge sind die Children eines
Menüs. In vielen Fällen sind dies Buttons.
Verschachtelte Menüs (Sub-Menüs, siehe
Bild) erhalten Sie, wenn sie andere Menüs als
Menü-Einträge verwenden. Verwenden Sie
Dialoge als Menü-Einträge erzeugt das
System selbständig einen Button im Menü,
der den Dialog öffnet. Sie dürfen jedoch auch
beliebige andere Objekte, etwa Groups oder
Listen-Objekte als Children von Menüs
verwenden.

Groups erzeugen automatisch einen Trennstrich, um sich vom Rest des Menüs
abzuheben. Wünschen Sie diesen nicht, so verwenden Sie den Hint
NoSeparatorLine für die Group.

Beispiel: UI-Code-Fragment für das im Bild gezeigte Menü. Natürlich müssen alle
Buttons einen Action-Handler haben, auch wenn sie hier nicht aufgeführt sind. Die
Trennung von UI-Anweisungen mit einem Doppelpunkt ist, genau wie im BASIC-
Code, erlaubt.

Menu MainMenu
Caption$ = "Main"
Children = ReadButton, WriteButton, SubMenu, DemoDialog
END Object

Menu Submenu
Caption$ = "More"
Children = LoadButton, SaveButton
END Object

Button ReadButton
Caption$ = "Read"
ActionHandler = ReadHandler
END Object

Button WriteButton : Caption$ = "Write" : END Object
Button LoadButton : Caption$ = "Load" : END Object
Button SaveButton : Caption$ = "Save" : END Object

Dialog DemoDialog
Caption$ = "Demo Dialog"
dialogType = DT_NOTIFICATION ’ siehe nächstes Kapitel
END Object

R-BASIC - Objekt-Handbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Menu - 147

(Leerseite)

