

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 4
Dialog, Number

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4.6 Dialog .. 152
4.6.1 Überblick ... 152
4.6.2 Allgemeine Eigenschaften .. 154
4.6.3 Öffnen und Schließen von Dialogboxen 156
4.6.4 Behandlung von Messages .. 159

4.6.4.1 Messages von UI-Objekten .. 159
4.6.4.2 InteractionCommand .. 159
4.6.4.3 Behandlung von Dialog-Messages 162

4.6.5 Frei definierte Dialoge .. 165
4.6.6 Standard-Dialoge .. 167

4.6.6.1 Command-Dialoge .. 168
4.6.6.2 Notification-Dialoge ... 168
4.6.6.3 Question-Dialoge .. 169
4.6.6.4 Progress-Dialoge .. 169
4.6.6.5 Dialoge im Delayed Mode ... 172
4.6.6.6 Eigene Buttons in Standard-Dialogen 174

4.6.7 Arbeit mit Blocking-Dialogen ... 176

4.7 Number .. 180
4.7.1 Grundlegende Eigenschaften ... 181
4.7.2 Display-Format ... 185
4.7.3 Angepasstes Aussehen und Sliders ... 188
4.7.4 Weitere Hinweise zur Arbeit mit Number-Objekten 191
4.7.5 Number-Objekte im Delayed Mode .. 193

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 152

4.6 Dialog

4.6.1 Überblick

Dialoge sind unabhängige Fenster, mit denen der Nutzer interagieren kann. Sie
werden für die unterschiedlichsten Aufgaben eingesetzt (siehe Bilder). Deshalb
verfügt das Dialog-Objekt über sehr viele Fähigkeiten, die in den folgenden
Abschnitten beschrieben werden.

Focus und Target

Dialog-Objekte sind ein Knoten in der Focus- und Target-Hierarchie. Es ist
möglich zu überwachen, ob ein Dialog-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas für
erfahrene Programmierer und nur in wenigen Fällen notwendig. Eine Ausnahme
bildet die Implementation von speziellen Menüs wie dem "Bearbeiten" Menü.
Diesem Thema ist deswegen ein eigenes Kapitel ("Spezielle Themen", Kapitel 13)
gewidmet.

Abstammung
GenericClass Group Dialog

Die Möglichkeiten, einen Dialog einzusetzen sind sehr vielfältig. In diesem
Zusammenhang sollten Sie die folgenden Begriffe kennen:

Frei definierte Dialoge
Als "frei definierte" Dialoge werden in diesem Handbuch Dialogboxen
bezeichnet, deren Objekte Sie vollständig selbst definieren. Frei definierte
Dialoge sind für Einsteiger gut überschaubar und werden im Kapitel 4.6.5
besprochen.

Standard-Dialoge
Standard-Dialoge enthalten bereits einige vordefinierte Objekte, z.B. Buttons.
Dadurch wird dem Programmierer viel Arbeit abgenommen, aber er muss sich
im Gegenzug mit den Standard-Dialogtypen und der Thematik der
interactionCommand-Werte auseinandersetzen.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 153

"Blocking" Dialoge
Blocking-Dialoge zeichnen sich dadurch aus, dass sie das laufende Programm
warten lassen (blockieren), bis der Nutzer mit der Arbeit mit dem Dialog fertig
ist. Sie werden für wichtige Informationen (z.B. Fehlermeldungen) oder
Nachfragen benutzt. Blocking-Dialoge können sowohl frei definierte als auch
Standard-Dialoge sein.

Reply-Bar
Eine Reply-Bar (so viel wie Reaktionsleiste) ist eine Group am unteren Rand
der Dialogbox, in der sich meist die Reaktions-Buttons eines Dialogs befinden.
Die Dialoge im Bild oben haben jeweils eine Reply-Bar mit drei bzw. einem
Button. Reply-Bars ordnen ihre Children auf spezielle Weise an. Standard-
Dialoge haben automatisch immer eine Reply-Bar, Sie können mit dem Hint
MakeReplyBar aber auch eine eigene Group zu einer Reply-Bar machen.

Im Folgenden finden Sie eine vollständige Liste der Instance-Variablen, Methoden,
Handler-Typen und Routinen eines Dialog-Objekts. Eine Beschreibung dieser
finden Sie in den folgenden Kapiteln.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
MakeResizable MakeResizable ––
NoFocus NoFocus ––
attrs attrs = numWert lesen, schreiben
modal modal = numWert lesen, schreiben
isOpen –– nur lesen
dialogType dialogType = numWert lesen, schreiben
interactionCommand –– nur lesen
OnOpen OnOpen = <Handler> nur schreiben
OnClose OnClose = <Handler> nur schreiben
OnCommand OnCommand = <Handler> nur schreiben

Methoden:
Methode Aufgabe
Open Dialog auf den Schirm bringen (öffnen)
OpenNoDisturb Dialog ohne Übernahme des Focus öffnen
Close Dialog schließen

Action-Handler-Typen:
Handler-Typ Parameter
DialogAction (sender as object, command as integer)

Spezielle Routinen: OpenBlockingDialog(dialogObj as object)

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 154

4.6.2 Allgemeine Eigenschaften

Variable Syntax im UI-Code Im BASIC-Code
MakeResizable MakeResizable ––
NoFocus NoFocus ––
attrs attrs = numWert lesen, schreiben
modal modal = numWert lesen, schreiben
isOpen –– nur lesen

MakeResizable

Normalerweise sind Dialogboxen nicht größenveränderlich. Der Hint
MakeResizable bewirkt, dass man die Größe des Dialogs auf dem Bildschirm
verändern kann.

Syntax UI-Code: MakeResizable

NoFocus

Normalerweise übernimmt ein Dialog, wenn er geöffnet wird, oder der Nutzer mit
der Maus ein Objekt im Dialog anklickt, automatisch den Focus, d.h. alle
folgenden Tastatureingaben gehen an den Dialog. In Situationen, in denen dieses
Verhalten störend ist, können Sie mit dem Hint NoFocus verhindern, dass der
Dialog Tastatureingaben entgegennimmt. Wenn der Nutzer z.B. gerade einen Text
eingibt, kann ein solcher Dialog mit der Maus bedient werden, ohne dass der Text
den Focus verliert.

Syntax UI-Code: NoFocus

attrs

Die Instance-Variable attrs speichert Attribute (spezielle Eigenschaften) des
Dialogs. Dabei stehen die in der Tabelle aufgeführten Werte zur Verfügung. Sie
werden weiter unten, an passender Stelle, ausführlich beschrieben.

Konstante Wert Bedeutung
 0 Keine Besonderheiten

DA_HIDDEN_UNTIL_OPENED 1 Öffnen nur durch das Programm,
nicht durch den Nutzer direkt

DA_BLOCKING 2 Programmausführung wird ange-
halten, bis Dialog beendet ist

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 155

Syntax UI-Code: attrs = numWert
Lesen: <numVar> = <obj>.attrs
Schreiben: <obj>.attrs = numWert

numWert ist eine der DA_-Konstanten oder Null

modal

Konstante Wert Bedeutung
NON_MODAL 0 Nicht-modaler Dialog
APP_MODAL 1 Application-modaler Dialog
SYS_MODAL 2 System-modaler Dialog

Der Begriff "Modalität", beschreibt, inwieweit Eingaben (Tastatur und Maus)
exklusiv an die Dialogbox gehen sollen. Bei einem nicht-modalen Dialog
(NON_MODAL) können Sie beliebig zwischen der Dialogbox und dem Rest der
Applikation oder des Systems hin- und her wechseln. Ein Beispiel wäre der Dialog
"Linienattribute" aus GeoDraw. Ein Application-modaler Dialog (APP_MODAL)
blockiert den Rest der Applikation, andere Anwendungen lasen sich weiter
bedienen. Beispielsweise ist der "Speichern unter" Dialog von GeoWrite
Application-modal. System-modale Dialoge (SYS_MODAL) blockieren die
Bedienung des gesamten restlichen GEOS-Systems. Ein Beispiel ist die in
bestimmten Situationen von GEOS erzeugte Nachfrage, ob das System
heruntergefahren werden soll.

Syntax UI-Code: modal = numWert
Lesen: <numVar> = <obj>.modal
Schreiben: <obj>.modal = numWert

numWert ist eine der ~_MODAL-Konstanten von oben

isOpen

Diese nur-Lesen Variable enthält die Information, ob der Dialog aktuell offen ist
(auf dem Schirm sichtbar, isOpen = TRUE) oder nicht (isOpen = FALSE).

Syntax Lesen: <numVar> = <obj>.isOpen

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 156

4.6.3 Öffnen und Schließen von Dialogboxen

Damit ein Dialog auf dem Bildschirm erscheinen kann (geöffnet werden kann),
muss er grundsätzlich in den generic Tree des Programms eingebunden sein. Es
ist ein häufiger Fehler, dies bei Dialogen, nicht nach Methode 1 (siehe unten)
verwendet werden, zu vergessen. R-BASIC verfügt prinzipiell über 3 Methoden,
einen Dialog zu öffnen.

Methode 1

Die einfachste Methode, einen Dialog zu verwenden, ist ihn als Child eines Menüs
in den generischen Tree einzubinden. Das GEOS-System erzeugt dann
automatisch einen Button im Menü, der den Dialog öffnet.

Beispiel:

UI-Code-Fragment. Ausführliche Code-Beispiele finden Sie im Kapitel 4.6.3.
Menu DemoMenu
Caption$ = "Demo .. "
Children = Readbutton, Writebutton, RegisterDialog
END Object

Dialog RegisterDialog
Caption$ = "Registrieren"
Children = SerialText, OKButton, CancelButton
END Object

Tipp: Wenn es zeitweise keinen Sinn macht, dass der Nutzer den Dialog öffnen
kann, setzen Sie ihn zwischenzeitlich auf "not enabled" (<dialogObj>.enabled =
FALSE).

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 157

Methode 2

Syntax im BASIC-Code Aufgabe
<dialogObj>.Open Dialog auf den Schirm bringen (öffnen)
<dialogObj>.OpenNoDisturb Dialog ohne Übernahme des Focus öffnen
<dialogObj>.Close Dialog schließen

attrs = DA_HIDDEN_UNTIL_OPENED Nicht durch Nutzer zu öffnen

Die nach Methode 1 eingebundenen Dialoge kann der Nutzer prinzipiell jederzeit
öffnen. Oftmals ist es aber nötig, Dialoge vom Programm aus zu öffnen, wenn es
die Situation erfordert. Für diesen Zweck verfügten Dialog-Objekte über Methoden
zum Öffnen und Schließen der Dialogbox.

Open Die Dialogbox wird geöffnet. Der Focus geht an die Dialogbox (es sei
denn, sie hat den Hint NoFocus gesetzt), d.h. der Dialog ist das "aktive"
Fenster und nimmt ab sofort alle Tastatur-Eingaben entgegen.

OpenNoDisturb (Öffnen ohne zu stören). Der Dialog wird geöffnet, bekommt aber
noch nicht den Focus. Der Nutzer wird bei seiner aktuellen Arbeit am
Programm (z.B. einen Text einzugeben) nicht gestört. Wenn er den Dialog
bedienen will, klickt er einfach auf den Dialog. Der Dialog bekommt dann
den Focus, d.h. er kann mit Maus und Tastatur bedient werden.

Der Unterschied zwischen einem Dialog, der mit OpenNoDisturb geöffnet
wurde und einem, der den Hint NoFocus gesetzt hat ist folgender:
NoFocus-Dialoge bekommen den Focus auch dann nicht, wenn sie mit
der Maus angeklickt werden. Eine Bedienung mit der Tastatur oder eine
Texteingabe ist bei NoFocus-Dialogen nicht möglich.

Close Der Dialog wird geschlossen. Weitere Möglichkeiten, einen Dialog zu
schließen, werden in den nächsten Kapiteln behandelt.

Bei Dialogen, die mit Open oder OpenNoDisturb geöffnet werden, ist es oft gar
nicht sinnvoll, ihn auch über ein Menü öffnen zu können. Trotzdem müssen
solche Dialoge in den generischen Tree eingebunden werden. Um zu verhindern,
dass das GEOS-System einen Aktivierungs-Button für diesen Dialog anlegt,
verwenden Sie im UI-Code die Zeile

attrs = DA_HIDDEN_UNTIL_OPENED

Der Dialog wird solange vor dem Nutzer versteckt (engl. hidden = versteckt) bis er
explizit durch eine der Anweisungen Open oder OpenNoDisturb geöffnet wird (
until = bis, opened = geöffnet) .

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 158

UI-Code-Fragment. Der Dialog erscheint nicht im Menü!
Dialog RegisterDialog
Caption$ = "Registrieren"
Children = SerialText, OKButton, CancelButton
attrs = DA_HIDDEN_UNTIL_OPENED ’ Dialog verstecken
END Object

Menu DemoMenu
Caption$ = "Demo .. "
Children = Readbutton, Writebutton, RegisterDialog
END Object

BASIC-Code-Fragment
IF registerNr <> validNr THEN RegsiterDialog.Open

Beachten Sie, dass R-BASIC nach dem Öffnen des Dialogs sofort mit der
Abarbeitung der nächsten Codezeilen fortsetzt. Es wird nicht gewartet bis der
Dialog wieder geschlossen wird. Ist das nicht gewollt, verwenden Sie bitte
Methode 3.

Methode 3

Syntax im BASIC-Code Aufgabe
numVar = OpenBlockingDialog(<dialogObj>) Dialog aktivieren

attrs = DA_BLOCKING Auf Reaktion durch Nutzer warten

Oftmals ist es für den Programmablauf erforderlich, dass der Nutzer zuerst den
Dialog bedient, bevor die Programmabarbeitung fortgesetzt werden kann. Ein
Beispiel wäre die Nachfrage, ob die Daten gespeichert werden sollen oder nicht.
Für diesen Zweck gibt es die Funktion OpenBlockingDialog(), die auf eine
Eingabe des Nutzers wartet und solange die weitere Programmabarbeitung
blockiert ("Blocking"). Sie liefert einen numerischen Wert zurück, je nachdem,
welchen Button des Dialogs der Nutzer gedrückt hat. Solche Dialoge müssen

attrs = DA_BLOCKING

gesetzt haben. DA_BLOCKING impliziert DA_HIDDEN_UNTIL_OPENED, d.h. das
System erzeugt keinen "Aktivierung-Button". Vergessen Sie aber nicht, den Dialog
an irgendeiner Stelle in den generic Tree einzubinden.
Außerdem ist es erforderlich, dass ein Blocking-Dialog modal ist (APP_MODAL
oder SYS_MODAL). Geben Sie keinen Wert vor, setzt R-BASIC automatisch
modal = APP_MODAL.
Eine ausführliche Beschreibung der Arbeit mit Blocking-Dialogen und passende
Code-Beispiele finden Sie im Kapitel 4.6.7

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 159

4.6.4 Behandlung von Messages

4.6.4.1 Messages von UI-Objekten

UI-Objekte, die sich in einem Dialog befinden (Buttons, Listen, InputLine-Texte...)
können grundsätzlich Messages versenden (d.h. ihre Action-Handler aufrufen).
Ebenso kann man mit diesen Objekten arbeiten (z.B. Instance-Variablen belegen
oder abfragen), wenn der Dialog nicht offen (nicht auf dem Schirm) ist.

Eine Ausnahme gibt es bei Blocking-Dialogen. Objekte in Blocking-Dialogen
dürfen keine Action-Handler haben. Details dazu finden Sie im Kapitel 4.6.7.

4.6.4.2 InteractionCommand

Variable Syntax im UI-Code Im BASIC-Code
interactionCommand –– nur lesen

Die Instance-Variable interactionCommand dient der direkten Kommunikation
zwischen Button-Objekten in einen Dialog und dem Dialog-Objekt selbst, ohne
dass Sie als R-BASIC Programmierer eingreifen müssen. Dies wird für Standard-
Dialoge und für Blocking-Dialoge benötigt. Ein interactionCommand-Wert ist eine
Zahl (Datentyp WORD). Er wird vom Button an sein Dialog-Objekt gesendet, wenn
er angeklickt wird. Dadurch kann der Dialog bestimmte Aktionen automatisch
ausführen, z.B. sich selbst schließen oder einen seiner Action-Handler aufrufen
(OnOpen, OnClose oder OnCommand, siehe Kapitel 4.6.4.3).

Zu diesem Zweck besitzen sowohl Buttons als auch Dialoge eine Instance-
Variable namens interactionCommand. Den interactionCommand-Wert eines
Buttons kann man lesen und schreiben, üblicher Weise wird er im UI-Code
gesetzt. Den interactionCommand-Wert eines Dialogs kann man nur lesen. Er
wird vom Dialog automatisch belegt. Beim Öffnen des Dialogs wird der Wert auf
Null gesetzt.

Syntax Lesen numVar = <dialogObj>.interactionCommand

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 160

Die folgenden Werte sind vom System definiert. Sie können auch eigene Werte
definieren. Eigene interactionCommand-Werte müssen größer als 999 sein, die
Werte 0 bis 999 sind vom System reserviert!

interactionCommand
Konstante Wert Bedeutung
IC_CLOSE 1 Dialog schließen
IC_APPLY 3 Änderungen anwenden
IC_RESET 4 Dialog zurücksetzen
IC_OK 5 Verwendet für "OK"
IC_YES 6 Verwendet für "Ja"
IC_NO 7 Verwendet für "Nein"
IC_STOP 8 Verwendet für "Stopp" oder "Abbrechen"
IC_HELP 10 Button ersetzt den "Hilfe" Button

Intern passiert folgendes:

Nehmen wir an, wir haben einen Button in einem Dialog-Objekt, dessen
interactionCommand-Wert belegt ist. Wird dieser Button angeklickt, so sendet er
seinen interactionCommand-Wert direkt an den Dialog. Der Dialog reagiert
darauf in Abhängigkeit vom interactionCommand-Wert:

IC_CLOSE:
• Die Dialogbox wird geschlossen.
• Die Instance-Variable interactionCommand des Dialogs wird nicht

verändert, es sei denn, sie ist noch Null, dann wird sie mit IC_CLOSE (= 1)
belegt.

• Falls vorhanden wird der OnClose Handler aufgerufen

IC_HELP:
• Wenn eine Dialogbox einen Wert für helpContext$ gesetzt hat erzeugt sie

automatisch einen "Hilfe" Button, dessen Beschriftung ein Fragezeichen ist.
Um diese Aufschrift zu ändern muss man einen Button anlegen, dessen
interactionCommand Wert auf IC_HELP gesetzt ist. Dieser Button ersetzt
dann den vom Dialog erzeugten Button. Zusätzlich sollten Sie dem Button
die Anweisung

placeObject = REPLY_BAR
geben, falls das angebracht ist.
Das Dialogobjekt oder eines seiner Parents, üblicherweise das Application
Objekt, sollte einen Wert für helpFile$ gesetzt haben.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 161

Dialog HelpedDialog
caption$ = "Dialog mit Hilfe"
children = ... , DilaogHelpButton
dialogtype = DT_COMMAND
helpContext$="MoreHelp"
End Object

...
Button DilaogHelpButton
Caption$ = "Hilf mir"
interactionCommand = IC_HELP
placeObject = REPLY_BAR
End Object

• Falls der Dialog keinen Help Context gesetzt hat fordert der Button beim
Application Objekt den Namen der Hilfedatei und einem Help Context an.

• Sollte die Hilfedatei oder der Help Context in der Hilfedatei nicht gefunden
werden erzeugt das Hilfesystem eine Fehlermeldung.

• Abschließend wird, falls vorhanden, der OnCommand Handler aufgerufen.

IC_xxx: (alle sonstigen Werte)
• Die Instance-Variable interactionCommand des Dialogs wird mit dem vom

Button kommenden Wert belegt.
• Falls der Button ein Standard-Button eines Standard-Dialogs ist (siehe

Standard-Dialoge, Kapitel 4.6.6) wird der Dialog geschlossen und, falls
vorhanden, der OnClose Handler aufgerufen.

• Zuletzt wird, falls vorhanden, der OnCommand Handler aufgerufen.

Ein Zugriff auf die Instance-Variable interactionCommand des Dialogs ist nur
selten nötig, insbesondere aber dann, wenn der Dialog das Abbrechen von länger
dauernden Prozessen ermöglichen soll (siehe Progress-Dialoge, Kapitel 4.6.6.4).

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 162

4.6.4.3 Behandlung von Dialog-Messages

Instance-Variable Syntax im UI-Code Im BASIC-Code
OnOpen OnOpen = <Handler> nur schreiben
OnClose OnClose = <Handler> nur schreiben
OnCommand OnCommand = <Handler> nur schreiben

Action-Handler-Typen:
Handler-Typ Parameter
DialogAction (sender as object, command as integer)

Aus Sicht einer Dialogbox gibt es drei wichtige Ereignisse:
1. Die Dialogbox wird geöffnet
2. Die Dialogbox wird geschlossen
3. Ein Button mit einem interactionCommand-Wert wird gedrückt

Für alle drei Fälle können Sie einen Action-Handler definieren, der aufgerufen
wird, wenn das Ereignis eintritt.

Syntax UI-Code: OnOpen = <Handler>
OnClose = <Handler>
OnCommand = <Handler>

Schreiben: <obj>.OnOpen = <Handler>
<obj>.OnClose = <Handler>
<obj>.OnCommand = <Handler>

OnOpen

Der OnOpen-Handler wird gerufen, wenn die Dialogbox geöffnet wird. OnOpen-
Handler müssen als DialogAction definiert sein, wobei der Parameter command
unbestimmt ist und nicht verwendet werden sollte. Zum Zeitpunkt, an dem der R-
BASIC-Handler ausgeführt wird, ist der Dialog bereits auf dem Schirm.

Syntax UI-Code: OnOpen = <Handler>
Schreiben: <obj>.OnOpen = <Handler>

Beispiel UI-Code:
Dialog CommandDialog
Caption$ = "Persönliche Daten"
Children = NameText, VornameText, OKButton
justifyChildren = J_CENTER_ON_CAPTION
OnOpen = PslDataOpen
END Object

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 163

Dazugehöriger BASIC-Code
DialogAction PslDataOpen
<.. Was immer hier zu tun ist ...>
END Action

OnClose

Der OnClose-Handler wird gerufen, wenn die Dialogbox geschlossen wird.
OnClose-Handler müssen als DialogAction definiert sein, wobei der Parameter
command immer 1 (IC_CLOSE) ist. Zum Zeitpunkt, an dem der R-BASIC-Handler
ausgeführt wird, ist der Dialog bereits nicht mehr auf dem Schirm.

Syntax UI-Code: OnClose = <Handler>
Schreiben: <obj>.OnClose = <Handler>

Beispiel UI-Code:
Dialog CommandDialog
Caption$ = "Persönliche Daten"
Children = NameText, VornameText, OKButton
justifyChildren = J_CENTER_ON_CAPTION
OnClose = PslDataClose
END Object

Dazugehöriger BASIC-Code
DialogAction PslDataClose
<.. Was immer hier zu tun ist ...>
END Action

OnCommand

Der OnCommand-Handler wird gerufen, wenn ein Button mit einem interaction-
Command-Wert, der nicht IC_CLOSE ist, angeklickt wurde (IC_CLOSE ruft den
OnClose-Handler). OnCommand-Handler müssen als DialogAction definiert
sein, wobei der Parameter "command" den interactionCommand-Wert des
auslösenden Buttons enthält.

Syntax UI-Code: OnCommand = <Handler>
Schreiben: <obj>.OnCommand = <Handler>

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 164

Ausführliches Beispiel:
Eine Dialog-Box mit 3 Schaltern. UI-Code:
Dialog ComplexDialog
Caption$ = "Namen eingeben"
Children = NameText, VornameText, MyReplyBar
justifyChildren = J_CENTER_ON_CAPTION
OnCommand = CommandHandler
END Object

InputLine NameText
Caption$ = "Name:"
end object

InputLine VornameText
Caption$ = "Vorname:"
end object

Group MyReplybar
MakeReplyBar
Children = CloseButton, OKButton, DeleteButton
END Object

Button CloseButton
Caption$ = "Schließen"
interactionCommand = IC_CLOSE
END Object

Button DeleteButton
Caption$ = "Löschen"
interactionCommand = 1001 ’ eigener Wert
END Object

Button OKButton
Caption$ = "Übernehmen"
interactionCommand = IC_OK
END Object

Im BASIC-Code muss nur der OnCommand-Handler vereinbart werden. Der
CloseButton wird vom Dialog automatisch bedient, da er als interactionCommand
IC_CLOSE gesetzt hat.

DialogAction CommandHandler
 IF command = 1001 THEN

’ Texte löschen
NameText.text$ = ""
VornameText.text$ = ""

END IF
IF command = IC_OK THEN
MsgBox "Werte werden übernommen"
ComplexDialog.Close

END IF
END Action

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 165

4.6.5 Frei definierte Dialoge

dialogType = DT_NORMAL keine systemerzeugten Buttons

Der wohl am einfachsten nachvollziehbare Weg, eine Dialogbox aufzubauen, ist,
alle UI-Objekte selbst zu definieren, wie das folgende Beispiel zeigt:

UI-Code:
Menu MainMenu
Caption$ = "Demo .. "
Children = Readbutton, Writebutton, RegisterDialog
END Object

<.. ReadButton und WriteButton nicht aufgeführt..>

!***
! Demo-Dialog
!***

Dialog RegisterDialog
Caption$ = "Registrieren"
Children = SerialText, MyReplyBar
END Object

InputLine SerialText
Caption$ = "Seriennummer:"
justifyCaption = J_TOP
END Object

Group MyReplyBar
MakeReplyBar
Children = OKButton, CancelButton
END Object

Button OKButton
Caption$ = "OK"
ActionHandler = RegisterOK
END Object

Button CancelButton
Caption$ = "Abbrechen"
ActionHandler = RegisterCancel
END Object

Im Dialog-Objekt ist kein Wert für dialogType gesetzt, er steht per default auf
DT_NORMAL.
Öffnet der Nutzer den Dialog kann er eine Seriennummer eingeben und dann auf
OK oder Abbrechen klicken. Dadurch werden die Action-Handler RegisterOK bzw.
RegisterCancel aufgerufen. Diese könnten so aussehen:

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 166

ButtonAction RegisterOK
RegisterDialog.Close
MsgBox "Registrierung erfolgreich"
END Action

ButtonAction RegisterCancel
RegisterDialog.Close
END Action

Eine Behandlung der eingegeben Seriennummer wurde der Übersichtlichkeit
halber ausgelassen. Wichtig ist, dass Sie die Dialogbox in beiden Fällen manuell
schließen müssen. Das ist schon alles.

Der Dialog im Beispiel besteht aus 5 Objekten: dem Dialog-Objekt, einem Text-
Objekt, einer ReplyBar und zwei Buttons. Reply-Bars sind typisch für Dialoge,
deswegen kann das System automatisch eine Reply-Bar anlegen, wenn wir sie
anfordern. Dazu muss man nur:

- Die Buttons als direktes Child des Dialogs festlegen
- Die Buttons mit der Anweisung placeObject = REPLY_BAR versehen.

Der folgende UI-Code erzeugt genau die gleiche Dialogbox wie der im Beispiel
oben:

Dialog RegisterDialog
Caption$ = "Registrieren"
Children = SerialText, OKButton, CancelButton
END Object

InputLine SerialText
Caption$ = "Seriennummer:"
justifyCaption = J_TOP
END Object

Button OKButton
placeObject = REPLY_BAR
Caption$ = "OK"
ActionHandler = RegisterOK
END Object

Button CancelButton
placeObject = REPLY_BAR
Caption$ = "Abbrechen"
ActionHandler = RegisterCancel
END Object

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 167

4.6.6 Standard-Dialoge

Variable Syntax im UI-Code Im BASIC-Code
dialogType dialogType = numWert lesen, schreiben

Auch wenn es möglich ist, die UI-Objekte im Dialog vollständig selbst zu
definieren, ist dies in vielen Fällen gar nicht nötig. Man kann stattdessen
sogenannte "Standard-Dialoge" verwenden, die bereits einige vorgefertigte
Objekte enthalten. Dies sind ein oder mehrere Buttons - Standard-Buttons
genannt - und eine Reply-Bar. Da die Buttons direkt vom System erzeugt werden,
können wir ihnen keinen Action-Handler zuweisen. Stattdessen belegt GEOS die
Instance-Variable interactionCommand des Buttons.

Um einen Standard-Dialog zu verwenden benötigt man nur eine einzige Zeile im
UI-Code: Die Belegung der Instance-Variablen dialogType.

Syntax UI-Code: dialogType = numWert
Lesen: <numVar> = <obj>.dialogType
Schreiben: <obj>.dialogType = numWert

Welche Buttons mit welchem interactionCommand-Wert erzeugt werden, hängt
nur von der Belegung dieser Instance-Variablen ab. Die folgende Tabelle enthält
die möglichen Werte für die Instance-Variable dialogType sowie die erzeugten
Buttons und die zugeordneten interactionCommand-Werte.

dialogType Wert erzeugte Buttons
DT_NORMAL 0 keine (default, frei definierter Dialog)
DT_PROGRESS 2 "Stopp" oder "Anhalten" (IC_STOP)
DT_COMMAND 3 "Schließen" oder "Abbrechen" (IC_CLOSE)
DT_NOTIFICATION 4 "OK" (IC_OK)
DT_QUESTION 5 "Ja" (IC_YES) und "Nein" (IC_NO)
DT_DELAYED_APPLY 1 "Anwenden" bzw. "OK" (IC_APPLY)

"Schließen" oder "Abbrechen" (IC_CLOSE)

Die genaue Beschriftung der Buttons kann je nach System-Version geringfügig
variieren. Wenn nicht explizit anders angegeben wird die Dialogbox automatisch
geschlossen, wenn der Nutzer auf einen der vom System erzeugten Buttons klickt.

Die Verwendung der einzelnen dialogTypen und welche konkreten zusätzlichen
Eigenschaften der Dialog dadurch erhält, wird in den nächsten Kapiteln ausführlich
beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 168

4.6.6.1 Command-Dialoge

dialogType = DT_COMMAND "Schließen" oder "Abbrechen" (IC_CLOSE)

Ein Command-Dialog (engl.: command = Kommando, Anweisung) erzeugt
automatisch eine Reply-Bar mit einen Schließen-Button.

Beispiel UI-Code
Dialog CommandDialog
Caption$ = "Persönliche Daten"
Children = NameText, VornameText
justifyChildren = J_CENTER_ON_CAPTION
dialogType = DT_COMMAND
END Object

InputLine NameText
Caption$ = "Name:"
END Object

InputLine VornameText
Caption$ = "Vorname:"
END Object

4.6.6.2 Notification-Dialoge

dialogType = DT_NOTIFICATION "OK" (IC_OK)

Notification-Dialoge (Hinweis-Dialoge) erzeugen automatisch eine Reply-Bar mit
einen OK-Button. Sie werden sehr häufig für "Blocking-Dialoge" (attrs =
DA_BLOCKING, Kapitel 4.6.7) oder für den "Information über.."-Dialog im
Dateimenü verwendet. Bevor Sie einen Notification-Dialog programmieren sollten
sie prüfen, ob einer der R-BASIC-Befehle MsgBox, ErrorBox oder WarningBox
nicht bereits Ihren Anforderungen genügt. Sie sind intern als Blocking-Dialog mit
dialogType = DT_NOTIFICATION realisiert.

Dialog NotificationDialog
Caption$ ="Notiz"
Children = NotificationText
dialogType = DT_NOTIFICATION
END Object

Memo NotificationText
text$ = "Es hat geklappt!"
readOnly = TRUE
END Object

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 169

4.6.6.3 Question-Dialoge

dialogType = DT_QUESTION "Ja" (IC_YES) und "Nein" (IC_NO)

Question-Dialoge (Frage-Dialoge) erzeugen automatisch eine Reply-Bar mit einen
"Ja" und einem "Nein"-Button. Sie werden sehr häufig für "Blocking-Dialoge" (attrs
= DA_BLOCKING, Kapitel 4.6.7) verwendet. Bevor Sie einen Question-Dialog
programmieren sollten sie prüfen, ob der R-BASIC-Befehl QuestionBox nicht
bereits Ihren Anforderungen genügt. QuestionBox ist intern als Blocking-Dialog mit
dialogType = DT_QUESTION realisiert.

Dialog QuestionDialog
Caption$ ="Frage"
Children = QuestionText
dialogType = DT_QUESTION
attrs = DA_BLOCKING
END Object

Memo QuestionText
text$ = "\r\tWirklich?\r"
readOnly = TRUE
END Object

Tipp: Um herauszubekommen, ob der Nutzer auf "Ja" oder "Nein" geklickt hat
können Sie den Dialog entweder als Blocking-Dialog programmieren (siehe
Beispielcode und Kapitel 4.6.7) oder Sie verwenden den OnCommand-Handler
des Dialogs (siehe Kapitel 4.6.4.3).

4.6.6.4 Progress-Dialoge

dialogType = DT_PROGRESS "Stopp" oder "Anhalten" (IC_STOP)
interactionCommand nur Lesen

Progress-Dialoge dienen dazu, dem Nutzer den Fortschritt einer Operation
anzuzeigen und ein Abbrechen der Operation zu ermöglichen. Sie erzeugen
automatisch eine Reply-Bar mit einen "Anhalten"-Button.

Im Beispiel wird zur Fortschrittsanzeige ein Textobjekt verwendet.

Dialog ProgressDialog
Caption$ = "In Arbeit ..."
Children = ProgressTex
dialogType = DT_PROGRESS
attrs = DA_HIDDEN_UNTIL_OPENED
END Object

Memo ProgressText
Caption$ = "Fortschritt: "
readOnly = TRUE

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 170

fixedSize = 20 + ST_AVG_CHAR_WIDTH, 1 + ST_LINES_OF_TEXT
END Object

Die korrekte Verwendung eines Progress-Dialogs erfordert etwas Aufmerksamkeit
und Hintergrundwissen. GEOS ist ein Multithread-System, d.h. mehrere Prozesse
(Threads) laufen quasi gleichzeitig ab. Selbst in einem R-BASIC-Programm gibt es
zwei Threads - einen für den von Ihnen geschriebenen BASIC-Code und den UI-
Thread, der die UI-Objekte bedient. Wenn Sie eine langwierige Operation
ausführen wollen, z.B. das Suchen nach einer Datei, schreiben Sie dazu eine R-
BASIC-Routine. Während diese läuft kann sie nicht durch das Anklicken eines
Buttons unterbrochen werden, da der Action-Handler dieses Buttons auch im
BASIC-Code-Thread läuft. Das Ereignis (Anklicken des Schalters "Abbrechen")
würde vom System in eine Warteschlage gestellt und abgearbeitet, wenn die
Suchroutine fertig ist. Sie können auf diese Weise also eine laufende Operation
nicht unterbrechen.

An dieser Stelle kommt der UI-Thread und die Dialog-Instance-Variable
interactionCommand ins Spiel. Klickt der Nutzer auf den "Anhalten" Button, so
sendet dieser im UI-Thread - also parallel zur laufenden Suchroutine - eine
Message an den Dialog. Der Dialog schließt sich uns setzt seine Instance-Variable
interactionCommand auf den vom Button gesendeten Wert - in diesem Fall
IC_STOP. Wenn Sie während der laufenden Operation regelmäßig die
interactionCommand-Variable des Progress-Dialogs abfragen, können Sie den
Prozess auf Anforderung abbrechen. Das folgende Code-Fragment zeigt, wie das
geht:

ProgressDialog.Open ’ Dialog anzeigen

FOR N = 1 TO 100
ProgressText.Text$ = Str$(n) + " %" ’ Fortschritt melden

< ... Nächsten Schritt der Operation durchführen .. >

IF ProgressDialog.interactionCommand = IC_STOP THEN BREAK
NEXT N

ProgressDialog.Close ’ Dialog schließen
IF ProgressDialog.interactionCommand = IC_STOP THEN

MsgBox "Abgebrochen"
END IF

Tipp: Wenn es im konkreten Fall störend ist, dass sich der Dialog sofort
selbständig schließt können Sie statt eines Progress-Dialogs einen frei definierten
Dialog mit einem eigenen CancelButton verwenden. Dieser setzt zwar die
interactionCommand-Variable des Dialogs, schließt ihn aber nicht, da er kein
Standard-Button ist. Das ist im folgenden Beispiel gezeigt.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 171

Dialog ProgressDialog
Caption$ = "In Arbeit ..."
Children = ProgressText, CancelButton
attrs = DA_HIDDEN_UNTIL_OPENED
END Object

Memo ProgressText
Caption$ = "Fortschritt: "
readOnly = TRUE
fixedSize = 20 + ST_AVG_CHAR_WIDTH, 1 + ST_LINES_OF_TEXT
END Object

Button CancelButton
Caption$ = "Anhalten"
placeObject = REPLY_BAR
interactionCommand = IC_STOP
END Object

Sie dürfen nur nicht vergessen, den Dialog manuell mit ProgressDialog.Close zu
schließen.

Anstelle eine Progress-Dialogs können Sie eventuell auch einen Button
verwenden, dessen Instance-Variable unhandledEvents Sie abfragen. Das ist im
Abschnitt 4.3 beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 172

4.6.6.5 Dialoge im Delayed Mode

dialogType = DT_DELAYED_APPLY "Anwenden" bzw. "OK" (IC_APPLY)
"Schließen" oder "Abbrechen"
(IC_CLOSE)

Der Dialogtyp DT_DELAYED_APPLY erzeugt eine Dialog-Box die im soge-
nannten "Delayed Mode" arbeitet, ganz so als würden Sie den Hint
MakeDelayedApply für den Dialog setzen. Der Delayed Mode ist ausführlich im
Kapitel 3.4.2 beschrieben. Im Kern besteht er in Folgendem:
• Die im Dialog enthaltenen Objekte (Texte, Number, Listen) senden statt ihrer

Apply-Message (Aufruf des ApplyHandlers) zunächst eine Status-Message aus.
Diese kann zur Kommunikation der Dialog-internen Objekte untereinander
genutzt werden.

• Die Apply-Message wird erst ausgesendet, wenn der Nutzer auf den vom
Dialog bereitgestellten Button "Anwenden" klickt. Dieses löst die Apply-Methode
des Dialogs aus, die an alle seine Children weitergereicht wird (siehe Kapitel
3.4.1). Ein DT_DELAYED_APPLY-Dialog sorgt außerdem automatisch dafür,
das der "Anwenden"-Button erst enabled wird, wenn mindestens eins der im
Dialog enthaltenen Objekte geändert wurde.

• Die betroffenen Objekte (Texte, Number, Listen) müssen "modified" sein, damit
sie ihre Apply-Message aussenden. Ändert der Nutzer das Objekt passiert das
automatisch, ändern Sie das Objekt vom BASIC-Code aus, müssen Sie es
selbst auf "modified" setzen.

Beispiel: Eine Dialogbox enthält eine Liste und ein Number-Objekt, die sich
gegenseitig über Status-Handler auf dem neuesten Stand halten. Beim Klick auf
"Anwenden" wird der ApplyHandler der Liste aufgerufen.

UI-Code
Dialog DialogInDelayedMode
caption$ ="Eigenschaften auswählen"
dialogType = DT_DELAYED_APPLY
Children = DList, DNum
orientChildren = ORIENT_VERTICALLY
justifyChildren = J_CENTER
end object

RadioButtonGroup DList
Children = rb0,rb1, rb2, rb3, rb4, rb5
OrientChildren = ORIENT_HORIZONTALLY
selection = 3
MakeToolbox
StatusHandler = DListStatusChanged
ApplyHandler = DListApply
END Object

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 173

RadioButton rb0: Caption$ = " - 0 - ": identifier = 0: END Object
RadioButton rb1: Caption$ = " - 1 - ": identifier = 1: END Object
RadioButton rb2: Caption$ = " - 2 - ": identifier = 2: END Object
RadioButton rb3: Caption$ = " - 3 - ": identifier = 3: END Object
RadioButton rb4: Caption$ = " - 4 - ": identifier = 4: END Object
RadioButton rb5: Caption$ = " - 5 - ": identifier = 5: END Object

Number DNum
Caption$ = "Select:"
StatusHandler = DNumStatusChanged
minVal = 0 : maxVal = 5
value = 3
END Object

BASIC-Code Die Zeile "DList.modified = TRUE" sorgt dafür, dass die Liste
als "geändert" markiert wird, da sie sonst ggf. ihren Apply-Handler nicht aufruft.
LISTACTION DListApply
MsgBox Str$(selection)+ " ist selektiert"
END Action

LISTACTION DListStatusChanged
DNum.value = selection
END Action

NUMBERACTION DNumStatusChanged
DList.selection = value
DList.modified = TRUE
END Action

Eine mögliche Ergänzung wäre, einen zusätzlichen Button "Zurücksetzen" hinzu-
zufügen, der die Liste und das Number-Objekt auf den Anfangsbestand
zurücksetzt. Wie das gemacht wird, wird am Ende des nächsten Abschnitts
(4.6.6.6) beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 174

4.6.6.6 Eigene Buttons in Standard-Dialogen

Sie können sowohl eigene Buttons zur Reply-Bar der Standard-Dialoge
hinzufügen als auch die vorhandenen durch eigene ersetzen. Letzteres kann z.B.
sinnvoll sein, wenn Sie die Beschriftung der Buttons ändern oder durch eine Grafik
ersetzen wollen. In jedem Fall muss ein solcher Button die Zeile

placeObject = REPLY_BAR

und einen interactionCommand-Wert enthalten. Existiert schon ein Standard-
Button mit diesem interactionCommand-Wert, so wird er ersetzt, andernfalls wird
ein weiterer Button hinzugefügt. Für ihren eigenen Button können Sie einen der
vorhandenen interactionCommand-Werte verwenden (z.B. IC_OK) oder einen
eigenen definieren. Eigene interactionCommand-Werte müssen größer als 999
sein, die Werte 0 bis 999 sind vom System reserviert!

Beispiel: Der Command-Dialog aus dem letzten Abschnitt war so definiert (die
Text-Objekte sind nicht mit aufgeführt):
Dialog CommandDialog
Caption$ = "Persönliche Daten"
Children = NameText, VornameText
dialogType = DT_COMMAND
justifyChildren = J_CENTER_ON_CAPTION
END Object

Der Button mit der Aufschrift "Schließen" ist vom System erzeugt und
entsprechend der Tabelle vorn (Anschnitt 4.6.6) mit dem interactionCommand
IC_CLOSE belegt.
Um die Beschriftung des Buttons von "Schließen" auf "Abbrechen" zu ändern und
einen weiteren Button mit der Aufschrift "Übernehmen" hinzuzufügen muss man
folgendes tun (die Text-Objekte sind wieder nicht mit aufgeführt):
Dialog CommandDialog
Caption$ = "Persönliche Daten"
Children = NameText, VornameText, CloseButton, OKButton
justifyChildren = J_CENTER_ON_CAPTION
dialogType = DT_COMMAND
OnCommand = DialogOKHandler
END Object

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 175

Button CloseButton
Caption$ = "Abbrechen"
interactionCommand = IC_CLOSE ’ Button wird ersetzt
placeObject = REPLY_BAR
END Object

Button OKButton
Caption$ = "Übernehmen"
interactionCommand = IC_OK ’ Button wird hinzugefügt
placeObject = REPLY_BAR
END Object

Die beiden neuen Buttons bekommen einen interactionCommand-Wert, aber
keinen ActionHandler. Um auf den OK-Button regieren zu können, bekommt der
Dialog einen Action-Handler (OnCommand = DialogOKHandler). Dieser muss
mindestens den Dialog schließen, da nicht-Standard-Buttons dies nicht auto-
matisch tun.

Im BASIC-Code muss nur der OnCommand-Handler vereinbart werden:

DIALOGACTION DialogOKHandler
CommandDialog.Close
< .. Auswertung des Namens hier ..>
END Action

Ein weiterer häufiger Fall für einen eigenen Button in einem Dialog-Objekt ist ein
"Reset"-Button. Dafür kann man das InteractionCommand IC_RESET verwenden.
Der Dialog muss dann einen OnCommand-Handler haben, der dieses Kommando
auswertet und alle betroffenen Objekte auf ihren Anfangswert setzt.

Beispiel:
DIALOGACTION MyOnCommandHandler
IF command = IC_RESET THEN
NameText.text$ = ""
VornameText.text$ = ""
END IF

< ... >
END Action

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 176

4.6.7 Arbeit mit Blocking-Dialogen

attrs = DA_BLOCKING Auf Reaktion warten
numVar = OpenBlockingDialog(<dialogObj>) Dialog aktivieren

Oftmals ist es für den Programmablauf erforderlich, dass der Nutzer zuerst den
Dialog bedient, bevor die Programmabarbeitung fortgesetzt werden kann. Das
heißt, die weitere Programmabarbeitung wird solange blockiert ("Blocking"), bis
der Dialog beendet ist. Ein Beispiel wäre die Nachfrage, ob die Daten gespeichert
werden sollen oder nicht.

Für Blocking-Dialoge kann man sowohl frei definierte als auch Standard-Dialoge
verwenden.

attrs = DA_BLOCKING

Ein Blocking-Dialog muss die Zeile
attrs = DA_BLOCKING

im UI-Code gesetzt haben (ein späteres setzen im BASIC-Code ist möglich, aber
meist nicht sinnvoll). Diese Zeile bewirkt folgendes:

• Das System erzeugt keinen "Aktivierungsbutton" für den Dialog, d.h. er kann
nicht über ein Menü geöffnet werden.

• Der Dialog muss mit der Funktion OpenBlockingDialog() (siehe unten)
geöffneten werden. Die Methoden Open und OpenNoDisturb führen zu einem
Laufzeitfehler.

• Der Dialog ist immer modal (siehe Kapitel 4.6.2). Wenn Sie keinen Wert für die
Instance-Variable "modal" vorgeben, wird APP_MODAL genommen,
NON_MODAL wird ignoriert (R-BASIC setzt dann APP_MODAL).

Wichtig! Vergessen Sie nicht, den Dialog an geeigneter (irgendeiner) Stelle in den
generic Tree einzubinden.

OpenBlockingDialog()

GEOS ist eine Multi-Thread-System. Selbst in einem R-BASIC Programm laufen
zwei Threads (Prozesse) gleichzeitig: Der Code-Thread, der den von Ihnen
geschrieben BASIC-Code ausführt und der UI-Thread, der die UI-Objekte bedient.
Die Funktion OpenBlockingDialog() öffnet einen Blocking-Dialog. Der BASIC-
Code Thread wird blockiert ("schlafen" gelegt, er verbraucht auch keine CPU-Zeit
mehr), es läuft nur noch der UI-Thread. Dadurch kann der Nutzer die Objekte im
Dialog bedienen (Listenelemente auswählen, Texte eingeben etc.). Um den Dialog
zu beenden muss der Nutzer auf einen Schalter klicken, der einen
interactionCommand-Wert gesetzt hat (vgl. Kapitel 4.6.4.2). Daraufhin kehrt
OpenBlockingDialog() zurück und liefert den interactionCommand-Wert des
Buttons, der betätigt wurde. Der BASIC-Code Thread wird fortgesetzt und kann
den Wert auswerten.
Achtung! OpenBlockingDialog liefert den Wert Null, wenn GEOS heruntergefahren
wird, während ein Blocking-Dialog offen ist.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 177

Schließen von Blocking-Dialogen

In den meisten Fällen, insbesondere wenn Sie einen der Standard-Dialog-Typen
gewählt haben (z.B. dialogType = DT_QUESTION, siehe Kapitel 4.6.6), schließt
sich der Dialog automatisch. Sollte das nicht der Fall sein (z.B. weil Sie einen
selbst definierten interactionCommand-Wert verwendet haben), müssen Sie den
Dialog selbst schließen.

cmd = OpenBlockingDialog(SaveFilesDialog)
SaveFilesDialog.Close
IF cmd = 1001 THEN

Sie müssen, wie im Beispiel, den zurückgegebenen Wert "cmd" nicht überprüfen,
da es erlaubt ist, die Close-Methode auch aufzurufen, wenn es gar nicht nötig
wäre.

Beispiel 1: Ein einfacher Dialog. Er dient zur Verdeutlichung des Prinzips. An
seiner Stelle könnte man auch den BASIC-Befehl MsgBox verwenden.
Dialog InfoBox
Caption$ = "Information"
Children = InfoText
attrs = DA_BLOCKING
dialogType = DT_NOTIFICATION
END Object

Memo InfoText
text$ = "Die Daten wurden erfolgreich gespeichert."
readOnly = TRUE
END Object

Beispiel 2: Ein Dialog mit zwei Objekten.
Dialog ErrorDialog
Caption$ = "Fehler !"
Children = ErrorValue, ErrorText
orientChildren = ORIENT_VERTICALLY
justifyChildren = J_CENTER
attrs = DA_BLOCKING
dialogType = DT_NOTIFICATION

END Object

Number ErrorValue
Caption$ = "Fehler Code:"
readOnly = TRUE

END Object

Memo ErrorText
Caption$ = "Beschreibung:"
justifyCaption = J_TOP
readOnly = TRUE
DrawInBox

END Object

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 178

Der Dialog wird in einer SUB verwendet:
SUB ShowError(err as integer)
DIM retVal
ErrorValue.value = err
ErrorText.text$ = "Es fehlt eine notwendige Datei."
retVal = OpenBlockingDialog(ErrorDialog)

END SUB

Beispiel 3: Eine Dialog-Box mit 2 frei definierten Schaltern. Die Reply-Bar wird
automatisch erzeugt, da die Buttons die Zeile "placeObject = REPLY_BAR"
enthalten. UI-Code:
Dialog NameDialog
Caption$ = "Name überprüfen"
Children = NameText, VornameText, CloseButton, OKButton
justifyChildren = J_CENTER_ON_CAPTION
attrs = DA_BLOCKING
END Object

InputLine NameText
Caption$ = "Name:"
end object

InputLine VornameText
Caption$ = "Vorname:"
end object

Button CloseButton
Caption$ = "Abbrechen"
placeObject = REPLY_BAR
interactionCommand = 1001
END Object

Button OKButton
Caption$ = "Ändern"
placeObject = REPLY_BAR
interactionCommand = 1002
END Object

Im BASIC-Code der SUB "CheckName" wird der Dialog initialisiert, aufgerufen und
dann ausgewertet:

’ globale Variablen
DIM gName$, gVorname$

<.. irgendwo im Code ..>
gName$ = "Würger"
gVorname$ = "Wilhelm"

SUB CheckName()
DIM cmd AS Word
NameText.text$ = gName$

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog - 179

VornameText.text$ = gVorname$

cmd = OpenBlockingDialog (NameDialog)
NameDialog.Close
IF cmd = 1002 THEN
’ Werte auslesen
gName$ = NameText.text$
gVorname$ = VornameText.text$
END IF

END SUB

Ergänzende Hinweise

• Objekte in Blocking-Dialogen dürfen keinerlei Action-Handler oder Status-
Handler haben. Das gilt für das Dialog-Objekt selbst, die Buttons, Listen-
Objekte usw. Insbesondere können DynamicList-Objekte nicht in Blocking-
Dialogen verwendet werden, da sie einen Query-Handler benötigen. Der Grund
dafür ist einfach: Blocking-Dialoge blockieren den BASIC-Code Thread. Die
Action-Handler werden aber in diesem Thread ausgeführt - sie können also
nicht behandelt werden, solange der Dialog offen ist.

• Blocking-Dialoge müssen mindestens einen Button mit einem interaction-
Command-Wert haben. Dies ist der einzige Weg einen Blocking-Dialog zu
verlassen. Vergessen Sie das, hängt GEOS.

• Häufig werden für Blocking-Dialoge Standard-Dialog-Typen (dialogType =
DT_xxx) benutzt. Sie können aber auch beliebige eigene Buttons /
interactionCommand-Werte definieren (vgl. Kapitel 4.6.6.6)

• Sollte eine Dialogbox mit dem Aufruf von OpenBlockingDialog() nicht
erscheinen, haben Sie wahrscheinlich vergessen, das Dialog-Objekt in den
generic Tree einzubinden. Das ist ein sehr häufiger Fehler.

• Wird GEOS heruntergefahren, während ein Blocking-Dialog offen ist, so kehrt
OpenBlockingDialog() zurück, der Dialog schließt sich und als Interaction-
Command wird der Wert Null geliefert. Der gerade laufende BASIC-Code (sehr
oft irgendein Action-Handler) wird zu Ende geführt und danach das R-BASIC-
Programm geschlossen. Erst nachdem alle Programme geschlossen sind fährt
GEOS endgültig herunter. Was hat das mit Blocking-Dialogen zu tun? Ganz
einfach: Sie müssen immer damit rechnen, dass OpenBlockingDialog() statt
denen von Ihnen vorgegebene interactionCommand-Werte den Wert Null liefert.
Es sollte in diesem Fall weder eine potentiell gefährliche Aktion ausgelöst
werden noch eine Endlos-Schleife erzeugt werden.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 180

4.7 Number

Objekte der Klasse Number (engl.: Zahl) dienen dazu, Zahlen darzustellen oder
einzugeben. Obwohl sie sehr einfach zu verwenden sind, verfügen Sie über einen
hohen Grad an "Eigenintelligenz".

Die folgenden Ausführungen gehen zunächst grundsätzlich davon aus, dass das
Number-Objekt im normalen Modus (nicht im sogenannten "Delayed Mode")
arbeitet. Das ist der Normalfall, wenn man nicht spezielle Hints setzt, um in den
Delayed Mode zu kommen. Dieser "Delayed Mode" ist ausführlich im Kapitel 3.4.2
(Delayed Mode und Status-Message) dieses Handbuchs beschrieben.

Abstammung
GenericClass Number

Spezielle Instance-Variablen
Variable Syntax im UI-Code Im BASIC-Code
value value = numWert lesen, schreiben
minVal minVal = numWert lesen, schreiben
maxVal maxVal = numWert lesen, schreiben
incVal incVal = numWert lesen, schreiben
ApplyHandler ApplyHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben
modified modified = TRUE | FALSE lesen, schreiben
NavigateToNextFieldOnReturn NavigateToNextFieldOnReturn ––
displayFormat displayFormat = numWert lesen, schreiben
decimal decimal = numWert lesen, schreiben
look look = numWert lesen, schreiben
sliderShowIntervals sliderShowIntervals = main [, sub] lesen, schreiben
SliderNoDigitalDisplay SliderNoDigitalDisplay ––
SliderShowMinMax SliderShowMinMax ––

Methoden:
Methode Aufgabe
Increment value-Wert um incVal erhöhen
Decrement value-Wert um incVal verringern
Apply Apply-Handler aufrufen
SendStatus Status-Handler aufrufen

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 181

Action-Handler-Typen:
Handler-Typ Parameter
NumberAction (sender as object, value as real)

4.7.1 Grundlegende Eigenschaften

R-BASIC Number-Objekte speichern eine Zahl im Wertebereich von –32768 ...
+32767 mit einer Genauigkeit von 4 Stellen nach dem Komma. Das gilt für die
Instance-Variablen value, minVal, maxVal und incVal. Um Kommastellen
darstellen zu können muss die Instance-Variable displayFormat auf einen
passenden Wert gesetzt werden (siehe Kapitel 4.7.2), per Default werden ganze
Zahlen dargestellt.

Der Zahlenwert

value value = numWert lesen, schreiben
minVal minVal = numWert lesen, schreiben
maxVal maxVal = numWert lesen, schreiben
incVal incVal = numWert lesen, schreiben

value

Die Instance-Variable value enthält die vom Number-Objekt dargestellte Zahl. Sie
sollten den Wert auf die notwendige Anzahl von Stellen runden (R-BASIC Befehl
ROUND), wenn Sie ihn vom Number-Objekt lesen, da ein Number-Objekt eine
begrenzte Genauigkeit in der internen Zahlendarstellung aufweist.

Syntax UI- Code: value = numWert
Lesen: <numVar> = <obj> . value
Schreiben: <obj>.value = numWert

minVal

Die Instance-Variable minVal enthält den unteren Grenzwert für die Instance-
Variable value. Das Number-Objekt sorgt selbständig dafür, dass dieser
Grenzwert nicht unterschritten wird. Der Defaultwert für minVal beträgt 0.

Syntax UI- Code: minVal = numWert
Lesen: <numVar> = <obj> . minVal
Schreiben: <obj>.minVal = numWert

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 182

maxVal

Die Instance-Variable maxVal enthält den oberen Grenzwert für die Instance-
Variable value. Das Number-Objekt sorgt selbständig dafür, dass dieser
Grenzwert nicht überschritten wird. Der Defaultwert für maxVal beträgt 32766.

Syntax UI- Code: maxVal = numWert
Lesen: <numVar> = <obj> . maxVal
Schreiben: <obj>.maxVal = numWert

incVal

Die Instance-Variable incVal enthält den Wert, um den die Instance-Variable
value erhöht bzw. erniedrigt wird, wenn man auf einen der Pfeile neben dem
Zahlenwert klickt. Der Defaultwert für incVal beträgt 1.

Syntax UI- Code: incVal = numWert
Lesen: <numVar> = <obj> . incVal
Schreiben: <obj>.incVal = numWert

Anwenden der Änderungen

ApplyHandler ApplyHandler = <Handler> nur schreiben
modified modified = TRUE | FALSE lesen, schreiben
NavigateToNextFieldOnReturn NavigateToNextFieldOnReturn ––

ApplyHandler

Die Instance-Variable ApplyHandler enthält den Namen des ActionHandlers, der
aufgerufen wird, wenn das Number-Objekt seinen Wert "anwenden" will (engl. to
apply: Anwenden). Dieser muss als NumberAction vereinbart sein. Der Apply-
Handler wird üblicherweise aufgerufen, wenn der Nutzer auf die Pfeile des
Number-Objekts klickt, nach Eingabe eines Wertes auf "Enter" drückt oder einen
Slider "zieht". Sliders werden im Kapitel 4.7.3 besprochen.
Der Wert für den ApplyHandler wird üblicherweise im UI-Code gesetzt. Bei
Bedarf kann er auch zur Laufzeit (im BASIC-Code) gesetzt, aber nicht gelesen
werden.

Syntax UI- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 183

Beispiel: Ein typisches Number-Objekt

Number testNumber
Caption$ = "Value = "
ApplyHandler = numberApply
incVal = 5
value = 280
minVal = -105
maxVal = 300
END Object

BASIC-Code des Apply-Handlers

NumberAction numberApply
Print ROUND(value)
END Action

Beachten Sie die Verwendung der R-BASIC Funktion ROUND(), um sicher-
zustellen, dass der ausgegeben Wert ganzzahlig ist. Auch wenn das Number-
Objekt eine Ganze Zahl darstellt kann es trotzdem intern eine Zahl mit Nach-
kommastellen gespeichert haben.

Hinweis: Es ist möglich den ApplyHandler des Number-Objekts manuell (vom
BASIC-Code aus) zu aktivieren. Dazu wird die von der GenericClass geerbte
Methode Apply verwendet. Da ApplyHandler nur ausgelöst werden, wenn das
Objekt "modified" ist, muss es vorher als "modified" markiert werden. Alternativ
könnte man dem Objekt auch den Hint ApplyEvenIfNotModified geben.

Beispiel:
testNumber.modified = TRUE
testNumber.Apply

Eine ausführliche Beschreibung dazu finden Sie im Kapitel 3.4 (Die "Apply"-
Message) dieses Handbuchs.

modified

Die Instance-Variable modified enthält die Information, ob der vom Number-Objekt
dargestellte Wert seit dem letzten Aufruf des Apply-Handlers geändert wurde
(modified = TRUE) oder nicht (modified = FALSE).

Beachten Sie, dass ein Verändern des Objekts vom BASIC-Code aus (z.B.
Belegen der Instance-Variable value), das Objekt nicht als "modified" markiert,
d.h. der Wert der Instance-Variablen modified wird nicht verändert. Sie können
dies bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified = TRUE"
verwenden.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 184

Syntax UI- Code: modified = TRUE | FALSE
Lesen: <numVar> = <obj> . modified
Schreiben: <obj>.modified = TRUE | FALSE

Wenn Sie die Instance Variable modified lesen, werden Sie feststellen, dass sie
Null enthält, es sei denn, Sie haben sie explizit auf einen anderen Wert gesetzt.
Ändert der Nutzer nämlich den Zahlenwert, so passiert intern folgendes:
• Die Instance-Variable modified wird mit TRUE belegt.
• Es wird geprüft ob ein ApplyHandler vorhanden ist und dieser wird ggf.

aufgerufen.
• Die Instance-Variable modified wird zurückgesetzt (mit FALSE belegt).

Hinweis: Im sogenannten Delayed Mode (siehe entsprechendes Kapitel weiter
unten) werden die letzten beiden Schritte nicht ausgeführt, so dass die Instance-
Variable modified eine eigene Bedeutung erhält.

NavigateToNextFieldOnReturn

Drückt der Nutzer in Eingabefeld eines Number-Objekts die Enter-Taste bleibt der
Cursor üblicherweise dort stehen. Der Hint NavigateToNextFieldOnReturn
bewirkt, dass der Cursor stattdessen zum nächsten Eingabefeld weiterrückt.

Syntax UI-Code: NavigateToNextFieldOnReturn

Methoden

Increment value-Wert um incVal erhöhen
Decrement value-Wert um incVal verringern

Increment

Die Methode Increment bewirkt, dass der Instance-Wert value um incVal erhöht
wird, genau so, als ob der Nutzer auf den entsprechenden Pfeil des Number-
Objekts geklickt hat.

Syntax BASIC-Code: <obj>.Increment

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 185

Decrement

Die Methode Decrement bewirkt, dass der Instance-Wert value um incVal
vermindert wird, genau so, als ob der Nutzer auf den entsprechenden Pfeil des
Number-Objekts geklickt hat.

Syntax BASIC-Code: <obj>.Decrement

4.7.2 Display-Format

displayFormat displayFormat = numWert lesen, schreiben
decimal decimal = numWert lesen, schreiben

Grundsätzlich gilt: Number-Objekte speichern Zahlen im Wertebereich von –
32768 ... +32767 mit einer Genauigkeit von 4 Stellen nach dem Komma. Diese
Zahl kann aber von einem Number-Objekt auf verschieden Weise dargestellt
werden. Das wird über die Instance-Variablen displayFormat und decimal
gesteuert.

decimal

Die Instance-Variable decimal stellt die Anzahl der angezeigten Nachkomma-
stellen ein. Voraussetzung ist, dass das mit displayFormat eingestellte
Anzeigeformat auch Nachkommastellen zulässt. Das ist bei allen Formaten außer
DF_INTEGER der Fall. Der Default-Wert für decimal ist 3, der Maximalwert ist 4.

Syntax UI- Code: decimal = numWert
Lesen: <numVar> = <obj> . decimal
Schreiben: <obj>.decimal = numWert

displayFormat

Die Instance-Variable displayFormat stellt ein, auf welche Weise die vom
Number-Objekt gespeicherte Zahl dargestellt wird. Der Default-Wert für
displayFormat ist DF_INTEGER.

Syntax UI- Code: displayFormat = numWert
Lesen: <numVar> = <obj> . displayFormat
Schreiben: <obj>.displayFormat = numWert

Das Number-Objekt rechnet dabei den internen Wert in die das gewünschte
Format um. Intern geht das Number-Objekt davon aus, das der intern
gespeicherte Wert in US-Points vorliegt. Es stehen die folgenden Formate zur
Verfügung:

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 186

Konstante Wert Darstellung (Beispiele)
DF_INTEGER 0 Ganzzahlig, z.B. 12
DF_DECIMAL 1 Mit Dezimalstellen, z.B. 28,6
DF_POINTS 2 US-Point 720 Pt
DF_INCHES 3 Inches 18,9 in
DF_CENTIMETERS 4 Zentimeter 12,3 cm
DF_MILLIMETERS 5 Millimeter 534 mm
DF_PICAS 6 Picas 60 pt
DF_EUR_POINTS 7 Europäische Points 98 ep
DF_CICEROS 8 Ciceros 78,9 ci
DF_POINTS_OR_MILLIMETERS 9 72 Pt oder 25,4 mm
DF_INCHES_OR_CENTIMETERS 10 1,5 in oder 3,81 cm

Anmerkungen zu einigen der Konstanten
DF_INTEGER

Der Wert wird ganzzahlig ohne Einheit dargestellt. Ist intern ein nicht ganz-
zahliger Wert gespeichert, so wird der dargestellte Wert gerundet.

DF_DECIMAL
Der Wert wird zur Darstellung auf den durch die Instance-Variable decimal
vorgegebene Genauigkeit gerundet.

DF_POINTS_OR_MILLIMETERS
DF_INCHES_OR_CENTIMETERS

Auf Systemen, deren lokalen Einstellungen auf "US-Einheiten" basieren, wird
der Wert in Points oder Inches dargestellt, sind die Einheiten auf "Metrisch"
gestellt, erfolgt die Darstellung in mm bzw. cm.

Beachten Sie, dass mit displayFormat wirklich nur das Anzeige-Format geändert
und der Wert zur Anzeige umgerechnet wird. Das bedeutet konkret, dass der in
der Instance-Variablen value gespeicherte Wert bei den meisten Formaten nicht
mit dem Zahlenwert in der Anzeige identisch ist. Wie oben schon erwähnt geht
das Number-Objekt davon aus, das der intern gespeicherte Wert in US-Points
vorliegt.
Dabei gelten die folgenden Umrechnungen:

Konstante Definition Umrechnung zu US-Point (Pt)
DF_INTEGER keine Umrechnung nötig
DF_DECIMAL keine Umrechnung nötig
DF_POINTS keine Umrechnung nötig
DF_INCHES 1 in = 72 Pt 1 Pt = 1/72 in
DF_CENTIMETERS 1 in = 2.54 cm 1 cm ≈ 28.246 Pt 1 Pt ≈ 0.03278 cm
DF_MILLIMETERS 10 mm = 1 cm 1 mm ≈ 2.8246 Pt 1 Pt ≈ 0.3278 mm
DF_PICAS 1 pt = 1/6 in 1 pt = 12 Pt 1 Pt = 1/12 pt
DF_EUR_POINTS 1 ep ≈ 1.0656 Pt 1 Pt = 0.93844 ep
DF_CICEROS 1 ci = 12 ep 1 ci ≈ 12,7872 Pt 1 Pt ≈ 0,078203 ci

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 187

Beispiel: value steht auf 72 (Pt), das sind 2,54 cm

Number testnumber
Caption$ = "Abstand = "

displayFormat = DF_CENTIMETERS
value = 72
incVal = 36
maxVal = 3000
END Object

Beachten Sie, dass beim Lesen der Instance-Variable value natürlich der dort
gespeicherte Wert gelesen wird. Im Beispiel ist das 72, und nicht etwa 2,54!

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 188

4.7.3 Angepasstes Aussehen und Sliders

Variable Syntax im UI-Code Im BASIC-Code
look look = numWert lesen, schreiben
sliderShowIntervals sliderShowIntervals = main [, sub] lesen, schreiben
SliderNoDigitalDisplay SliderNoDigitalDisplay ––
SliderShowMinMax SliderShowMinMax ––

look

Das Aussehen eine Number-Objekts kann mit der Instance-Variable look
angepasst werden (engl. look : Aussehen, äußere Erscheinung).

Syntax UI- Code: look = numWert
Lesen: <numVar> = <obj> . look
Schreiben: <obj>.look = numWert

Dabei stehen die folgenden Werte zur Verfügung:

Konstante Wert Aussehen
LOOK_NORMAL 0 komplett "normal"
LOOK_NOT_DIGITALLY_EDITABLE 1 Eingabefeld read-only
LOOK_NOT_INCREMENTABLE 2 keine Pfeile
LOOK_X_SLIDER 3 Schieberegler, horizontal
LOOK_Y_SLIDER 4 Schieberegler, vertikal

LOOK_NORMAL

LOOK_NOT_DIGITALLY_EDITABLE

LOOK_NOT_INCREMENTABLE

LOOK_X_SLIDER

LOOK_Y_SLIDER

Für Sliders gibt es weitere Möglichkeiten, das Aussehen anzupassen. Sie sollten
die folgenden Hints nur anwenden, wenn die Instance-Variable look auf einen der
SLIDER-Werte gesetzt ist.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 189

sliderShowIntervals

Dieser Hint versieht den Slider mit Intervall-Marken. Sie können angeben, wie
viele Hauptintervalle gezeichnet und ob diese noch unterteilt werden sollen.

Syntax UI- Code: sliderShowIntervals = main [, sub]
Lesen: <numVar> = <obj> . sliderShowIntervals (n)

n = 0: main-Wert lesen
n = 1: sub-Wert lesen

Schreiben: <obj>.sliderShowIntervals = main [, sub]
<obj>.sliderShowIntervals = 0 löscht den Hint
aus den Instance-Daten, d.h. die Intervalle werden
entfernt.

Der Parameter main gibt die Anzahl der Hauptintervalle an. Der Parameter sub ist
optional und legt fest, in wie viele Unterintervalle die Hauptintervalle zu unterteilen
sind. Die Sub-Intervallstriche sind etwas kürzer als die der Hauptintervalle. Die
Einteilung in Intervalle erfolgt völlig unabhängig vom dargestellten Zahlenbereich.
Beispiel: siehe unten

SliderNoDigitalDisplay

Dieser Hint entfernt den Zahlenwert, der üblicherweise über bzw. neben dem
Slider erscheint.

Syntax UI- Code: SliderNoDigitalDisplay

Beispiel: siehe unten

SliderShowMinMax

Dieser Hint fügt die Anzeige des Minimal- und Maximal-Wertes (minVal und
maxVal) zum Slider hinzu. Die Werte werden in dem durch die Instance-Variable
displayFormat spezifizierten Format angezeigt.

Syntax UI- Code: SliderShowMinMax

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 190

Beispiel: Ein Slider mit 4 Intervallen, die in je 2 Unterintervalle geteilt sind. Die
Anzeige des aktuellen Digitalwertes ist deaktiviert, die Anzeige des Minimum- und
Maximum-Wertes ist aktiviert.
Number QualitySlider
Caption$ = "Quality:"
justifyCaption = J_TOP
ApplyHandler = numberApply
value = 30
incVal = 10
minVal = 0
maxVal = 100
look = LOOK_X_SLIDER
sliderShowIntervals = 4, 2
SliderNoDigitalDisplay
SliderShowMinMax
END Object

Beachten Sie, dass Number-Objekte von der GenericClass abstammen und daher
alle Eigenschaften und Fähigkeiten dieser Klasse erben. Insbesondere gilt das für
die Geometrie-Hints sowie die Möglichkeit sie auf "enabled = FALSE" oder
"readOnly = TRUE" zu setzen. Die Bilder zeigen "readOnly = TRUE" Objekte,
links einen Slider mit dem Hint SliderNoDigitalDisplay gesetzt und rechts ein
"normales" Objekt.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 191

4.7.4 Weitere Hinweise zur Arbeit mit Number-Objekten

• Die Instance-Variablen value, minVal, maxVal und incVal sind aus der Sicht
von R-BASIC vom Datentyp REAL. Intern verwenden Number-Objekte zur
Speicherung der Werte den Datentyp WWFixed. Er besteht aus einem Integer-
Wert (Wertebereich von –32768 bis +32767) für den ganzzahligen Teil und
einem WORD für den gebrochenen Teil.

• Daraus ergeben sich die folgenden Einschränkungen:
• Die Werte für value, minVal, maxVal und incVal können in einem Bereich

von –32768 bis +32767 liegen.
• Die Genauigkeit ist auf 4 Stellen nach dem Komma begrenzt.
• Es muss "minVal – incVal >= –32768" und "minVal + incVal <= 32767"

gelten.

• Setzen Sie den Wert für value zur Laufzeit, prüft das Number-Objekt, ob er im
Bereich von minVal bis maxVal liegt. Ist das nicht der Fall, so passt das
Number-Objekt den Wert ohne Warnmeldung an. Fehlerhafte Werte für minVal
bzw. maxVal werden auf den größtmöglichen bzw. kleinstmöglichen Wert
gesetzt.

• Das Number-Objekt rundet den internen Wert auf die zur Anzeige notwendige
Stellenzahl. Sie daher sollten den value-Wert auch auf die notwendige Anzahl
von Stellen runden (R-BASIC Befehl ROUND), wenn Sie ihn vom Number-
Objekt lesen oder einen Number-Action-Handler programmieren. Wegen der
begrenzten Genauigkeit in der internen Zahlendarstellung weicht der intern
dargestellte Wert oft geringfügig vom angezeigten Wert ab.

• Die Geometrie-Hints ExpandWidth, ExpandHeight, DivideWidthEqually und
DivideHeightEqually werden nur in den ~_SLIDER - Looks unterstützt. Bei
Bedarf packen Sie das Number-Objekt (mit den anderen Looks) in eine Group,
die die entsprechenden Hints gesetzt hat.

Interne Details

Der von Number-Objekten zur Speicherung von Zahlen verwendete Datentyp
WWFixed wird im GEOS System sehr häufig, unter anderem für alle grafischen
Berechnungen, verwendet. Das liegt daran, dass sie einen sehr guten
Kompromiss aus guter Genauigkeit (Nachkommastellen) und sehr hoher Rechen-
geschwindigkeit ermöglicht. Die oben genannte Begrenzung des Wertebereichs
ergibt sich aus der Verwendung eine Integer-Wertes für den ganzzahligen Teil.
Der Nachkommateil kann als Anzahl der 1/65536 interpretiert werden, die auf den
ganzzahligen Teil zu addieren ist. Da 1/65536 ≈ 0,000015 ist, kann der Nach-
kommawert nur in dieser Abstufung geändert werden. Eine Genauigkeit von 5
Nachkommastellen ist damit nicht mehr erreichbar. Selbst 4 Stellen sind mit
Vorsicht zu genießen, da 0,0001 intern bereits als 7/65536 dargestellt werden
muss, was aber eigentlich 0,0001068 ist. R-BASIC begrenzt den Wert für decimal
daher auf 4.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 192

Die Bedingungen "minVal - incVal >= –32768" und "minVal + incVal <= 32767"
haben folgenden Grund: Erhöht oder Erniedrigt das Number-Objekt seinen value-
Wert um den durch incVal gegebenen Wert (klicken Sie z.B. auf den Hoch- bzw.
Runter-Pfeil), so nutzt es dazu Ganzzahl-Arithmetik. Daher kann es zu einer
Wertebereichsüberschreitung (Übertrag) kommen, die vom GEOS-System aus
Performance-Gründen nicht behandelt wird. R-BASIC beachtet diese
Bedingungen beim Compilieren des UI-Codes, aber - ebenfalls aus Performance-
Gründen - nicht zur Laufzeit. Sie können daher gegen diese beiden Bedingungen
verstoßen, wenn Sie die Instance-Variablen zur Laufzeit setzen. Sie werden schon
sehen, was Sie davon haben.

Wenn Sie eine höhere Genauigkeit wünschen oder den Integer-Wertebereich
verlassen müssen, können Sie zur Eingabe einer Zahl einer der Befehle INPUT
oder InputBox oder ein Text-Objekt (z.B. Memo oder InputLine) und ggf. die
BASIC-Funktionen VAL, ValLocal bzw. Str$ verwenden.

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 193

4.7.5 Number-Objekte im Delayed Mode

Ein Number-Objekt kann im "Delayed Mode" (engl.: verzögerter Modus) arbeiten.
Dazu muss man dem Objekt selbst bzw. einem seiner Parents im UI-Code den
Hint MakeDelayedApply geben oder man bindet das Objekt als Child in einem
Dialog ein, dessen dialogType Instance Variable auf DT_DELAYED_APPLY
gesetzt ist. Dieser "Delayed Mode" ist ausführlich im Kapitel 3.4.2 (Delayed Mode
und Status-Message) dieses Handbuchs beschrieben, eine Beschreibung des
Dialog-Objekts im Delayed Mode finden Sie im Kapitel 4.6.6.5.

Instance Variable Syntax im UI-Code Im BASIC-Code
StatusHandler StatusHandler = <Handler> nur schreiben

Syntax UI- Code: StatusHandler = <Handler>
Schreiben: <obj>.StatusHandler = <Handler>

Der StatusHandler wird im Delayed Mode statt des ApplyHandlers gerufen, wenn
der Nutzer auf die Pfeile des Number-Objekt klickt, nach Eingabe eines Wertes
auf "Enter" drückt oder einen Slider "zieht". Der ApplyHandler hingegen wird erst
auf Anforderung gerufen (siehe Kapitel 3.4.2).

Die Instance-Variable modified kann TRUE enthalten, nämlich dann, wenn das
Objekt vom User modifiziert wurde, der ApplyHandler aber noch nicht gerufen
wurde. Der Aufruf des ApplyHandlers setzt auch im Delayed Mode den modified-
Status zurück.

Methode Aufgabe
SendStatus Status-Handler aufrufen

Syntax BASIC-Code: <obj>.SendStatus

Die Methode SendStatus fordert das Objekt auf, seinen StatusHandler aufzurufen
(d.h. seine Status-Message zu senden).

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 194

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Number - 195

(Leerseite)

