R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Objekt-Handbuch

Volume 4
Dialog, Number

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 4

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

0 T ' T 152
4.8.1 UDEIDICKvveeeeeceeeeeeeteee ettt 152
4.6.2 Allgemeine Eigenschaften ... 154
4.6.3 Offnen und SchlieBen von Dialogboxencccooiiinniiinnnn 156
4.6.4 Behandlung von MeSSages .. . iivvrummmmmmmmniiiiiiiin it 159
4.6.4.1 Messages von Ul-Objekten ..., 159
4.6.4.2 InteractionCommandccooiiimieiiiiinii e 159
4.6.4.3 Behandlung von Dialog-Messagesccccuveeeeeeeeeeeeenennn. 162
4.6.5 Frei definierte Dialogeoooiiiiiiiiiiii e 165
4.6.6 Standard-Dialogeceeeeiiiiiiiiiii e 167
4.6.6.1 Command-Dialogecccuueeeieiiiiiiiiiee e 168
4.6.6.2 Notification-Dialogeccevveeiiiiiiiiiiiii 168
4.6.6.3 Question-Dialogeccvviiiiiiiiii 169
4.6.6.4 Progress-Dialoge ... 169
4.6.6.5 Dialoge im Delayed Modeccccuimmeeieiiiiiiniiiieeee e 172
4.6.6.6 Eigene Buttons in Standard-Dialogencccocviiiiiinnnnn. 174
4.6.7 Arbeit mit Blocking-Dialogen ... 176
N A\ 10T 3 1o Y= 180
4.7 1 Grundlegende Eigenschaftenc.cccovviiiiiiiiniiiiiiciieccie 181
4.7.2 Display-Formatccooeeeiiiii 185
4.7.3 Angepasstes Aussehen und SHIderscccuvevveeeiiiiiieeiiieeeeeene 188
4.7.4 Weitere Hinweise zur Arbeit mit Number-Objekten 191

4.7.5 Number-Objekte im Delayed Modeccuvveeeeeiiiiiiiiiiici 193

R-BASIC - Objekt-Handbuch - Vol. 4

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6 Dialog
4.6.1 Uberblick

Dialoge sind unabhéngige Fenster, mit denen der Nutzer interagieren kann. Sie
werden fur die unterschiedlichsten Aufgaben eingesetzt (siehe Bilder). Deshalb
verfugt das Dialog-Objekt Uber sehr viele Fahigkeiten, die in den folgenden
Abschnitten beschrieben werden.

— Information
| Abstand einstellen

Focus und Target

Dialog-Objekte sind ein Knoten in der Focus- und Target-Hierarchie. Es ist
moglich zu Uberwachen, ob ein Dialog-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas fur
erfahrene Programmierer und nur in wenigen Fallen notwendig. Eine Ausnahme
bildet die Implementation von speziellen Menus wie dem "Bearbeiten" Men.
Diesem Thema ist deswegen ein eigenes Kapitel ("Spezielle Themen", Kapitel 13)
gewidmet.

Abstammung
GenericClass =9 Group —> Dialog

Die Moglichkeiten, einen Dialog einzusetzen sind sehr vielfaltig. In diesem
Zusammenhang sollten Sie die folgenden Begriffe kennen:

Frei definierte Dialoge
Als "frei definierte" Dialoge werden in diesem Handbuch Dialogboxen
bezeichnet, deren Objekte Sie vollstdndig selbst definieren. Frei definierte
Dialoge sind fur Einsteiger gut Uberschaubar und werden im Kapitel 4.6.5
besprochen.

Standard-Dialoge
Standard-Dialoge enthalten bereits einige vordefinierte Objekte, z.B. Buttons.
Dadurch wird dem Programmierer viel Arbeit abgenommen, aber er muss sich
im Gegenzug mit den Standard-Dialogtypen und der Thematik der
interactionCommand-Werte auseinandersetzen.

Dialog - 152

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

"Blocking" Dialoge
Blocking-Dialoge zeichnen sich dadurch aus, dass sie das laufende Programm
warten lassen (blockieren), bis der Nutzer mit der Arbeit mit dem Dialog fertig
ist. Sie werden fir wichtige Informationen (z.B. Fehlermeldungen) oder
Nachfragen benutzt. Blocking-Dialoge kénnen sowohl frei definierte als auch
Standard-Dialoge sein.

Reply-Bar
Eine Reply-Bar (so viel wie Reaktionsleiste) ist eine Group am unteren Rand
der Dialogbox, in der sich meist die Reaktions-Buttons eines Dialogs befinden.
Die Dialoge im Bild oben haben jeweils eine Reply-Bar mit drei bzw. einem
Button. Reply-Bars ordnen ihre Children auf spezielle Weise an. Standard-
Dialoge haben automatisch immer eine Reply-Bar, Sie kbnnen mit dem Hint
MakeReplyBar aber auch eine eigene Group zu einer Reply-Bar machen.

Im Folgenden finden Sie eine vollstandige Liste der Instance-Variablen, Methoden,
Handler-Typen und Routinen eines Dialog-Objekts. Eine Beschreibung dieser
finden Sie in den folgenden Kapiteln.

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
MakeResizable MakeResizable —
NoFocus NoFocus —
attrs attrs = numWert lesen, schreiben
modal modal = numWert lesen, schreiben
isOpen — nur lesen
dialogType dialogType = numWert lesen, schreiben
interactionCommand| — nur lesen
OnOpen OnOpen = <Handler> nur schreiben
OnClose OnClose = <Handler> nur schreiben
OnCommand OnCommand = <Handler> nur schreiben
Methoden:
Methode Aufgabe
Open Dialog auf den Schirm bringen (6ffnen)
OpenNoDisturb Dialog ohne Ubernahme des Focus 6ffnen
Close Dialog schlieBen
Action-Handler-Typen:
Handler-Typ Parameter
DialogAction (sender as object, command as integer)

Spezielle Routinen: OpenBlockingDialog(dialogObj as object)

Dialog - 153

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.2 Allgemeine Eigenschaften

Variable Syntax im Ul-Code Im BASIC-Code
MakeResizable MakeResizable —

NoFocus NoFocus —

attrs attrs = numWert lesen, schreiben
modal modal = numWert lesen, schreiben
isOpen — nur lesen

MakeResizable

Normalerweise sind Dialogboxen nicht gr6Benveranderlich. Der Hint
MakeResizable bewirkt, dass man die GroBe des Dialogs auf dem Bildschirm

verandern kann.

Syntax Ul-Code: MakeResizable

NoFocus

Normalerweise tUbernimmt ein Dialog, wenn er ged6ffnet wird, oder der Nutzer mit
der Maus ein Objekt im Dialog anklickt, automatisch den Focus, d.h. alle
folgenden Tastatureingaben gehen an den Dialog. In Situationen, in denen dieses
Verhalten stérend ist, kbnnen Sie mit dem Hint NoFocus verhindern, dass der
Dialog Tastatureingaben entgegennimmt. Wenn der Nutzer z.B. gerade einen Text
eingibt, kann ein solcher Dialog mit der Maus bedient werden, ohne dass der Text
den Focus verliert.

Syntax Ul-Code: NoFocus

attrs

Die Instance-Variable attrs speichert Attribute (spezielle Eigenschaften) des
Dialogs. Dabei stehen die in der Tabelle aufgefliihrten Werte zur Verfigung. Sie
werden weiter unten, an passender Stelle, ausfiihrlich beschrieben.

Konstante Wert | Bedeutung

0 Keine Besonderheiten
DA_HIDDEN_UNTIL_OPENED 1 Offnen nur durch das Programm,
nicht durch den Nutzer direkt

DA_BLOCKING 2 Programmausfihrung wird ange-
halten, bis Dialog beendet ist

Dialog - 154

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: attrs = numWert
Lesen: <numVar> = <obj>.attrs
Schreiben: <obj>.attrs = numWert
numWert ist eine der DA_-Konstanten oder Null

modal
Konstante Wert Bedeutung
NON_MODAL 0 Nicht-modaler Dialog
APP_MODAL 1 Application-modaler Dialog
SYS_MODAL 2 System-modaler Dialog

Der Begriff "Modalitat", beschreibt, inwieweit Eingaben (Tastatur und Maus)
exklusiv an die Dialogbox gehen sollen. Bei einem nicht-modalen Dialog
(NON_MODAL) kénnen Sie beliebig zwischen der Dialogbox und dem Rest der
Applikation oder des Systems hin- und her wechseln. Ein Beispiel ware der Dialog
"Linienattribute" aus GeoDraw. Ein Application-modaler Dialog (APP_MODAL)
blockiert den Rest der Applikation, andere Anwendungen lasen sich weiter
bedienen. Beispielsweise ist der "Speichern unter" Dialog von GeoWrite
Application-modal. System-modale Dialoge (SYS_MODAL) blockieren die
Bedienung des gesamten restlichen GEOS-Systems. Ein Beispiel ist die in
bestimmten Situationen von GEOS erzeugte Nachfrage, ob das System
heruntergefahren werden soll.

Syntax Ul-Code: modal = numWert
Lesen: <numVar> = <obj>.modal
Schreiben: <obj>.modal = numWert
numWert ist eine der ~_ MODAL-Konstanten von oben

isOpen

Diese nur-Lesen Variable enthélt die Information, ob der Dialog aktuell offen ist
(auf dem Schirm sichtbar, isOpen = TRUE) oder nicht (isOpen = FALSE).

Syntax Lesen: <numVar> =<obj>.isOpen

Dialog - 155

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.3 Offnen und SchlieBen von Dialogboxen

Damit ein Dialog auf dem Bildschirm erscheinen kann (ge6ffnet werden kann),
muss er grundsatzlich in den generic Tree des Programms eingebunden sein. Es
ist ein haufiger Fehler, dies bei Dialogen, nicht nach Methode 1 (siehe unten)
verwendet werden, zu vergessen. R-BASIC verfugt prinzipiell tber 3 Methoden,
einen Dialog zu 6ffnen.

Methode 1

Die einfachste Methode, einen Dialog zu verwenden, ist ihn als Child eines Menus
in den generischen Tree einzubinden. Das GEOS-System erzeugt dann
automatisch einen Button im Menu, der den Dialog 6ffnet.

Beispiel:
':Ihm#l = = Registrieren
. —d -
Seriennummer:
Read "
Write
Registrieren... oK | Abbrechen |

Ul-Code-Fragment. Ausflihrliche Code-Beispiele finden Sie im Kapitel 4.6.3.

Menu DemoMenu
Caption$ = "Demo ..
Children = Readbutton, Writebutton, RegisterDialog
END Object

Dialog RegisterDialog

Caption$ = "Registrieren"
Children = SerialText, OKButton, CancelButton
END Object

Tipp: Wenn es zeitweise keinen Sinn macht, dass der Nutzer den Dialog 6ffnen
kann, setzen Sie ihn zwischenzeitlich auf "not enabled" (<dialogObj>.enabled =
FALSE).

Dialog - 156

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Methode 2
Syntax im BASIC-Code Aufgabe
<dialogObj>.0pen Dialog auf den Schirm bringen (6ffnen)
<dialogObj>.0penNoDisturb| Dialog ohne Ubernahme des Focus 6ffnen
<dialogObj>.Close Dialog schlieBen
attrs = DA_HIDDEN_UNTIL_OPENED | Nicht durch Nutzer zu 6ffnen

Die nach Methode 1 eingebundenen Dialoge kann der Nutzer prinzipiell jederzeit
6ffnen. Oftmals ist es aber nétig, Dialoge vom Programm aus zu 6ffnen, wenn es
die Situation erfordert. Fir diesen Zweck verfligten Dialog-Objekte Uber Methoden
zum Offnen und SchlieBen der Dialogbox.

Open Die Dialogbox wird gedtffnet. Der Focus geht an die Dialogbox (es sei
denn, sie hat den Hint NoFocus gesetzt), d.h. der Dialog ist das "aktive"
Fenster und nimmt ab sofort alle Tastatur-Eingaben entgegen.

OpenNoDisturb (Offnen ohne zu stéren). Der Dialog wird gedffnet, bekommt aber
noch nicht den Focus. Der Nutzer wird bei seiner aktuellen Arbeit am
Programm (z.B. einen Text einzugeben) nicht gestért. Wenn er den Dialog
bedienen will, klickt er einfach auf den Dialog. Der Dialog bekommt dann
den Focus, d.h. er kann mit Maus und Tastatur bedient werden.

Der Unterschied zwischen einem Dialog, der mit OpenNoDisturb geéffnet
wurde und einem, der den Hint NoFocus gesetzt hat ist folgender:
NoFocus-Dialoge bekommen den Focus auch dann nicht, wenn sie mit
der Maus angeklickt werden. Eine Bedienung mit der Tastatur oder eine
Texteingabe ist bei NoFocus-Dialogen nicht méglich.

Close Der Dialog wird geschlossen. Weitere Md&glichkeiten, einen Dialog zu
schlieBen, werden in den nachsten Kapiteln behandelt.

Bei Dialogen, die mit Open oder OpenNoDisturb gedtffnet werden, ist es oft gar
nicht sinnvoll, ihn auch Uber ein Menl 6ffnen zu kénnen. Trotzdem miussen
solche Dialoge in den generischen Tree eingebunden werden. Um zu verhindern,
dass das GEOS-System einen Aktivierungs-Button fur diesen Dialog anlegt,
verwenden Sie im Ul-Code die Zeile

attrs = DA HIDDEN UNTIL OPENED

Der Dialog wird solange vor dem Nutzer versteckt (engl. hidden = versteckt) bis er
explizit durch eine der Anweisungen Open oder OpenNoDisturb gedffnet wird (
until = bis, opened = gedffnet) .

Dialog - 157

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Ul-Code-Fragment. Der Dialog erscheint nicht im Menu!

Dialog RegisterDialog
Caption$ = "Registrieren"
Children = SerialText, OKButton, CancelButton
attrs = DA HIDDEN UNTIL_ OPENED ' Dialog verstecken
END Object £ na
i Demo.. |
Menu DemoMenu Tl
Caption$ = "Demo .. " Read
Children = Readbutton, Writebutton, RegisterDialog Write
END Object

BASIC-Code-Fragment
IF registerNr <> validNr THEN RegsiterDialog.Open

Beachten Sie, dass R-BASIC nach dem Offnen des Dialogs sofort mit der
Abarbeitung der nachsten Codezeilen fortsetzt. Es wird nicht gewartet bis der
Dialog wieder geschlossen wird. Ist das nicht gewollt, verwenden Sie bitte
Methode 3.

Methode 3

Syntax im BASIC-Code Aufgabe
numVar = OpenBlockingDialog(<dialogObj>) Dialog aktivieren

attrs = DA_BLOCKING Auf Reaktion durch Nutzer warten

Oftmals ist es fur den Programmablauf erforderlich, dass der Nutzer zuerst den
Dialog bedient, bevor die Programmabarbeitung fortgesetzt werden kann. Ein
Beispiel ware die Nachfrage, ob die Daten gespeichert werden sollen oder nicht.
Fiar diesen Zweck gibt es die Funktion OpenBlockingDialog(), die auf eine
Eingabe des Nutzers wartet und solange die weitere Programmabarbeitung
blockiert ("Blocking"). Sie liefert einen numerischen Wert zuriick, je nachdem,
welchen Button des Dialogs der Nutzer gedrickt hat. Solche Dialoge miissen

attrs = DA BLOCKING

gesetzt haben. DA_BLOCKING impliziert DA_HIDDEN_UNTIL_OPENED, d.h. das
System erzeugt keinen "Aktivierung-Button". Vergessen Sie aber nicht, den Dialog
an irgendeiner Stelle in den generic Tree einzubinden.

AuBerdem ist es erforderlich, dass ein Blocking-Dialog modal ist (APP_MODAL
oder SYS_MODAL). Geben Sie keinen Wert vor, setzt R-BASIC automatisch
modal = APP_MODAL.

Eine ausfihrliche Beschreibung der Arbeit mit Blocking-Dialogen und passende
Code-Beispiele finden Sie im Kapitel 4.6.7

Dialog - 158

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.4 Behandlung von Messages

4.6.4.1 Messages von Ul-Objekten

Ul-Objekte, die sich in einem Dialog befinden (Buttons, Listen, InputLine-Texte...)
kénnen grundsatzlich Messages versenden (d.h. ihre Action-Handler aufrufen).
Ebenso kann man mit diesen Objekten arbeiten (z.B. Instance-Variablen belegen
oder abfragen), wenn der Dialog nicht offen (nicht auf dem Schirm) ist.

Eine Ausnahme gibt es bei Blocking-Dialogen. Objekte in Blocking-Dialogen
durfen keine Action-Handler haben. Details dazu finden Sie im Kapitel 4.6.7.

4.6.4.2 InteractionCommand

Variable Syntax im Ul-Code Im BASIC-Code
interactionCommand| — nur lesen

Die Instance-Variable interactionCommand dient der direkten Kommunikation
zwischen Button-Objekten in einen Dialog und dem Dialog-Objekt selbst, ohne
dass Sie als R-BASIC Programmierer eingreifen mussen. Dies wird fur Standard-
Dialoge und fur Blocking-Dialoge benétigt. Ein interactionCommand-Wert ist eine
Zahl (Datentyp WORD). Er wird vom Button an sein Dialog-Objekt gesendet, wenn
er angeklickt wird. Dadurch kann der Dialog bestimmte Aktionen automatisch
ausfuhren, z.B. sich selbst schlieBen oder einen seiner Action-Handler aufrufen
(OnOpen, OnClose oder OnCommand, sieche Kapitel 4.6.4.3).

Zu diesem Zweck besitzen sowohl Buttons als auch Dialoge eine Instance-
Variable namens interactionCommand. Den interactionCommand-Wert eines
Buttons kann man lesen und schreiben, Ublicher Weise wird er im Ul-Code
gesetzt. Den interactionCommand-Wert eines Dialogs kann man nur lesen. Er
wird vom Dialog automatisch belegt. Beim Offnen des Dialogs wird der Wert auf
Null gesetzt.

Syntax Lesen numVar = <dialogObj>.interactionCommand

Dialog - 159

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Die folgenden Werte sind vom System definiert. Sie kdnnen auch eigene Werte
definieren. Eigene interactionCommand-Werte missen gréBer als 999 sein, die
Werte 0 bis 999 sind vom System reserviert!

interactionCommand

Konstante Wert Bedeutung

IC_CLOSE 1 Dialog schlieBen

IC_APPLY 3 Anderungen anwenden

IC_RESET 4 Dialog zurlcksetzen

IC_OK 5 Verwendet fir "OK"

IC_YES 6 Verwendet fur "Ja"

IC_NO 7 Verwendet fir "Nein"

IC_STOP 8 Verwendet flr "Stopp" oder "Abbrechen"
IC_HELP 10 Button ersetzt den "Hilfe" Button

Intern passiert folgendes:

Nehmen wir an, wir haben einen Button in einem Dialog-Objekt, dessen
interactionCommand-Wert belegt ist. Wird dieser Button angeklickt, so sendet er
seinen interactionCommand-Wert direkt an den Dialog. Der Dialog reagiert
darauf in Abh&ngigkeit vom interactionCommand-Wert:

IC_CLOSE:

+ Die Dialogbox wird geschlossen.

+ Die Instance-Variable interactionCommand des Dialogs wird nicht
verandert, es sei denn, sie ist noch Null, dann wird sie mit IC_CLOSE (= 1)
belegt.

« Falls vorhanden wird der OnClose Handler aufgerufen

IC_HELP:
« Wenn eine Dialogbox einen Wert fiir helpContext$ gesetzt hat erzeugt sie
automatisch einen "Hilfe" Button, dessen Beschriftung ein Fragezeichen ist.
Um diese Aufschrift zu &ndern muss man einen Button anlegen, dessen
interactionCommand Wert auf IC_HELP gesetzt ist. Dieser Button ersetzt

dann den vom Dialog erzeugten Button. Zusétzlich sollten Sie dem Button
die Anweisung

placeObject = REPLY_BAR
geben, falls das angebracht ist.
Das Dialogobjekt oder eines seiner Parents, Gblicherweise das Application
Objekt, sollte einen Wert fur helpFile$ gesetzt haben.

Dialog - 160

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog HelpedDialog
caption$ = "Dialog mit Hilfe"
children = ... , DilaogHelpButton
dialogtype = DT COMMAND
helpContext$="MoreHelp"
End Object

Button DilaogHelpButton
Caption$ = "Hilf mir"
interactionCommand = IC_HELP
placeObject = REPLY_ BAR

End Object

« Falls der Dialog keinen Help Context gesetzt hat fordert der Button beim
Application Objekt den Namen der Hilfedatei und einem Help Context an.

+ Sollte die Hilfedatei oder der Help Context in der Hilfedatei nicht gefunden
werden erzeugt das Hilfesystem eine Fehlermeldung.

+ AbschlieBend wird, falls vorhanden, der OnCommand Handler aufgerufen.

IC_xxx: (alle sonstigen Werte)

* Die Instance-Variable interactionCommand des Dialogs wird mit dem vom
Button kommenden Wert belegt.

* Falls der Button ein Standard-Button eines Standard-Dialogs ist (siehe
Standard-Dialoge, Kapitel 4.6.6) wird der Dialog geschlossen und, falls
vorhanden, der OnClose Handler aufgerufen.

« Zuletzt wird, falls vorhanden, der OnCommand Handler aufgerufen.

Ein Zugriff auf die Instance-Variable interactionCommand des Dialogs ist nur

selten notig, insbesondere aber dann, wenn der Dialog das Abbrechen von léanger
dauernden Prozessen ermdglichen soll (siehe Progress-Dialoge, Kapitel 4.6.6.4).

Dialog - 161

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.4.3 Behandlung von Dialog-Messages

Instance-Variable Syntax im Ul-Code Im BASIC-Code
OnOpen OnOpen = <Handler> nur schreiben
OnClose OnClose = <Handler> nur schreiben
OnCommand OnCommand = <Handler> nur schreiben

Action-Handler-Typen:
Handler-Typ Parameter
DialogAction (sender as object, command as integer)

Aus Sicht einer Dialogbox gibt es drei wichtige Ereignisse:

1. Die Dialogbox wird getffnet

2. Die Dialogbox wird geschlossen

3. Ein Button mit einem interactionCommand-Wert wird gedrickt

Far alle drei Félle kbnnen Sie einen Action-Handler definieren, der aufgerufen
wird, wenn das Ereignis eintritt.

Syntax Ul-Code: OnOpen = <Handler>
OnClose = <Handler>
OnCommand = <Handler>
Schreiben: <obj>.0nOpen = <Handler>
<obj>.0nClose = <Handler>
<obj>.0nCommand = <Handler>

OnOpen

Der OnOpen-Handler wird gerufen, wenn die Dialogbox ged6ffnet wird. OnOpen-
Handler missen als DialogAction definiert sein, wobei der Parameter command
unbestimmt ist und nicht verwendet werden sollte. Zum Zeitpunkt, an dem der R-
BASIC-Handler ausgefihrt wird, ist der Dialog bereits auf dem Schirm.

Syntax Ul-Code: OnOpen = <Handler>
Schreiben: <obj>.0nOpen = <Handler>

Beispiel Ul-Code:

Dialog CommandDialog
Caption$ = "Personliche Daten"
Children = NameText, VornameText, OKButton
justifyChildren = J CENTER ON_CAPTION
OnOpen = PslDataOpen
END Object

Dialog - 162

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dazugehériger BASIC-Code

DialogAction PslDataOpen
<.. Was immer hier zu tun ist ...>
END Action

OnClose

Der OnClose-Handler wird gerufen, wenn die Dialogbox geschlossen wird.
OnClose-Handler mussen als DialogAction definiert sein, wobei der Parameter
command immer 1 (IC_CLOSE) ist. Zum Zeitpunkt, an dem der R-BASIC-Handler
ausgefuhrt wird, ist der Dialog bereits nicht mehr auf dem Schirm.

Syntax Ul-Code: OnClose = <Handler>
Schreiben: <obj>.0nClose = <Handler>

Beispiel Ul-Code:

Dialog CommandDialog
Caption$ = "Personliche Daten"
Children = NameText, VornameText, OKButton
justifyChildren = J CENTER ON CAPTION
OnClose = PslDataClose

END Object

Dazugehériger BASIC-Code

DialogAction PslDataClose

<.. Was immer hier zu tun ist ...>
END Action

OnCommand

Der OnCommand-Handler wird gerufen, wenn ein Button mit einem interaction-
Command-Wert, der nicht IC_CLOSE ist, angeklickt wurde (IC_CLOSE ruft den
OnClose-Handler). OnCommand-Handler missen als DialogAction definiert
sein, wobei der Parameter "command" den interactionCommand-Wert des
auslésenden Buttons enthalt.

Syntax Ul-Code: OnCommand = <Handler>
Schreiben: <obj>.0nCommand = <Handler>

Dialog - 163

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Ausfuhrliches Beispiel:
Eine Dialog-Box mit 3 Schaltern. Ul-Code:

Dialog ComplexDialog

Caption$ = "Namen eingeben"

Children = NameText, VornameText, MyReplyBar
justifyChildren = J CENTER ON_CAPTION
OnCommand = CommandHandler

END Object — Namen eingeben
Name: |Panther
R Vorname: [Paulchen
Caption$ = "Name:"
end object Ubernehmen| Loschen| Schiiesen |

InputLine VornameText
Caption$ = "Vorname:"
end object

Group MyReplybar
MakeReplyBar
Children = CloseButton, OKButton, DeleteButton

END Object

Button CloseButton

Caption$ = "SchlieBen"
interactionCommand = IC_ CLOSE
END Object

Button DeleteButton

Caption$ = "Loschen"
interactionCommand = 1001 ' eigener Wert
END Object

Button OKButton

Caption$ = "Ubernehmen"
interactionCommand = IC_OK
END Object

Im BASIC-Code muss nur der OnCommand-Handler vereinbart werden. Der
CloseButton wird vom Dialog automatisch bedient, da er als interactionCommand
IC_CLOSE gesetzt hat.

DialogAction CommandHandler
IF command = 1001 THEN
" Texte loschen
NameText.text$ =
VornameText.text$ =
END IF
IF command = IC_OK THEN
MsgBox "Werte werden iibernommen'
ComplexDialog.Close
END IF
END Action

nn

Dialog - 164

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.5 Frei definierte Dialoge

dialogType = DT_NORMAL keine systemerzeugten Buttons

Der wohl am einfachsten nachvollziehbare Weg, eine Dialogbox aufzubauen, ist,
alle UI-Objekte selbst zu definieren, wie das folgende Beispiel zeigt:

Ul-Code:
Menu MainMenu
Caption$ = "Demo .. "
Children = Readbutton, Writebutton, RegisterDialog
END Object
i Demo .. B
<.. ReadButton und WriteButton nicht aufgefiihrt..> L= N
Read
Write
Registrieren...

Ihddkhdhdhhhdhhdhddhdhhhddhdrhhddhdrdrhddrrrhddrrrsx

! Demo-Dialog
!***

= Registrieren
Dialog RegisterDialog [—
Caption$ = "Registrieren"
Children = SerialText, MyReplyBar "
END Object oK | Abbrechen |

InputLine SerialText

Caption$ = "Seriennummer:"
justifyCaption = J TOP
END Object

Group MyReplyBar
MakeReplyBar

Children = OKButton, CancelButton
END Object

Button OKButton

Caption$ = "OK"
ActionHandler = RegisterOK
END Object

Button CancelButton

Caption$ = "Abbrechen"
ActionHandler = RegisterCancel
END Object

Im Dialog-Objekt ist kein Wert fur dialogType gesetzt, er steht per default auf
DT_NORMAL.

Offnet der Nutzer den Dialog kann er eine Seriennummer eingeben und dann auf
OK oder Abbrechen klicken. Dadurch werden die Action-Handler RegisterOK bzw.
RegisterCancel aufgerufen. Diese konnten so aussehen:

Dialog - 165

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

ButtonAction RegisterOK
RegisterDialog.Close
MsgBox "Registrierung erfolgreich"
END Action

ButtonAction RegisterCancel
RegisterDialog.Close
END Action

Eine Behandlung der eingegeben Seriennummer wurde der Ubersichtlichkeit
halber ausgelassen. Wichtig ist, dass Sie die Dialogbox in beiden Fallen manuell
schlieBen muassen. Das ist schon alles.

Der Dialog im Beispiel besteht aus 5 Objekten: dem Dialog-Objekt, einem Text-
Objekt, einer ReplyBar und zwei Buttons. Reply-Bars sind typisch flur Dialoge,
deswegen kann das System automatisch eine Reply-Bar anlegen, wenn wir sie
anfordern. Dazu muss man nur:

- Die Buttons als direktes Child des Dialogs festlegen

- Die Buttons mit der Anweisung placeObject = REPLY_BAR versehen.

Der folgende Ul-Code erzeugt genau die gleiche Dialogbox wie der im Beispiel
oben:

Dialog RegisterDialog

Caption$ = "Registrieren"
Children = SerialText, OKButton, CancelButton
END Object

InputLine SerialText

Caption$ = "Seriennummer:"
justifyCaption = J TOP
END Object

Button OKButton
placeObject = REPLY BAR

Caption$ = "OK"
ActionHandler = RegisterOK
END Object

Button CancelButton
placeObject = REPLY BAR

Caption$ = "Abbrechen"
ActionHandler = RegisterCancel
END Object

Dialog - 166

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.6 Standard-Dialoge

Variable Syntax im Ul-Code Im BASIC-Code
dialogType dialogType = numWert lesen, schreiben

Auch wenn es moglich ist, die Ul-Objekte im Dialog vollstandig selbst zu
definieren, ist dies in vielen Fallen gar nicht nétig. Man kann stattdessen
sogenannte "Standard-Dialoge" verwenden, die bereits einige vorgefertigte
Objekte enthalten. Dies sind ein oder mehrere Buttons - Standard-Buttons
genannt - und eine Reply-Bar. Da die Buttons direkt vom System erzeugt werden,
kénnen wir ihnen keinen Action-Handler zuweisen. Stattdessen belegt GEOS die
Instance-Variable interactionCommand des Buttons.

Um einen Standard-Dialog zu verwenden bendtigt man nur eine einzige Zeile im
Ul-Code: Die Belegung der Instance-Variablen dialogType.

Syntax Ul-Code: dialogType = numWert
Lesen: <numVar> = <obj>.dialogType
Schreiben: <obj>.dialogType = numWert

Welche Buttons mit welchem interactionCommand-Wert erzeugt werden, hangt
nur von der Belegung dieser Instance-Variablen ab. Die folgende Tabelle enthalt
die moéglichen Werte fir die Instance-Variable dialogType sowie die erzeugten
Buttons und die zugeordneten interactionCommand-Werte.

dialogType Wert erzeugte Buttons
DT_NORMAL 0 keine (default, frei definierter Dialog)

DT_PROGRESS 2 "Stopp" oder "Anhalten" (IC_STOP)
DT_COMMAND 3 "SchlieBen" oder "Abbrechen" (IC_CLOSE)
DT_NOTIFICATION 4 "OK" (IC_OK)
DT_QUESTION 5 "Ja" (IC_YES) und "Nein" (IC_NO)

1

DT_DELAYED_APPLY "Anwenden" bzw. "OK" (IC_APPLY)

"SchlieBen" oder "Abbrechen" (IC_CLOSE)

Die genaue Beschriftung der Buttons kann je nach System-Version geringfligig
variieren. Wenn nicht explizit anders angegeben wird die Dialogbox automatisch
geschlossen, wenn der Nutzer auf einen der vom System erzeugten Buttons klickt.

Die Verwendung der einzelnen dialogTypen und welche konkreten zusatzlichen

Eigenschaften der Dialog dadurch erhalt, wird in den néchsten Kapiteln ausfihrlich
beschrieben.

Dialog - 167

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.6.1 Command-Dialoge

dialogType = DT_COMMAND "SchlieBen" oder "Abbrechen" (IC_CLOSE)

Ein Command-Dialog (engl.: command = Kommando, Anweisung) erzeugt
automatisch eine Reply-Bar mit einen SchlieBen-Button.

Beispiel Ul-Code

Dialog CommandDialog
Caption$ = "Personliche Daten"
Children = NameText, VornameText
justifyChildren = J CENTER ON CAPTION
dialogType = DT COMMAND

END Object = Personliche Daten
Name: |

InputLine NameText vorname: |

Caption$ = "Name:"

END Object SchlieBen |
InputLine VornameText

Caption$ = "Vorname:"

END Object
4.6.6.2 Notification-Dialoge

dialogType = DT_NOTIFICATION "OK" (IC_OK)

Notification-Dialoge (Hinweis-Dialoge) erzeugen automatisch eine Reply-Bar mit
einen OK-Button. Sie werden sehr haufig far "Blocking-Dialoge" (attrs =
DA_BLOCKING, Kapitel 4.6.7) oder fur den "Information uber.."-Dialog im
Dateimenu verwendet. Bevor Sie einen Notification-Dialog programmieren sollten
sie prufen, ob einer der R-BASIC-Befehle MsgBox, ErrorBox oder WarningBox
nicht bereits lhren Anforderungen genigt. Sie sind intern als Blocking-Dialog mit
dialogType = DT_NOTIFICATION realisiert.

Dialog NotificationDialog
Captlons —one =l Ntz |
Children = NotificationText E;hatgekhppu
dialogType = DT NOTIFICATION v o
END Object

Memo NotificationText

text$ = "Es hat geklappt!"
readOnly = TRUE
END Object

Dialog - 168

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.6.3 Question-Dialoge

dialogType = DT_QUESTION "Ja" (IC_YES) und "Nein" (IC_NO)

Question-Dialoge (Frage-Dialoge) erzeugen automatisch eine Reply-Bar mit einen
"Ja" und einem "Nein"-Button. Sie werden sehr h&ufig fur "Blocking-Dialoge" (attrs
= DA_BLOCKING, Kapitel 4.6.7) verwendet. Bevor Sie einen Question-Dialog
programmieren sollten sie prifen, ob der R-BASIC-Befehl QuestionBox nicht

bereits Ihren Anforderungen gentigt. QuestionBox ist intern als Blocking-Dialog mit
dialogType = DT_QUESTION realisiert.

Dialog QuestionDialog

Caption$ ="Frage" —[Frage
Children = QuestionText

dialogType = DT QUESTION Wirklich?

attrs = DA BLOCKING

END Object

Memo QuestionText
text$ = "\r\twWirklich?\r"
readOnly = TRUE
END Object

Tipp: Um herauszubekommen, ob der Nutzer auf "Ja" oder "Nein" geklickt hat
kénnen Sie den Dialog entweder als Blocking-Dialog programmieren (siehe
Beispielcode und Kapitel 4.6.7) oder Sie verwenden den OnCommand-Handler
des Dialogs (siehe Kapitel 4.6.4.3).

4.6.6.4 Progress-Dialoge

dialogType = DT_PROGRESS "Stopp" oder "Anhalten" (IC_STOP)
interactionCommand nur Lesen

Progress-Dialoge dienen dazu, dem Nutzer den Fortschritt einer Operation
anzuzeigen und ein Abbrechen der Operation zu ermdglichen. Sie erzeugen
automatisch eine Reply-Bar mit einen "Anhalten"-Button.

Im Beispiel wird zur Fortschrittsanzeige ein Textobjekt verwendet.

Dialog ProgressDialog
Caption$ = "In Arbeit ...
Children = ProgressTex
dialogType = DT PROGRESS
attrs = DA HIDDEN UNTIL OPENED
END Object

— | In Arbeit ...

Fortschritt: 15 %

Anhalten

Memo ProgressText
Caption$ = "Fortschritt:
readOnly = TRUE

n

Dialog - 169

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

fixedSize = 20 + ST AVG CHAR WIDTH, 1 + ST LINES OF TEXT
END Object

Die korrekte Verwendung eines Progress-Dialogs erfordert etwas Aufmerksamkeit
und Hintergrundwissen. GEOS ist ein Multithread-System, d.h. mehrere Prozesse
(Threads) laufen quasi gleichzeitig ab. Selbst in einem R-BASIC-Programm gibt es
zwei Threads - einen fur den von lhnen geschriebenen BASIC-Code und den Ul-
Thread, der die UI-Objekte bedient. Wenn Sie eine langwierige Operation
ausfuhren wollen, z.B. das Suchen nach einer Datei, schreiben Sie dazu eine R-
BASIC-Routine. Wéhrend diese lauft kann sie nicht durch das Anklicken eines
Buttons unterbrochen werden, da der Action-Handler dieses Buttons auch im
BASIC-Code-Thread lauft. Das Ereignis (Anklicken des Schalters "Abbrechen")
wirde vom System in eine Warteschlage gestellt und abgearbeitet, wenn die
Suchroutine fertig ist. Sie kénnen auf diese Weise also eine laufende Operation
nicht unterbrechen.

An dieser Stelle kommt der Ul-Thread und die Dialog-Instance-Variable
interactionCommand ins Spiel. Klickt der Nutzer auf den "Anhalten" Button, so
sendet dieser im Ul-Thread - also parallel zur laufenden Suchroutine - eine
Message an den Dialog. Der Dialog schlieBt sich uns setzt seine Instance-Variable
interactionCommand auf den vom Button gesendeten Wert - in diesem Fall
IC_STOP. Wenn Sie wahrend der laufenden Operation regelméaBig die
interactionCommand-Variable des Progress-Dialogs abfragen, kénnen Sie den
Prozess auf Anforderung abbrechen. Das folgende Code-Fragment zeigt, wie das
geht:

ProgressDialog.Open ' Dialog anzeigen

FOR N =1 TO 100
ProgressText.Text$ = Str$(n) + " " " Fortschritt melden

< ... Nachsten Schritt der Operation durchfihren .. >

IF ProgressDialog.interactionCommand = IC_STOP THEN BREAK
NEXT N

ProgressDialog.Close ' Dialog schlieBen

IF ProgressDialog.interactionCommand = IC STOP THEN
MsgBox "Abgebrochen"
END TIF

Tipp: Wenn es im konkreten Fall stérend ist, dass sich der Dialog sofort
selbsténdig schlieBt kénnen Sie statt eines Progress-Dialogs einen frei definierten
Dialog mit einem eigenen CancelButton verwenden. Dieser setzt zwar die
interactionCommand-Variable des Dialogs, schlieBt ihn aber nicht, da er kein
Standard-Button ist. Das ist im folgenden Beispiel gezeigt.

Dialog - 170

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Dialog ProgressDialog
Caption$ = "In Arbeit ...
Children = ProgressText, CancelButton
attrs = DA HIDDEN UNTIL OPENED

END Object =[] mnnArbeit..

Fortschritt:

Memo ProgressText
Caption$ "Fortschritt:
readOnly TRUE
fixedSize = 20 + ST _AVG_CHAR WIDTH, 1 + ST LINES OF TEXT

END Object

"

Anhalten

Button CancelButton
Caption$ = "Anhalten"
placeObject = REPLY BAR
interactionCommand = IC_STOP
END Object

Sie durfen nur nicht vergessen, den Dialog manuell mit ProgressDialog.Close zu
schlieBen.

Anstelle eine Progress-Dialogs kénnen Sie eventuell auch einen Button

verwenden, dessen Instance-Variable unhandledEvents Sie abfragen. Das ist im
Abschnitt 4.3 beschrieben.

Dialog - 171

R-BASIC - Objekt-Handbuch - Vol. 4

Einfach unter PC/GEOS programmieren

4.6.6.5 Dialoge im Delayed Mode

dialogType = DT_DELAYED_APPLY "Anwenden" bzw. "OK" (IC_APPLY)
"SchlieBen" oder "Abbrechen"

(IC_CLOSE)

Der Dialogtyp DT_DELAYED_APPLY erzeugt eine Dialog-Box die im soge-
nannten "Delayed Mode" arbeitet, ganz so als wirden Sie den Hint
MakeDelayedApply fir den Dialog setzen. Der Delayed Mode ist ausfuhrlich im
Kapitel 3.4.2 beschrieben. Im Kern besteht er in Folgendem:

Die im Dialog enthaltenen Objekte (Texte, Number, Listen) senden statt ihrer
Apply-Message (Aufruf des ApplyHandlers) zunéchst eine Status-Message aus.
Diese kann zur Kommunikation der Dialog-internen Objekte untereinander
genutzt werden.

Die Apply-Message wird erst ausgesendet, wenn der Nutzer auf den vom
Dialog bereitgestellten Button "Anwenden" klickt. Dieses |0st die Apply-Methode
des Dialogs aus, die an alle seine Children weitergereicht wird (siehe Kapitel
3.4.1). Ein DT_DELAYED_APPLY-Dialog sorgt auBerdem automatisch daftr,

das der "Anwenden"-Button erst enabled wird, wenn mindestens eins der im
Dialog enthaltenen Objekte geéndert wurde.

Die betroffenen Objekte (Texte, Number, Listen) mussen "modified" sein, damit
sie ihre Apply-Message aussenden. Andert der Nutzer das Objekt passiert das
automatisch, andern Sie das Objekt vom BASIC-Code aus, missen Sie es
selbst auf "modified" setzen.

Beispiel: Eine Dialogbox enthéalt eine Liste und ein Number-Objekt, die sich
gegenseitig Uber Status-Handler auf dem neuesten Stand halten. Beim Klick auf
"Anwenden" wird der ApplyHandler der Liste aufgerufen.

Ul-Code

Dialog DialogInDelayedMode

RadioButtonGroup DList

caption$ ="Eigenschaften auswdhlen"
dialogType = DT DELAYED APPLY
Children = DList, DNum
orientChildren = ORIENT VERTICALLY

justifychildren = J_CENTER = Eigenschaften auswahlen
end object — | | R _4_1_5_|
select: [E [/
Hrupsngen i Schlieen |

Children = rb0,rbl, rb2, rb3, rb4, rb5
OrientChildren = ORIENT HORIZONTALLY
selection = 3

MakeToolbox
StatusHandler = DListStatusChanged

ApplyHandler = DListApply
END Object

Dialog - 172

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

RadioButton rb0: Caption$ = " - 0 - ": identifier = 0: END Object
RadioButton rbl: Caption$ = " - 1 - ": identifier = 1: END Object
RadioButton rb2: Caption$ = " - 2 - ": identifier = 2: END Object
RadioButton rb3: Caption$ = " - 3 - ": identifier = 3: END Object
RadioButton rb4: Caption$ = " - 4 - ": identifier = 4: END Object
RadioButton rb5: Caption$ = " - 5 - ": identifier = 5: END Object
Number DNum

Caption$ = "Select:"

StatusHandler = DNumStatusChanged

minval = 0 : maxVal = 5

value = 3

END Object

BASIC-Code Die Zeile "DList.modified = TRUE" sorgt daflr, dass die Liste

als "gedndert" markiert wird, da sie sonst ggf. ihren Apply-Handler nicht aufruft.

LISTACTION DListApply
MsgBox Str$(selection)+
END Action

"

ist selektiert"”

LISTACTION DListStatusChanged
DNum.value = selection
END Action

NUMBERACTION DNumStatusChanged
DList.selection = value
DList.modified = TRUE
END Action

Eine mdgliche Ergdnzung wére, einen zusatzlichen Button "Zurucksetzen" hinzu-
zufigen, der die Liste und das Number-Objekt auf den Anfangsbestand
zurlcksetzt. Wie das gemacht wird, wird am Ende des nachsten Abschnitts
(4.6.6.6) beschrieben.

Dialog - 173

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.6.6 Eigene Buttons in Standard-Dialogen

Sie kbénnen sowohl eigene Buttons zur Reply-Bar der Standard-Dialoge
hinzuflgen als auch die vorhandenen durch eigene ersetzen. Letzteres kann z.B.
sinnvoll sein, wenn Sie die Beschriftung der Buttons &ndern oder durch eine Grafik
ersetzen wollen. In jedem Fall muss ein solcher Button die Zeile

placeObject = REPLY BAR

und einen interactionCommand-Wert enthalten. Existiert schon ein Standard-
Button mit diesem interactionCommand-Wert, so wird er ersetzt, andernfalls wird
ein weiterer Button hinzugefligt. Fur ihren eigenen Button kénnen Sie einen der
vorhandenen interactionCommand-Werte verwenden (z.B. IC_OK) oder einen
eigenen definieren. Eigene interactionCommand-Werte missen gréBer als 999
sein, die Werte 0 bis 999 sind vom System reserviert!

Beispiel: Der Command-Dialog aus dem letzten Abschnitt war so definiert (die
Text-Objekte sind nicht mit aufgefihrt):

Dialog CommandDialog
Caption$ = "Personliche Daten"
Children = NameText, VornameText
dialogType = DT COMMAND
justifyChildren = J CENTER_ON_CAPTION
END Object

= | Personliche Daten

Vorname: |

SchlieBen |

Der Button mit der Aufschrift "SchlieBen" ist vom System erzeugt und
entsprechend der Tabelle vorn (Anschnitt 4.6.6) mit dem interactionCommand
IC_CLOSE belegt.

Um die Beschriftung des Buttons von "SchlieBen" auf "Abbrechen" zu &ndern und
einen weiteren Button mit der Aufschrift "Ubernehmen" hinzuzufligen muss man
folgendes tun (die Text-Objekte sind wieder nicht mit aufgefuhrt):

Dialog CommandDialog
Caption$ = "Personliche Daten"
Children = NameText, VornameText, CloseButton, OKButton
justifyChildren = J CENTER ON_ CAPTION
dialogType = DT COMMAND
OnCommand = DialogOKHandler

END Object
= Persdnliche Daten

Vorname: |

Ubernehmen | Abbrechen |

Dialog - 174

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Button CloseButton
Caption$ = "Abbrechen"

interactionCommand = IC_CLOSE ' Button wird ersetzt
placeObject = REPLY BAR
END Object

Button OKButton
Caption$ = "Ubernehmen"
interactionCommand = IC OK ' Button wird hinzugefiigt
placeObject = REPLY BAR
END Object

Die beiden neuen Buttons bekommen einen interactionCommand-Wert, aber
keinen ActionHandler. Um auf den OK-Button regieren zu kénnen, bekommt der
Dialog einen Action-Handler (OnCommand = DialogOKHandler). Dieser muss
mindestens den Dialog schlieBen, da nicht-Standard-Buttons dies nicht auto-
matisch tun.

Im BASIC-Code muss nur der OnCommand-Handler vereinbart werden:

DIALOGACTION DialogOKHandler
CommandDialog.Close
< .. Auswertung des Namens hier ..>
END Action

Ein weiterer h&aufiger Fall fur einen eigenen Button in einem Dialog-Objekt ist ein
"Reset"-Button. Daflr kann man das InteractionCommand IC_RESET verwenden.
Der Dialog muss dann einen OnCommand-Handler haben, der dieses Kommando
auswertet und alle betroffenen Objekte auf ihnren Anfangswert setzt.

Beispiel:
DIALOGACTION MyOnCommandHandler
IF command = IC_RESET THEN
NameText.text$ = ""
VornameText.text$ =
END IF
< .. >
END Action

nn

Dialog - 175

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.6.7 Arbeit mit Blocking-Dialogen

attrs = DA_BLOCKING Auf Reaktion warten
numVar = OpenBlockingDialog(<dialogObj>) | Dialog aktivieren

Oftmals ist es fur den Programmablauf erforderlich, dass der Nutzer zuerst den
Dialog bedient, bevor die Programmabarbeitung fortgesetzt werden kann. Das
heiBt, die weitere Programmabarbeitung wird solange blockiert ("Blocking"), bis
der Dialog beendet ist. Ein Beispiel wére die Nachfrage, ob die Daten gespeichert
werden sollen oder nicht.

Fir Blocking-Dialoge kann man sowohl frei definierte als auch Standard-Dialoge
verwenden.

attrs = DA_BLOCKING

Ein Blocking-Dialog muss die Zeile
attrs = DA BLOCKING

m Ul-Code gesetzt haben (ein spateres setzen im BASIC-Code ist moglich, aber

meist nicht sinnvoll). Diese Zeile bewirkt folgendes:

+ Das System erzeugt keinen "Aktivierungsbutton" fiir den Dialog, d.h. er kann
nicht Uber ein Menu ged6ffnet werden.

* Der Dialog muss mit der Funktion OpenBlockingDialog() (siehe unten)
gedffneten werden. Die Methoden Open und OpenNoDisturb fihren zu einem
Laufzeitfehler.

+ Der Dialog ist immer modal (siehe Kapitel 4.6.2). Wenn Sie keinen Wert fir die
Instance-Variable "modal" vorgeben, wird APP_MODAL genommen,
NON_MODAL wird ignoriert (R-BASIC setzt dann APP_MODAL).

Wichtig! Vergessen Sie nicht, den Dialog an geeigneter (irgendeiner) Stelle in den
generic Tree einzubinden.

OpenBlockingDialog()

GEOS ist eine Multi-Thread-System. Selbst in einem R-BASIC Programm laufen
zwei Threads (Prozesse) gleichzeitig: Der Code-Thread, der den von lhnen
geschrieben BASIC-Code ausfiihrt und der Ul-Thread, der die Ul-Objekte bedient.
Die Funktion OpenBlockingDialog() 6ffnet einen Blocking-Dialog. Der BASIC-
Code Thread wird blockiert ("schlafen" gelegt, er verbraucht auch keine CPU-Zeit
mehr), es lauft nur noch der Ul-Thread. Dadurch kann der Nutzer die Objekte im
Dialog bedienen (Listenelemente auswéhlen, Texte eingeben etc.). Um den Dialog
zu beenden muss der Nutzer auf einen Schalter Kklicken, der einen
interactionCommand-Wert gesetzt hat (vgl. Kapitel 4.6.4.2). Daraufhin kehrt
OpenBlockingDialog() zurtick und liefert den interactionCommand-Wert des
Buttons, der betatigt wurde. Der BASIC-Code Thread wird fortgesetzt und kann
den Wert auswerten.

Achtung! OpenBlockingDialog liefert den Wert Null, wenn GEOS heruntergefahren
wird, wahrend ein Blocking-Dialog offen ist.

Dialog - 176

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

SchlieBen von Blocking-Dialogen

In den meisten Fallen, insbesondere wenn Sie einen der Standard-Dialog-Typen
gewahlt haben (z.B. dialogType = DT_QUESTION, siehe Kapitel 4.6.6), schliet
sich der Dialog automatisch. Sollte das nicht der Fall sein (z.B. weil Sie einen
selbst definierten interactionCommand-Wert verwendet haben), missen Sie den
Dialog selbst schlieBen.

cmd = OpenBlockingDialog(SaveFilesDialog)
SaveFilesDialog.Close

IF cmd = 1001 THEN

Sie missen, wie im Beispiel, den zuriickgegebenen Wert "cmd" nicht tGberprufen,
da es erlaubt ist, die Close-Methode auch aufzurufen, wenn es gar nicht nétig
ware.

Beispiel 1: Ein einfacher Dialog. Er dient zur Verdeutlichung des Prinzips. An
seiner Stelle kénnte man auch den BASIC-Befehl MsgBox verwenden.

Dialog InfoBox

Caption$ = "Information" [information

chilaren - Inforext o oven wuroen
attrs = DA BLOCKING gre’ch gesperchart.

dialogType = DT NOTIFICATION | |L.. 0K
END Object

Memo InfoText
text$ = "Die Daten wurden erfolgreich gespeichert."
readOnly = TRUE
END Object

Beispiel 2: Ein Dialog mit zwei Objekten.

Dialog ErrorDialog

Caption$ = "Fehler !" — Fehler !
Children = ErrorValue, ErrorText FehlerCode: 12

orientChildren = ORIENT VERTICALLY
justifyChildren = J CENTER

Beschreibung:
Es fehlt eine notwendige

attrs = DA BLOCKING Datei.
dialogType = DT NOTIFICATION
END Object

Number ErrorValue

Caption$ = "Fehler Code:"
readOnly = TRUE
END Object

Memo ErrorText
Caption$ = "Beschreibung:"
justifyCaption = J TOP
readOnly = TRUE
DrawInBox

END Object

Dialog - 177

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Der Dialog wird in einer SUB verwendet:

SUB ShowError(err as integer)

DIM retVval
ErrorValue.value = err
ErrorText.text$ = "Es fehlt eine notwendige Datei."
retVal = OpenBlockingDialog(ErrorDialog)

END SUB

Beispiel 3: Eine Dialog-Box mit 2 frei definierten Schaltern. Die Reply-Bar wird
automatisch erzeugt, da die Buttons die Zeile "placeObject = REPLY_BAR"

enthalten. Ul-Code:

Dialog NameDialog

Caption$ = "Name {iiberpriifen"

Children = NameText, VornameText, CloseButton, OKButton
justifyChildren = J CENTER ON_CAPTION

attrs = DA BLOCKING

END Object | Name uberprifen

Name: |Warger
InputLine NameText VAT e |Nalther|

Caption$ = "Name:" -
end object berechen| ﬂndern'

InputLine VornameText
Caption$ = "Vorname:"
end object

Button CloseButton
Caption$ = "Abbrechen"
placeObject = REPLY BAR
interactionCommand = 1001
END Object

Button OKButton
Caption$ = "Andern"
placeObject = REPLY BAR
interactionCommand = 1002
END Object

Im BASIC-Code der SUB "CheckName" wird der Dialog initialisiert, aufgerufen und
dann ausgewertet:

' globale Variablen
DIM gName$, gVorname$

<.. irgendwo im Code ..>
gName$ = "Wirger"
gVorname$ = "Wilhelm"

SUB CheckName ()
DIM cmd AS Word
NameText.text$ = gName$

Dialog - 178

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

VornameText.text$ = gVorname$

cmd = OpenBlockingDialog (NameDialog)
NameDialog.Close
IF cmd = 1002 THEN

' Werte auslesen

gName$ = NameText.text$

gVorname$ = VornameText.text$

END IF

END SUB

Erganzende Hinweise

+ Objekte in Blocking-Dialogen dirfen Kkeinerlei Action-Handler oder Status-
Handler haben. Das gilt fir das Dialog-Objekt selbst, die Buttons, Listen-
Objekte usw. Insbesondere kénnen DynamicList-Objekte nicht in Blocking-
Dialogen verwendet werden, da sie einen Query-Handler benétigen. Der Grund
dafdr ist einfach: Blocking-Dialoge blockieren den BASIC-Code Thread. Die
Action-Handler werden aber in diesem Thread ausgefihrt - sie kénnen also
nicht behandelt werden, solange der Dialog offen ist.

* Blocking-Dialoge muissen mindestens einen Button mit einem interaction-
Command-Wert haben. Dies ist der einzige Weg einen Blocking-Dialog zu
verlassen. Vergessen Sie das, hangt GEOS.

« Haufig werden flur Blocking-Dialoge Standard-Dialog-Typen (dialogType =
DT_xxx) benutzt. Sie kdnnen aber auch beliebige eigene Buttons/
interactionCommand-Werte definieren (vgl. Kapitel 4.6.6.6)

+ Sollte eine Dialogbox mit dem Aufruf von OpenBlockingDialog() nicht
erscheinen, haben Sie wahrscheinlich vergessen, das Dialog-Objekt in den
generic Tree einzubinden. Das ist ein sehr haufiger Fehler.

+ Wird GEOS heruntergefahren, wahrend ein Blocking-Dialog offen ist, so kehrt
OpenBlockingDialog() zurlck, der Dialog schlieBt sich und als Interaction-
Command wird der Wert Null geliefert. Der gerade laufende BASIC-Code (sehr
oft irgendein Action-Handler) wird zu Ende geflhrt und danach das R-BASIC-
Programm geschlossen. Erst nachdem alle Programme geschlossen sind féhrt
GEOS endgultig herunter. Was hat das mit Blocking-Dialogen zu tun? Ganz
einfach: Sie mlssen immer damit rechnen, dass OpenBlockingDialog() statt
denen von lhnen vorgegebene interactionCommand-Werte den Wert Null liefert.
Es sollte in diesem Fall weder eine potentiell geféhrliche Aktion ausgelést
werden noch eine Endlos-Schleife erzeugt werden.

Dialog - 179

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.7 Number

Objekte der Klasse Number (engl.: Zahl) dienen dazu, Zahlen darzustellen oder
einzugeben. Obwohl sie sehr einfach zu verwenden sind, verfligen Sie Uber einen
hohen Grad an "Eigenintelligenz".

Value- [36,767 AT

Die folgenden Ausfiihrungen gehen zunadchst grundséatzlich davon aus, dass das
Number-Objekt im normalen Modus (nicht im sogenannten "Delayed Mode")
arbeitet. Das ist der Normalfall, wenn man nicht spezielle Hints setzt, um in den
Delayed Mode zu kommen. Dieser "Delayed Mode" ist ausfuhrlich im Kapitel 3.4.2

(Delayed Mode und Status-Message) dieses Handbuchs beschrieben.

Abstammung

GenericClass 9

Number

Spezielle Instance-Variablen

Variable Syntax im Ul-Code Im BASIC-Code
value value = numWert lesen, schreiben
minVal minVal = numWert lesen, schreiben
maxVal maxVal = numWert lesen, schreiben
incVal incVal = numWert lesen, schreiben
ApplyHandler ApplyHandler = <Handler> nur schreiben

StatusHandler StatusHandler = <Handler> nur schreiben

modified modified = TRUE | FALSE lesen, schreiben

NavigateToNextFieldOnReturn

NavigateToNextFieldOnReturn

displayFormat displayFormat = numWert lesen, schreiben
decimal decimal = numWert lesen, schreiben
look look = numWert lesen, schreiben

sliderShowlntervals

sliderShowlIntervals = main [, sub]

lesen, schreiben

SliderNoDigitalDisplay

SliderNoDigitalDisplay

SliderShowMinMax

SliderShowMinMax

Methoden:
Methode Aufgabe
Increment value-Wert um incVal erhéhen
Decrement value-Wert um incVal verringern
Apply Apply-Handler aufrufen
SendStatus Status-Handler aufrufen

Number - 180

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Action-Handler-Typen:
Handler-Typ Parameter
NumberAction (sender as object, value as real)

4.7.1 Grundlegende Eigenschaften

R-BASIC Number-Objekte speichern eine Zahl im Wertebereich von —32768 ...
+32767 mit einer Genauigkeit von 4 Stellen nach dem Komma. Das gilt fir die
Instance-Variablen value, minVal, maxVal und incVal. Um Kommastellen
darstellen zu kdénnen muss die Instance-Variable displayFormat auf einen
passenden Wert gesetzt werden (siehe Kapitel 4.7.2), per Default werden ganze
Zahlen dargestellt.

Der Zahlenwert

value value = numWert lesen, schreiben

minVal minVal = numWert lesen, schreiben

maxVal maxVal = numWert lesen, schreiben

incVal incVal = numWert lesen, schreiben
value

Die Instance-Variable value enthélt die vom Number-Objekt dargestellte Zahl. Sie
sollten den Wert auf die notwendige Anzahl von Stellen runden (R-BASIC Befehl
ROUND), wenn Sie ihn vom Number-Objekt lesen, da ein Number-Objekt eine
begrenzte Genauigkeit in der internen Zahlendarstellung aufweist.

Syntax Ul- Code: value = numWert
Lesen: <numVar> = <obj> . value
Schreiben: <obj>.value = numWert

minVal

Die Instance-Variable minVal enthédlt den unteren Grenzwert fir die Instance-
Variable value. Das Number-Objekt sorgt selbstédndig dafir, dass dieser
Grenzwert nicht unterschritten wird. Der Defaultwert fir minVal betréagt O.

Syntax Ul- Code: minVal = numWert
Lesen: <numVar> = <obj> . minVal
Schreiben: <obj>.minVal = numWert

Number - 181

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

maxVal

Die Instance-Variable maxVal enthdlt den oberen Grenzwert fir die Instance-
Variable value. Das Number-Objekt sorgt selbstédndig dafir, dass dieser
Grenzwert nicht Gberschritten wird. Der Defaultwert fir maxVal betragt 32766.

Syntax Ul- Code: maxVal = numWert
Lesen: <numVar> = <obj> . maxVal
Schreiben: <obj>.maxVal = numWert

incVal

Die Instance-Variable incVal enthalt den Wert, um den die Instance-Variable
value erhoht bzw. erniedrigt wird, wenn man auf einen der Pfeile neben dem
Zahlenwert klickt. Der Defaultwert fur incVal betragt 1.

Syntax Ul- Code: incVal = numWert
Lesen: <numVar> = <obj> . incVal
Schreiben: <obj>.incVal = numWert

Anwenden der Anderungen

ApplyHandler ApplyHandler = <Handler> nur schreiben
modified modified = TRUE | FALSE lesen, schreiben
NavigateToNextFieldOnReturn | NavigateToNextFieldOnReturn | —

ApplyHandler

Die Instance-Variable ApplyHandler enthadlt den Namen des ActionHandlers, der
aufgerufen wird, wenn das Number-Objekt seinen Wert "anwenden" will (engl. to
apply: Anwenden). Dieser muss als NumberAction vereinbart sein. Der Apply-
Handler wird Ublicherweise aufgerufen, wenn der Nutzer auf die Pfeile des
Number-Obijekts klickt, nach Eingabe eines Wertes auf "Enter" driickt oder einen
Slider "zieht". Sliders werden im Kapitel 4.7.3 besprochen.

Der Wert fir den ApplyHandler wird Ublicherweise im Ul-Code gesetzt. Bei
Bedarf kann er auch zur Laufzeit (im BASIC-Code) gesetzt, aber nicht gelesen
werden.

Syntax Ul- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Number - 182

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Beispiel: Ein typisches Number-Objekt

Number testNumber
Caption$ = "Value =
ApplyHandler = numberApply
incval = 5
value = 280

n

minval = -105
maxVal = 300
END Object

BASIC-Code des Apply-Handlers

NumberAction numberApply
Print ROUND(value)
END Action

Beachten Sie die Verwendung der R-BASIC Funktion ROUND(), um sicher-
zustellen, dass der ausgegeben Wert ganzzahlig ist. Auch wenn das Number-
Objekt eine Ganze Zahl darstellt kann es trotzdem intern eine Zahl mit Nach-
kommastellen gespeichert haben.

Hinweis: Es ist moglich den ApplyHandler des Number-Objekts manuell (vom
BASIC-Code aus) zu aktivieren. Dazu wird die von der GenericClass geerbte
Methode Apply verwendet. Da ApplyHandler nur ausgel6st werden, wenn das
Objekt "modified" ist, muss es vorher als "modified" markiert werden. Alternativ
kénnte man dem Objekt auch den Hint ApplyEvenlfNotModified geben.

Beispiel:

testNumber.modified = TRUE
testNumber .Apply

Eine ausfuhrliche Beschreibung dazu finden Sie im Kapitel 3.4 (Die "Apply"-
Message) dieses Handbuchs.

modified

Die Instance-Variable modified enthalt die Information, ob der vom Number-Objekt
dargestellte Wert seit dem letzten Aufruf des Apply-Handlers geé&ndert wurde
(modified = TRUE) oder nicht (modified = FALSE).

Beachten Sie, dass ein Verandern des Objekts vom BASIC-Code aus (z.B.
Belegen der Instance-Variable value), das Objekt nicht als "modified" markiert,
d.h. der Wert der Instance-Variablen modified wird nicht verédndert. Sie kbnnen
dies bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified = TRUE"
verwenden.

Number - 183

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Syntax Ul- Code: modified = TRUE | FALSE
Lesen: <numVar> = <obj> . modified
Schreiben: <obj>.modified = TRUE | FALSE

Wenn Sie die Instance Variable modified lesen, werden Sie feststellen, dass sie

Null enthalt, es sei denn, Sie haben sie explizit auf einen anderen Wert gesetzt.

Andert der Nutzer ndmlich den Zahlenwert, so passiert intern folgendes:

+ Die Instance-Variable modified wird mit TRUE belegt.

+ Es wird geprift ob ein ApplyHandler vorhanden ist und dieser wird ggf.
aufgerufen.

+ Die Instance-Variable modified wird zurtiickgesetzt (mit FALSE belegt).

Hinweis: Im sogenannten Delayed Mode (siehe entsprechendes Kapitel weiter
unten) werden die letzten beiden Schritte nicht ausgefihrt, so dass die Instance-
Variable modified eine eigene Bedeutung erhalt.

NavigateToNextFieldOnReturn

Drickt der Nutzer in Eingabefeld eines Number-Objekts die Enter-Taste bleibt der
Cursor ublicherweise dort stehen. Der Hint NavigateToNextFieldOnReturn
bewirkt, dass der Cursor stattdessen zum nachsten Eingabefeld weiterrlckt.

Syntax Ul-Code: NavigateToNextFieldOnReturn

Methoden
Increment value-Wert um incVal erhéhen
Decrement value-Wert um incVal verringern
Increment

Die Methode Increment bewirkt, dass der Instance-Wert value um incVal erh6ht
wird, genau so, als ob der Nutzer auf den entsprechenden Pfeil des Number-
Objekts geklickt hat.

Syntax BASIC-Code: <obj>.Increment

Number - 184

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Decrement

Die Methode Decrement bewirkt, dass der Instance-Wert value um incVal
vermindert wird, genau so, als ob der Nutzer auf den entsprechenden Pfeil des
Number-Objekts geklickt hat.

Syntax BASIC-Code: <obj>.Decrement

4.7.2 Display-Format

displayFormat displayFormat = numWert lesen, schreiben
decimal decimal = numWert lesen, schreiben

Grundsatzlich gilt: Number-Objekte speichern Zahlen im Wertebereich von —
32768 ... +32767 mit einer Genauigkeit von 4 Stellen nach dem Komma. Diese
Zahl kann aber von einem Number-Objekt auf verschieden Weise dargestellt
werden. Das wird Uber die Instance-Variablen displayFormat und decimal
gesteuert.

decimal

Die Instance-Variable decimal stellt die Anzahl der angezeigten Nachkomma-
stellen ein. Voraussetzung ist, dass das mit displayFormat -eingestellte
Anzeigeformat auch Nachkommastellen zuldsst. Das ist bei allen Formaten auBer
DF_INTEGER der Fall. Der Default-Wert fur decimal ist 3, der Maximalwert ist 4.

Syntax Ul- Code: decimal = numWert
Lesen: <numVar> = <obj> . decimal
Schreiben: <obj>.decimal = numWert

displayFormat

Die Instance-Variable displayFormat stellt ein, auf welche Weise die vom
Number-Objekt gespeicherte Zahl dargestellt wird. Der Default-Wert fir
displayFormat ist DF_INTEGER.

Syntax Ul- Code: displayFormat = numWert
Lesen: <numVar> = <obj> . displayFormat
Schreiben: <obj>.displayFormat = numWert

Das Number-Objekt rechnet dabei den internen Wert in die das gewlnschte
Format um. Intern geht das Number-Objekt davon aus, das der intern
gespeicherte Wert in US-Points vorliegt. Es stehen die folgenden Formate zur
Verfligung:

Number - 185

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Konstante Wert | Darstellung (Beispiele)
DF_INTEGER 0 Ganzzahlig, z.B. 12
DF_DECIMAL 1 Mit Dezimalstellen, z.B. 28,6
DF_POINTS 2 US-Point 720 Pt
DF_INCHES 3 Inches 18,9 in
DF_CENTIMETERS 4 Zentimeter 12,3 cm
DF_MILLIMETERS 5 Millimeter 534 mm
DF_PICAS 6 Picas 60 pt
DF_EUR_POINTS 7 Européaische Points 98 ep
DF_CICEROS 8 Ciceros 78,9 ci
DF_POINTS_OR_MILLIMETERS 9 72 Pt oder 25,4 mm
DF_INCHES_OR_CENTIMETERS 10 1,5in oder 3,81 cm

Anmerkungen zu einigen der Konstanten

DF_INTEGER
Der Wert wird ganzzahlig ohne Einheit dargestellt. Ist intern ein nicht ganz-
zahliger Wert gespeichert, so wird der dargestellte Wert gerundet.

DF_DECIMAL
Der Wert wird zur Darstellung auf den durch die Instance-Variable decimal
vorgegebene Genauigkeit gerundet.

DF_POINTS_OR_MILLIMETERS

DF_INCHES_OR_CENTIMETERS
Auf Systemen, deren lokalen Einstellungen auf "US-Einheiten" basieren, wird
der Wert in Points oder Inches dargestellt, sind die Einheiten auf "Metrisch"
gestellt, erfolgt die Darstellung in mm bzw. cm.

Beachten Sie, dass mit displayFormat wirklich nur das Anzeige-Format geéndert
und der Wert zur Anzeige umgerechnet wird. Das bedeutet konkret, dass der in
der Instance-Variablen value gespeicherte Wert bei den meisten Formaten nicht
mit dem Zahlenwert in der Anzeige identisch ist. Wie oben schon erwahnt geht
das Number-Objekt davon aus, das der intern gespeicherte Wert in US-Points
vorliegt.

Dabei gelten die folgenden Umrechnungen:

Konstante Definition Umrechnung zu US-Point (Pt)
DF_INTEGER keine Umrechnung nétig
DF_DECIMAL keine Umrechnung nétig
DF_POINTS keine Umrechnung nétig
DF_INCHES 1in=72Pt 1Pt=1/72in
DF_CENTIMETERS 1in=254cm |1cm=28.246 Pt | 1 Pt =0.03278 cm
DF_MILLIMETERS 10mm=1cm [1mm=2.8246 Pt|1Pt=0.3278 mm
DF_PICAS 1pt=1/6in 1pt=12 Pt 1Pt=1/12pt
DF_EUR_POINTS 1ep=1.0656 Pt |1 Pt=0.93844 ep
DF_CICEROS 1ci=12ep 1ci=12,7872 Pt | 1 Pt=0,078203 ci

Number - 186

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Beispiel: value steht auf 72 (Pt), das sind 2,54 cm

Number testnumber
Caption$ = "Abstand = "

Abstand = [2,54 cm AY]

displayFormat = DF_CENTIMETERS
value = 72

incval = 36
maxVal = 3000
END Object

Beachten Sie, dass beim Lesen der Instance-Variable value natirlich der dort
gespeicherte Wert gelesen wird. Im Beispiel ist das 72, und nicht etwa 2,54!

Number - 187

R-BASIC - Objekt-Handbuch - Vol. 4

Einfach unter PC/GEOS programmieren

4.7.3 Angepasstes Aussehen und Sliders

Variable

Syntax im UI-Code

Im BASIC-Code

look

look = numWert

lesen, schreiben

sliderShowlntervals

sliderShowlIntervals = main [, sub]| lesen, schreiben

SliderNoDigitalDisplay

SliderNoDigitalDisplay —

SliderShowMinMax

SliderShowMinMax —

look

Das Aussehen eine Number-Objekts kann mit der Instance-Variable look
angepasst werden (engl. look : Aussehen, duBere Erscheinung).

Syntax Ul- Code: look = numWert

Lesen:
Schreiben:

<numVar> = <obj> . look
<obj>.look = numWert

Dabei stehen die folgenden Werte zur Verfligung:

Konstante

Wert Aussehen

LOOK_NORMAL

komplett "normal”

LOOK_NOT_DIGITALLY_EDITABLE

Eingabefeld read-only

LOOK_NOT_INCREMENTABLE

keine Pfeile

LOOK_X_SLIDER

Schieberegler, horizontal

LOOK_Y_SLIDER

AN =|O

Schieberegler, vertikal

738 %4 LOOK_NORMAL
36| LOOK_NOT_DIG

86l | LOOK_NOT_INC

6674

LOOK_X_SLIDER

ITALLY_EDITABLE
REMENTABLE

LOOK_Y_SLIDER

Fur Sliders gibt es weitere Moéglichkeiten, das Aussehen anzupassen. Sie sollten
die folgenden Hints nur anwenden, wenn die Instance-Variable look auf einen der
SLIDER-Werte gesetzt ist.

Number - 188

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

sliderShowlntervals

Dieser Hint versieht den Slider mit Intervall-Marken. Sie kénnen angeben, wie
viele Hauptintervalle gezeichnet und ob diese noch unterteilt werden sollen.

Syntax Ul- Code: sliderShowlintervals = main [, sub]
Lesen: <numVar> = <obj> . sliderShowintervals (n)
n = 0: main-Wert lesen
n = 1: sub-Wert lesen
Schreiben: <obj>.sliderShowintervals = main [, sub]
<obj>.sliderShowintervals = 0 I6scht den Hint
aus den Instance-Daten, d.h. die Intervalle werden
entfernt.

Der Parameter main gibt die Anzahl der Hauptintervalle an. Der Parameter sub ist
optional und legt fest, in wie viele Unterintervalle die Hauptintervalle zu unterteilen
sind. Die Sub-Intervallstriche sind etwas kurzer als die der Hauptintervalle. Die
Einteilung in Intervalle erfolgt véllig unabhéngig vom dargestellten Zahlenbereich.
Beispiel: siehe unten

SliderNoDigitalDisplay

Dieser Hint entfernt den Zahlenwert, der Ublicherweise Uber bzw. neben dem
Slider erscheint.

Syntax Ul- Code: SliderNoDigitalDisplay

Beispiel: siehe unten

SliderShowMinMax

Dieser Hint fugt die Anzeige des Minimal- und Maximal-Wertes (minVal und
maxVal) zum Slider hinzu. Die Werte werden in dem durch die Instance-Variable
displayFormat spezifizierten Format angezeigt.

Syntax Ul- Code: SliderShowMinMax

Number - 189

R-BASIC - Objekt-Handbuch - Vol. 4

Einfach unter PC/GEOS programmieren

Beispiel: Ein Slider mit 4 Intervallen, die in je 2 Unterintervalle geteilt sind. Die
Anzeige des aktuellen Digitalwertes ist deaktiviert, die Anzeige des Minimum- und

Maximum-Wertes ist aktiviert.

Number QualitySlider
Caption$ = "Quality:"
justifyCaption = J TOP
ApplyHandler = numberApply
value = 30
incval 10 Quality:
e |
maxval = 100 (RO T O]
look = LOOK X SLIDER 2 L.
sliderShowIntervals = 4, 2
SliderNoDigitalDisplay
SliderShowMinMax
END Object

Beachten Sie, dass Number-Objekte von der GenericClass abstammen und daher
alle Eigenschaften und Féahigkeiten dieser Klasse erben. Insbesondere gilt das fir
die Geometrie-Hints sowie die Mdglichkeit sie auf "enabled = FALSE" oder
"readOnly = TRUE" zu setzen. Die Bilder zeigen "readOnly = TRUE" Objekte,
links einen Slider mit dem Hint SliderNoDigitalDisplay gesetzt und rechts ein

"normales" Objekt.

30,5

Number - 190

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.7.4 Weitere Hinweise zur Arbeit mit Number-Objekten

« Die Instance-Variablen value, minVal, maxVal und incVal sind aus der Sicht
von R-BASIC vom Datentyp REAL. Intern verwenden Number-Objekte zur
Speicherung der Werte den Datentyp WWFixed. Er besteht aus einem Integer-
Wert (Wertebereich von —-32768 bis +32767) fur den ganzzahligen Teil und
einem WORD fur den gebrochenen Teil.

+ Daraus ergeben sich die folgenden Einschrankungen:
« Die Werte fur value, minVal, maxVal und incVal kénnen in einem Bereich
von —32768 bis +32767 liegen.
+ Die Genauigkeit ist auf 4 Stellen nach dem Komma begrenzt.
* Es muss "minVal —incVal >=-32768" und "minVal +incVal <=32767"
gelten.

+ Setzen Sie den Wert fir value zur Laufzeit, prift das Number-Objekt, ob er im
Bereich von minVal bis maxVal liegt. Ist das nicht der Fall, so passt das
Number-Objekt den Wert ohne Warnmeldung an. Fehlerhafte Werte fir minVal
bzw. maxVal werden auf den gréBtmdglichen bzw. kleinstmdglichen Wert
gesetzt.

« Das Number-Objekt rundet den internen Wert auf die zur Anzeige notwendige
Stellenzahl. Sie daher sollten den value-Wert auch auf die notwendige Anzahl
von Stellen runden (R-BASIC Befehl ROUND), wenn Sie ihn vom Number-
Objekt lesen oder einen Number-Action-Handler programmieren. Wegen der
begrenzten Genauigkeit in der internen Zahlendarstellung weicht der intern
dargestellte Wert oft geringfligig vom angezeigten Wert ab.

+ Die Geometrie-Hints ExpandWidth, ExpandHeight, DivideWidthEqually und
DivideHeightEqually werden nur in den ~_SLIDER - Looks unterstitzt. Bei
Bedarf packen Sie das Number-Objekt (mit den anderen Looks) in eine Group,
die die entsprechenden Hints gesetzt hat.

Interne Details

Der von Number-Objekten zur Speicherung von Zahlen verwendete Datentyp
WWEFixed wird im GEOS System sehr haufig, unter anderem fir alle grafischen
Berechnungen, verwendet. Das liegt daran, dass sie einen sehr guten
Kompromiss aus guter Genauigkeit (Nachkommastellen) und sehr hoher Rechen-
geschwindigkeit ermdglicht. Die oben genannte Begrenzung des Wertebereichs
ergibt sich aus der Verwendung eine Integer-Wertes fur den ganzzahligen Teil.
Der Nachkommateil kann als Anzahl der 1/65536 interpretiert werden, die auf den
ganzzahligen Teil zu addieren ist. Da 1/65536 = 0,000015 ist, kann der Nach-
kommawert nur in dieser Abstufung geédndert werden. Eine Genauigkeit von 5
Nachkommastellen ist damit nicht mehr erreichbar. Selbst 4 Stellen sind mit
Vorsicht zu genieBen, da 0,0001 intern bereits als 7/65536 dargestellt werden
muss, was aber eigentlich 0,0001068 ist. R-BASIC begrenzt den Wert fir decimal
daher auf 4.

Number - 191

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Die Bedingungen "minVal - incVal >= —-32768" und "minVal + incVal <= 32767"
haben folgenden Grund: Erhéht oder Erniedrigt das Number-Objekt seinen value-
Wert um den durch incVal gegebenen Wert (klicken Sie z.B. auf den Hoch- bzw.
Runter-Pfeil), so nutzt es dazu Ganzzahl-Arithmetik. Daher kann es zu einer
Wertebereichsiiberschreitung (Ubertrag) kommen, die vom GEOS-System aus
Performance-Grinden nicht behandelt wird. R-BASIC beachtet diese
Bedingungen beim Compilieren des Ul-Codes, aber - ebenfalls aus Performance-
Grunden - nicht zur Laufzeit. Sie kbnnen daher gegen diese beiden Bedingungen
verstoBen, wenn Sie die Instance-Variablen zur Laufzeit setzen. Sie werden schon
sehen, was Sie davon haben.

Wenn Sie eine héhere Genauigkeit wiinschen oder den Integer-Wertebereich
verlassen mussen, kdnnen Sie zur Eingabe einer Zahl einer der Befehle INPUT
oder InputBox oder ein Text-Objekt (z.B. Memo oder InputLine) und ggf. die
BASIC-Funktionen VAL, ValLocal bzw. Str$ verwenden.

Number - 192

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

4.7.5 Number-Objekte im Delayed Mode

Ein Number-Objekt kann im "Delayed Mode" (engl.: verzégerter Modus) arbeiten.
Dazu muss man dem Objekt selbst bzw. einem seiner Parents im Ul-Code den
Hint MakeDelayedApply geben oder man bindet das Objekt als Child in einem
Dialog ein, dessen dialogType Instance Variable auf DT_DELAYED_APPLY
gesetzt ist. Dieser "Delayed Mode" ist ausfuhrlich im Kapitel 3.4.2 (Delayed Mode
und Status-Message) dieses Handbuchs beschrieben, eine Beschreibung des
Dialog-Objekts im Delayed Mode finden Sie im Kapitel 4.6.6.5.

Instance Variable Syntax im Ul-Code Im BASIC-Code
StatusHandler StatusHandler = <Handler> nur schreiben
Syntax Ul- Code: StatusHandler = <Handler>

Schreiben: <obj>.StatusHandler = <Handler>

Der StatusHandler wird im Delayed Mode statt des ApplyHandlers gerufen, wenn
der Nutzer auf die Pfeile des Number-Objekt klickt, nach Eingabe eines Wertes
auf "Enter" drickt oder einen Slider "zieht". Der ApplyHandler hingegen wird erst
auf Anforderung gerufen (siehe Kapitel 3.4.2).

Die Instance-Variable modified kann TRUE enthalten, namlich dann, wenn das
Objekt vom User modifiziert wurde, der ApplyHandler aber noch nicht gerufen
wurde. Der Aufruf des ApplyHandlers setzt auch im Delayed Mode den modified-
Status zurlck.

Methode Aufgabe
SendStatus Status-Handler aufrufen

Syntax BASIC-Code: <obj>.SendStatus

Die Methode SendStatus fordert das Objekt auf, seinen StatusHandler aufzurufen
(d.h. seine Status-Message zu senden).

Number - 193

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

(Leerseite)

Number - 194

R-BASIC - Objekt-Handbuch - Vol. 4
Einfach unter PC/GEOS programmieren

(Leerseite)

Number - 195

