R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Objekt-Handbuch

Volume 5
Listen-Objekte, View und Content

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4.8 Listen-Objekte -.ccccccmmmmiiinnnniniiininnn e, 200
4.8.1 UDEIDICK vt et et e et et e e e e et eee st e e e s e e eee e s eeeeseeeeneesaens 200
4.8.2 Option und OPtIONGIOUPeuviiiieeiiiiiiieee e 201
4.8.3 RadioButton und RadioButtonGroupccccccvviviiiiiieeeeiiiiiinnee. 207
4.8.4 DyNamicCLiSt «...ccveeeiiiiiiiiiiiiic e 214
4.8.5 Listen-Objekte im Delayed Mode€ «...ccooeeeiiiiiiiiiiiiiiiiii, 220
02N TRV AT=XVIVART 12 Vo [@0 Y g X (=) o | 221
4.9.7 UDEIBICK v veeeeeeeeee et et e e ee e et e e e e e eeeee e e e eeeeeeeeeeeeeeenneeas 222
4.9.2 DAS VIBW ..ourieiiiiieee et ettt e e e 224
4.9.2.1 Das Content €iNES VIEBWoviieviiiiiiiiieeeie e 226
4.9.2.2 VieW GEOMELII@cvvniieeiiiieee e 228
4.9.2.3 Die VieW AHDULE o 231
4.9.2.4 Scaling und Scrolling -....eveveeeeiiiiii 232
4.9.2.5 Drag SCrollingcccoooiiiiniinnii e, 237
4.9.2.6 Andern des MauSzeigersooouiiiiiiiiiiieiiie e 240
4.9.2.7 Verlinkte VIBWScovuiiiiiiieeeee e 241
4.9.2.8 Sonstige Konfigurationsoptionencccceeeeiiiiiiiiiniin, 243
4.9.3 ViSCONIENT cuiriiii i e 245
4.9.4 BitmapContent ..., 245
R Y CT=T o100 01 (=Y o | T 246

4.9.6 VIEWECONIION .. oot 248

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.8 Listen-Objekte
4.8.1 Uberblick

In R-BASIC gibt es 3 Typen von Listen-Objekten:
Select Options
+ Die OptionGroup verwaltet eine Liste von Option-Objekten, - Option 1
das jedes fiir sich und abhé&ngig voneinander den Zustand |Optien2
"ein" oder "aus" haben kann. ® Option 3

SO - Die RadioButtonGroup verwaltet eine Liste von

vitem 1 @ltem 2 vitem 3| RadioButton-Objekten.
Diese kénnen einzeln oder in Gruppen ausgewahlt (selektiert) werden. Die
RadioButtonGroup ist ein sehr vielseitiges Objekt das insbesondere dann zum
Einsatz kommt, wenn die Anzahl der Listeneintrdge von vorneherein bekannt
und unveréanderlich ist.

+ Die DynamicList stammt von der RadioButtonGroup ab und [is@Exampie
ist daher genauso vielseitig wie diese. Sie wird eingesetzt, [gaipn
wenn die Anzahl der Listeneintrdge nicht von vorneherein |Fred

bekannt ist und / oder sich wahrend des Programmablaufs [Jeshua
verandert.

Alle Listen kénnen einen ActionHandler aufrufen, wenn vom Nutzer ein Eintrag
selektiert bzw. gedndert wird. Uber die Instance-Variable look kann das Aussehen
der Listen weitgehend verandert werden. So kénnen alle Listen-Objekte - nicht nur
die DynamicList - als scrollbare Listen auftreten. Die GroBe eines als scrollbare
Liste erscheinenden List-Objekts wird haufig uber den Geometrie-Hint fixedSize
eingestellt. Beispiele dazu finden Sie bei der Beschreibung der Instance-Variablen
look der OptionGroup.

Die folgenden Ausfuhrungen gehen zunachst grundsétzlich davon aus, dass die
Listen-Objekte im normalen Modus (nicht im sogenannten "Delayed Mode")
arbeiten. Das ist der Normalfall, wenn man nicht spezielle Hints setzt, um in den
Delayed Mode zu kommen. Dieser "Delayed Mode" ist ausfuhrlich im Kapitel 3.4.2
(Delayed Mode und Status-Message) dieses Handbuchs beschrieben.

Action-Handler-Typen:
Handler-Typ Parameter

ListAction (sender as object, selection as word, modified as word,
numSelections as word)

Alle ActionHandler der List-Objekte mussen als ListAction deklariert sein. Die
Bedeutung der Parameter "selection", "modified" und "numSelections" variiert je
nach Listen-Objekt und ActionHandler. Gelegentlich sind einige der Parameter
auch bedeutungslos fiir den speziellen Fall.

Liste-Objekte - 200

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.8.2 Option und OptionGroup

Option

Abstammung
GenericClass > Option

Spezielle Instance-Variablen

Instance-Variable Syntax im Ul-Code Im BASIC-Code
identifier identifier = numWert lesen, schreiben
identifier

Die Instance-Variable identifier identifiziert das einzelne Option-Objekt. Sie ist
vom Typ WORD. Der Wert muss eine 2er-Potenz sein (nur genau 1 Bit gesetzt,
d.h. einer der Werte 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,
81912, 16384, 32768). Option-Objekte missen Children einer OptionGroup sein.
Innerhalb einer OptionGroup darf jeder Identifier-Wert nur genau einmal
vorkommen.

Syntax Ul- Code: identifier = numWert
Lesen: <numVar> = <obj> . identifier
Schreiben: <obj>.identifier = numWert

OptionGroup

Abstammung
GenericClass = OptionGroup

Eine OptionGroup managed eine Liste von Option-Objekten (bis zu 16).
OptionGroup-Objekte kénnen nur Option-Objekte als Children haben.

Beispiel Ul-Code:

OptionGroup ListOfOptions
Caption$= "Select Options"
justifyCaption = J TOP
Children = booll, bool2, bool3
OrientChildren = ORIENT VERTICALLY

Select Options

_lOption 1
ApplyHandler = BoolApply _IOption 2
selection = 4 ® Option 3

END Object

Option booll: caption$="Option 1":identifier = 1: End Object
Option bool2: caption$="Option 2":identifier = 2: End Object

Liste-Objekte - 201

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Option bool3
Caption$="Option 3" : identifier = 4:
End Object

Zur Demonstration wurde in an einigen Stellen im Code oben die Syntax mit
mehreren, durch Doppelpunkt getrennten Anweisungen verwendet, die auch im
Ul-Code zulassig ist.

Spezielle Instance-Variablen

Instance-Variable Syntax im Ul-Code Im BASIC-Code
selection identifier = numWert lesen, schreiben
isSelected — nur lesen
look look = numWert lesen, schreiben
modified modified = numWert lesen, schreiben
isModified — nur lesen
ApplyHandler ApplyHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben
Methoden:
Methode Aufgabe
MakeVisible n Einen bestimmten Eintrag sichtbar machen
SendStatus Status-Handler aufrufen
selection

Options kénnen den Zustand "ein" oder "aus" haben. Die Instance-Variable
selection der OptionGroup enthalt die Summe der identifier derjenigen Options,
die auf "ein" sind. Genauer gesagt ist es die logische Oder-Verknipfung der
identifier. Wenn man sich an die Regel hélt, dass Option-ldentifier nur 2er-
Potenzen sein dirfen (was man unbedingt sollte), sind beide Aussagen
gleichwertig.

Syntax Ul- Code: selection = numWert
Lesen: <numVar> = <obj> . selection
Schreiben: <obj>.selection = numWert

isSelected

IsSelected pruft, ob ein bestimmtes Option-Objekt, gegeben durch seinen
Identifier, selektiert ist oder nicht.

Syntax Lesen: <numVar> = <obj> . isSelected (n)
<obj> OptionGroup Objekt
n: Identifier eines Option-Objekts

Liste-Objekte - 202

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

look

Instance-Variable look bestimmt das Aussehen der OptionGroup und ihrer Option-
Objekte (engl. look : Aussehen, auBere Erscheinung). Funktionell sind alle Looks
identisch.

Syntax Ul- Code: look = numWert
Lesen: <numVar> = <obj> . look
Schreiben: <obj>.look = numWert

Far alle Listen-Objekte stehen folgende Looks zur Verfligung:

Konstante Wert Aussehen
LOOK_NORMAL Klassisches Aussehen
LOOK_SCROLLABLE Scrollbare Liste
LOOK_MINIMIZE_SIZE Minimaler Platzverbrauch
LOOK_TOOLBOX ToolBox-Style

AIN|=]O

Die Look-Werte kdénnen kombiniert werden (mit +), was insbesondere bei
LOOK_MINIMIZE_SIZE + LOOK_TOOLBOX gelegentlich Sinn macht. Ungdltige
bzw. widersprichliche Kombinationen kdénnen jedoch zu seltsamen Effekten
fihren.

Select Options Select Options Select Options
| Option 1 Option 1
_| Option 2 Option 2
N Option 3
LOOK_NORMAL LOOK_TOOLBOX

LOOK_SCROLLABLE

Select Options | — - | =

_| Option 1 emn

LOOK_MINIMZE_SIZE [Joption 2 lyyom 2
/® Option 3

Das Bild zeigt die Liste mit dem Ul-Code von oben, jedoch jeweils mit
verschiedenen Werten fiir look gesetzt.

Insbesondere bei scrollbaren Listen besteht haufig der Bedarf die GréBe und die
Anzahl der gleichzeitig sichtbaren Listeneintrage festzulegen. Dazu eignet sich der
Geometrie-Hint fixedSize. Die in den folgenden Bildern dargestellten Listen haben
die Instance-Variable look auf LOOK_SCROLLABLE und folgenden fixedSize-
Hint gesetzt:

fixedSize = 15 + ST AVG _CHAR WIDTH, 4 + ST LINES OF TEXT, 4

Liste-Objekte - 203

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Select Options LGB 1P
option 1 AT
Option 2 e 2

Die Listen-Objekte im Bild sind 15 Zeichen breit und das Listen-Fenster ist 4
Zeilen hoch (4 + ST_LINES_OF_TEXT). Der letzte Parameter (4) bestimmt, dass
4 Eintrage im Fenster gleichzeitig dargestellt werden sollen. Sinnvollerweise ist er
identisch mit der H6he, gemessen in Textzeilen. Die Liste rechts im Bild hat - zur
Demonstration - zuséatzlich den Hint DrawlnBox gesetzt.

modified

Die Instance-Variable modified der OptionGroup enthélt die logische OR-
VerknlUpfung der Identifier derjenigen Options, die seit der letzten Apply-Aktion
modifiziert wurden.

Beachten Sie, dass ein Verandern des Objekts vom BASIC-Code aus (z.B.
Belegen der Instance-Variable selection), das Objekt nicht als "modified"
markiert, d.h. der Wert der Instance-Variablen modified wird nicht verandert. Sie
kénnen dies bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified
= numWert" verwenden, wobei "numWert" ein einzelner ldentifier oder die OR-

VerknUpfung mehrerer Identifier der Option Objekte aus der OptionGroup sein soll.

Syntax Ul- Code: modified = numWert
Lesen: <numVar> = <obj> . modified
Schreiben: <obj>.modified = numWert

Wenn Sie die Instance Variable modified lesen, werden Sie feststellen, dass sie

Null enthalt, es sei denn, Sie haben sie explizit auf einen anderen Wert gesetzt.

Andert der Nutzer namlich des Zustand eines Option-Objekts, so passiert intern

folgendes:

+ Die Instance-Variable modified wird mit dem Identifier des betroffenen Option-
Objekts belegt.

+ Es wird geprift ob ein ApplyHandler vorhanden ist und dieser wird ggf.
aufgerufen. Der Wert von modified wird dem Handler Gbergeben.

+ Die Instance-Variable modified wird zurlickgesetzt (mit Null belegt).

Hinweis: Im sogenannten Delayed Mode (siehe entsprechendes Kapitel weiter
unten) werden die letzten beiden Schritte nicht ausgefliihrt, so dass die Instance-
Variable modified eine eigene Bedeutung erhalt.

isModified

IsModified liest den "modified"-Zustand eines bestimmten Option-Objekts,
gegeben durch seinen Identifier, aus.

Liste-Objekte - 204

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Syntax Lesen: <numVar> = <obj> . isModified (n)
<obj> OptionGroup Objekt
n: Identifier eines Option-Objekts

ApplyHandler

Der ApplyHandler der OptionGroup wird aufgerufen, wenn eines der Option-
Objekte in der Group geéndert wird. Er muss als ListAction deklariert sein.

Syntax Ul- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Beispiel, passend zum Ul-Code oben:

ListAction BoolApply
Print selection; modified
IF modified AND 1 THEN Print "Option 1 geklickt"
IF modified AND 4 THEN Print "Option 3 geklickt"
END Action

Der Parameter selection enthélt die selektierten Options (OR-Verknipfung, d.h.
die Summe der Identifier).

Der Parameter modified enthélt den Identifier, der gedndert wurde und so den
Apply-Handler ausléste.

Die Abfrage erfolgt mit dem logischen Operator AND, siehe Beispiel

Achtung! Der Parameter numSelections ist hier bedeutungslos.

Hinweis: Es ist méglich den ApplyHandler der OptionGroup manuell (vom BASIC-
Code aus) zu aktivieren. Dazu wird die von der GenericClass geerbte Methode
Apply verwendet. Da ApplyHandler nur ausgelést werden, wenn das Objekt
"modified" ist, muss es vorher als "modified" markiert werden. Alternativ kénnte
man dem Objekt auch den Hint ApplyEvenlfNotModified geben.

Beispiel:
ListOfOptions.modified = TRUE
ListOfOptions.Apply

Eine ausfuhrliche Beschreibung dazu finden Sie im Kapitel 3.4 (Die "Apply"-
Message) dieses Handbuchs.

MakeVisible

MakeVisible sorgt daflir, dass ein bestimmtes Option-Objekt fir den Nutzer

sichtbar wird. Diese Methode ist fur scrollbare Listen (look =
LOOK_SCROLLABLE) sinnvoll.

Liste-Objekte - 205

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Syntax im Basic-Code: <obj>.MakeVisible n
<obj>: OptionGroup-Objekt
n: Identifier des gewlinschten Option-Objekts

StatusHandler, SendStatus

OptionGroups unterstiitzen den sogenannten Delayed Mode. Er ist weiter unten,
im Kapitel 4.8.5 beschrieben.

Liste-Objekte - 206

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.8.3 RadioButton und RadioButtonGroup

RadioButton

Abstammung
GenericClass 9 RadioButton

Spezielle Instance-Variablen

Instance-Variable Syntax im Ul-Code Im BASIC-Code
identifier identifier = numWert lesen, schreiben
identifier

RadioButtons haben einen identifier, der sie identifiziert. Es ist vom Typ WORD
und muss innerhalb einer RadioButtonGroup eindeutig sein. 65535 (alle Bits im
WORD gesetzt) ist nicht zuldssig, auch wenn es keine sofortige Fehlermeldung
gibt. Dieser Wert wird verwendet wenn kein RadioButton-Objekt selektiert ist /
werden soll. Fur ihn gibt es die Konstante NONE_SELECTED.
RadioButton-Objekte missen Children einer RadioButtonGroup sein.

RadioButtonGroup

Abstammung
GenericClass = RadioButtonGroup

Eine RadioButtonGroup managed eine Liste von RadioButton-Objekten
(theoretisch bis Gber 65000). RadioButtonGroup-Objekte kénnen nur RadioButton-
Objekte als Children haben.

Beispiel:

RadioButtonGroup Itemgroup
Caption$= "Select an Item"
justifyCaption = J TOP
Children = iteml, item2, item3
OrientChildren = ORIENT VERTICALLY
ApplyHandler = ItemApply Select an Ite
selection = 2
End Object

RadioButton iteml: Caption$="Item 1":identifier = 1: End Object
RadioButton item2: Caption$="Item 2":identifier = 2: End Object
RadioButton item3

Caption$="Item 3"

identifier = 3

End Object

Liste-Objekte - 207

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Die Ul-Anweisungen fur die Objekte item1 und item2 wurden zur Demonstration in
einer Zeile untergebracht. Dazu wird - wie im BASIC-Code auch - ein Doppelpunkt
zur Trennung verwendet.

Spezielle Instance-Variablen

Instance-Variable Syntax im Ul-Code Im BASIC-Code
behavior behavior = numWert lesen, schreiben
look look = numWert lesen, schreiben
selection selection = numWert lesen, schreiben
isSelected — nur lesen
numSelections — nur lesen

DisplayCurrentSelection | DisplayCurrentSelection —
modified modified = numWert lesen, schreiben

ModifiedOnRedundantSelection
ModifiedOnRedundantSelection —

ApplyHandler ApplyHandler = <Handler> nur schreiben
DoublePressHandler DoublePressHandler = <Handlers nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben
Methoden:
Methode Aufgabe
MakeVisible n Einen bestimmten Eintrag sichtbar machen
Selectltem n [,FALSE] Selektiert-Status eines Eintrags andern
SendStatus Status-Handler aufrufen
behavior

Die Instance-Variable behavior bestimmt, wie sich die Group bezlglich
Selektionsmdglichkeiten der Eintréage verhalt.

Konstante Wert | Bedeutung

LB_EXCLUSIVE 0 Das ist der Default-Wert. Nur genau ein
Element kann selektiert sein

LB_EXCLUSIVE_NONE 1 Ein oder kein Element kann selektiert

sein. Ist kein Element selektiert, wird als
"selection" 65535 (NONE_SELECTED)
geliefert.

LB_EXTENDED_SELECTION | 2 Wie LB_EXCLUSIVE_NONE, aber der
Nutzer kann die Selektion durch Ziehen
mit der Maus oder durch Shift-Klick oder
Strg-Klick "erweitern". Es kdnnen also
mehrere Elemente selektiert sein.

LB_NON_EXCLUSIVE 3 Jedes Element kann unabhangig von
den anderen einzeln selektiert werden.

Liste-Objekte - 208

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

look

Instance-Variable look bestimmt das Aussehen der RadioButtonGroup und ihrer
RadioButton-Objekte (engl. look : Aussehen, auBere Erscheinung). Funktionell
sind alle Looks identisch.

Syntax Ul- Code: look = numWert
Lesen: <numVar> = <obj> . look
Schreiben: <obj>.look = numWert

Fir alle Listen-Objekte stehen die bei der OptionGroup beschriebenen Looks
(LOOK_NORMAL, LOOK_SCROLLABLE, LOOK_MINIMIZE_SIZE und

LOOK_TOOLBOX) zur Verfugung. Dort finden Sie auch Bilder und weitergehende
Informationen dazu.

selection

Die Instance-Variable selection enthalt den Identifier des aktuell selektierten
RadioButton-Objekts. Ist kein Objekt selektiert, enthalt sie den Wert 65535
(NONE_SELECTED). Falls mehrere Objekte selektiert sind, enthélt selection den
Identifier eines der selektierten Objekte.

Syntax Ul- Code: selection = numWert
Lesen: <numVar> = <obj> . selection
Schreiben: <obj>.selection = numWert

Konstante Wert Bedeutung

NONE_SELECTED | 65535 | Spezialwert flir die Instance-Variable "selection"
wenn kein Eintrag selektiert ist oder kein Eintrag

selektiert werden soll. Behavior sollte den Wert
LB_EXTENDED_SELECTION oder
LB_EXCLUSIVE_NONE haben.

isSelected

IsSelected prift, ob ein bestimmtes RadioButton-Objekt bzw. Listeneintrag,
gegeben durch seinen Identifier, selektiert ist oder nicht.
Siehe auch: Selectltem

Syntax Lesen: <numVar> = <obj> . isSelected (n)
<obj> RadioButtonGroup Objekt
n: Identifier eines RadioButton-Objekts bzw. Listeneintrags

Liste-Objekte - 209

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

numSelections

Die Instance-Variable numSelections enthélt die Anzahl der aktuell selektierten
Listeneintrage.

Syntax Lesen: <numVar> = <obj>. numSelections

DisplayCurrentSelection

Der Hint DisplayCurrentSelection beeinflusst RadioButtonGroups mit look =
LOOK_MINIMIZE_SIZE und bewirkt, dass im minimierten Zustand statt des
Caption-Textes der RadioButtonGroup der Text des aktuell selektierten
RadioButtons angezeigt wird.

Syntax Ul- Code: DisplayCurrentSelection

RadioButtonGroup Itemgroup
Caption$= "Select an Item"
Children = iteml, item2, item3
look = LOOK_ MINIMIZE SIZE
DisplayCurrentSelection
fixedSize = 15 + ST _AVG_CHAR WIDTH, 1 + ST LINES_ OF TEXT
ApplyHandler = ItemApply
selection = 2

End Object

Select an Iltem —'| | = Item 2 —'| | =
“vitem 1l “vitem 1
01ten12| 0Iten12|
v item 3 vIitem 3

Das Bild zeigt die RadioButtonGroup entsprechend dem obigen Code, links ohne
und rechts mit dem Hint DisplayCurrentSelection.

modified

Die Instance-Variable modified der RadioButtonGroup enthélt die Information, ob
die Selektion der RadioButtonGroup seit der letzten Apply-Aktion ge&ndert wurde.

Beachten Sie, dass ein Verandern des Objekts vom BASIC-Code aus (z.B.
Belegen der Instance-Variable selection), das Objekt nicht als "modified"
markiert, d.h. der Wert der Instance-Variablen modified wird nicht verandert. Sie
kénnen dies bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified

= TRUE" verwenden.

Syntax Ul- Code: modified = TRUE | FALSE
Lesen: <numVar> = <obj> . modified
Schreiben: <obj>.modified = TRUE | FALSE

Liste-Objekte - 210

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Wenn Sie die Instance Variable modified lesen, werden Sie feststellen, dass sie

Null enthélt, es sei denn, Sie haben sie explizit auf einen anderen Wert gesetzt.

Andert der Nutzer namlich Auswahl innerhalb der Liste, so passiert intern

folgendes:

+ Die Instance-Variable modified wird mit TRUE belegt.

+ Es wird geprift ob ein ApplyHandler vorhanden ist und dieser wird ggf.
aufgerufen. Der Wert von modified wird dem Handler Gbergeben.

+ Die Instance-Variable modified wird zurlickgesetzt (mit FALSE belegt).

Hinweis: Im sogenannten Delayed Mode (siehe entsprechendes Kapitel weiter

unten) werden die letzten beiden Schritte nicht ausgefihrt, so dass die Instance-
Variable modified eine eigene Bedeutung erhalt.

ModifiedOnRedundantSelection

Der Hint ModifiedOnRedundantSelection bewirkt, das eine RadioButtonGroup
sich selbst als modified markiert, wenn der Nutzer den bereits selektierten Eintrag
erneut auswahlt. Im Wesentlichen bedeutet dass, dass die RadioButtonGroup ihre
Apply Message aussendet wenn der Nutzer einen bereits selektierten Eintrag
erneut selektiert.

Syntax Ul-Code: ModifiedOnRedundantSelection

ApplyHandler

Der ApplyHandler der RadioButtonGroup wird aufgerufen, wenn der User ein
Element selektiert / die Selektion andert. Er muss als ListAction deklariert sein.

Beispiel, passend zum UI-Code oben:

ListAction ItemApply

Print selection; numSelections
END Action

Der Parameter selection enthéalt den Identifier, der gedndert wurde und so den
Apply-Handler ausléste.

Der Parameter numSelections enthélt die Anzahl der der selektierten Elemente.
Der Parameter modified ist immer 65535, d.h. alle Bits des WORD sind gesetzt.
Das ist das Analogon zur Integer-Konstanten TRUE (= —1).

Syntax Ul- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Liste-Objekte - 211

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Hinweis: Es ist mdglich den ApplyHandler der RadioButtonGroup manuell (vom
BASIC-Code aus) zu aktivieren. Dazu wird die von der GenericClass geerbte
Methode Apply verwendet. Da ApplyHandler nur ausgelést werden, wenn das
Objekt "modified" ist, muss es vorher als "modified" markiert werden. Alternativ
kénnte man dem Objekt auch den Hint ApplyEvenlfNotModified geben.

Beispiel:
Itemgroup.modified = TRUE
Itemgroup.Apply

Eine ausfuhrliche Beschreibung dazu finden Sie im Kapitel 3.4 (Die "Apply"-
Message) dieses Handbuchs.

DoublePressHandler

Der DoublePressHandler wird aufgerufen, wenn der User ein Element mit der
Maus doppelklickt. War der Eintrag bis dahin noch nicht selektiert wird vorher der
ApplyHandler aufgerufen. Die Parameter entsprechen denen des ApplyHandlers.

Syntax Ul- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Hinweis: GEOS unterstltzt einen DoublePressHandler nur, wenn die Instance-
Variable behavior auf LB_EXCLUSIVE oder LB_EXTENDED_SELECTION
gesetzt ist. R-BASIC kann nichts daflr - sorry.

MakeVisible

MakeVisible sorgt dafir, dass ein bestimmtes RadioButton-Objekt bzw. ein
bestimmter Listeneintrag einer DynamicList flr den Nutzer sichtbar wird. Diese
Methode ist fur scrollbare Listen (look = LOOK_SCROLLABLE, z.B. DynamicList
Objekte) sinnvoll.

Syntax im Basic-Code: <obj>.MakeVisible n
<obj>: RadioButtonGroup-Objekt
n: Identifier des gewtinschten RadioButton-Objekts bzw.

Listeneintrags

Liste-Objekte - 212

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Selectltem

Mit Selectltem kdnnen Sie den Status "Selektiert" oder "nicht selektiert" fur ein
bestimmtes RadioButton-Objekt bzw. einen bestimmten Listeneintrag einer
DynamicList andern. Diese Methode ist fir Listen, die eine Mehrfachauswahl
erlauben, sinnvoll (behavior = LB_EXCLUSIVE_NONE, LB_EXTENDED
_SELECTION oder LB_NON_EXCLUSIVE). Fur Standard-Listen (behavior =
LB_EXCLUSIVE) sollten Sie die Instancevariable selection benutzen.

Syntax im Basic-Code: <obj>.Selectltem n [, state]
<obj>: RadioButtonGroup-Objekt
n: Identifier des gewtinschten RadioButton-Objekts bzw.

Listeneintrags
state: TRUE (Default): Eintrag selektieren
FALSE: Eintrag auf "nicht selektiert" setzen

StatusHandler, SendStatus

RadioButtonGroups unterstitzen den sogenannten Delayed Mode. Er ist weiter
unten, im Kapitel 4.8.5 beschrieben.

Liste-Objekte - 213

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

4.8.4 DynamiclList

Abstammung

GenericClass —# RadioButtonGroup =t DynamicList

Eine DynamicList ist eine erweiterte RadioButtonGroup. Daher erbt sie alle
Instance-Variablen und Fahigkeiten dieser Klasse (behavior, look, selection,
modified, ApplyHandler, DoublePressHandler, Selectltem, Arbeit im Delayed
Mode usw.). Zusatzlich hat sie folgende Besonderheiten:

Die Instance-Variable look steht per Default auf LOOK_SCROLLABLE. Sie
kénnen das naturlich im Ul-Code andern.

Eine DynamicList hat im Ul-Code keine Children. Sie erzeugt und verwaltet
ihren Children (Listeneintrage) selbst.

Sie missen der Instance-Variable numltems auf eine Wert ungleich Null
setzen und einen QueryHandler fir eine DynamicList schreiben, sonst werden
keine Listeneintrage angezeigt.

Spezielle Instance-Variablen

Instance-Variable Syntax im Ul-Code Im BASIC-Code

numltems numltems = numWert lesen, schreiben

QueryHandler QueryHandler = <Handler> nur schreiben
Methoden:

Methode Aufgabe

ltemText$ Listeneintrag einen Text zuweisen

ltemGString Listeneintrag eine Grafik zuweisen

Insertltems Eine bestimmte Anzahl von Eintrédgen hinzufigen

Removeltems Eine bestimmte Anzahl von Eintragen entfernen

So arbeitet eine DynamicList

Nehmen wir an, wie haben eine DynamicList mit 5 Eintragen, die hier als ltems
bezeichnet werden, so wie im Code-Beispiel dargestellt.

DynamicList DynList

Caption$ = "List Example"
justifyCaption = J TOP
numItems = 5
fixedSize = 15 + ST _AVG_CHAR WIDTH, \
3 + ST LINES OF TEXT, 3

. List Example
selection = 3

ApplyHandler = MyApplyHandler Joshua
QueryHandler = MyListQuery T
END Object

Liste-Objekte - 214

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Die Instance-Variable numltems bestimmt, wie viele Items eine DynamicList hat.
Die Items sind selbst Objekte, sie werden aber im Ul-Code nicht aufgeflhrt,
sondern die DynamicList erzeugt sie bei Bedarf selbst. Die von der
RadioButtonGroup-Klasse geerbte Instance-Variable selection legt fest, welcher
Eintrag am Anfang selektiert ist. Ebenfalls von der RadioButtonGroup Klasse
geerbt ist die Instance-Variable ApplyHandler. FixedSize hingegen ist von der
GenericClass geerbt und legt im Beispiel fest, dass die Liste 15 Zeichen breit und
3 Zeilen hoch ist, wobei 3 Items gleichzeitig angezeigt werden sollen.

Will eine DynamicList eines ihrer ltems darstellen, so bendétigt sie eine Information,
welchen Text das ltem darzustellen hat. Dazu ruft sie den QueryHandler auf
(engl. to query: anfordern). Diesem wird die Nummer des ltems, das dargestellt
werden soll, Ubergeben. Die Z&hlung beginnt dabei immer mit Null. Der Handler
muss den anzuzeigenden Text (bzw. die Grafik) ermitteln und ihn an die
DynamicList Gbergeben, wie im Beispielcode dargestellt.

LISTACTION MyListQuery
DIM name$ AS String

ON selection SWITCH

CASE 0: name$ = "Ralph" : END CASE

CASE 1: name$ = "Fred" : END CASE

CASE 2: name$ = "Joshua" : END CASE

CASE 3: name$ = "Mary" : END CASE

CASE 4: name$ = "Antoinette": END CASE

DEFAULT: name$ = "no name" '"Nur zur Sicherheit!
END SWITCH

sender.ItemText$ (selection) = name$

END Action

numltems

Die Instance-Variable numltems bestimmt, wie viele Listeneintrage die Dynamic-
List hat. Sie kann im sowohl Ul-Code als auch im BASIC-Code gesetzt werden.

Syntax Ul- Code: numltems = numWert
Lesen: <numVar> = <obj> . numltems
Schreiben: <obj>.numltems = numWert

Es ist explizit zuldssig, numltems im Ul-Code nicht oder mit Null zu belegen, was
die gleiche Wirkung hat. Die Liste bleibt dann zunachst leer und sendet keine
Query-Message aus. Es ist daher eine gute Idee, numltems am Programmende
auf Null zu setzen.

Tipp: Der Andern Sie den Wert von numitems im BASIC-Code, so stellt sich die
Liste neu dar. Wenn Sie also die Anzahl der Eintrage oder deren Inhalt in der Liste
zur Laufzeit andern wollen, so missen Sie nur numltems einen Wert zuweisen.
Die Liste fordert dann Uber ihren Queryhandler alle Eintrdge neu an.

Alternativ kbnnen Sie die Methoden Insertltems bzw. Removeltems verwenden.

Liste-Objekte - 215

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

ltemText$

Die Methode ItemText$(index) kann nur im BASIC-Code aufgerufen werden. Das
passiert Ublicherweise im QueryHandler der DynamicList. Uber ltemText$(index)
wird der Liste mitgeteilt, welchen Text das entsprechende Item darzustellen hat.
"Index" bestimmt, welchem ltem der Text zugeordnet wird.

Syntax Schreiben: <obj>.ltemText$(index) = "Text"

ltemGString

Die Methode ItemGString(index) kann nur im BASIC-Code aufgerufen werden.
Das passiert (Ublicherweise im QueryHandler der DynamicList. Uber
ltemGString(index) wird der Liste mitgeteilt eine Grafik oder einen formatierten
Text fur das entsprechende Item darzustellen. "Index" bestimmt, welchem Item die
Grafik zugeordnet wird.

Syntax Schreiben: <obj>.ltemGString (index) = <gsHan>
<gsHan>: Handle eines GStrings

Wenn Sie Grafiken in DynamicList-Objekten darstellen wollen sollten Sie Breite
und Hohe der Listen mit Hilfe des Hints fixedSize festlegen. Die ersten beiden
Parameter dieses Hints bestimmen Breite und HOhe der gesamten Liste, der
dritte Parameter bestimmt die Anzahl der gleichzeitig dargestellten ltems. Folglich
ist die Hohe eines einzelnen Listeneintrags der Quotient aus H6he der Liste und
Anzahl der Eintrage.

DynamicList MyList
QueryHandler = QueryGraphic
selection = 0

' Die Liste soll 4 Grafiken mit

'’ je 50x50 Pixel gleichzeitig darstellen

'’ Weil sie selbst etwas Platz braucht machen
' wir sie etwas groBer

' fixedSize = sizeX, sizeY, numElements
fixedSize = 60, 205, 4

' Insgesamt sollen es 5 Elemente sein.
numItems = 5

End Object

Liste-Objekte - 216

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Der QueryHandler erzeugt verschieden grafische Symbole, die als Listeneintrag

dargestellt werden.

LISTACTION QueryGraphic
dim gsHan as HANDLE

' Wir starten die Aufzeichnung eines GString
' Alle Grafik- und Textausgaben gehen
' jetzt in den GString

gsHan = StartRecordGS()

on selection SWITCH

case 0:
FillEllipse 2, 2, 48, 48, blue
end case

case 1:
FillRect 2, 2, 48, 48, yellow
Rectangle 2, 2, 48, 48, black
end case

case 2:
FillEllipse 2, 2, 48, 48, red
FillEllipse 10, 10, 40, 40, cyan
end case

case 3:
FillRect 2, 20, 48, 30, light green
FillRect 20, 2, 30, 48, light green
PRINT atxy 0,0;"A"
PRINT atxy 35,0;"B"
PRINT atxy 0,35;"C"
PRINT atxy 35,35;"D"
end case

case 4:
printfont.style = ts bold
PRINT atxy 0,0;ink red;"Hello"
PRINT atxy 0, 20;ink blue; "World"
end case

end switch

' EndRecordGS beendet den Aufzeichnusmodus.
EndRecordGS gsHan

' Wir ibergeben die Grafik an den Listeneintrag
sender.ItemGString(selection) = gsHan

' Ganz wichtig:

' Das Handle wieder freigeben, sonst frisst
' das Programm Systemhandles!

FreeGS gsHan

END Action

C D

Hello
World ||
R

Tipp: Mochten Sie die grafischen Eintrdge nebeneinander darstellen, so
verwenden Sie orientChildren = ORIENT_HORIZONTALLY. Die Liste muss dann

Liste-Objekte - 217

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

naturlich 4 Eintrdge breit und nur einen Eintrag hoch sein. Den kompletten Code
dazu finden Sie bei den Beispielen zu den Listenobjekten.

DynamicList MyList
QueryHandler = QueryGraphic
selection = 0
orientChildren = ORIENT HORIZONTALLY
fixedSize = 205, 60, 4
numItems = 5
End Object

Achtung! DynamicList Objekte verwalten ihre Eintrédge als Children selbst. Auch
die Captions der Listeneintrdge werden in dem Objektblock gespeichert, in dem
die Liste ist. Im Normalfall befinden sich auch noch andere Objekt in diesem
Block, so dass er anfangs bereits ca. 4 kByte groB ist. Damit ist ein gewisser
Platzbedarf fir die Listeneintrédge bereits berlcksichtigt. Da man mit ltemGString
aber auch relativ groBe Grafiken zuweisen kann (z.B. wenn der GString eine
Bitmap enthalt), kann der Objektblock zur Laufzeit trotzdem sehr groB werden und
der Speichermanager bekommt ein Problem ("Hauptspeicher voll"). Um dieses
Problem zu vermeiden sollte man Listen, die viele oder groBe grafische Elemente
darstellen sollen, in einem eigenen Objektblock ablegen. Dazu verwendet man die
Ul-Anweisung ForceNewObjBlock (siehe Kapitel 2.1.4). Diese weist den Compiler
an unverzuglich mit einem neuen Objektblock zu beginnen, auch wenn im aktuell
aufgebauten Block noch Platz zu sein scheint.

Weitere Informationen zu GStrings und auch zum Speicherbedarf vom GStrings
finden Sie im R-BASIC Programmierhandbuch, Kapitel 2.8.5 (Arbeit mit Graphic
Strings).

ForceNewObjBlock
DynamicList MyBigList

END Object

ForceNewObjBlock

QueryHandler

Der QueryHandler wird automatisch aufgerufen, wenn die DynamicList eines
seiner ltems darstellen will. QueryHandler missen als ListAction deklariert sein.
Der Parameter selection enthédlt die Nummer des ltems, fir das ein Text
angefordert wird. Die anderen Parameter sind bedeutungslos.

Die korrekte Reaktion des QueryHandlers ist, wie in den Code-Beispielen oben,
die Methoden ItemText$(selection) oder ItemGString(index) der DynamicList
aufzurufen.

Syntax Ul- Code: QueryHandler = <Handler>
Schreiben: <obj>.QueryHandler = <Handler>

Liste-Objekte - 218

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Das Zusammenspiel zwischen DynamicList und QueryHandler funktioniert
automatisch, so dass Sie sich nicht weiter darum kiimmern mussen. Sie missen
nur sicherstellen, dass der QueryHandler zu jedem selection-Wert, der von der
Liste kommen kann (Null ... numltems—1), einen passenden Text oder eine Grafik
bereitstellt. Dabei ist es, wie im Beispiel-Code zu ltemText$ oben, sinnvoll auch
"unerwartete" Falle zu berlcksichtigen, falls sie spéater etwas &ndern oder ein
Programmierfehler auftritt.

Insertltems

Insertltems fligt eine bestimmte Anzahl von Listeneintrdgen ab einer wahlbaren
Position in die Liste ein. Die aktuell selektierten Eintrage bleiben selektiert.

Syntax im BASIC-Code: <obj>.Insertltems pos, anz
pos: Position, aber der eingefligt werden soll
Null: Einfugen am Anfang
pos > aktuelle Anzahl: Anhangen
anz: Anzahl der neuen Eintrage

Removeltems

Removeltems I6scht eine bestimmte Anzahl von Listeneintrdgen ab einer
wahlbaren Position. Die aktuell selektierten Eintréage bleiben selektiert, falls sie
nicht geléscht wurden.

Syntax im BASIC-Code: <obj>.Insertltems pos, anz
pos: Position, aber der geléscht werden soll
anz: Anzahl der zu I6schenden Eintrage

Liste-Objekte - 219

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.8.5 Listen-Objekte im Delayed Mode

Alle Listen-Objekte kdénnen im "Delayed Mode" (engl.: verzdgerter Modus)
arbeiten. Dazu muss man dem Objekt selbst bzw. einem seiner Parents im Ul-
Code den Hint MakeDelayedApply geben oder man bindet das Objekt als Child in
einem Dialog ein, dessen dialogType |Instance Variable auf
DT_DELAYED_APPLY gesetzt ist. Dieser "Delayed Mode" ist ausfuhrlich im
Kapitel 3.4.2 (Delayed Mode und Status-Message) dieses Handbuchs
beschrieben, eine Beschreibung des Dialog-Objekts im Delayed Mode finden Sie
im Kapitel 4.6.6.5.

Instance Variable Syntax im Ul-Code Im BASIC-Code
StatusHandler StatusHandler = <Handler> nur schreiben
Syntax Ul- Code: StatusHandler = <Handler>

Schreiben: <obj>.StatusHandler = <Handler>

Der StatusHandler wird im Delayed Mode statt des ApplyHandlers gerufen, wenn
der Nutzer die Auswahl innerhalb der Liste andert. Der ApplyHandler hingegen
wird erst auf Anforderung gerufen (siehe Kapitel 3.4.2).

Die Instance-Variable modified kann einen Wert ungleich Null enthalten, namlich
dann, wenn das Objekt vom User modifiziert wurde, der ApplyHandler aber noch
nicht gerufen wurde. Der Aufruf des ApplyHandlers setzt auch im Delayed Mode
den modified-Status zurlck. Falls kein ApplyHandler gesetzt ist wird der modified-
Status wird immer dann zurtckgesetzt, wenn der ApplyHandler gerufen werden
musste.

Bei einer OptionGroup gilt auBerdem:

« Andert der Nutzer den Zustand eines Option-Objekts der OptionGroup, so wird
die Instance-Variable modified mit dessen identifier logisch OR verknUpft.

+ Der Parameter "modified" enthélt folglich sowohl beim StatusHandler als auch
beim ApplyHandler die logische OR-Verknipfung der Identifier der seit dem
letzten Aufruf des ApplyHandler veranderten Option-Objekte.

Methode Aufgabe
SendStatus Status-Handler aufrufen
Syntax BASIC-Code: <obj>.SendStatus

Die Methode SendStatus fordert das Objekt auf, seinen StatusHandler aufzurufen
(d.h. seine Status-Message zu senden).

Liste-Objekte - 220

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

(Leerseite)

Liste-Objekte - 221

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9 View und Content

4.9.1 Uberblick

Die View Objektklasse stellt ein "Fenster" bereit, in dem beliebige grafische Daten
- einschlieBlich Texte - dargestellt werden kdénnen. Die Inhalte dieses Fensters,
d.h. die grafischen Daten, werden vom "Content"-Objekt (content: engl. Inhalt)
bereitgestellt.

Dieses Objekt muss nur die Daten darstellen
kénnen. Alles andere, wie Scrolling, Zoom oder
Clipping (engl. to clip: beschneiden) macht das
View. Das View fordert bei Bedarf das Content-
Objekt auf, sich selbst darzustellen, aber
welcher Teil der Darstellung auf dem Bildschirm
erscheint (Clipping), ob er vergréBert oder
verkleinert ist usw., darum kimmert sich das
View.

Es gibt drei Objektklassen, die als Content flr ein View dienen kénnen: Die Klasse
"VisContent", die beliebige Daten darstellen kann, die Klasse "BitmapContent", die
eine editierbare Bitmap bereitstellt und die Klasse "GenContent", die andere
GenericClass Objekte beinhaltet. Eine Ubersicht iber diese Klassen finden Sie
weiter unten. Die GenContent Klasse ist dort ausfuhrlich beschrieben. Bei
VisContent und BitmapContent handelt es sich um VisualClass Objekte. Sie sind
deshalb im Kapitel 5 des Objekthandbuchs beschrieben.

Haufig ist es so, dass der Nutzer im "Ansicht"-Menu festlegen kann, ob das
Dokument in OriginalgréBe, vergrdBert oder verkleinert dargestellt werden soll. Fir
diesen Zweck gibt es das "ViewControl" Objekt, das zum einen die erforderliche Ul
bereitstellt und zum anderen automatisch im Hintergrund mit dem View-Objekt
zusammenarbeitet. Die Aufgabe des Programmierers ist es lediglich die Objekte
zu deklarieren und mit wenigen Anweisungen zu konfigurieren.

Die Kombination der View/Content ist sehr universell und fir praktisch alle
Anwendungsgebiete geeignet. Das Ausnutzen dieser Moglichkeiten erfordert
daher eine gewisse Einarbeitung in die Eigenschaften der beiden Objektklassen
und ihrem Zusammenspiel, wobei man um gelegentliches Experimentieren nicht
herumkommt. Die Verwendung der Klasse BitmapContent stellt bereits einen
Spezialfall dar, der in der Grundkonfiguration sehr einfach zu handhaben ist.

Es gibt in R-BASIC weitere, spezialisierte und damit noch einfacher zu hand-
habende M®églichkeiten, Grafiken darzustellen. Einen Uberblick Uber diese
Méglichkeiten, die ohne die Verwendung eines View-Objekts auskommen, und
Verweise zu den entsprechenden Abschnitten in diesem Handbuch finden Sie im
Kapitel 2.2.

View und Content - 222

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Mausunterstitzung

Das Viewobjekt leitet die Mausereignisse direkt an sein Content-Objekt weiter. Bei
Bedarf kénnen Sie Maushandler fur das Content-Objekt bzw. seine Children
schreiben.

Tastaturhandling

Im Normalfall behandelt das View-Objekt die Tastaturereignisse selbstandig,
indem es sie an sein Content-Objekt weiterreicht. Sie kénnen sich aber in das
Tastaturhandling eines View-Objekts einklinken, indem Sie einen Tastaturhandler
schreiben. Zum Beispiel kdnnten Sie die Tastenkombination Strg-’+’ benutzen, um
den Zoomfaktor des Views zu vergréBern. Eine ausfuhrliche Beschreibung, wie
man einen Tastaturhandler schreibt und was es dabei zu beachten gilt, finden Sie
im Handbuch "Spezielle Themen", Kapitel 14.

Es ist sehr selten, dass man einen Tastaturhandler fiir ein Viewobjekt bendtigt. In
den meisten Féllen wird die Tastatur vom Content bzw. seinen Children behandelt.

Wichtig: Das View-Objekt gibt die Tastaturereignisse zuerst an sein Content
weiter, bevor es den BASIC Tastaturhandler aufruft. Sollten beide Objekte (View
und Content) einen Tastaturhandler haben wird daher zuerst der Tastaturhandler
des Content-Objekts aufgerufen und erst danach der Tastaturhandler des View-
Objekts. Im Kapitel 14.4 des Handbuchs "Spezielle Themen" ist am Beispiel eines
Textobjekts beschrieben, wie man vorgehen muss, um den BASIC-
Tastaturhandler aufzurufen, bevor das Objekt das Tastaturereignis an sein
Content weitergibt.

Focus und Target

Das View-Objekt ist ein Knoten in der Focus- und Target-Hierarchie. Es ist
moglich zu Uberwachen, ob ein View-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas far
erfahrene Programmierer und im Zusammenhang mit einer View/Content
Kombination nur in wenigen Fallen notwendig.

View und Content - 223

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9.2 Das View

Das View-Objekt ist die Schnittstelle zwischen ihrer Programm-Ul und den
darzustellenden Inhalten. Es arbeitet in vielen Situationen automatisch mit seinem
Content-Objekt zusammen und sorgt bei Bedarf fir das Scrolling, Clipping und
den Zoom.

Haufig entsprechen die darzustellenden Daten (Text, Grafik ...) einem Dokument.
In GeoDraw sind dies Grafiken, in GeoWrite Texte und in R-BASIC der Quellcode
eines Programms. Der Einfachheit halber sprechen wir im Folgenden auch dann
von "Dokument" wenn das Programm keine Dokument-Dateien hat. In diesem
Sinne ist in einem Spiel das Spielfeld das darzustellende "Dokument".

Im Kern ist es so, dass das View einen bestimmten Ausschnitt aus dem Dokument
darstellt. Welcher Bereich das ist und ob er vergréBert, verkleinert oder in Original-
gréBe dargestellt wird, das bestimmt entweder der Nutzer Gber das Ansicht-Men,
(das ein ViewControl-Objekt enthélt) bzw. Uber die Rollbalken des View-Objekts
oder der Programmierer legt dies Uber Programmbefehle fest.

Die Position, die in der linken oberen Ecke des View dargestellt wird heiBt "origin"
(engl.: Ursprung).

Dokument
111
Programm (R-App)
: N
\ View
origin -
V

View und Content - 224

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Abstammung:

GenericClass 9

View

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
Content Content = <obj> lesen, schreiben
contentSize contentSize = sizeX, sizeY lesen, schreiben
hControl hControl = numWert lesen, schreiben
vControl vControl = numWert lesen, schreiben

HideScrollersWhenNotScrollable

HideScrollersWhenNotScrollable

viewColor viewColor = numWert lesen, schreiben

viewAttrs viewAttrs = bitsToSet,bitsToClear | lesen, schreiben

scale scale = xWert, yWert lesen, schreiben

scaleToFitOptions scaleToFitOptions = numWert lesen, schreiben

origin origin = xWert, yWert lesen, schreiben

viewlncrement viewlncrement = xWert , yWert lesen, schreiben

suspendUpdate — lesen, schreiben

DoNotWinScroll DoNotWinScroll —

ImmediateDragUpdates | ImmediateDragUpdates —

DelayedDragUpdates DelayedDragUpdates —

hLink hLink = <obj> lesen, schreiben

vLink vLink = <obj> lesen, schreiben

inputOptions inputOptions = numWert lesen, schreiben

focusable focusable = FALSE | TRUE lesen, schreiben

holdsLargeText holdsLargeText = TRUE lesen, schreiben
Methoden:

Methode Aufgabe

Redraw View und Content neu zeichnen

GetVisibleRect Aktuell dargestellten Bereich holen

ScrollToOffset View um einen bestimmten Betrag scrollen

ScrollCmd View Scroll-Kommando ausfiihren

InitiateDragScroll Drag-Scrolling in Nicht-Standard-Situationen aktivieren

SetDragBounds Begrenzung fur Drag-Scrolling setzen

SetPointerimage Mauszeiger andern (aus DATA-Zeilen lesen)

ClearPointerimage Mauszeiger wieder auf Standard zurlicksetzen

View und Content - 225

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9.2.1 Das Content eines View

Jedes View bendétigt genau ein Content-Objekt, dass die Daten des Dokuments
darstellt. Wie bereits oben erwahnt verwenden wir den Begriff Dokument auch
dann, wenn die darzustellenden Daten zu keiner Dokument-Datei im engeren Sine
gehoéren. Die Instancevariable Content enthédlt das aktuelle Content-Objekt.
Haufig ist das gleichzeitig der Screen zur Ausgabe von Grafik und Text. Das muss
jedoch nicht sein. Die Instancevariable contentSize enthalt die GréBe des
Content-Objekts, also die GréBe des vom View darzustellenden Dokuments. Mit
der Methode Redraw kénnen Sie ein Neuzeichnen des Views und seines Content
auslosen.

Content

Die Instance-Variable Content (engl.: Inhalt) enthalt das aktuelle Content-Objekt
des View’s. Es kann im BASIC-Code gelesen und geschrieben werden. Wird dem
View ein neues Content-Objekt zugeordnet stellt sich das View automatisch neu
dar, so dass der neue Content sichtbar wird. Dabei kommuniziert das View mit
dem neuen Content und kann, je nachdem, welche Werte fir hControl, vControl
und viewAttrs gesetzt sind, gegebenenfalls seine GréBe neu bestimmen.

Ein eventuell vorher mit dem View verbundenes Content-Objekt wird dabei
automatisch abgekoppelt. Die Zuweisung eines "leeren" Content-Objekts mit der
Funktion NullObj() ist zulassig.

Syntax Ul-Code: Content = <obj>
<obj> muss namentlich aufgefihrt werden.
Variablen sind im Ul-Code nicht zulassig.
Lesen: <objVar> = <obj>.Content
Schreiben: <obj>.Content = <obj2>

Beachten Sie, dass die Zuweisung eines neuen Content-Objekts den aktuelle
"Screen" nicht beeinflusst (siehe auch Kapitel 2.3.1). Wenn das alte Content-
Objekt der "Screen" war, bleibt er es auch. Alle Grafik- und Text-Ausgaben gehen
weiterhin an dieses Objekt. Moglicherweise missen Sie also zuséatzlich das neue
Content-Objekt auch der Screen-Variablen zuweisen.

Beispiel Ul-Code:

View MyView
hControl HVC_SCROLLABLE
vControl HVC_SCROLLABLE
Content = MyBitmapContent
END Object

View und Content - 226

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Beispiele BASIC-Code:
DIM ob as OBJECT

ob = MyView.Content ' Altes Content merken
MyView.Content = MyOtherContent ' Neues Content-Objekt zuweisen
MyView.Content = ob ' Altes Content wieder zuweisen

contentSize

Die Instance-Variable contentSize speichert die x- und y-Ausdehnung der vom
Content-Objekt darzustellenden Dokuments. Gemeinsam mit seiner eigenen
GroBe und einem eventuell eingestellten Zoom-Faktor kann das View dann z.B.
entscheiden, ob es Scrollbalken verwenden muss und wie groB deren "innerer
Balken" zu sein hat.

In vielen Féllen verwaltet das View die contentSize automatisch, indem es mit
dem Content-Objekt kommuniziert. Bei Bedarf kann contentSize aber sowohl im
Ul-Code als auch im BASIC-Code geschrieben werden.

Syntax Ul-Code: contentSize = xSize, ySize
Lesen: <numVar> = <obj>.contentSize (0) ! x-Size
<numVar> = <obj>.contentSize (1) ! y-Size
Schreiben: <obj>.contentSize = xSize, ySize

Beispiel Ul-Code:

View MyView

< .. andere Instance-Variablen hier .. >
contentSize = 100, 200
END Objekt

Beispiele BASIC-Code:
DIM breite AS Real

' Ausgabe in der Dokument-GroBe in der Form: Breite x HoOhe"
breite = MyView.contentSize(0)

Print "Alte GroBe = "; breite ; " x "; MyView.contentSize(1l);
"Pixel"
MyView.contentSize = 64, 48 ' Neue GroBe zuweisen

View und Content - 227

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Redraw

Die Methode Redraw l6st ein Neuzeichnen des kompletten View-Objekts und
seines Content aus.

Syntax im Basic-Code: <viewObj>.Redraw

Hinweis: Die Redraw-Methode anderer Objekte akzeptiert einen Parameter. Fir
View-Objekte ist der Parameter syntaktisch méglich, wird jedoch ignoriert.

4.9.2.2 View Geometrie

Da ein View ein generisches Objekt ist kdnnen alle Geometrie-Hints aus dem
Kapitel 3.3, insbesondere aus dem Kapitel 3.3.4 (ObjektgréB8e) mit einem View
verwendet werden. Die wichtigsten sind der Einfachheit halber hier noch einmal
aufgefuihrt. Beachten Sie, dass die ~Size-Hints mit den Werten far hControl bzw.
vControl in Konflikt geraten kénnen.

GenericClass Hint Ul-Code Syntax Im BASIC Code
ExpandWidth ExpandWidth —
ExpandHeight ExpandHeight —

initialSize initialSize = x, y [, count] lesen, schreiben
minimumSize minimumSize = x, y [, count]| lesen, schreiben
maximumSize maximumSize = x, y [, count | lesen, schreiben
fixedSize fixedSize = x, y [, count] lesen, schreiben
xSize — nur lesen

ySize — nur lesen

Zusétzlich verfugt das View Uber eigene Geometrieféhigkeiten, die mit der GroBe
des darzustellenden Dokuments und der Bereitstellung von Rollbalken (Scroller)
zusammenhé&ngen.

Die Instancevariablen hControl und vControl legen fest, wie sich das View in
horizontaler (hControl) oder vertikaler (vControl) Richtung darstellt. Mit dem Hint
HideScrollersWhenNotScrollable kann man bewirken, dass Rollbalken nur dann
dargestellt werden, wenn sie wirklich gebraucht werden. SchlieBlich kann man mit
viewColor die Hintergrundfarbe des View einstellen.

hControl, vControl

Die Instancevariablen hControl und vControl legen fest, wie sich das View in
horizontaler (hControl) oder vertikaler (vControl) Richtung darstellt. Zulassige
Werte sind Kombinationen der HVC_-Konstanten (HVC: horizontal-vertical-
control). Die Werte sind so gewahlt, dass jede Konstante genau ein Bit gesetzt hat

View und Content - 228

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

(Bitflags). Mehrere Konstanten kénnen mit + oder OR verknupft werden, die
Abfrage, ob ein bestimmter Wert gesetzt ist kann mit der logischen AND Funktion
erfolgen.

Syntax Ul-Code: hControl = numWert
vControl = numWert
numWert ist eine Kombination der HVC_-Konstanten
Lesen: <numVar> = <obj>.hControl
<numVar> = <obj>.vControl
Schreiben: <obj>.hControl = numWert
<obj>.vControl = numWert
numWert ist eine Kombination der HVC_-Konstanten

Folgende Konstanten stehen zur Verfugung. Hier nicht aufgefihrte Werte (z.B. 2)
sollten auch nicht verwendet werden, da ihre Wirkung unbestimmt ist.

Auch die Kombination widersprichlicher Werte (z.B. HVC_SCROLLABLE +
HVC_NO_SCROLLBAR) kann seltsame Folgen haben.

Konstante Wert gesetztes
dezimal hex Bit
HVC_SCROLLABLE 128 &H80 7
HVC_TAIL_ORIENTED 32 &H20 5
HVC_NO_SCROLLBAR 16 &H10 4
HVC_NO_LARGER_THAN_CONTENT 8 &H08 3
HVC_NO_SMALLER_THAN_CONTENT 4 &H04 2
HVC_KEEP_ASPECT_RATIO 1 &HO1 0

HVC_SCROLLABLE
Das View soll in diese Dimension scrollbar sein. Die Scrollleisten werden
auch gezeigt, wenn es eigentlich nicht erforderlich ist.

HVC_TAIL_ORIENTED
Bestimmt, dass das View das untere/rechte Ende des Content-Bereichs
weiterhin darstellen soll, wenn dieser Bereich bereits dargestellt wird und sich
die Gr6Be des Content-Objekts andert.

HVC_NO_SCROLLBAR
Das View soll keine Scrollleisten in der entsprechenden Dimension anzeigen,
auch wenn es scrollbar ist.

HVC_NO_LARGER_THAN_CONTENT
Das View soll sich in der gegeben Dimension nicht gréBer als das Content
machen, wobei der Wert, der in der contentSize Instance-Variable steht,

maBgebend ist. Per Default gibt es keine Restriktionen bezuglich der View-
GroBe.

View und Content - 229

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

HVC_NO_SMALLER_THAN_CONTENT
Das View soll sich in der gegeben Dimension nicht kleiner als das Content
machen, wobei der Wert, der in der contentSize Instance-Variable steht,
maBgebend ist. Per Default gibt es keine Restriktionen bezlglich der View-
GroBe.

HVC_KEEP_ASPECT_RATIO
Das View soll das Seitenverhaltnis in der Darstellung beibehalten, indem es
seine GroBe in der gegebenen Dimension basierend auf der GréBe der
anderen Dimension berechnet.

Beispiel Ul-Code:

View MyView
hControl = HVC_NO LARGER THAN CONTENT +
HVC_NO_ SMALLER THAN CONTENT
vControl = HVC_SCROLLABLE
Content = MyBitmapContent
END Object

Beispiel: Abfrage mit AND, ob das View scrollbar ist
IF MyView.vControl AND HVC SCROLLABLE THEN ...

HideScrollersWhenNotScrollable

Bewirkt, dass der Rollbalken verschwindet, wenn das View in die zugehérige
Richtung nicht scrollen kann, weil bereits das gesamte Dokument angezeigt wird.

Syntax Ul-Code: HideScrollersWhenNotScrollable
Lesen: —
Schreiben: —

viewColor

Die Instancevariable viewColor bestimmt die Hintergrundfarbe fir das View. Per
Default ist sie weil.

Syntax Ul-Code: viewColor = color
Lesen: <numVar> = <obj>.viewColor
Schreiben: <obj>.viewColor = color
color: numerischer Farbwert. Index- oder RGB-Farbe

View und Content - 230

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9.2.3 Die View Attribute

Die Instancevariable viewAttrs enthalt wichtige Konfigurationsdaten flir das View
aus verschiedenen Bereichen.

viewAttrs

ViewAttrs sind Bitflags, d.h. jedes Bit steht flr eine bestimmte Eigenschaft, die
einzeln zu- oder abgeschaltet werden kann. Bits, die in der untenstehenden
Tabelle nicht aufgefihrt sind, sind immer Null.

Per Default ist kein Bit aus der Tabelle gesetzt.

Syntax Ul-Code: viewAtirs = bitsToSet , bitsToClear
Lesen: <numVar> = <obj>.viewAttrs (0)
Die BASIC-Syntax erfordert beim Lesen von viewAttrs
einen Parameter. Der Wert wird hier ignoriert.
Schreiben: <obj>.viewAttrs = bitsToSet , bitsToClear
bitsToSet: zu setzende Attribute, Bitflags, siehe Tabelle
bitsToClear: zu setzende Attribute, Bitflags, siehe Tabelle

Verfugbare Attribute fur viewAttrs

Konstante Wert Wert hex.
VA_CONTROLLED 32768 &H8000
VA_GENERIC_CONTENTS 16384 &H4000
VA_DRAG_SCROLLING 4096 &H1000
VA_NO_WIN_FRAME 2048 &H800
VA_SAME_COLOR_AS_PARENT_WIN 1024 &H400
VA_VIEW_FOLLOWS_CONTENT_GEOMETRY 512 &H200
VA_SCALE_TO_FIT 8 &HO08
VA_ADJUST_FOR_ASPECT_RATIO 4 &H04

Bedeutung / Wirkung der einzelnen Attribute:

« VA_CONTROLLED
Das View arbeitet mit einem ViewControl zusammen

* VA_GENERIC_CONTENTS
Wird automatisch gesetzt, wenn das Content-Objekt ein
GenContent ist. Dieses Bit kann nur gelesen werden.

* VA_DRAG_SCROLLING
Das View soll Drag-Scrolling unterstitzen.

- VA_NO_WIN_FRAME
Keinen Rahmen um das View zeichnen.

* VA_SAME_COLOR_AS_PARENT_WIN
Die Hintergrundfarbe des View soll sich der Farbe seines
Parent-Objekts anpassen.

View und Content - 231

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

* VA_VIEW_FOLLOWS_CONTENT_GEOMETRY
Das View soll sich der Gr6Be seines Content-Objekts
anpassen.

* VA_SCALE_TO_FIT

Das View soll im ScaleToFit-Modus arbeiten. Dieses Bit kann
sowohl manuell als auch von einem ViewControl (zumeist im
Ansicht-Menu) aus gesetzt werden.

+ VA_ADJUST_FOR_ASPECT_RATIO
Das View soll das Seitenverhéltnis automatisch korrigieren. Das
wird z.B. verwendet, wenn die Pixel eines Bildschirms nicht
quadratisch sind.

4.9.2.4 Scaling und Scrolling

In den meisten Féllen stellt der Nutzer den gewtlinschten Skalierungsfaktor tber
das Ansicht-Men0 ein, dass ein ViewControl-Objekt enthélt. Die gewilnschte
Position im Dokument wahlt der Nutzer Uber die Rollbalken des View. Es ist
jedoch auch mdglich die Skalierung und Position per Programmcode einzustellen.
Mit der Instancevariablen scale kann man den Skalierungsfaktor &andern.
ScaleToFitOptions beeinflusst das Verhalten des View, wenn es sich im Modus
"GréBe anpassen" befindet. Manuell kann man diesen Modus einstellen, wenn
man das Bit VA_SCALE_TO_FIT in der Instancevariablen viewAttrs setzt.

Die Instancevariable origin (engl. fur Ursprung) enthélt die Dokumentkoordinaten,
die links oben im View dargestellt werden sollen. Mit der Methode GetVisibleRect
erhélt man die Koordinaten des gesamten, vom View dargestellten Bereichs. Je
nach Skalierungsfaktor kbnnen das mehr oder weniger Pixel sein, als das View
selbst groB ist. Die Methoden ScrollToOffset und ScrollCmd erlauben es dem
Programmierer, das View in eine bestimmte Richtung um einen bestimmten
Betrag zu scrollen. Die Instancevariable viewlncrement enthalt die Werte um die
das View bei Scrolloperationen scrollen soll. Mit SuspendUpdate kann man
verhindern, dass aufeinander folgende Zoom- und Scrolloperationen ein wieder-
holtes Neuzeichnen des View bewirken. SchlieBlich kann man mit
DoNotWinScroll verhindern, dass das View Uberhaupt auf Scroll-Kommandos
reagiert.

scale

Die Instancevariable scale enthalt den aktuellen Skalierungsfaktor (Zoomfaktor)
des View-Obijekts, getrennt flr x- und y-Richtung.

Hinweis: Views, die mit einem ViewControl zusammenarbeiten (in viewAttrs ist das
Bit VA_CONTROLLED gesetzt) unterstiitzen keine unterschiedlichen Skalierungs-
faktoren in x- und in y-Richtung.

View und Content -232

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Syntax Ul-Code:

scale = xScale, yScale

Lesen: <numVar> = <obj>.scale(0) ’xScale lesen
<numVar> = <obj>.scale(1) ’yScale lesen
Schreiben: <obj>.scale = xScale, yScale
xScale: Skalierungsfaktor in x-Richtung
yScale: Skalierungsfaktor in y-Richtung
scaleToFitOptions

Wenn der Nutzer im Ansicht-Menl den Eintrag "Gr6Be anpassen" auswahlt stellt
das View den Zoomfaktor so ein, dass das gesamte Dokument sichtbar wird. Mit
der Instancevariablen scaleToFitOptions kénnen Sie dieses Verhalten modi-
fizieren. In der Tabelle unten finden Sie die Méglichkeiten. ScaleToFitOptions sind
Bitflags, d.h. Sie kbnnen mehrere Werte kombinieren.

Syntax Ul-Code:
Lesen:

Schreiben:
options:
xSize, ySize:

scaleToFitOptions = options [, xSize, ySize]
<numVar> = <obj>.scaleToFitOptions (0)

Die BASIC-Syntax erfordert beim Lesen von
scaleToFitOptions einen Parameter. Der Wert wird hier
ignoriert.

<obj>.scaleToFitOptions = options [, xSize, ySize]
numerischer Wert, Bitflags, siehe Tabelle

Parameter fir SFO_PAGE_SIZE

Mégliche Werte fir scaleToFitOptions

Konstante

Wert [Wirkung

SFO_PAGE_SIZE

1 Der Skalierungsfaktor wird anhand der
Parameter xSize und ySize berechnet
statt nach der wahren GréBe des
Dokuments.

SFO_BASED_ON_X

2 Der Skalierungsfaktor wird anhand der
Breite des Dokuments berechnet. In y-
Richtung wird mdglicherweise nur ein Tell
des Dokuments sichtbar sein.

SFO_BOTH_DIMENSIONS 4 Der Skalierungsfaktor wird in x- und in y-

Richtung getrennt voneinader berechnet.
Dadurch andert sich das Seitenverhéltnis
in Abhangigkeit von der GroBe des
Views.

View und Content - 233

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Tipp: Um bereits am Programmstart ein "angepasstes" Dokument zu erhalten
setzen Sie im Ul-Code das Bit VA_SCALE_TO_FIT in der Instancevariablen
viewAttrs.
View DemoView

viewAttrs = VA _SCALE TO FIT, O

scaleToFitOptions = SFO BOTH DIMENSIONS

' Bewirkt, dass sich der Skalierungsfaktor in beide
' Richtungen automatisch der GroBe des View anpasst.

END Object

Alternativ kbnnen Sie das Bit auch zur Laufzeit setzen. Das Aufrufen der Redraw-
Methode ist nur nétig, wenn das Bit VA_CONTROLLED nicht gesetzt ist. Sie
zwingt das View, sich neu darzustellen.
DemoView.viewAttrs = VA SCALE TO FIT, 0
'Falls notig: DemoView.Redraw

origin

Origin enthalt die Dokument-Koordinaten, die in der linken oberen Ecke des View
dargestellt werden. Wenn Sie im BASIC Code den Wert veréandern scrollt das
View automatisch dorthin.

Origin kann nicht im Ul-Code verwendet werden.

Syntax Lesen: <numVar> = <obj>.origin (0) xOrigin lesen
<numVar> = <obj>.origin (1) yOrigin lesen
Schreiben: <obj>.origin = xOrigin , yOrigin
xOrigin, yOrigin: Position, in Dokumentkoordinaten

GetVisibleRect

Die Methode GetVisibleRect liefert die Koordinaten des Bereichs des Dokuments,
der im View zu sehen ist. Sie liefert eine Struktur vom Typ RectDWord, die
folgendermaBen definiert ist:

Struct RectDWord
x0, y0, x1, yl as LongInt
End Struct

X0 und y0 bezeichnen dabei die linke obere Ecke des sichtbaren Bereichs. Das
entspricht der Instancevariablen origin. X1 und y1 bezeichnen die rechte untere
Ecke des sichtbaren Bereichs.

Syntax im Basic-Code: <rect> = <viewObj>.GetVisibleRect
rect: Variable vom Typ RectDWord

View und Content - 234

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

ScrollToOffset

Die Methode ScrollToOffset scrollt das View um einen bestimmten Betrag in x-
und/oder in y-Richtung.

Um direkt zu einem bestimmten Bereich des Dokuments zu scrollen setzen Sie
bitte die Instancevariable origin oder verwenden Sie die Methode ScrollCmd.

Syntax im Basic-Code: <viewObj>.ScrollToOffset (xOffs, yOffs)
xOffs, yOffs: ~ Verschiebung, in Dokumentkoordinaten
Null und negative Werte sind zulassig.

ScrollCmd

Die Methode ScrollCmd scrollt das View in eine bestimmte Richtung bzw. an eine
bestimmte Position.

Alternativ kdénnen Sie die Instancevariable origin setzen oder die Methode
ScrollToOffset verwenden.

Syntax im Basic-Code: <viewObj>.ScrollCmd (cmd [, param]
cmd: Auszufihrende Operation, siehe Tabelle
param: Zusatzlicher Parameter fur Kommandos

SC_SET_Y_ORIGIN und SC_SET_X_ORIGIN

Erlaubte Kommandos flir ScrollCmd. Eine "Seite" entspricht dabei immer der
aktuellen H6he bzw. Breite des im View sichtbaren Bereichs.

Konstante Wert Wirkung - Kommando scrollt das View ...

SC_TOP 1 nach ganz oben

SC_PAGE_UP 2 eine Seite nach oben

SC_UP 3 um den durch viewIncrement gegebenen
Wert nach oben

SC_SET_Y_ORIGIN 4 an die durch "param" gegebene y-Position

SC_DOWN 5 um den durch viewIncrement gegebenen

Wert nach unten

SC_PAGE_DOWN 6 eine Seite nach unten

SC_BOTTOM 7 ganz nach unten

SC_LEFT_EDGE 8 ganz nach links

SC_PAGE_LEFT 9 eine Seite nach links

SC_LEFT 10 um den durch viewlncrement gegebenen
Wert nach links

SC_SET_X_ORIGIN 11 an die durch "param" gegebene y-Position

SC_RIGHT 12 um den durch viewIncrement gegebenen
Wert nach rechts

SC_PAGE_RIGHT 13 eine Seite nach rechts

SC_RIGHT_EDGE 14 ganz nach rechts.

View und Content - 235

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

viewlncrement

Die Instancevariable viewIncrement enthélt - getrennt fir x- und y-Richtung - den
Wert um den das View scrollen soll, wenn der Nutzer z.B. die Pfeile an den
Rollbalken anklickt. Viewlncrement wird ebenso fir einige Funktionen der
Methode ScrollCmd (siehe oben) und flir das Drag-Scrolling verwendet.

Syntax Ul-Code: viewIlncrement = xinc , yInc
Lesen: <numVar> = <obj>.viewlncrement (0) xInc lesen
<numVar> = <obj>.viewlncrement (1) yInc lesen
Schreiben: <obj>.viewlncrement = xinc , yinc
xInc, yInc: neue Increment-Werte, in Dokumentkoordinaten
Defaultwerte: xInc = 20, ylnc = 15

SuspendUpdate

SuspendUpdate = TRUE bewirkt, dass Scrolling und Scaling Operationen
zunéchst nicht angezeigt werden. Das ist sinnvoll, wenn mehrere dieser
Operationen nacheinander durchgefuhrt werden mussen und ein standiger
Neuaufbau des Bildschirms vermieden werden soll.

Ein abschlieBendes SuspendUpdate = FALSE stellt das View und das Dokument
dann in seinem neuen Zustand dar.

Syntax im Basic-Code: <viewObj>.suspendUpdate = TRUE
<viewObj>.suspendUpdate = FALSE

DoNotWinScroll

Verhindert, dass das View scrollt. Die Rollbalken werden trotzdem upgedatet.
Sehr selten verwendet.

Syntax Ul-Code: DoNotWinScroll
Lesen: —
Schreiben: —

View und Content - 236

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9.2.5 Drag Scrolling

Stellen Sie sich vor, Sie klicken mit der linken Maustaste in das View und "ziehen"
die Maus mit gedruckter Taste aus dem View. In vielen Féllen ist es erwinscht,
dass das View dann zum dem Bereich scrollt, Gber dem sich die Maus jetzt
befinden wirde. Dieses Verhalten nennt man "Drag-Scrolling". Um es zu
aktivieren mussen Sie nur das Bit VA_DRAG_SCROLLING in der Instance-
variablen viewAttrs setzen.

View DemoView
defaultTarget
viewAttrs = VA CONTROLLED + VA DRAG_SCROLLING, 0

End Object

Per Default aktiviert das View den Drag-Scroll Modus nur beim Dricken der linken
Maustaste. Mit der Methode InitiateDragScroll kénnen Sie diesen Modus auch
fur andere Falle, z.B. beim Drlicken der rechten Maustaste, aktivieren. SchlieBlich
kénnen Sie mit SetDragBounds den Bereich, in dem das Dragging stattfinden
soll, einschrénken.

Die Hints ImmediateDragUpdates und ImmediateDragUpdates kontrollieren,
wie oft das View wahrend des Dragging das Dokument neu zeichnet.

Mit der Instancevariablen viewIncrement kénnen Sie kontrollieren um welchen
Betrag das Dokument bei jedem Neuzeichnen gescrollt wird.

InitiateDragScroll

Per Default wird das Drag-Scrolling vom View beim Drlcken der linken Maustaste
aktiviert. InitiateDragScroll aktiviert das Drag-Scrolling in anderen Situationen, z.B.
beim Drucken der rechten Maustaste.

Syntax im Basic-Code: <viewObj>.InitiateDragScroll

Beachten Sie, dass das View selbst keinen Maushandler haben kann. Bei Bedarf
mussen Sie einen Maushandler flr das Content-Objekt des Views schreiben.

SetDragBounds

Die Methode SetDragBounds schrankt den Bereich flr das Drag-Scrolling ein. Das
View scrollt dann wéhrend des Draggings nicht Gber den angegeben Bereich
hinaus.

Syntax im Basic-Code: <viewObj>.SetDragBounds x0, y0, x1, y1
x0, y0, x1, y1: Koordinaten des Rechtecks, in dem das View
scrollen soll.

View und Content - 237

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Achtung! Das View merkt sich die DragBounds. Wenn Sie einschrankende
DragBounds gesetzt haben missen Sie sie auch wieder zurticknehmen.

Beispiel: Sowohl die linke als auch die rechte Maustaste sollen Dragging
unterstitzen. Beim Dricken der linken Maustaste sollen DragBounds gesetzt
werden. Eine vollstdndige Version des Codes finden Sie bei den Beispielen unter
"Objekte\View-Content\Dragging Demo"

View DemoView
defaultTarget
viewAttrs = VA CONTROLLED + VA DRAG SCROLLING
Content = DemoBitmap

END Object

BitmapContent DemoBitmap
bitmapFormat = 960, 720, 8
DefaultScreen
OnMouseButton = MouseButtonHandler
END Object

MOUSEACTION MouseButtonHandler
Case ME LEFT DONW
' Das DragScroling startet automatisch. Nur DragBounds setzen
DemoView.SetDragBounds 50, 100, 480, 320
End Case
Case ME_LEFT UP
' Nicht vergessen: DragBounds auf Maximum!
DemoView.SetDragBounds 0, 0, 960, 720
End Case
Case ME RIGHT DOWN
' Das DragScroling manuell starten
DemoView.InitiateDragScroll
End Case
End Switch
END ACTION ' MouseButtonHandler

ImmediateDragUpdates, DelayedDragUpdates

Diese beiden Hints beeinflussen die Haufigkeit, mit der das Dokument wahrend
des Drag-Scrolling neu gezeichnet wird. Die Hints kdnnen nur im Ul-Code gesetzt

werden.

Syntax Ul-Code: ImmediateDragUpdates
DelayedDragUpdates

View und Content - 238

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9.2.6 Andern des Mauszeigers

Haufig ist es erwlnscht, dass sich die Form des Mauszeigers andert, wenn sich
die Maus Uber dem View befindet. Flr ein Ballerspiel ist z.B. ein Fadenkreuz
angemessen. Mit der Methode SetPointerimage koénnen Sie einen neuen
Mauszeiger festlegen. Die Methode ClearPointerimage stellt den vorherigen
Mauszeiger wieder ein.

So definiert man einen Mauszeiger

Mauszeiger sind immer 16x16 Pixel groB. Jedes Pixel kann 4 Werte annehmen.
Die folgende Tabelle zeigt die Zusammenhange.

Zeiger Pixel Wert | Ergebnis auf dem Bildschirm
0 Bildschirm Pixel ungeandert (Zeiger ist transparent)
1 Bildschirm Pixel wird Schwarz
2 Bildschirm Pixel wird XOR mit Zeiger-Pixel verknupft
3 Bildschirm Pixel wird Weil3

Mauspointer werden unter R-BASIC in DATA-Zeilen definiert. Dabei sind die
ersten beiden Werte der "Hotspot", also das Pixel, das die eigentliche Position des
Mauszeigers darstellt. Darauf folgen 32 Word-DATA-Werte, die den Mauszeiger
beschreiben.

Der einfachste und empfehlenswerte Weg zum Erzeugen der DATA-Zeilen ist, das

Programm "Mouse Pointer Creator", dass auf der R-BASIC Webseite verflgbar
ist.

Hintergrundinformation: So sind die DATA-Werte aufgebaut

Um die DATA-Werte zu erhalten werden jeweils 8 Pixel zu einem Word-Wert
entsprechend dem folgenden Schema zusammengefasst. Die Farben dienen nur
dem besseren Verstandnis der Zuordnung.

Byte 1 Byte 2
Bit 7 Bit O Bit 7 Bit 0
_ / |
Pointer || LT
— \\r—\
DATA [| [| HEEEEREEER

View und Content - 239

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Damit ergibt sich folgende Berechnungsvorschrift
DATA-Wert= 16384 * Bit7 + 4096 * Bit6 + 1024 * Bit5
+ 256 * Bit4 + 64 * Bit3 + 16 * Bit2
+4 *Bit1 + 1*Bit0
Beispiel: Wir wollen einen Mauszeiger haben, der so aussieht:

Grau hinterlegte Pixel sind transparent, das schwarz/weiBe Grafiksymbol zeigt an,
dass dieses Pixel mit dem Untergrund XOR verknipft werden soll. Der rote Kreis
ist der Hotspot. Das Bild ist ein Screenshot des "Mouse Image Creator"
Programms. Auf der linken Seite ist auBerdem zu sehen, wie der Mauszeiger vor
verschiedenen Hintergrundfarben aussehen wird.

Die Pixel in der ersten Zeile haben entsprechend der Tabelle oben folgende
Werte:
2,2,2,0,0,0,3,1, 3,0,0,0,0,2,2,2

Daraus ergeben sich die ersten beiden DATA-Werte zu 43021 und 49320.
Der komplette Mauspointer wird so definiert:

DATA 7, 7 ' Hotspot
DATA 43021, 49320, 32781, 49160, 32781, 49160, 85, 21504
DATA 269, 49408, 269, 49408, 65021, 65020, 21847, 21844
DATA 65021, 65020, 269, 49408, 269, 49408, 85, 21504
DATA 32781, 49160, 32781, 49160, 43021, 49320, 0, 0

Diesen Mauspointer und ein Beispiel zur Anwendung verschiedener Mauspointer
finden Sie in der Beispieldatei "Mauszeiger und Freihandlinie" im Ordner "Beispiel\
Objekte\View und Content".

Erfahrene Programmierer werden hier sicher die Darstellung mit Hexadezimal-
Zahlen bevorzugen.

View und Content - 240

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

SetPointerimage

SetPointerlmage liest einen Mauspointer aus Data-Zeilen und weist ihn dem View
Zu.

Syntax im Basic-Code:
<viewObj>.SetPointerimage

Tipp: Kennzeichnen Sie den Mauspointer durch eine LABEL Anweisung und
verwenden Sie die Anweisung RESTORE <LabelName> um einen bestimmten
Mauspointer anzuwéhlen.

Label Pointerl
DATA hotX, hoty
DATA imageWertl, ImageWert2,
' insgesamt 32 Image Werte

ClearPointerimage

ClearPointerlimage setzt einen Mauszeiger auf den Standard-Mauszeiger zurtick.

Syntax im Basic-Code: <viewObj>.ClearPointerimage

4.9.2.7 Verlinkte Views

Gelegentlich ist es winschenswert, dass Scroll-Operationen fur mehrere Views
gleichzeitig ausgefuhrt werden. Wenn Sie beispielsweise zwei (oder mehr) Views
nebeneinander haben und das eine View hochscrollen kann es sinnvoll sein, dass
die anderen Views automatisch mitscrollen. Man sagt dann, die Views sind
miteinander "verlinkt". R-BASIC unterstitzt die Verlinkung sowohl in horizontaler
Richtung (Views teilen horizontale Scroll- und Scale-Ereignisse) als auch in
vertikaler Richtung (Views teilen vertikale Scroll- und Scale-Ereignisse). Die
geometrische Anordnung der Views auf dem Bildschirm spielt dabei keine Rolle.
Zu den von den Views geteilten Ereignissen zahlen auch das Setzen der
Instancevariablen origin und scale sowie die Scroll Kommandos (Methoden
ScrollCmd und ScrollToOffset).

Die Verlinkung von Views muss immer zirkular erfolgen. Nehmen wir an, Sie
haben 3 Views. Dann zeigt View1 auf View2, View2 auf View3 und View3 wieder
zurlick zu View1.

View und Content - 241

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

hLink

Die Instancevariable hLink enthalt das nachste in horizontaler Richtung verlinkte
View. Das letzte horizontal verlinkte View muss wieder zuriick zum ersten View
zeigen.

Horizontal verlinkte Views senden horizontale Scroll- und Scale-Ereignisse
automatisch an die anderen Views weiter.

Syntax Ul-Code: hLink = <obj>
Lesen: <objVar> = <obj>.hLink
Schreiben: <viewObj>.hLink = <obj2>

vLink

Die Instancevariable vLink enthalt das nachste in vertikaler Richtung verlinkte
View. Das letzte vertikal verlinkte View muss wieder zurlick zum ersten View
zeigen.

Vertikal verlinkte Views senden vertikale Scroll- und Scale-Ereignisse automatisch
an die anderen Views weiter.

Syntax Ul-Code: vLink = <obj>
Lesen: <objVar> = <obj>.vLink
Schreiben: <viewObj>.vLink = <obj2>

Beispiel. Die beiden Views sind sowohl horizontal als auch vertikal verlinkt und
zeigen so immer den gleichen Bereich ihres Dokuments.

View DemoViewl

hL.ink = DemoView?2
vLink = DemoView2
END Object

View DemoView2

hLink

= DemoViewl
vLink = DemoViewl
END Object

Achtung! Wenn Sie die View-Verlinkung zur Laufzeit &ndern, missen Sie selbst
darauf achten, dass keine widersprichlichen Verlinkungen entstehen. Falls Sie ein
View zur Laufzeit vernichten wollen, missen Sie sicherstellen, dass es nicht mehr
mit anderen Views verlinkt ist. Verwenden Sie dazu die Funktion NullObj().

obj.hLink = NullObj()
obj.vLink NullObj()

View und Content - 242

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9.2.8 Sonstige Konfigurationsoptionen

inputOptions

Per Default sendet das View sowohl Maus- als auch Tastaturereignisse direkt an
sein Content. Mit der Instancevariablen inputOptions kdnnen Sie einige
Optimierungen vornehmen. InputOptions sind BitFlags, d.h. Sie konnen
verschiedene Werte kombinieren.

Syntax Ul-Code: inputOptions = numVal
Lesen: <numVar> = <obj>.inputOptions
Schreiben: <obj>.inputOptions = numVal
numVal: numerischer Wert: Siehe Tabelle

Folgende inputOptions stehen zur Verfligung:
Konstant Wert | Funktion
VIO_DONT_SEND_MOUSE_EVENTS 1 Keine Maus-Move
Ereignisse senden. Button-
Ereignisse werden
trotzdem gesendet.

VIO_DONT_SEND_KBD_RELEASES 2 Tastaturereignis "Taste
losgelassen nicht senden

focusable

Die Instancevariable focusable bestimmt, ob das View den Focus bekommen kann
(focusable = TRUE) oder nicht (focusable = FALSE). Der Defaultwert ist TRUE.

Syntax Ul-Code: focusable = numVal
Lesen: <numVar> = <obj>.focusable
Schreiben: <obj>.focusable = numVal
numVal: numerischer Wert: TRUE oder FALSE

targetable

Views erben die Instancevariable targetable von der GenericClass. Tragetable
bestimmt, ob das View zum Target werden kann (targetable = TRUE, Defaultwert)
oder nicht (targetable = FALSE).

Um mit einem ViewControl zusammenzuarbeiten muss das View targetable sein.
AuBerdem muss das Bit VA_CONTROLLED in der Instancevariablen viewAttrs
gesetzt sein.

View und Content -243

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

holdsLargeText

Die Instancevariable holdsLargeText muss fir das View und das zugehérige
VisContent auf TRUE gesetzt werden, damit die View/Content Kombination mit
einem LargeText Objekt zusammenarbeiten kann. Details dazu finden Sie im
Kapitel 4.10.9 (VisText und LargeText) des Objekthandbuchs.

Syntax Ul-Code: holdsLargeText = TRUE
Schreiben: <obj>.holdsLargeText = TRUE | FALSE

Children eines View-Objekts

Im Normalfall besitzt ein View keine Children. Mdglich ist das jedoch, da ein View
von der GenericClass abstammt. Um die Children innerhalb des View zu
platzieren, kénnen Sie den Children die - ebenfalls von der GenericClass
geerbten Hint placeObject geben. Dieser bestimmt, in welchem Bereich des View
das Child platziert werden soll. Dabei stehen die folgenden Werte zur Verfligung:

Wert Objekt wird platziert ...

16 X-Scroller-Bereich

32 Y-Scroller Bereich

64 Linke Seite des View
128 Obere Seite des View
256 Rechte Seite des View
512 Untere Seite des View

Beispiel: Platziere eine Button unter dem View

View MyView
Children = MyButton
Soo0o0 =

END

Button MyButton

Caption$ = "Neu zeichnen"
placeObject = 512

< .. >

END Object

View und Content - 244

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

4.9.3 VisContent

Objekte der Klasse VisContent dienen priméar dazu, Grafiken in einem skalierbaren
und scrollbaren View auszugeben. Sie kénnen auBerdem auf Tastatur- und
Mauseingaben reagieren. Das VisContent-Objekt muss nur die Grafik
bereitstellen, das View-Objekt kimmert sich um den darzustellenden Bereich,
Scrolling und Zoom. VisContent Objekte kdénnen Children der Klasse VisObj
haben, die ihrerseits Grafik ausgeben und auf Tastatur und Maus reagieren
kdnnen.

Eine ausflihrliche Beschreibung der VisContent Klasse finden Sie im Objekt-
handbuch, Kapitel 5.4.

4.9.4 BitmapContent

Objekte der Klasse BitmapContent verwalten eine editierbare Bitmap. Bitmaps
sind digitalisierte Bilder. Sie bestehen aus einer rechteckigen Anordnung von
einzelnen Bildpunkten (Picture Element: Pixel). Jedem Pixel kann eine eigene
Farbe zugeordnet werden. In die Bitmaps der Klasse BitmapContent kann Text
oder Grafik geschrieben werden. Das BitmapContent-Objekt legt die zugehdrige
Bitmap automatisch selbst an, so dass sie sofort benutzt werden kann.

Die BitmapContent Klasse ist von der VisContent Klasse abgeleitet. Sie erbt daher
die meisten ihrer Fahigkeiten und Eigenschaften. Von besonderer Bedeutung ist
dabei die Fahigkeit, auf Tastatur- und Mauseingaben zu reagieren.

Eine ausfuhrliche Beschreibung der BitmapContent Klasse finden Sie im Objekt-
handbuch, Kapitel 5.2.

View und Content - 245

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

4.9.5 GenContent

Linienbreite:
+ 1 Punkt
+v 2 Punkt

]

Rot | Grun | Blau | |

Objekte der Klasse GenContent dienen
dazu, GenericClass Objekte (z.B. Buttons)
in einem scrollbaren View darzustellen.
Die Applikation "Voreinstellungen" macht
von dieser Moglichkeit Gebrauch.
GenContent-Objekte kénnen jede Art von
GenericClass Objekten als Children

| haben.

GenContent-Objekte haben keine eigenen Maus- oder Tastaturhandler, sondern
leiten diese Ereignisse wie eine Group direkt an ihre Children weiter. Wenn Sie ein
GenContent-Objekt zur Laufzeit einem View zuweisen wird es automatisch visible
gesetzt. Umgekehrt wird es automatisch not visible gesetzt, wenn Sie es von

einem View abkoppeln.

Abstammung:

GenericClass 1 GenContent

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
keepFocusVisible | keepFocusVisible —
contentAttrs contentAttrs = attrsToSet, AtirsToClear | lesen, schreiben

Tipp: Wenn die Anordnung der Children im GenContent nicht so ist, wie Sie
wilnschen, sollten Sie eine Group als Child des GenContent anlegen und ihre
Objekte innerhalb dieser Group anordnen.

KeepFocusVisible

Der Hint keepFocusVisible sorgt daflir, dass das Objekt, das den Focus hat, nicht
aus dem sichtbaren Bereich herausgescrollt wird.

Syntax Ul-Code: KeepFocusVisible

Lesen: —
Schreiben: —_

View und Content - 246

R-BASIC - Objekt-Handbuch - Vol. 5

contentAttrs

Einfach unter PC/GEOS programmieren

Die Instancevariable contentAttrs enthalt diverse Konfigurationsbits.

Syntax Ul-Code:
Lesen:

Schreiben:
attrsToSet:
attrsToClear:

contentAttrs = attrsToSet , attrsToClear
<numVar> = <obj>.contentAttrs (0)

Die BASIC-Syntax erfordert beim Lesen von
contentAttrs einen Parameter. Der Wert wird hier
ignoriert.

<obj>.contentAttrs = atirsToSet , attrsToClear
zu setzende Attribute, Bitflags, siehe Tabelle

zu setzende Attribute, Bitflags, siehe Tabelle

Konstante Wert (hex)
CA_SAME_WIDTH_AS_VIEW 128 (&h80)
CA_SAME_HEIGHT_AS_VIEW 64 (&h40)
CA_VIEW_DOC_BOUNDS_SET_MANUALLY 4 (&h04)

Bits, die in der Tabelle nicht aufgefihrt sind sollten Sie nicht setzen. Das kann zu
unerwarteten Ergebnissen fuhren.

Bedeutung der einzelnen Bits:

« CA_SAME_WIDTH_AS_VIEW

+ CA_SAME_HEIGHT_AS_VIEW
Das Contentobjekt passt seine Breite bzw. H6he an die GréBe des View-
Objekts an. Diese Konfigurationsbits ersetzen die Hints ExpandWidth und
ExpandHeight, die bei GenContent Objekten nicht funktionieren, da sie kein

Parent-Objekt haben.

+ CA_VIEW_DOC_BOUNDS_SET_MANUALLY

Dieses Bit sollte fir GenContent Objekte nicht hilfreich sein. Bei Bedarf
finden Sie eine Beschreibung beim VisContent Objekt.

View und Content -247

R-BASIC - Objekt-Handbuch - Vol. 5

4.9.6 ViewControl

= Ansicht

Verkleinern
VergrofBern

4 NormalgroGe

+ Grofe anpassen

Ansicht in % =
Ansichts-0ptionen r~
Aktualisieren FS

Einfach unter PC/GEOS programmieren

Objekte der Klasse ViewControl stellen die Ul bereit,
um den Zoomfaktor und einige andere Eigenschaften
des aktuell aktiven View-Objekts einzustellen. Die

Zusammenarbeit

zwischen View und ViewControl

erfolgt dabei automatisch ohne weiteres Zutun des

Programmierers.

Das einzige, was Sie tun missen, damit ein View mit dem ViewControl

zusammenarbeitet ist,

das Bit VA_CONTROLLED

in der

Instancevariablen

viewAttrs des View-Objekts zu setzen. AuBerdem missen Sie fir genau ein View
den Hint "defaultTarget" setzen.

Ublicher Weise hat ein Programm genau ein ViewControl-Objekt, das ein Child
des "Ansicht" Menus ist. Ein Codebeispiel finden Sie am Ende des Kapitels.

Abstammung:

GenericClass 9

ViewControl

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code

vcFeatures vcFeatures = numVal lesen, schreiben

VCAttrs vcAttrs = attrToSet, attrToClear lesen, schreiben

vcMinZoom vcMinZoom = numVal lesen, schreiben

vcMaxZoom vcMaxZoom = numVal lesen, schreiben

vcScale — nur lesen

targetView — nur lesen
Methoden:

Methode Aufgabe

ScaleView100 "NormalgréBe" aktivieren

ScaleViewToFit "GréBe anpassen" aktivieren

ZoominView "VergrdBern" aktivieren

ZoomOQutView "Verkleinern" aktivieren

RedrawView "Aktualisieren" aktivieren

ScrollLeftView View nach links scrollen

ScrollRightView View nach rechts scrollen

ScrollUpView View nach oben scrollen

ScrollDownView View nach unten scrollen

View und Content - 248

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

vcFeatures

Die Instancevariable vcFeatures stellt ein, welche Ul das ViewControl-Objekt
bereitstellen soll. Jedes Bit des Wertes steht fir eine Eigenschaft, die einzeln zu-
oder abgeschaltet werden kann. Die Arbeit mit Bitflags ist im Programmier-
handbuch, Vol. 2, Kapitel 2.3.5.4 beschrieben.

Syntax Ul-Code: vcFeatures = numVal
Lesen: <numVar> = <obj>.vcFeatures
Schreiben: <obj>.vcFeatures = numVal
numVal: numerischer Wert, Bitflags, siehe Tabelle

Die folgenden Features stehen zur Verfigung. Per Default sind alle Features
aktiviert, mit Ausnahme von "Aspektverhaltnis umrechnen" und "Alle Fenster
vergréBern / verkleinern".

Konstante Wert Zugehorige Ul
VCF_MAIN_100 &H4000 | NormalgroéBe
VCF_MAIN_SCALE_TO_FIT &H2000 | GroBe anpassen (Hauptmen)
VCF_ZOOM_IN &H1000 | VergréBern-Button
VCF_ZOOM_OUT &HO0800 | Verkleinern-Button
VCF_REDUCE &H0400 | Verkleinert auf 25%, 50%,
75% im Untermenu
VCF_100 &H0200 | Normal (100%) im Untermeni
VCF_ENLARGE &HO0100 | VergroBert auf 125%, 150%,
175%, 200% im Untermenu
VCF_BIG_ENLARGE &H0080 | VergréBert auf 300%, 400%
im Unterment
VCF_SCALE_TO_FIT &H0040 [GroBe anpassenim
Untermen

VCF_ADJUST_ASPECT_RATIO &HO0020 | Aspektverhaltnis umrechnen
im Untermen(

VCF_APPLY_TO_ALL &HO0010 | Alle Fenster vergréBern /
verkleinern im Unterment
VCF_SHOW_HORIZONTAL &HO0008 | Horizontale Bildlaufleiste ein-
/ausblenden im Unterment
VCF_SHOW_VERTICAL &HO0004 | Vertikale Bildlaufleiste ein-/
ausblenden im Untermen
VCF_CUSTOM_SCALE &H0002 | Ansicht eingeben (in%) ...
VCF_REDRAW &HO0001 Neu Zeichnen
VC_DEFAULT_FEATURES &HFFCF | Default: Alles auBer

"Aspektverhaltnis" und "Alle
Fenster vergroBern /
verkleinern"

View und Content - 249

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

vcMinZoom

Diese Instancevariable enthalt den kleinstmdglichen Scale-Faktor in Prozent. Der
Defaultwert ist 25.

Syntax Ul-Code: vcMinZoom = numVal
Lesen: <numVar> = <obj>.vcMinZoom
Schreiben: <obj>.veMinZoom = numVal
numVal: numerischer Wert, in Prozent

vcMinZoom

Diese Instancevariable enthélt den gréBtmaoglichen Scale-Faktor in Prozent. Der
Defaultwert ist 400. Wenn Sie den Wert auf unter 400 setzen sollten Sie auch das
Bit VCF_BIG_ENLARGE in der Instancevariable vcFeatures zurlicksetzen.

Syntax Ul-Code: vcMaxZoom = numVal
Lesen: <numVar> = <obj>.vcMaxZoom
Schreiben: <obj>.Max = numVal
numVal: numerischer Wert, in Prozent

vCcAttrs

Die Instancevariable vcAttrs enthalt die Information, ob die Einstellungen aus dem
Untermenu "Ansichts-Optionen" an die betroffenen Views gesendet werden sollen
oder nicht. Ein Zugriff im BASIC-Code ist im Allgemeinen nicht erforderlich. Im Ul-
Code kdnnen Sie vcAttrs zur Konfiguration der Default-Werte fir das Unterment
"Ansichts-Optionen" verwenden (siehe Beispiel unten).

Syntax Ul-Code: vcAttrs = attrsToSet , attrsToClear
Lesen: <numVar> = <obj>.vcAttrs (0)
Da vcAtirs zwei Parameter hat erfordet die BASIC-
Syntax, dass der zu lesende Wert angegeben wird. Der
Ubergebene Wert wird hier jedoch ignoriert.
Schreiben: <obj>.vcAttrs = attrsToSet , attrsToClear
attrsToSet , attrsToClear: numerischer Wert, Bitflags, siehe Tabelle

Dieses Feld wird vom ViewControl Objekt automatisch verwaltet. Klickt der Nutzer
z.B. auf "Horizontale Bildlaufleiste ein-/ausblenden" im Ansicht-Menl so wird das
entsprechende Bit in vcAttrs automatsch angepasst.

Jedes Bit des Wertes steht fir eine Eigenschaft, die einzeln zu- oder abgeschaltet
werden kann. Die Arbeit mit Bitflags ist im Programmierhandbuch, Vol. 2, Kapitel
2.3.5.4 beschrieben.

View und Content - 250

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Die folgenden Konstanten stehen zur Verfugung:

Konstante Wert Zugehorige Funktion
VCA_ADJUST_ASPECT_RATIO &h8000 | Aspektverhéltnis umrechnen
VCA_APPLY_TO_ALL &H4000 | Alle Fenster vergréBern /

verkleinern
VCA_SHOW_HORIZONTAL &H2000 | Horizontale Bildlaufleiste ein-/
ausblenden
VCA_SHOW_VERTICAL &H1000 | Vertikale Bildlaufleiste ein-/
ausblenden
VC_DEFAULT_ATTRS &H3000 | Default: Beide Bildlaufleisten
ein-/ ausblenden

ScaleView100 ScrollLeftView

ScaleViewToFit ScrollRightView

ZoomInView ScrollUpView
ZoomOutView ScrollDownView

RedrawView

Diese Methoden bewirken, dass das ViewControl die in der Tabelle aufgelisteten
Kommandos an das kontrollierte View sendet. Sie kbnnen damit z.B. Toolbuttons
realisieren, die die wichtigsten Operationen des View-Menus ausldésen kénnen.
Ein Beispiel finden Sie im Ordner BeispieN\Objekte\View-Content in der Datei
"ViewControl Tool Demo". Um die grafischen Captions dieses Beispiels nutzen zu

kénnen mussen Sie mindestens die Version 2 des Pakets "More Tool Images" von
der R-BASIC Webseite installiert haben.

Syntax am Beispiel ScaleViewToFit:
<ViewControlObj>.ScaleViewToFit

Methode Aufgabe

ScaleView100 "NormalgréBe" aktivieren
ScaleViewToFit "GroBe anpassen" aktivieren
ZoominView "VergroBern" aktivieren
ZoomOQutView "Verkleinern" aktivieren
RedrawView "Aktualisieren" aktivieren
ScrollLeftView View nach links scrollen
ScrollRightView View nach rechts scrollen
ScrollUpView View nach oben scrollen
ScrollDownView View nach unten scrollen

Hinweis: Wenn das ViewControl mehrere Views kontrolliert (in vcAttrs is
VCF_APPLY_TO_ALL gesetzt und die Option ist aktiv) arbeitet diese Methoden

View und Content - 251

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

h&aufig nur mit einem der Views (mit dem, das aktuell das Target ist). Sie kénnen
dann die Views direkt ansprechen um die gewtiinschte Operation auszufihren.

targetView

Die Instancevariable targetView enthalt das aktive View, d.h. das View, das aktuell
vom ViewControl kontrolliert wird, oder ein Null-Objekt, falls gerade kein View aktiv
ist. Der Wert kann nur gelesen werden.

Syntax Lesen: <objVar> = <obj>.targetView

Beispiele

Im einfachsten Fall missen Sie das ViewControl-Objekt nicht konfigurieren.

Menu DemoViewMenu

Caption$ = "Ansicht"
Children = DemoViewControl
End Object

ViewControl DemoViewControl
End Object

Um ein View mit dem ViewControl Objekt zusammen arbeiten zu lassen missen
Sie zwei Einstellungen vornehmen:

View DemoView
DefaultTarget
viewAttrs = VA_CONTROLLED, O

END Object

Nehmen wir jetzt an, wie haben eine Applikation mit 2 Views. Eins davon sollte
den Hint DefaultTarget gesetzt haben, beide das Bit VA_CONTROLLED.
Wir wollen folgendes:

- Der Zoom-Faktor soll auf 200% begrenzt werden.

- Im ViewControl soll die Option "Alle Fenster vergréBern / verkleinern"
vorhanden sein.

- Per Default soll diese Option aktiv sein.
- Per Default soll der horizontale Rollbalken verborgen sein.

.

H Alle Fenster vergroBern/verkleinern
_|Horizontale Bildlaufleiste ein- bzw. ausblenden
W Vertikale Bildlaufleiste ein- bzw. ausblenden

View und Content - 252

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Das zugehdrige ViewControl sieht dann so aus:

ViewControl DemoViewControl

— VCF_BIG_ENLARGE

vcMaxZoom = 200
' Default-Werte filir Ansichts-Optionen setzen

vcAttrs = VCA APPLY TO ALL, VCA SHOW HORIZONTAL
End Object

vcFeatures = VC_DEFAULT FEATURES + VCF_APPLY TO ALL \

View und Content - 253

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

(Leerseite)

View und Content - 254

R-BASIC - Objekt-Handbuch - Vol. 5

Einfach unter PC/GEOS programmieren

(Leerseite)

View und Content - 255

