

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 5
Listen-Objekte, View und Content

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4.8 Listen-Objekte .. 200
4.8.1 Überblick ... 200
4.8.2 Option und OptionGroup ... 201
4.8.3 RadioButton und RadioButtonGroup .. 207
4.8.4 DynamicList .. 214
4.8.5 Listen-Objekte im Delayed Mode .. 220

4.9 View und Content .. 221
4.9.1 Überblick ... 222
4.9.2 Das View ... 224

4.9.2.1 Das Content eines View .. 226
4.9.2.2 View Geometrie .. 228
4.9.2.3 Die View Attribute ... 231
4.9.2.4 Scaling und Scrolling .. 232
4.9.2.5 Drag Scrolling ... 237
4.9.2.6 Ändern des Mauszeigers .. 240
4.9.2.7 Verlinkte Views ... 241
4.9.2.8 Sonstige Konfigurationsoptionen .. 243

4.9.3 VisContent .. 245
4.9.4 BitmapContent .. 245
4.9.5 GenContent .. 246
4.9.6 ViewControl .. 248

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 200

4.8 Listen-Objekte

4.8.1 Überblick

In R-BASIC gibt es 3 Typen von Listen-Objekten:

• Die OptionGroup verwaltet eine Liste von Option-Objekten,
das jedes für sich und abhängig voneinander den Zustand
"ein" oder "aus" haben kann.

• Die RadioButtonGroup verwaltet eine Liste von
RadioButton-Objekten.

Diese können einzeln oder in Gruppen ausgewählt (selektiert) werden. Die
RadioButtonGroup ist ein sehr vielseitiges Objekt das insbesondere dann zum
Einsatz kommt, wenn die Anzahl der Listeneinträge von vorneherein bekannt
und unveränderlich ist.

• Die DynamicList stammt von der RadioButtonGroup ab und
ist daher genauso vielseitig wie diese. Sie wird eingesetzt,
wenn die Anzahl der Listeneinträge nicht von vorneherein
bekannt ist und / oder sich während des Programmablaufs
verändert.

Alle Listen können einen ActionHandler aufrufen, wenn vom Nutzer ein Eintrag
selektiert bzw. geändert wird. Über die Instance-Variable look kann das Aussehen
der Listen weitgehend verändert werden. So können alle Listen-Objekte - nicht nur
die DynamicList - als scrollbare Listen auftreten. Die Größe eines als scrollbare
Liste erscheinenden List-Objekts wird häufig über den Geometrie-Hint fixedSize
eingestellt. Beispiele dazu finden Sie bei der Beschreibung der Instance-Variablen
look der OptionGroup.

Die folgenden Ausführungen gehen zunächst grundsätzlich davon aus, dass die
Listen-Objekte im normalen Modus (nicht im sogenannten "Delayed Mode")
arbeiten. Das ist der Normalfall, wenn man nicht spezielle Hints setzt, um in den
Delayed Mode zu kommen. Dieser "Delayed Mode" ist ausführlich im Kapitel 3.4.2
(Delayed Mode und Status-Message) dieses Handbuchs beschrieben.

Action-Handler-Typen:
Handler-Typ Parameter
ListAction (sender as object, selection as word, modified as word,

numSelections as word)

Alle ActionHandler der List-Objekte müssen als ListAction deklariert sein. Die
Bedeutung der Parameter "selection", "modified" und "numSelections" variiert je
nach Listen-Objekt und ActionHandler. Gelegentlich sind einige der Parameter
auch bedeutungslos für den speziellen Fall.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 201

4.8.2 Option und OptionGroup

Option

Abstammung
GenericClass Option

Spezielle Instance-Variablen
Instance-Variable Syntax im UI-Code Im BASIC-Code
identifier identifier = numWert lesen, schreiben

identifier

Die Instance-Variable identifier identifiziert das einzelne Option-Objekt. Sie ist
vom Typ WORD. Der Wert muss eine 2er-Potenz sein (nur genau 1 Bit gesetzt,
d.h. einer der Werte 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,
81912, 16384, 32768). Option-Objekte müssen Children einer OptionGroup sein.
Innerhalb einer OptionGroup darf jeder Identifier-Wert nur genau einmal
vorkommen.

Syntax UI- Code: identifier = numWert
Lesen: <numVar> = <obj> . identifier
Schreiben: <obj>.identifier = numWert

OptionGroup

Abstammung
GenericClass OptionGroup

Eine OptionGroup managed eine Liste von Option-Objekten (bis zu 16).
OptionGroup-Objekte können nur Option-Objekte als Children haben.

Beispiel UI-Code:
OptionGroup ListOfOptions
Caption$= "Select Options"
justifyCaption = J_TOP
Children = bool1, bool2, bool3
OrientChildren = ORIENT_VERTICALLY
ApplyHandler = BoolApply
selection = 4
END Object

Option bool1: caption$="Option 1":identifier = 1: End Object
Option bool2: caption$="Option 2":identifier = 2: End Object

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 202

Option bool3
Caption$="Option 3" : identifier = 4:
End Object

Zur Demonstration wurde in an einigen Stellen im Code oben die Syntax mit
mehreren, durch Doppelpunkt getrennten Anweisungen verwendet, die auch im
UI-Code zulässig ist.

Spezielle Instance-Variablen
Instance-Variable Syntax im UI-Code Im BASIC-Code
selection identifier = numWert lesen, schreiben
isSelected –– nur lesen
look look = numWert lesen, schreiben
modified modified = numWert lesen, schreiben
isModified –– nur lesen
ApplyHandler ApplyHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben

Methoden:
Methode Aufgabe
MakeVisible n Einen bestimmten Eintrag sichtbar machen
SendStatus Status-Handler aufrufen

selection

Options können den Zustand "ein" oder "aus" haben. Die Instance-Variable
selection der OptionGroup enthält die Summe der identifier derjenigen Options,
die auf "ein" sind. Genauer gesagt ist es die logische Oder-Verknüpfung der
identifier. Wenn man sich an die Regel hält, dass Option-Identifier nur 2er-
Potenzen sein dürfen (was man unbedingt sollte), sind beide Aussagen
gleichwertig.

Syntax UI- Code: selection = numWert
Lesen: <numVar> = <obj> . selection
Schreiben: <obj>.selection = numWert

isSelected

IsSelected prüft, ob ein bestimmtes Option-Objekt, gegeben durch seinen
Identifier, selektiert ist oder nicht.

Syntax Lesen: <numVar> = <obj> . isSelected (n)
<obj> OptionGroup Objekt
n: Identifier eines Option-Objekts

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 203

look

Instance-Variable look bestimmt das Aussehen der OptionGroup und ihrer Option-
Objekte (engl. look : Aussehen, äußere Erscheinung). Funktionell sind alle Looks
identisch.

Syntax UI- Code: look = numWert
Lesen: <numVar> = <obj> . look
Schreiben: <obj>.look = numWert

Für alle Listen-Objekte stehen folgende Looks zur Verfügung:

Konstante Wert Aussehen
LOOK_NORMAL 0 Klassisches Aussehen
LOOK_SCROLLABLE 1 Scrollbare Liste
LOOK_MINIMIZE_SIZE 2 Minimaler Platzverbrauch
LOOK_TOOLBOX 4 ToolBox-Style

Die Look-Werte können kombiniert werden (mit +), was insbesondere bei
LOOK_MINIMIZE_SIZE + LOOK_TOOLBOX gelegentlich Sinn macht. Ungültige
bzw. widersprüchliche Kombinationen können jedoch zu seltsamen Effekten
führen.

LOOK_NORMAL
LOOK_SCROLLABLE

LOOK_MINIMZE_SIZE

LOOK_TOOLBOX

Das Bild zeigt die Liste mit dem UI-Code von oben, jedoch jeweils mit
verschiedenen Werten für look gesetzt.

Insbesondere bei scrollbaren Listen besteht häufig der Bedarf die Größe und die
Anzahl der gleichzeitig sichtbaren Listeneinträge festzulegen. Dazu eignet sich der
Geometrie-Hint fixedSize. Die in den folgenden Bildern dargestellten Listen haben
die Instance-Variable look auf LOOK_SCROLLABLE und folgenden fixedSize-
Hint gesetzt:

fixedSize = 15 + ST_AVG_CHAR_WIDTH, 4 + ST_LINES_OF_TEXT, 4

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 204

Die Listen-Objekte im Bild sind 15 Zeichen breit und das Listen-Fenster ist 4
Zeilen hoch (4 + ST_LINES_OF_TEXT). Der letzte Parameter (4) bestimmt, dass
4 Einträge im Fenster gleichzeitig dargestellt werden sollen. Sinnvollerweise ist er
identisch mit der Höhe, gemessen in Textzeilen. Die Liste rechts im Bild hat - zur
Demonstration - zusätzlich den Hint DrawInBox gesetzt.

modified

Die Instance-Variable modified der OptionGroup enthält die logische OR-
Verknüpfung der Identifier derjenigen Options, die seit der letzten Apply-Aktion
modifiziert wurden.

Beachten Sie, dass ein Verändern des Objekts vom BASIC-Code aus (z.B.
Belegen der Instance-Variable selection), das Objekt nicht als "modified"
markiert, d.h. der Wert der Instance-Variablen modified wird nicht verändert. Sie
können dies bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified
= numWert" verwenden, wobei "numWert" ein einzelner Identifier oder die OR-
Verknüpfung mehrerer Identifier der Option Objekte aus der OptionGroup sein soll.

Syntax UI- Code: modified = numWert
Lesen: <numVar> = <obj> . modified
Schreiben: <obj>.modified = numWert

Wenn Sie die Instance Variable modified lesen, werden Sie feststellen, dass sie
Null enthält, es sei denn, Sie haben sie explizit auf einen anderen Wert gesetzt.
Ändert der Nutzer nämlich des Zustand eines Option-Objekts, so passiert intern
folgendes:
• Die Instance-Variable modified wird mit dem Identifier des betroffenen Option-

Objekts belegt.
• Es wird geprüft ob ein ApplyHandler vorhanden ist und dieser wird ggf.

aufgerufen. Der Wert von modified wird dem Handler übergeben.
• Die Instance-Variable modified wird zurückgesetzt (mit Null belegt).

Hinweis: Im sogenannten Delayed Mode (siehe entsprechendes Kapitel weiter
unten) werden die letzten beiden Schritte nicht ausgeführt, so dass die Instance-
Variable modified eine eigene Bedeutung erhält.

isModified

IsModified liest den "modified"-Zustand eines bestimmten Option-Objekts,
gegeben durch seinen Identifier, aus.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 205

Syntax Lesen: <numVar> = <obj> . isModified (n)
<obj> OptionGroup Objekt
n: Identifier eines Option-Objekts

ApplyHandler

Der ApplyHandler der OptionGroup wird aufgerufen, wenn eines der Option-
Objekte in der Group geändert wird. Er muss als ListAction deklariert sein.

Syntax UI- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Beispiel, passend zum UI-Code oben:
ListAction BoolApply
Print selection; modified
IF modified AND 1 THEN Print "Option 1 geklickt"
IF modified AND 4 THEN Print "Option 3 geklickt"
END Action

Der Parameter selection enthält die selektierten Options (OR-Verknüpfung, d.h.
die Summe der Identifier).
Der Parameter modified enthält den Identifier, der geändert wurde und so den
Apply-Handler auslöste.
Die Abfrage erfolgt mit dem logischen Operator AND, siehe Beispiel

Achtung! Der Parameter numSelections ist hier bedeutungslos.

Hinweis: Es ist möglich den ApplyHandler der OptionGroup manuell (vom BASIC-
Code aus) zu aktivieren. Dazu wird die von der GenericClass geerbte Methode
Apply verwendet. Da ApplyHandler nur ausgelöst werden, wenn das Objekt
"modified" ist, muss es vorher als "modified" markiert werden. Alternativ könnte
man dem Objekt auch den Hint ApplyEvenIfNotModified geben.

Beispiel:
ListOfOptions.modified = TRUE
ListOfOptions.Apply

Eine ausführliche Beschreibung dazu finden Sie im Kapitel 3.4 (Die "Apply"-
Message) dieses Handbuchs.

MakeVisible

MakeVisible sorgt dafür, dass ein bestimmtes Option-Objekt für den Nutzer
sichtbar wird. Diese Methode ist für scrollbare Listen (look =
LOOK_SCROLLABLE) sinnvoll.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 206

Syntax im Basic-Code: <obj>.MakeVisible n
<obj>: OptionGroup-Objekt
n: Identifier des gewünschten Option-Objekts

StatusHandler, SendStatus

OptionGroups unterstützen den sogenannten Delayed Mode. Er ist weiter unten,
im Kapitel 4.8.5 beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 207

4.8.3 RadioButton und RadioButtonGroup

RadioButton

Abstammung
GenericClass RadioButton

Spezielle Instance-Variablen
Instance-Variable Syntax im UI-Code Im BASIC-Code
identifier identifier = numWert lesen, schreiben

identifier

RadioButtons haben einen identifier, der sie identifiziert. Es ist vom Typ WORD
und muss innerhalb einer RadioButtonGroup eindeutig sein. 65535 (alle Bits im
WORD gesetzt) ist nicht zulässig, auch wenn es keine sofortige Fehlermeldung
gibt. Dieser Wert wird verwendet wenn kein RadioButton-Objekt selektiert ist /
werden soll. Für ihn gibt es die Konstante NONE_SELECTED.
RadioButton-Objekte müssen Children einer RadioButtonGroup sein.

RadioButtonGroup

Abstammung
GenericClass RadioButtonGroup

Eine RadioButtonGroup managed eine Liste von RadioButton-Objekten
(theoretisch bis über 65000). RadioButtonGroup-Objekte können nur RadioButton-
Objekte als Children haben.

Beispiel:
RadioButtonGroup Itemgroup
Caption$= "Select an Item"
justifyCaption = J_TOP
Children = item1, item2, item3
OrientChildren = ORIENT_VERTICALLY
ApplyHandler = ItemApply
selection = 2
End Object

RadioButton item1: Caption$="Item 1":identifier = 1: End Object
RadioButton item2: Caption$="Item 2":identifier = 2: End Object
RadioButton item3
Caption$="Item 3"
identifier = 3
End Object

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 208

Die UI-Anweisungen für die Objekte item1 und item2 wurden zur Demonstration in
einer Zeile untergebracht. Dazu wird - wie im BASIC-Code auch - ein Doppelpunkt
zur Trennung verwendet.

Spezielle Instance-Variablen
Instance-Variable Syntax im UI-Code Im BASIC-Code
behavior behavior = numWert lesen, schreiben
look look = numWert lesen, schreiben
selection selection = numWert lesen, schreiben
isSelected –– nur lesen
numSelections –– nur lesen
DisplayCurrentSelection DisplayCurrentSelection ––
modified modified = numWert lesen, schreiben
ModifiedOnRedundantSelection

ModifiedOnRedundantSelection ––
ApplyHandler ApplyHandler = <Handler> nur schreiben
DoublePressHandler DoublePressHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben

Methoden:
Methode Aufgabe
MakeVisible n Einen bestimmten Eintrag sichtbar machen
SelectItem n [,FALSE] Selektiert-Status eines Eintrags ändern
SendStatus Status-Handler aufrufen

behavior

Die Instance-Variable behavior bestimmt, wie sich die Group bezüglich
Selektionsmöglichkeiten der Einträge verhält.

Konstante Wert Bedeutung
LB_EXCLUSIVE 0 Das ist der Default-Wert. Nur genau ein

Element kann selektiert sein
LB_EXCLUSIVE_NONE 1 Ein oder kein Element kann selektiert

sein. Ist kein Element selektiert, wird als
"selection" 65535 (NONE_SELECTED)
geliefert.

LB_EXTENDED_SELECTION 2 Wie LB_EXCLUSIVE_NONE, aber der
Nutzer kann die Selektion durch Ziehen
mit der Maus oder durch Shift-Klick oder
Strg-Klick "erweitern". Es können also
mehrere Elemente selektiert sein.

LB_NON_EXCLUSIVE 3 Jedes Element kann unabhängig von
den anderen einzeln selektiert werden.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 209

look

Instance-Variable look bestimmt das Aussehen der RadioButtonGroup und ihrer
RadioButton-Objekte (engl. look : Aussehen, äußere Erscheinung). Funktionell
sind alle Looks identisch.

Syntax UI- Code: look = numWert
Lesen: <numVar> = <obj> . look
Schreiben: <obj>.look = numWert

Für alle Listen-Objekte stehen die bei der OptionGroup beschriebenen Looks
(LOOK_NORMAL, LOOK_SCROLLABLE, LOOK_MINIMIZE_SIZE und
LOOK_TOOLBOX) zur Verfügung. Dort finden Sie auch Bilder und weitergehende
Informationen dazu.

selection

Die Instance-Variable selection enthält den Identifier des aktuell selektierten
RadioButton-Objekts. Ist kein Objekt selektiert, enthält sie den Wert 65535
(NONE_SELECTED). Falls mehrere Objekte selektiert sind, enthält selection den
Identifier eines der selektierten Objekte.

Syntax UI- Code: selection = numWert
Lesen: <numVar> = <obj> . selection
Schreiben: <obj>.selection = numWert

Konstante Wert Bedeutung
NONE_SELECTED 65535 Spezialwert für die Instance-Variable "selection"

wenn kein Eintrag selektiert ist oder kein Eintrag
selektiert werden soll. Behavior sollte den Wert
LB_EXTENDED_SELECTION oder
LB_EXCLUSIVE_NONE haben.

isSelected

IsSelected prüft, ob ein bestimmtes RadioButton-Objekt bzw. Listeneintrag,
gegeben durch seinen Identifier, selektiert ist oder nicht.
Siehe auch: SelectItem

Syntax Lesen: <numVar> = <obj> . isSelected (n)
<obj> RadioButtonGroup Objekt
n: Identifier eines RadioButton-Objekts bzw. Listeneintrags

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 210

numSelections

Die Instance-Variable numSelections enthält die Anzahl der aktuell selektierten
Listeneinträge.

Syntax Lesen: <numVar> = <obj> . numSelections

DisplayCurrentSelection

Der Hint DisplayCurrentSelection beeinflusst RadioButtonGroups mit look =
LOOK_MINIMIZE_SIZE und bewirkt, dass im minimierten Zustand statt des
Caption-Textes der RadioButtonGroup der Text des aktuell selektierten
RadioButtons angezeigt wird.

Syntax UI- Code: DisplayCurrentSelection

RadioButtonGroup Itemgroup
Caption$= "Select an Item"
Children = item1, item2, item3
look = LOOK_MINIMIZE_SIZE
DisplayCurrentSelection
fixedSize = 15 + ST_AVG_CHAR_WIDTH, 1 + ST_LINES_OF_TEXT
ApplyHandler = ItemApply
selection = 2
End Object

Das Bild zeigt die RadioButtonGroup entsprechend dem obigen Code, links ohne
und rechts mit dem Hint DisplayCurrentSelection.

modified

Die Instance-Variable modified der RadioButtonGroup enthält die Information, ob
die Selektion der RadioButtonGroup seit der letzten Apply-Aktion geändert wurde.

Beachten Sie, dass ein Verändern des Objekts vom BASIC-Code aus (z.B.
Belegen der Instance-Variable selection), das Objekt nicht als "modified"
markiert, d.h. der Wert der Instance-Variablen modified wird nicht verändert. Sie
können dies bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified
= TRUE" verwenden.

Syntax UI- Code: modified = TRUE | FALSE
Lesen: <numVar> = <obj> . modified
Schreiben: <obj>.modified = TRUE | FALSE

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 211

Wenn Sie die Instance Variable modified lesen, werden Sie feststellen, dass sie
Null enthält, es sei denn, Sie haben sie explizit auf einen anderen Wert gesetzt.
Ändert der Nutzer nämlich Auswahl innerhalb der Liste, so passiert intern
folgendes:
• Die Instance-Variable modified wird mit TRUE belegt.
• Es wird geprüft ob ein ApplyHandler vorhanden ist und dieser wird ggf.

aufgerufen. Der Wert von modified wird dem Handler übergeben.
• Die Instance-Variable modified wird zurückgesetzt (mit FALSE belegt).

Hinweis: Im sogenannten Delayed Mode (siehe entsprechendes Kapitel weiter
unten) werden die letzten beiden Schritte nicht ausgeführt, so dass die Instance-
Variable modified eine eigene Bedeutung erhält.

ModifiedOnRedundantSelection

Der Hint ModifiedOnRedundantSelection bewirkt, das eine RadioButtonGroup
sich selbst als modified markiert, wenn der Nutzer den bereits selektierten Eintrag
erneut auswählt. Im Wesentlichen bedeutet dass, dass die RadioButtonGroup ihre
Apply Message aussendet wenn der Nutzer einen bereits selektierten Eintrag
erneut selektiert.

Syntax UI-Code: ModifiedOnRedundantSelection

ApplyHandler

Der ApplyHandler der RadioButtonGroup wird aufgerufen, wenn der User ein
Element selektiert / die Selektion ändert. Er muss als ListAction deklariert sein.

Beispiel, passend zum UI-Code oben:
ListAction ItemApply
Print selection; numSelections
END Action

Der Parameter selection enthält den Identifier, der geändert wurde und so den
Apply-Handler auslöste.
Der Parameter numSelections enthält die Anzahl der der selektierten Elemente.
Der Parameter modified ist immer 65535, d.h. alle Bits des WORD sind gesetzt.
Das ist das Analogon zur Integer-Konstanten TRUE (= –1).

Syntax UI- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 212

Hinweis: Es ist möglich den ApplyHandler der RadioButtonGroup manuell (vom
BASIC-Code aus) zu aktivieren. Dazu wird die von der GenericClass geerbte
Methode Apply verwendet. Da ApplyHandler nur ausgelöst werden, wenn das
Objekt "modified" ist, muss es vorher als "modified" markiert werden. Alternativ
könnte man dem Objekt auch den Hint ApplyEvenIfNotModified geben.

Beispiel:
Itemgroup.modified = TRUE
Itemgroup.Apply

Eine ausführliche Beschreibung dazu finden Sie im Kapitel 3.4 (Die "Apply"-
Message) dieses Handbuchs.

DoublePressHandler

Der DoublePressHandler wird aufgerufen, wenn der User ein Element mit der
Maus doppelklickt. War der Eintrag bis dahin noch nicht selektiert wird vorher der
ApplyHandler aufgerufen. Die Parameter entsprechen denen des ApplyHandlers.

Syntax UI- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Hinweis: GEOS unterstützt einen DoublePressHandler nur, wenn die Instance-
Variable behavior auf LB_EXCLUSIVE oder LB_EXTENDED_SELECTION
gesetzt ist. R-BASIC kann nichts dafür - sorry.

MakeVisible

MakeVisible sorgt dafür, dass ein bestimmtes RadioButton-Objekt bzw. ein
bestimmter Listeneintrag einer DynamicList für den Nutzer sichtbar wird. Diese
Methode ist für scrollbare Listen (look = LOOK_SCROLLABLE, z.B. DynamicList
Objekte) sinnvoll.

Syntax im Basic-Code: <obj>.MakeVisible n
<obj>: RadioButtonGroup-Objekt
n: Identifier des gewünschten RadioButton-Objekts bzw.

Listeneintrags

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 213

SelectItem

Mit SelectItem können Sie den Status "Selektiert" oder "nicht selektiert" für ein
bestimmtes RadioButton-Objekt bzw. einen bestimmten Listeneintrag einer
DynamicList ändern. Diese Methode ist für Listen, die eine Mehrfachauswahl
erlauben, sinnvoll (behavior = LB_EXCLUSIVE_NONE, LB_EXTENDED
_SELECTION oder LB_NON_EXCLUSIVE). Für Standard-Listen (behavior =
LB_EXCLUSIVE) sollten Sie die Instancevariable selection benutzen.

Syntax im Basic-Code: <obj>.SelectItem n [, state]
<obj>: RadioButtonGroup-Objekt
n: Identifier des gewünschten RadioButton-Objekts bzw.

Listeneintrags
state: TRUE (Default): Eintrag selektieren

FALSE: Eintrag auf "nicht selektiert" setzen

StatusHandler, SendStatus

RadioButtonGroups unterstützen den sogenannten Delayed Mode. Er ist weiter
unten, im Kapitel 4.8.5 beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 214

4.8.4 DynamicList

Abstammung
GenericClass RadioButtonGroup DynamicList

Eine DynamicList ist eine erweiterte RadioButtonGroup. Daher erbt sie alle
Instance-Variablen und Fähigkeiten dieser Klasse (behavior, look, selection,
modified, ApplyHandler, DoublePressHandler, SelectItem, Arbeit im Delayed
Mode usw.). Zusätzlich hat sie folgende Besonderheiten:
• Die Instance-Variable look steht per Default auf LOOK_SCROLLABLE. Sie

können das natürlich im UI-Code ändern.
• Eine DynamicList hat im UI-Code keine Children. Sie erzeugt und verwaltet

ihren Children (Listeneinträge) selbst.
• Sie müssen der Instance-Variable numItems auf eine Wert ungleich Null

setzen und einen QueryHandler für eine DynamicList schreiben, sonst werden
keine Listeneinträge angezeigt.

Spezielle Instance-Variablen
Instance-Variable Syntax im UI-Code Im BASIC-Code
numItems numItems = numWert lesen, schreiben
QueryHandler QueryHandler = <Handler> nur schreiben

Methoden:
Methode Aufgabe
ItemText$ Listeneintrag einen Text zuweisen
ItemGString Listeneintrag eine Grafik zuweisen
InsertItems Eine bestimmte Anzahl von Einträgen hinzufügen
RemoveItems Eine bestimmte Anzahl von Einträgen entfernen

So arbeitet eine DynamicList

Nehmen wir an, wie haben eine DynamicList mit 5 Einträgen, die hier als Items
bezeichnet werden, so wie im Code-Beispiel dargestellt.
DynamicList DynList
Caption$ = "List Example"
justifyCaption = J_TOP
numItems = 5
fixedSize = 15 + ST_AVG_CHAR_WIDTH, \

 3 + ST_LINES_OF_TEXT, 3
selection = 3
ApplyHandler = MyApplyHandler
QueryHandler = MyListQuery
END Object

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 215

Die Instance-Variable numItems bestimmt, wie viele Items eine DynamicList hat.
Die Items sind selbst Objekte, sie werden aber im UI-Code nicht aufgeführt,
sondern die DynamicList erzeugt sie bei Bedarf selbst. Die von der
RadioButtonGroup-Klasse geerbte Instance-Variable selection legt fest, welcher
Eintrag am Anfang selektiert ist. Ebenfalls von der RadioButtonGroup Klasse
geerbt ist die Instance-Variable ApplyHandler. FixedSize hingegen ist von der
GenericClass geerbt und legt im Beispiel fest, dass die Liste 15 Zeichen breit und
3 Zeilen hoch ist, wobei 3 Items gleichzeitig angezeigt werden sollen.

Will eine DynamicList eines ihrer Items darstellen, so benötigt sie eine Information,
welchen Text das Item darzustellen hat. Dazu ruft sie den QueryHandler auf
(engl. to query: anfordern). Diesem wird die Nummer des Items, das dargestellt
werden soll, übergeben. Die Zählung beginnt dabei immer mit Null. Der Handler
muss den anzuzeigenden Text (bzw. die Grafik) ermitteln und ihn an die
DynamicList übergeben, wie im Beispielcode dargestellt.
LISTACTION MyListQuery
DIM name$ AS String

 ON selection SWITCH
CASE 0: name$ = "Ralph" : END CASE
CASE 1: name$ = "Fred" : END CASE
CASE 2: name$ = "Joshua" : END CASE
CASE 3: name$ = "Mary" : END CASE
CASE 4: name$ = "Antoinette": END CASE
DEFAULT: name$ = "no name" ’Nur zur Sicherheit!

 END SWITCH

 sender.ItemText$(selection) = name$

 END Action

numItems

Die Instance-Variable numItems bestimmt, wie viele Listeneinträge die Dynamic-
List hat. Sie kann im sowohl UI-Code als auch im BASIC-Code gesetzt werden.

Syntax UI- Code: numItems = numWert
Lesen: <numVar> = <obj> . numItems
Schreiben: <obj>.numItems = numWert

Es ist explizit zulässig, numItems im UI-Code nicht oder mit Null zu belegen, was
die gleiche Wirkung hat. Die Liste bleibt dann zunächst leer und sendet keine
Query-Message aus. Es ist daher eine gute Idee, numItems am Programmende
auf Null zu setzen.

Tipp: Der Ändern Sie den Wert von numItems im BASIC-Code, so stellt sich die
Liste neu dar. Wenn Sie also die Anzahl der Einträge oder deren Inhalt in der Liste
zur Laufzeit ändern wollen, so müssen Sie nur numItems einen Wert zuweisen.
Die Liste fordert dann über ihren Queryhandler alle Einträge neu an.
Alternativ können Sie die Methoden InsertItems bzw. RemoveItems verwenden.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 216

ItemText$

Die Methode ItemText$(index) kann nur im BASIC-Code aufgerufen werden. Das
passiert üblicherweise im QueryHandler der DynamicList. Über ItemText$(index)
wird der Liste mitgeteilt, welchen Text das entsprechende Item darzustellen hat.
"Index" bestimmt, welchem Item der Text zugeordnet wird.

Syntax Schreiben: <obj>.ItemText$(index) = "Text"

ItemGString

Die Methode ItemGString(index) kann nur im BASIC-Code aufgerufen werden.
Das passiert üblicherweise im QueryHandler der DynamicList. Über
ItemGString(index) wird der Liste mitgeteilt eine Grafik oder einen formatierten
Text für das entsprechende Item darzustellen. "Index" bestimmt, welchem Item die
Grafik zugeordnet wird.

Syntax Schreiben: <obj>.ItemGString (index) = <gsHan>
<gsHan>: Handle eines GStrings

Wenn Sie Grafiken in DynamicList-Objekten darstellen wollen sollten Sie Breite
und Höhe der Listen mit Hilfe des Hints fixedSize festlegen. Die ersten beiden
Parameter dieses Hints bestimmen Breite und Höhe der gesamten Liste, der
dritte Parameter bestimmt die Anzahl der gleichzeitig dargestellten Items. Folglich
ist die Höhe eines einzelnen Listeneintrags der Quotient aus Höhe der Liste und
Anzahl der Einträge.

DynamicList MyList
QueryHandler = QueryGraphic
selection = 0

’ Die Liste soll 4 Grafiken mit
’ je 50x50 Pixel gleichzeitig darstellen
’ Weil sie selbst etwas Platz braucht machen
’ wir sie etwas größer
’ fixedSize = sizeX, sizeY, numElements
fixedSize = 60, 205, 4

’ Insgesamt sollen es 5 Elemente sein.
numItems = 5

End Object

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 217

Der QueryHandler erzeugt verschieden grafische Symbole, die als Listeneintrag
dargestellt werden.
LISTACTION QueryGraphic
dim gsHan as HANDLE

’ Wir starten die Aufzeichnung eines GString
’ Alle Grafik- und Textausgaben gehen
’ jetzt in den GString

gsHan = StartRecordGS()
on selection SWITCH
case 0:
FillEllipse 2, 2, 48, 48, blue
end case

case 1:
FillRect 2, 2, 48, 48, yellow
Rectangle 2, 2, 48, 48, black
end case

case 2:
FillEllipse 2, 2, 48, 48, red
FillEllipse 10, 10, 40, 40, cyan
end case

case 3:
FillRect 2, 20, 48, 30, light_green
FillRect 20, 2, 30, 48, light_green
PRINT atxy 0,0;"A"
PRINT atxy 35,0;"B"
PRINT atxy 0,35;"C"
PRINT atxy 35,35;"D"
end case

case 4:
printfont.style = ts_bold
PRINT atxy 0,0;ink red;"Hello"
PRINT atxy 0, 20;ink blue;"World"
end case

end switch

’ EndRecordGS beendet den Aufzeichnusmodus.
EndRecordGS gsHan

’ Wir übergeben die Grafik an den Listeneintrag
sender.ItemGString(selection) = gsHan

’ Ganz wichtig:
’ Das Handle wieder freigeben, sonst frisst
’ das Programm Systemhandles!
FreeGS gsHan

 END Action

Tipp: Möchten Sie die grafischen Einträge nebeneinander darstellen, so
verwenden Sie orientChildren = ORIENT_HORIZONTALLY. Die Liste muss dann

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 218

natürlich 4 Einträge breit und nur einen Eintrag hoch sein. Den kompletten Code
dazu finden Sie bei den Beispielen zu den Listenobjekten.

DynamicList MyList
QueryHandler = QueryGraphic
selection = 0
orientChildren = ORIENT_HORIZONTALLY
fixedSize = 205, 60, 4
numItems = 5

End Object

Achtung! DynamicList Objekte verwalten ihre Einträge als Children selbst. Auch
die Captions der Listeneinträge werden in dem Objektblock gespeichert, in dem
die Liste ist. Im Normalfall befinden sich auch noch andere Objekt in diesem
Block, so dass er anfangs bereits ca. 4 kByte groß ist. Damit ist ein gewisser
Platzbedarf für die Listeneinträge bereits berücksichtigt. Da man mit ItemGString
aber auch relativ große Grafiken zuweisen kann (z.B. wenn der GString eine
Bitmap enthält), kann der Objektblock zur Laufzeit trotzdem sehr groß werden und
der Speichermanager bekommt ein Problem ("Hauptspeicher voll"). Um dieses
Problem zu vermeiden sollte man Listen, die viele oder große grafische Elemente
darstellen sollen, in einem eigenen Objektblock ablegen. Dazu verwendet man die
UI-Anweisung ForceNewObjBlock (siehe Kapitel 2.1.4). Diese weist den Compiler
an unverzüglich mit einem neuen Objektblock zu beginnen, auch wenn im aktuell
aufgebauten Block noch Platz zu sein scheint.
Weitere Informationen zu GStrings und auch zum Speicherbedarf vom GStrings
finden Sie im R-BASIC Programmierhandbuch, Kapitel 2.8.5 (Arbeit mit Graphic
Strings).

ForceNewObjBlock

DynamicList MyBigList
....
END Object

ForceNewObjBlock

QueryHandler

Der QueryHandler wird automatisch aufgerufen, wenn die DynamicList eines
seiner Items darstellen will. QueryHandler müssen als ListAction deklariert sein.
Der Parameter selection enthält die Nummer des Items, für das ein Text
angefordert wird. Die anderen Parameter sind bedeutungslos.
Die korrekte Reaktion des QueryHandlers ist, wie in den Code-Beispielen oben,
die Methoden ItemText$(selection) oder ItemGString(index) der DynamicList
aufzurufen.

Syntax UI- Code: QueryHandler = <Handler>
Schreiben: <obj>.QueryHandler = <Handler>

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 219

Das Zusammenspiel zwischen DynamicList und QueryHandler funktioniert
automatisch, so dass Sie sich nicht weiter darum kümmern müssen. Sie müssen
nur sicherstellen, dass der QueryHandler zu jedem selection-Wert, der von der
Liste kommen kann (Null ... numItems–1), einen passenden Text oder eine Grafik
bereitstellt. Dabei ist es, wie im Beispiel-Code zu ItemText$ oben, sinnvoll auch
"unerwartete" Fälle zu berücksichtigen, falls sie später etwas ändern oder ein
Programmierfehler auftritt.

InsertItems

InsertItems fügt eine bestimmte Anzahl von Listeneinträgen ab einer wählbaren
Position in die Liste ein. Die aktuell selektierten Einträge bleiben selektiert.

Syntax im BASIC-Code: <obj>.InsertItems pos, anz
pos: Position, aber der eingefügt werden soll

Null: Einfügen am Anfang
pos > aktuelle Anzahl: Anhängen

anz: Anzahl der neuen Einträge

RemoveItems

RemoveItems löscht eine bestimmte Anzahl von Listeneinträgen ab einer
wählbaren Position. Die aktuell selektierten Einträge bleiben selektiert, falls sie
nicht gelöscht wurden.

Syntax im BASIC-Code: <obj>.InsertItems pos, anz
pos: Position, aber der gelöscht werden soll
anz: Anzahl der zu löschenden Einträge

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 220

4.8.5 Listen-Objekte im Delayed Mode

Alle Listen-Objekte können im "Delayed Mode" (engl.: verzögerter Modus)
arbeiten. Dazu muss man dem Objekt selbst bzw. einem seiner Parents im UI-
Code den Hint MakeDelayedApply geben oder man bindet das Objekt als Child in
einem Dialog ein, dessen dialogType Instance Variable auf
DT_DELAYED_APPLY gesetzt ist. Dieser "Delayed Mode" ist ausführlich im
Kapitel 3.4.2 (Delayed Mode und Status-Message) dieses Handbuchs
beschrieben, eine Beschreibung des Dialog-Objekts im Delayed Mode finden Sie
im Kapitel 4.6.6.5.

Instance Variable Syntax im UI-Code Im BASIC-Code
StatusHandler StatusHandler = <Handler> nur schreiben

Syntax UI- Code: StatusHandler = <Handler>
Schreiben: <obj>.StatusHandler = <Handler>

Der StatusHandler wird im Delayed Mode statt des ApplyHandlers gerufen, wenn
der Nutzer die Auswahl innerhalb der Liste ändert. Der ApplyHandler hingegen
wird erst auf Anforderung gerufen (siehe Kapitel 3.4.2).

Die Instance-Variable modified kann einen Wert ungleich Null enthalten, nämlich
dann, wenn das Objekt vom User modifiziert wurde, der ApplyHandler aber noch
nicht gerufen wurde. Der Aufruf des ApplyHandlers setzt auch im Delayed Mode
den modified-Status zurück. Falls kein ApplyHandler gesetzt ist wird der modified-
Status wird immer dann zurückgesetzt, wenn der ApplyHandler gerufen werden
müsste.

Bei einer OptionGroup gilt außerdem:
• Ändert der Nutzer den Zustand eines Option-Objekts der OptionGroup, so wird

die Instance-Variable modified mit dessen identifier logisch OR verknüpft.
• Der Parameter "modified" enthält folglich sowohl beim StatusHandler als auch

beim ApplyHandler die logische OR-Verknüpfung der Identifier der seit dem
letzten Aufruf des ApplyHandler veränderten Option-Objekte.

Methode Aufgabe
SendStatus Status-Handler aufrufen

Syntax BASIC-Code: <obj>.SendStatus

Die Methode SendStatus fordert das Objekt auf, seinen StatusHandler aufzurufen
(d.h. seine Status-Message zu senden).

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Liste-Objekte - 221

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 222

4.9 View und Content

4.9.1 Überblick

Die View Objektklasse stellt ein "Fenster" bereit, in dem beliebige grafische Daten
- einschließlich Texte - dargestellt werden können. Die Inhalte dieses Fensters,
d.h. die grafischen Daten, werden vom "Content"-Objekt (content: engl. Inhalt)
bereitgestellt.

Dieses Objekt muss nur die Daten darstellen
können. Alles andere, wie Scrolling, Zoom oder
Clipping (engl. to clip: beschneiden) macht das
View. Das View fordert bei Bedarf das Content-
Objekt auf, sich selbst darzustellen, aber
welcher Teil der Darstellung auf dem Bildschirm
erscheint (Clipping), ob er vergrößert oder
verkleinert ist usw., darum kümmert sich das
View.

Es gibt drei Objektklassen, die als Content für ein View dienen können: Die Klasse
"VisContent", die beliebige Daten darstellen kann, die Klasse "BitmapContent", die
eine editierbare Bitmap bereitstellt und die Klasse "GenContent", die andere
GenericClass Objekte beinhaltet. Eine Übersicht über diese Klassen finden Sie
weiter unten. Die GenContent Klasse ist dort ausführlich beschrieben. Bei
VisContent und BitmapContent handelt es sich um VisualClass Objekte. Sie sind
deshalb im Kapitel 5 des Objekthandbuchs beschrieben.

Häufig ist es so, dass der Nutzer im "Ansicht"-Menü festlegen kann, ob das
Dokument in Originalgröße, vergrößert oder verkleinert dargestellt werden soll. Für
diesen Zweck gibt es das "ViewControl" Objekt, das zum einen die erforderliche UI
bereitstellt und zum anderen automatisch im Hintergrund mit dem View-Objekt
zusammenarbeitet. Die Aufgabe des Programmierers ist es lediglich die Objekte
zu deklarieren und mit wenigen Anweisungen zu konfigurieren.

Die Kombination der View/Content ist sehr universell und für praktisch alle
Anwendungsgebiete geeignet. Das Ausnutzen dieser Möglichkeiten erfordert
daher eine gewisse Einarbeitung in die Eigenschaften der beiden Objektklassen
und ihrem Zusammenspiel, wobei man um gelegentliches Experimentieren nicht
herumkommt. Die Verwendung der Klasse BitmapContent stellt bereits einen
Spezialfall dar, der in der Grundkonfiguration sehr einfach zu handhaben ist.
Es gibt in R-BASIC weitere, spezialisierte und damit noch einfacher zu hand-
habende Möglichkeiten, Grafiken darzustellen. Einen Überblick über diese
Möglichkeiten, die ohne die Verwendung eines View-Objekts auskommen, und
Verweise zu den entsprechenden Abschnitten in diesem Handbuch finden Sie im
Kapitel 2.2.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 223

Mausunterstützung

Das Viewobjekt leitet die Mausereignisse direkt an sein Content-Objekt weiter. Bei
Bedarf können Sie Maushandler für das Content-Objekt bzw. seine Children
schreiben.

Tastaturhandling

Im Normalfall behandelt das View-Objekt die Tastaturereignisse selbständig,
indem es sie an sein Content-Objekt weiterreicht. Sie können sich aber in das
Tastaturhandling eines View-Objekts einklinken, indem Sie einen Tastaturhandler
schreiben. Zum Beispiel könnten Sie die Tastenkombination Strg-’+’ benutzen, um
den Zoomfaktor des Views zu vergrößern. Eine ausführliche Beschreibung, wie
man einen Tastaturhandler schreibt und was es dabei zu beachten gilt, finden Sie
im Handbuch "Spezielle Themen", Kapitel 14.
Es ist sehr selten, dass man einen Tastaturhandler für ein Viewobjekt benötigt. In
den meisten Fällen wird die Tastatur vom Content bzw. seinen Children behandelt.

Wichtig: Das View-Objekt gibt die Tastaturereignisse zuerst an sein Content
weiter, bevor es den BASIC Tastaturhandler aufruft. Sollten beide Objekte (View
und Content) einen Tastaturhandler haben wird daher zuerst der Tastaturhandler
des Content-Objekts aufgerufen und erst danach der Tastaturhandler des View-
Objekts. Im Kapitel 14.4 des Handbuchs "Spezielle Themen" ist am Beispiel eines
Textobjekts beschrieben, wie man vorgehen muss, um den BASIC-
Tastaturhandler aufzurufen, bevor das Objekt das Tastaturereignis an sein
Content weitergibt.

Focus und Target

Das View-Objekt ist ein Knoten in der Focus- und Target-Hierarchie. Es ist
möglich zu überwachen, ob ein View-Objekt den Focus oder das Target hat,
indem man einen Focus- bzw. Target-Handler schreibt. Die notwendigen Details
zur Arbeit mit Focus und Target finden Sie im Kapitel 12 (Focus und Target) des
Handbuchs "Spezielle Themen". Das Arbeiten mit Focus und Target ist etwas für
erfahrene Programmierer und im Zusammenhang mit einer View/Content
Kombination nur in wenigen Fällen notwendig.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 224

4.9.2 Das View

Das View-Objekt ist die Schnittstelle zwischen ihrer Programm-UI und den
darzustellenden Inhalten. Es arbeitet in vielen Situationen automatisch mit seinem
Content-Objekt zusammen und sorgt bei Bedarf für das Scrolling, Clipping und
den Zoom.
Häufig entsprechen die darzustellenden Daten (Text, Grafik ...) einem Dokument.
In GeoDraw sind dies Grafiken, in GeoWrite Texte und in R-BASIC der Quellcode
eines Programms. Der Einfachheit halber sprechen wir im Folgenden auch dann
von "Dokument" wenn das Programm keine Dokument-Dateien hat. In diesem
Sinne ist in einem Spiel das Spielfeld das darzustellende "Dokument".

Im Kern ist es so, dass das View einen bestimmten Ausschnitt aus dem Dokument
darstellt. Welcher Bereich das ist und ob er vergrößert, verkleinert oder in Original-
größe dargestellt wird, das bestimmt entweder der Nutzer über das Ansicht-Menü,
(das ein ViewControl-Objekt enthält) bzw. über die Rollbalken des View-Objekts
oder der Programmierer legt dies über Programmbefehle fest.
Die Position, die in der linken oberen Ecke des View dargestellt wird heißt "origin"
(engl.: Ursprung).

Dokument

View
Programm (R-App)

origin

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 225

Abstammung:
GenericClass View

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
Content Content = <obj> lesen, schreiben
contentSize contentSize = sizeX, sizeY lesen, schreiben
hControl hControl = numWert lesen, schreiben
vControl vControl = numWert lesen, schreiben
HideScrollersWhenNotScrollable

HideScrollersWhenNotScrollable ––
viewColor viewColor = numWert lesen, schreiben
viewAttrs viewAttrs = bitsToSet,bitsToClear lesen, schreiben
scale scale = xWert , yWert lesen, schreiben
scaleToFitOptions scaleToFitOptions = numWert lesen, schreiben
origin origin = xWert , yWert lesen, schreiben
viewIncrement viewIncrement = xWert , yWert lesen, schreiben
suspendUpdate –– lesen, schreiben
DoNotWinScroll DoNotWinScroll ––
ImmediateDragUpdates ImmediateDragUpdates ––
DelayedDragUpdates DelayedDragUpdates ––
hLink hLink = <obj> lesen, schreiben
vLink vLink = <obj> lesen, schreiben
inputOptions inputOptions = numWert lesen, schreiben
focusable focusable = FALSE | TRUE lesen, schreiben
holdsLargeText holdsLargeText = TRUE lesen, schreiben

Methoden:
Methode Aufgabe
Redraw View und Content neu zeichnen
GetVisibleRect Aktuell dargestellten Bereich holen
ScrollToOffset View um einen bestimmten Betrag scrollen
ScrollCmd View Scroll-Kommando ausführen
InitiateDragScroll Drag-Scrolling in Nicht-Standard-Situationen aktivieren
SetDragBounds Begrenzung für Drag-Scrolling setzen
SetPointerImage Mauszeiger ändern (aus DATA-Zeilen lesen)
ClearPointerImage Mauszeiger wieder auf Standard zurücksetzen

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 226

4.9.2.1 Das Content eines View

Jedes View benötigt genau ein Content-Objekt, dass die Daten des Dokuments
darstellt. Wie bereits oben erwähnt verwenden wir den Begriff Dokument auch
dann, wenn die darzustellenden Daten zu keiner Dokument-Datei im engeren Sine
gehören. Die Instancevariable Content enthält das aktuelle Content-Objekt.
Häufig ist das gleichzeitig der Screen zur Ausgabe von Grafik und Text. Das muss
jedoch nicht sein. Die Instancevariable contentSize enthält die Größe des
Content-Objekts, also die Größe des vom View darzustellenden Dokuments. Mit
der Methode Redraw können Sie ein Neuzeichnen des Views und seines Content
auslösen.

Content

Die Instance-Variable Content (engl.: Inhalt) enthält das aktuelle Content-Objekt
des View’s. Es kann im BASIC-Code gelesen und geschrieben werden. Wird dem
View ein neues Content-Objekt zugeordnet stellt sich das View automatisch neu
dar, so dass der neue Content sichtbar wird. Dabei kommuniziert das View mit
dem neuen Content und kann, je nachdem, welche Werte für hControl, vControl
und viewAttrs gesetzt sind, gegebenenfalls seine Größe neu bestimmen.

Ein eventuell vorher mit dem View verbundenes Content-Objekt wird dabei
automatisch abgekoppelt. Die Zuweisung eines "leeren" Content-Objekts mit der
Funktion NullObj() ist zulässig.

Syntax UI-Code: Content = <obj>
<obj> muss namentlich aufgeführt werden.
Variablen sind im UI-Code nicht zulässig.

Lesen: <objVar> = <obj>.Content
Schreiben: <obj>.Content = <obj2>

Beachten Sie, dass die Zuweisung eines neuen Content-Objekts den aktuelle
"Screen" nicht beeinflusst (siehe auch Kapitel 2.3.1). Wenn das alte Content-
Objekt der "Screen" war, bleibt er es auch. Alle Grafik- und Text-Ausgaben gehen
weiterhin an dieses Objekt. Möglicherweise müssen Sie also zusätzlich das neue
Content-Objekt auch der Screen-Variablen zuweisen.

Beispiel UI-Code:
View MyView
hControl = HVC_SCROLLABLE
vControl = HVC_SCROLLABLE
Content = MyBitmapContent

END Object

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 227

Beispiele BASIC-Code:
DIM ob as OBJECT

ob = MyView.Content ’ Altes Content merken
MyView.Content = MyOtherContent ’ Neues Content-Objekt zuweisen
....
MyView.Content = ob ’ Altes Content wieder zuweisen

contentSize

Die Instance-Variable contentSize speichert die x- und y-Ausdehnung der vom
Content-Objekt darzustellenden Dokuments. Gemeinsam mit seiner eigenen
Größe und einem eventuell eingestellten Zoom-Faktor kann das View dann z.B.
entscheiden, ob es Scrollbalken verwenden muss und wie groß deren "innerer
Balken" zu sein hat.

In vielen Fällen verwaltet das View die contentSize automatisch, indem es mit
dem Content-Objekt kommuniziert. Bei Bedarf kann contentSize aber sowohl im
UI-Code als auch im BASIC-Code geschrieben werden.

Syntax UI-Code: contentSize = xSize, ySize
Lesen: <numVar> = <obj>.contentSize (0) ! x-Size

<numVar> = <obj>.contentSize (1) ! y-Size
Schreiben: <obj>.contentSize = xSize, ySize

Beispiel UI-Code:
View MyView
< .. andere Instance-Variablen hier .. >
contentSize = 100, 200
END Objekt

Beispiele BASIC-Code:
DIM breite AS Real

’ Ausgabe in der Dokument-Größe in der Form: Breite x Höhe"
breite = MyView.contentSize(0)
Print "Alte Größe = "; breite ; " x "; MyView.contentSize(1);
"Pixel"

MyView.contentSize = 64, 48 ’ Neue Größe zuweisen

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 228

Redraw

Die Methode Redraw löst ein Neuzeichnen des kompletten View-Objekts und
seines Content aus.

Syntax im Basic-Code: <viewObj>.Redraw

Hinweis: Die Redraw-Methode anderer Objekte akzeptiert einen Parameter. Für
View-Objekte ist der Parameter syntaktisch möglich, wird jedoch ignoriert.

4.9.2.2 View Geometrie

Da ein View ein generisches Objekt ist können alle Geometrie-Hints aus dem
Kapitel 3.3, insbesondere aus dem Kapitel 3.3.4 (Objektgröße) mit einem View
verwendet werden. Die wichtigsten sind der Einfachheit halber hier noch einmal
aufgeführt. Beachten Sie, dass die ~Size-Hints mit den Werten für hControl bzw.
vControl in Konflikt geraten können.

GenericClass Hint UI-Code Syntax Im BASIC Code
ExpandWidth ExpandWidth ––
ExpandHeight ExpandHeight ––
initialSize initialSize = x, y [, count] lesen, schreiben
minimumSize minimumSize = x, y [, count] lesen, schreiben
maximumSize maximumSize = x, y [, count] lesen, schreiben
fixedSize fixedSize = x, y [, count] lesen, schreiben
xSize –– nur lesen
ySize –– nur lesen

Zusätzlich verfügt das View über eigene Geometriefähigkeiten, die mit der Größe
des darzustellenden Dokuments und der Bereitstellung von Rollbalken (Scroller)
zusammenhängen.
Die Instancevariablen hControl und vControl legen fest, wie sich das View in
horizontaler (hControl) oder vertikaler (vControl) Richtung darstellt. Mit dem Hint
HideScrollersWhenNotScrollable kann man bewirken, dass Rollbalken nur dann
dargestellt werden, wenn sie wirklich gebraucht werden. Schließlich kann man mit
viewColor die Hintergrundfarbe des View einstellen.

hControl, vControl

Die Instancevariablen hControl und vControl legen fest, wie sich das View in
horizontaler (hControl) oder vertikaler (vControl) Richtung darstellt. Zulässige
Werte sind Kombinationen der HVC_-Konstanten (HVC: horizontal-vertical-
control). Die Werte sind so gewählt, dass jede Konstante genau ein Bit gesetzt hat

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 229

(Bitflags). Mehrere Konstanten können mit + oder OR verknüpft werden, die
Abfrage, ob ein bestimmter Wert gesetzt ist kann mit der logischen AND Funktion
erfolgen.

Syntax UI-Code: hControl = numWert
vControl = numWert
numWert ist eine Kombination der HVC_-Konstanten

Lesen: <numVar> = <obj>.hControl
<numVar> = <obj>.vControl

Schreiben: <obj>.hControl = numWert
<obj>.vControl = numWert
numWert ist eine Kombination der HVC_-Konstanten

Folgende Konstanten stehen zur Verfügung. Hier nicht aufgeführte Werte (z.B. 2)
sollten auch nicht verwendet werden, da ihre Wirkung unbestimmt ist.
Auch die Kombination widersprüchlicher Werte (z.B. HVC_SCROLLABLE +
HVC_NO_SCROLLBAR) kann seltsame Folgen haben.

Konstante Wert gesetztes
dezimal hex Bit

HVC_SCROLLABLE 128 &H80 7
HVC_TAIL_ORIENTED 32 &H20 5
HVC_NO_SCROLLBAR 16 &H10 4
HVC_NO_LARGER_THAN_CONTENT 8 &H08 3
HVC_NO_SMALLER_THAN_CONTENT 4 &H04 2
HVC_KEEP_ASPECT_RATIO 1 &H01 0

HVC_SCROLLABLE
Das View soll in diese Dimension scrollbar sein. Die Scrollleisten werden
auch gezeigt, wenn es eigentlich nicht erforderlich ist.

HVC_TAIL_ORIENTED
Bestimmt, dass das View das untere/rechte Ende des Content-Bereichs
weiterhin darstellen soll, wenn dieser Bereich bereits dargestellt wird und sich
die Größe des Content-Objekts ändert.

HVC_NO_SCROLLBAR
Das View soll keine Scrollleisten in der entsprechenden Dimension anzeigen,
auch wenn es scrollbar ist.

HVC_NO_LARGER_THAN_CONTENT
Das View soll sich in der gegeben Dimension nicht größer als das Content
machen, wobei der Wert, der in der contentSize Instance-Variable steht,
maßgebend ist. Per Default gibt es keine Restriktionen bezüglich der View-
Größe.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 230

HVC_NO_SMALLER_THAN_CONTENT
Das View soll sich in der gegeben Dimension nicht kleiner als das Content
machen, wobei der Wert, der in der contentSize Instance-Variable steht,
maßgebend ist. Per Default gibt es keine Restriktionen bezüglich der View-
Größe.

HVC_KEEP_ASPECT_RATIO
Das View soll das Seitenverhältnis in der Darstellung beibehalten, indem es
seine Größe in der gegebenen Dimension basierend auf der Größe der
anderen Dimension berechnet.

Beispiel UI-Code:
View MyView
hControl = HVC_NO_LARGER_THAN_CONTENT +

HVC_NO_SMALLER_THAN_CONTENT
vControl = HVC_SCROLLABLE
Content = MyBitmapContent

END Object

Beispiel: Abfrage mit AND, ob das View scrollbar ist
IF MyView.vControl AND HVC_SCROLLABLE THEN ...

HideScrollersWhenNotScrollable

Bewirkt, dass der Rollbalken verschwindet, wenn das View in die zugehörige
Richtung nicht scrollen kann, weil bereits das gesamte Dokument angezeigt wird.

Syntax UI-Code: HideScrollersWhenNotScrollable
Lesen: ––
Schreiben: ––

viewColor

Die Instancevariable viewColor bestimmt die Hintergrundfarbe für das View. Per
Default ist sie weiß.

Syntax UI-Code: viewColor = color
Lesen: <numVar> = <obj>.viewColor
Schreiben: <obj>.viewColor = color

color: numerischer Farbwert. Index- oder RGB-Farbe

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 231

4.9.2.3 Die View Attribute

Die Instancevariable viewAttrs enthält wichtige Konfigurationsdaten für das View
aus verschiedenen Bereichen.

viewAttrs

ViewAttrs sind Bitflags, d.h. jedes Bit steht für eine bestimmte Eigenschaft, die
einzeln zu- oder abgeschaltet werden kann. Bits, die in der untenstehenden
Tabelle nicht aufgeführt sind, sind immer Null.
Per Default ist kein Bit aus der Tabelle gesetzt.

Syntax UI-Code: viewAttrs = bitsToSet , bitsToClear
Lesen: <numVar> = <obj>.viewAttrs (0)

Die BASIC-Syntax erfordert beim Lesen von viewAttrs
einen Parameter. Der Wert wird hier ignoriert.

Schreiben: <obj>.viewAttrs = bitsToSet , bitsToClear
bitsToSet: zu setzende Attribute, Bitflags, siehe Tabelle
bitsToClear: zu setzende Attribute, Bitflags, siehe Tabelle

Verfügbare Attribute für viewAttrs
Konstante Wert Wert hex.
VA_CONTROLLED 32768 &H8000
VA_GENERIC_CONTENTS 16384 &H4000
VA_DRAG_SCROLLING 4096 &H1000
VA_NO_WIN_FRAME 2048 &H800
VA_SAME_COLOR_AS_PARENT_WIN 1024 &H400
VA_VIEW_FOLLOWS_CONTENT_GEOMETRY 512 &H200
VA_SCALE_TO_FIT 8 &H08
VA_ADJUST_FOR_ASPECT_RATIO 4 &H04

Bedeutung / Wirkung der einzelnen Attribute:
• VA_CONTROLLED

Das View arbeitet mit einem ViewControl zusammen
• VA_GENERIC_CONTENTS

Wird automatisch gesetzt, wenn das Content-Objekt ein
GenContent ist. Dieses Bit kann nur gelesen werden.

• VA_DRAG_SCROLLING
Das View soll Drag-Scrolling unterstützen.

• VA_NO_WIN_FRAME
Keinen Rahmen um das View zeichnen.

• VA_SAME_COLOR_AS_PARENT_WIN
Die Hintergrundfarbe des View soll sich der Farbe seines
Parent-Objekts anpassen.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 232

• VA_VIEW_FOLLOWS_CONTENT_GEOMETRY
Das View soll sich der Größe seines Content-Objekts
anpassen.

• VA_SCALE_TO_FIT
Das View soll im ScaleToFit-Modus arbeiten. Dieses Bit kann
sowohl manuell als auch von einem ViewControl (zumeist im
Ansicht-Menü) aus gesetzt werden.

• VA_ADJUST_FOR_ASPECT_RATIO
Das View soll das Seitenverhältnis automatisch korrigieren. Das
wird z.B. verwendet, wenn die Pixel eines Bildschirms nicht
quadratisch sind.

4.9.2.4 Scaling und Scrolling

In den meisten Fällen stellt der Nutzer den gewünschten Skalierungsfaktor über
das Ansicht-Menü ein, dass ein ViewControl-Objekt enthält. Die gewünschte
Position im Dokument wählt der Nutzer über die Rollbalken des View. Es ist
jedoch auch möglich die Skalierung und Position per Programmcode einzustellen.
Mit der Instancevariablen scale kann man den Skalierungsfaktor ändern.
ScaleToFitOptions beeinflusst das Verhalten des View, wenn es sich im Modus
"Größe anpassen" befindet. Manuell kann man diesen Modus einstellen, wenn
man das Bit VA_SCALE_TO_FIT in der Instancevariablen viewAttrs setzt.
Die Instancevariable origin (engl. für Ursprung) enthält die Dokumentkoordinaten,
die links oben im View dargestellt werden sollen. Mit der Methode GetVisibleRect
erhält man die Koordinaten des gesamten, vom View dargestellten Bereichs. Je
nach Skalierungsfaktor können das mehr oder weniger Pixel sein, als das View
selbst groß ist. Die Methoden ScrollToOffset und ScrollCmd erlauben es dem
Programmierer, das View in eine bestimmte Richtung um einen bestimmten
Betrag zu scrollen. Die Instancevariable viewIncrement enthält die Werte um die
das View bei Scrolloperationen scrollen soll. Mit SuspendUpdate kann man
verhindern, dass aufeinander folgende Zoom- und Scrolloperationen ein wieder-
holtes Neuzeichnen des View bewirken. Schließlich kann man mit
DoNotWinScroll verhindern, dass das View überhaupt auf Scroll-Kommandos
reagiert.

scale

Die Instancevariable scale enthält den aktuellen Skalierungsfaktor (Zoomfaktor)
des View-Objekts, getrennt für x- und y-Richtung.
Hinweis: Views, die mit einem ViewControl zusammenarbeiten (in viewAttrs ist das
Bit VA_CONTROLLED gesetzt) unterstützen keine unterschiedlichen Skalierungs-
faktoren in x- und in y-Richtung.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 233

Syntax UI-Code: scale = xScale, yScale
Lesen: <numVar> = <obj>.scale(0) ’ xScale lesen

<numVar> = <obj>.scale(1) ’ yScale lesen
Schreiben: <obj>.scale = xScale, yScale
 xScale: Skalierungsfaktor in x-Richtung
 yScale: Skalierungsfaktor in y-Richtung

scaleToFitOptions

Wenn der Nutzer im Ansicht-Menü den Eintrag "Größe anpassen" auswählt stellt
das View den Zoomfaktor so ein, dass das gesamte Dokument sichtbar wird. Mit
der Instancevariablen scaleToFitOptions können Sie dieses Verhalten modi-
fizieren. In der Tabelle unten finden Sie die Möglichkeiten. ScaleToFitOptions sind
Bitflags, d.h. Sie können mehrere Werte kombinieren.

Syntax UI-Code: scaleToFitOptions = options [, xSize, ySize]
Lesen: <numVar> = <obj>.scaleToFitOptions (0)

Die BASIC-Syntax erfordert beim Lesen von
scaleToFitOptions einen Parameter. Der Wert wird hier
ignoriert.

Schreiben: <obj>.scaleToFitOptions = options [, xSize, ySize]
options: numerischer Wert, Bitflags, siehe Tabelle

xSize, ySize: Parameter für SFO_PAGE_SIZE

Mögliche Werte für scaleToFitOptions

Konstante Wert Wirkung
SFO_PAGE_SIZE 1 Der Skalierungsfaktor wird anhand der

Parameter xSize und ySize berechnet
statt nach der wahren Größe des
Dokuments.

SFO_BASED_ON_X 2 Der Skalierungsfaktor wird anhand der
Breite des Dokuments berechnet. In y-
Richtung wird möglicherweise nur ein Teil
des Dokuments sichtbar sein.

SFO_BOTH_DIMENSIONS 4 Der Skalierungsfaktor wird in x- und in y-
Richtung getrennt voneinader berechnet.
Dadurch ändert sich das Seitenverhältnis
in Abhängigkeit von der Größe des
Views.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 234

Tipp: Um bereits am Programmstart ein "angepasstes" Dokument zu erhalten
setzen Sie im UI-Code das Bit VA_SCALE_TO_FIT in der Instancevariablen
viewAttrs.
View DemoView
viewAttrs = VA_SCALE_TO_FIT, 0
scaleToFitOptions = SFO_BOTH_DIMENSIONS
’ Bewirkt, dass sich der Skalierungsfaktor in beide
’ Richtungen automatisch der Größe des View anpasst.

...
END Object

Alternativ können Sie das Bit auch zur Laufzeit setzen. Das Aufrufen der Redraw-
Methode ist nur nötig, wenn das Bit VA_CONTROLLED nicht gesetzt ist. Sie
zwingt das View, sich neu darzustellen.
DemoView.viewAttrs = VA_SCALE_TO_FIT, 0
’Falls nötig: DemoView.Redraw

origin

Origin enthält die Dokument-Koordinaten, die in der linken oberen Ecke des View
dargestellt werden. Wenn Sie im BASIC Code den Wert verändern scrollt das
View automatisch dorthin.
Origin kann nicht im UI-Code verwendet werden.

Syntax Lesen: <numVar> = <obj>.origin (0) xOrigin lesen
<numVar> = <obj>.origin (1) yOrigin lesen

Schreiben: <obj>.origin = xOrigin , yOrigin
xOrigin, yOrigin: Position, in Dokumentkoordinaten

GetVisibleRect

Die Methode GetVisibleRect liefert die Koordinaten des Bereichs des Dokuments,
der im View zu sehen ist. Sie liefert eine Struktur vom Typ RectDWord, die
folgendermaßen definiert ist:

Struct RectDWord
x0, y0, x1, y1 as LongInt
End Struct

X0 und y0 bezeichnen dabei die linke obere Ecke des sichtbaren Bereichs. Das
entspricht der Instancevariablen origin. X1 und y1 bezeichnen die rechte untere
Ecke des sichtbaren Bereichs.

Syntax im Basic-Code: <rect> = <viewObj>.GetVisibleRect
rect: Variable vom Typ RectDWord

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 235

ScrollToOffset

Die Methode ScrollToOffset scrollt das View um einen bestimmten Betrag in x-
und/oder in y-Richtung.
Um direkt zu einem bestimmten Bereich des Dokuments zu scrollen setzen Sie
bitte die Instancevariable origin oder verwenden Sie die Methode ScrollCmd.

Syntax im Basic-Code: <viewObj>.ScrollToOffset (xOffs, yOffs)
xOffs, yOffs: Verschiebung, in Dokumentkoordinaten

Null und negative Werte sind zulässig.

ScrollCmd

Die Methode ScrollCmd scrollt das View in eine bestimmte Richtung bzw. an eine
bestimmte Position.
Alternativ können Sie die Instancevariable origin setzen oder die Methode
ScrollToOffset verwenden.

Syntax im Basic-Code: <viewObj>.ScrollCmd (cmd [, param]
cmd: Auszuführende Operation, siehe Tabelle

param: Zusätzlicher Parameter für Kommandos
SC_SET_Y_ORIGIN und SC_SET_X_ORIGIN

Erlaubte Kommandos für ScrollCmd. Eine "Seite" entspricht dabei immer der
aktuellen Höhe bzw. Breite des im View sichtbaren Bereichs.

Konstante Wert Wirkung - Kommando scrollt das View ...
SC_TOP 1 nach ganz oben
SC_PAGE_UP 2 eine Seite nach oben
SC_UP 3 um den durch viewIncrement gegebenen

Wert nach oben
SC_SET_Y_ORIGIN 4 an die durch "param" gegebene y-Position
SC_DOWN 5 um den durch viewIncrement gegebenen

Wert nach unten
SC_PAGE_DOWN 6 eine Seite nach unten
SC_BOTTOM 7 ganz nach unten
SC_LEFT_EDGE 8 ganz nach links
SC_PAGE_LEFT 9 eine Seite nach links
SC_LEFT 10 um den durch viewIncrement gegebenen

Wert nach links
SC_SET_X_ORIGIN 11 an die durch "param" gegebene y-Position
SC_RIGHT 12 um den durch viewIncrement gegebenen

Wert nach rechts
SC_PAGE_RIGHT 13 eine Seite nach rechts
SC_RIGHT_EDGE 14 ganz nach rechts.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 236

viewIncrement

Die Instancevariable viewIncrement enthält - getrennt für x- und y-Richtung - den
Wert um den das View scrollen soll, wenn der Nutzer z.B. die Pfeile an den
Rollbalken anklickt. ViewIncrement wird ebenso für einige Funktionen der
Methode ScrollCmd (siehe oben) und für das Drag-Scrolling verwendet.

Syntax UI-Code: viewIncrement = xInc , yInc
Lesen: <numVar> = <obj>.viewIncrement (0) xInc lesen

<numVar> = <obj>.viewIncrement (1) yInc lesen
Schreiben: <obj>.viewIncrement = xInc , yInc
xInc, yInc: neue Increment-Werte, in Dokumentkoordinaten

Defaultwerte: xInc = 20, yInc = 15

SuspendUpdate

SuspendUpdate = TRUE bewirkt, dass Scrolling und Scaling Operationen
zunächst nicht angezeigt werden. Das ist sinnvoll, wenn mehrere dieser
Operationen nacheinander durchgeführt werden müssen und ein ständiger
Neuaufbau des Bildschirms vermieden werden soll.
Ein abschließendes SuspendUpdate = FALSE stellt das View und das Dokument
dann in seinem neuen Zustand dar.

Syntax im Basic-Code: <viewObj>.suspendUpdate = TRUE
<viewObj>.suspendUpdate = FALSE

DoNotWinScroll

Verhindert, dass das View scrollt. Die Rollbalken werden trotzdem upgedatet.
Sehr selten verwendet.

Syntax UI-Code: DoNotWinScroll
Lesen: ––
Schreiben: ––

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 237

4.9.2.5 Drag Scrolling

Stellen Sie sich vor, Sie klicken mit der linken Maustaste in das View und "ziehen"
die Maus mit gedrückter Taste aus dem View. In vielen Fällen ist es erwünscht,
dass das View dann zum dem Bereich scrollt, über dem sich die Maus jetzt
befinden würde. Dieses Verhalten nennt man "Drag-Scrolling". Um es zu
aktivieren müssen Sie nur das Bit VA_DRAG_SCROLLING in der Instance-
variablen viewAttrs setzen.

View DemoView
defaultTarget
viewAttrs = VA_CONTROLLED + VA_DRAG_SCROLLING, 0
...

End Object

Per Default aktiviert das View den Drag-Scroll Modus nur beim Drücken der linken
Maustaste. Mit der Methode InitiateDragScroll können Sie diesen Modus auch
für andere Fälle, z.B. beim Drücken der rechten Maustaste, aktivieren. Schließlich
können Sie mit SetDragBounds den Bereich, in dem das Dragging stattfinden
soll, einschränken.
Die Hints ImmediateDragUpdates und ImmediateDragUpdates kontrollieren,
wie oft das View während des Dragging das Dokument neu zeichnet.
Mit der Instancevariablen viewIncrement können Sie kontrollieren um welchen
Betrag das Dokument bei jedem Neuzeichnen gescrollt wird.

InitiateDragScroll

Per Default wird das Drag-Scrolling vom View beim Drücken der linken Maustaste
aktiviert. InitiateDragScroll aktiviert das Drag-Scrolling in anderen Situationen, z.B.
beim Drücken der rechten Maustaste.

Syntax im Basic-Code: <viewObj>.InitiateDragScroll

Beachten Sie, dass das View selbst keinen Maushandler haben kann. Bei Bedarf
müssen Sie einen Maushandler für das Content-Objekt des Views schreiben.

SetDragBounds

Die Methode SetDragBounds schränkt den Bereich für das Drag-Scrolling ein. Das
View scrollt dann während des Draggings nicht über den angegeben Bereich
hinaus.

Syntax im Basic-Code: <viewObj>.SetDragBounds x0, y0, x1, y1
x0, y0, x1, y1: Koordinaten des Rechtecks, in dem das View

scrollen soll.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 238

Achtung! Das View merkt sich die DragBounds. Wenn Sie einschränkende
DragBounds gesetzt haben müssen Sie sie auch wieder zurücknehmen.

Beispiel: Sowohl die linke als auch die rechte Maustaste sollen Dragging
unterstützen. Beim Drücken der linken Maustaste sollen DragBounds gesetzt
werden. Eine vollständige Version des Codes finden Sie bei den Beispielen unter
"Objekte\View-Content\Dragging Demo"

View DemoView
defaultTarget
viewAttrs = VA_CONTROLLED + VA_DRAG_SCROLLING
Content = DemoBitmap
...

END Object

BitmapContent DemoBitmap
 bitmapFormat = 960, 720, 8
 DefaultScreen
 OnMouseButton = MouseButtonHandler
END Object

MOUSEACTION MouseButtonHandler
Case ME_LEFT_DONW
’ Das DragScroling startet automatisch. Nur DragBounds setzen
DemoView.SetDragBounds 50, 100, 480, 320
End Case

Case ME_LEFT_UP
’ Nicht vergessen: DragBounds auf Maximum!
DemoView.SetDragBounds 0, 0, 960, 720
End Case

Case ME_RIGHT_DOWN
’ Das DragScroling manuell starten
DemoView.InitiateDragScroll
End Case

End Switch
END ACTION ’ MouseButtonHandler

ImmediateDragUpdates, DelayedDragUpdates

Diese beiden Hints beeinflussen die Häufigkeit, mit der das Dokument während
des Drag-Scrolling neu gezeichnet wird. Die Hints können nur im UI-Code gesetzt
werden.

Syntax UI-Code: ImmediateDragUpdates
DelayedDragUpdates

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 239

4.9.2.6 Ändern des Mauszeigers

Häufig ist es erwünscht, dass sich die Form des Mauszeigers ändert, wenn sich
die Maus über dem View befindet. Für ein Ballerspiel ist z.B. ein Fadenkreuz
angemessen. Mit der Methode SetPointerImage können Sie einen neuen
Mauszeiger festlegen. Die Methode ClearPointerImage stellt den vorherigen
Mauszeiger wieder ein.

So definiert man einen Mauszeiger

Mauszeiger sind immer 16x16 Pixel groß. Jedes Pixel kann 4 Werte annehmen.
Die folgende Tabelle zeigt die Zusammenhänge.

Zeiger Pixel Wert Ergebnis auf dem Bildschirm
0 Bildschirm Pixel ungeändert (Zeiger ist transparent)
1 Bildschirm Pixel wird Schwarz
2 Bildschirm Pixel wird XOR mit Zeiger-Pixel verknüpft
3 Bildschirm Pixel wird Weiß

Mauspointer werden unter R-BASIC in DATA-Zeilen definiert. Dabei sind die
ersten beiden Werte der "Hotspot", also das Pixel, das die eigentliche Position des
Mauszeigers darstellt. Darauf folgen 32 Word-DATA-Werte, die den Mauszeiger
beschreiben.

Der einfachste und empfehlenswerte Weg zum Erzeugen der DATA-Zeilen ist, das
Programm "Mouse Pointer Creator", dass auf der R-BASIC Webseite verfügbar
ist.

Hintergrundinformation: So sind die DATA-Werte aufgebaut

Um die DATA-Werte zu erhalten werden jeweils 8 Pixel zu einem Word-Wert
entsprechend dem folgenden Schema zusammengefasst. Die Farben dienen nur
dem besseren Verständnis der Zuordnung.

Bit 7 Bit 0 Bit 7 Bit 0

DATA

Pointer

Byte 1 Byte 2

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 240

Damit ergibt sich folgende Berechnungsvorschrift
DATA-Wert = 16384 * Bit7 + 4096 * Bit6 + 1024 * Bit5

+ 256 * Bit4 + 64 * Bit3 + 16 * Bit2
+ 4 * Bit1 + 1 * Bit0

Beispiel: Wir wollen einen Mauszeiger haben, der so aussieht:

Grau hinterlegte Pixel sind transparent, das schwarz/weiße Grafiksymbol zeigt an,
dass dieses Pixel mit dem Untergrund XOR verknüpft werden soll. Der rote Kreis
ist der Hotspot. Das Bild ist ein Screenshot des "Mouse Image Creator"
Programms. Auf der linken Seite ist außerdem zu sehen, wie der Mauszeiger vor
verschiedenen Hintergrundfarben aussehen wird.

Die Pixel in der ersten Zeile haben entsprechend der Tabelle oben folgende
Werte:

2, 2, 2, 0, 0, 0, 3, 1, 3, 0, 0, 0, 0, 2, 2, 2

Daraus ergeben sich die ersten beiden DATA-Werte zu 43021 und 49320.
Der komplette Mauspointer wird so definiert:

DATA 7, 7 ’ Hotspot
DATA 43021, 49320, 32781, 49160, 32781, 49160, 85, 21504
DATA 269, 49408, 269, 49408, 65021, 65020, 21847, 21844
DATA 65021, 65020, 269, 49408, 269, 49408, 85, 21504
DATA 32781, 49160, 32781, 49160, 43021, 49320, 0, 0

Diesen Mauspointer und ein Beispiel zur Anwendung verschiedener Mauspointer
finden Sie in der Beispieldatei "Mauszeiger und Freihandlinie" im Ordner "Beispiel\
Objekte\View und Content".

Erfahrene Programmierer werden hier sicher die Darstellung mit Hexadezimal-
Zahlen bevorzugen.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 241

SetPointerImage

SetPointerImage liest einen Mauspointer aus Data-Zeilen und weist ihn dem View
zu.

Syntax im Basic-Code:
<viewObj>.SetPointerImage

Tipp: Kennzeichnen Sie den Mauspointer durch eine LABEL Anweisung und
verwenden Sie die Anweisung RESTORE <LabelName> um einen bestimmten
Mauspointer anzuwählen.

Label Pointer1
DATA hotX, hotY
DATA imageWert1, ImageWert2, ...

’ insgesamt 32 Image Werte

ClearPointerImage

ClearPointerImage setzt einen Mauszeiger auf den Standard-Mauszeiger zurück.

Syntax im Basic-Code: <viewObj>.ClearPointerImage

4.9.2.7 Verlinkte Views

Gelegentlich ist es wünschenswert, dass Scroll-Operationen für mehrere Views
gleichzeitig ausgeführt werden. Wenn Sie beispielsweise zwei (oder mehr) Views
nebeneinander haben und das eine View hochscrollen kann es sinnvoll sein, dass
die anderen Views automatisch mitscrollen. Man sagt dann, die Views sind
miteinander "verlinkt". R-BASIC unterstützt die Verlinkung sowohl in horizontaler
Richtung (Views teilen horizontale Scroll- und Scale-Ereignisse) als auch in
vertikaler Richtung (Views teilen vertikale Scroll- und Scale-Ereignisse). Die
geometrische Anordnung der Views auf dem Bildschirm spielt dabei keine Rolle.
Zu den von den Views geteilten Ereignissen zählen auch das Setzen der
Instancevariablen origin und scale sowie die Scroll Kommandos (Methoden
ScrollCmd und ScrollToOffset).

Die Verlinkung von Views muss immer zirkular erfolgen. Nehmen wir an, Sie
haben 3 Views. Dann zeigt View1 auf View2, View2 auf View3 und View3 wieder
zurück zu View1.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 242

hLink

Die Instancevariable hLink enthält das nächste in horizontaler Richtung verlinkte
View. Das letzte horizontal verlinkte View muss wieder zurück zum ersten View
zeigen.
Horizontal verlinkte Views senden horizontale Scroll- und Scale-Ereignisse
automatisch an die anderen Views weiter.

Syntax UI-Code: hLink = <obj>
Lesen: <objVar> = <obj>.hLink
Schreiben: <viewObj>.hLink = <obj2>

vLink

Die Instancevariable vLink enthält das nächste in vertikaler Richtung verlinkte
View. Das letzte vertikal verlinkte View muss wieder zurück zum ersten View
zeigen.
Vertikal verlinkte Views senden vertikale Scroll- und Scale-Ereignisse automatisch
an die anderen Views weiter.

Syntax UI-Code: vLink = <obj>
Lesen: <objVar> = <obj>.vLink
Schreiben: <viewObj>.vLink = <obj2>

Beispiel. Die beiden Views sind sowohl horizontal als auch vertikal verlinkt und
zeigen so immer den gleichen Bereich ihres Dokuments.
View DemoView1
...
hLink = DemoView2
vLink = DemoView2

END Object

View DemoView2
...
hLink = DemoView1
vLink = DemoView1

END Object

Achtung! Wenn Sie die View-Verlinkung zur Laufzeit ändern, müssen Sie selbst
darauf achten, dass keine widersprüchlichen Verlinkungen entstehen. Falls Sie ein
View zur Laufzeit vernichten wollen, müssen Sie sicherstellen, dass es nicht mehr
mit anderen Views verlinkt ist. Verwenden Sie dazu die Funktion NullObj().

obj.hLink = NullObj()
obj.vLink = NullObj()

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 243

4.9.2.8 Sonstige Konfigurationsoptionen

inputOptions

Per Default sendet das View sowohl Maus- als auch Tastaturereignisse direkt an
sein Content. Mit der Instancevariablen inputOptions können Sie einige
Optimierungen vornehmen. InputOptions sind BitFlags, d.h. Sie können
verschiedene Werte kombinieren.

Syntax UI-Code: inputOptions = numVal
Lesen: <numVar> = <obj>.inputOptions
Schreiben: <obj>.inputOptions = numVal

numVal: numerischer Wert: Siehe Tabelle

Folgende inputOptions stehen zur Verfügung:
Konstant Wert Funktion
VIO_DONT_SEND_MOUSE_EVENTS 1 Keine Maus-Move

Ereignisse senden. Button-
Ereignisse werden
trotzdem gesendet.

VIO_DONT_SEND_KBD_RELEASES 2 Tastaturereignis "Taste
losgelassen" nicht senden

focusable

Die Instancevariable focusable bestimmt, ob das View den Focus bekommen kann
(focusable = TRUE) oder nicht (focusable = FALSE). Der Defaultwert ist TRUE.

Syntax UI-Code: focusable = numVal
Lesen: <numVar> = <obj>.focusable
Schreiben: <obj>.focusable = numVal

numVal: numerischer Wert: TRUE oder FALSE

targetable

Views erben die Instancevariable targetable von der GenericClass. Tragetable
bestimmt, ob das View zum Target werden kann (targetable = TRUE, Defaultwert)
oder nicht (targetable = FALSE).
Um mit einem ViewControl zusammenzuarbeiten muss das View targetable sein.
Außerdem muss das Bit VA_CONTROLLED in der Instancevariablen viewAttrs
gesetzt sein.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 244

holdsLargeText

Die Instancevariable holdsLargeText muss für das View und das zugehörige
VisContent auf TRUE gesetzt werden, damit die View/Content Kombination mit
einem LargeText Objekt zusammenarbeiten kann. Details dazu finden Sie im
Kapitel 4.10.9 (VisText und LargeText) des Objekthandbuchs.

Syntax UI-Code: holdsLargeText = TRUE
Schreiben: <obj>.holdsLargeText = TRUE | FALSE

Children eines View-Objekts

Im Normalfall besitzt ein View keine Children. Möglich ist das jedoch, da ein View
von der GenericClass abstammt. Um die Children innerhalb des View zu
platzieren, können Sie den Children die - ebenfalls von der GenericClass
geerbten Hint placeObject geben. Dieser bestimmt, in welchem Bereich des View
das Child platziert werden soll. Dabei stehen die folgenden Werte zur Verfügung:

Wert Objekt wird platziert ...
 16 X-Scroller-Bereich
 32 Y-Scroller Bereich
 64 Linke Seite des View
 128 Obere Seite des View
 256 Rechte Seite des View
 512 Untere Seite des View

Beispiel: Platziere eine Button unter dem View
View MyView

Children = MyButton
<... >
END

Button MyButton
Caption$ = "Neu zeichnen"
placeObject = 512
< .. >
END Object

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 245

4.9.3 VisContent

Objekte der Klasse VisContent dienen primär dazu, Grafiken in einem skalierbaren
und scrollbaren View auszugeben. Sie können außerdem auf Tastatur- und
Mauseingaben reagieren. Das VisContent-Objekt muss nur die Grafik
bereitstellen, das View-Objekt kümmert sich um den darzustellenden Bereich,
Scrolling und Zoom. VisContent Objekte können Children der Klasse VisObj
haben, die ihrerseits Grafik ausgeben und auf Tastatur und Maus reagieren
können.
Eine ausführliche Beschreibung der VisContent Klasse finden Sie im Objekt-
handbuch, Kapitel 5.4.

4.9.4 BitmapContent

Objekte der Klasse BitmapContent verwalten eine editierbare Bitmap. Bitmaps
sind digitalisierte Bilder. Sie bestehen aus einer rechteckigen Anordnung von
einzelnen Bildpunkten (Picture Element: Pixel). Jedem Pixel kann eine eigene
Farbe zugeordnet werden. In die Bitmaps der Klasse BitmapContent kann Text
oder Grafik geschrieben werden. Das BitmapContent-Objekt legt die zugehörige
Bitmap automatisch selbst an, so dass sie sofort benutzt werden kann.
Die BitmapContent Klasse ist von der VisContent Klasse abgeleitet. Sie erbt daher
die meisten ihrer Fähigkeiten und Eigenschaften. Von besonderer Bedeutung ist
dabei die Fähigkeit, auf Tastatur- und Mauseingaben zu reagieren.
Eine ausführliche Beschreibung der BitmapContent Klasse finden Sie im Objekt-
handbuch, Kapitel 5.2.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 246

4.9.5 GenContent

Objekte der Klasse GenContent dienen
dazu, GenericClass Objekte (z.B. Buttons)
in einem scrollbaren View darzustellen.
Die Applikation "Voreinstellungen" macht
von dieser Möglichkeit Gebrauch.
GenContent-Objekte können jede Art von
GenericClass Objekten als Children
haben.

GenContent-Objekte haben keine eigenen Maus- oder Tastaturhandler, sondern
leiten diese Ereignisse wie eine Group direkt an ihre Children weiter. Wenn Sie ein
GenContent-Objekt zur Laufzeit einem View zuweisen wird es automatisch visible
gesetzt. Umgekehrt wird es automatisch not visible gesetzt, wenn Sie es von
einem View abkoppeln.

Abstammung:
GenericClass GenContent

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
keepFocusVisible keepFocusVisible ––
contentAttrs contentAttrs = attrsToSet, AttrsToClear lesen, schreiben

Tipp: Wenn die Anordnung der Children im GenContent nicht so ist, wie Sie
wünschen, sollten Sie eine Group als Child des GenContent anlegen und ihre
Objekte innerhalb dieser Group anordnen.

KeepFocusVisible

Der Hint keepFocusVisible sorgt dafür, dass das Objekt, das den Focus hat, nicht
aus dem sichtbaren Bereich herausgescrollt wird.

Syntax UI-Code: KeepFocusVisible
Lesen: ––
Schreiben: ––

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 247

contentAttrs

Die Instancevariable contentAttrs enthält diverse Konfigurationsbits.

Syntax UI-Code: contentAttrs = attrsToSet , attrsToClear
Lesen: <numVar> = <obj>.contentAttrs (0)

Die BASIC-Syntax erfordert beim Lesen von
contentAttrs einen Parameter. Der Wert wird hier
ignoriert.

Schreiben: <obj>.contentAttrs = attrsToSet , attrsToClear
attrsToSet: zu setzende Attribute, Bitflags, siehe Tabelle
attrsToClear: zu setzende Attribute, Bitflags, siehe Tabelle

Konstante Wert (hex)
CA_SAME_WIDTH_AS_VIEW 128 (&h80)
CA_SAME_HEIGHT_AS_VIEW 64 (&h40)
CA_VIEW_DOC_BOUNDS_SET_MANUALLY 4 (&h04)

Bits, die in der Tabelle nicht aufgeführt sind sollten Sie nicht setzen. Das kann zu
unerwarteten Ergebnissen führen.

Bedeutung der einzelnen Bits:

• CA_SAME_WIDTH_AS_VIEW
• CA_SAME_HEIGHT_AS_VIEW

Das Contentobjekt passt seine Breite bzw. Höhe an die Größe des View-
Objekts an. Diese Konfigurationsbits ersetzen die Hints ExpandWidth und
ExpandHeight, die bei GenContent Objekten nicht funktionieren, da sie kein
Parent-Objekt haben.

• CA_VIEW_DOC_BOUNDS_SET_MANUALLY
Dieses Bit sollte für GenContent Objekte nicht hilfreich sein. Bei Bedarf
finden Sie eine Beschreibung beim VisContent Objekt.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 248

4.9.6 ViewControl

Objekte der Klasse ViewControl stellen die UI bereit,
um den Zoomfaktor und einige andere Eigenschaften
des aktuell aktiven View-Objekts einzustellen. Die
Zusammenarbeit zwischen View und ViewControl
erfolgt dabei automatisch ohne weiteres Zutun des
Programmierers.

Das einzige, was Sie tun müssen, damit ein View mit dem ViewControl
zusammenarbeitet ist, das Bit VA_CONTROLLED in der Instancevariablen
viewAttrs des View-Objekts zu setzen. Außerdem müssen Sie für genau ein View
den Hint "defaultTarget" setzen.

Üblicher Weise hat ein Programm genau ein ViewControl-Objekt, das ein Child
des "Ansicht" Menüs ist. Ein Codebeispiel finden Sie am Ende des Kapitels.

Abstammung:
GenericClass ViewControl

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
vcFeatures vcFeatures = numVal lesen, schreiben
vcAttrs vcAttrs = attrToSet, attrToClear lesen, schreiben
vcMinZoom vcMinZoom = numVal lesen, schreiben
vcMaxZoom vcMaxZoom = numVal lesen, schreiben
vcScale –– nur lesen
targetView –– nur lesen

Methoden:
Methode Aufgabe
ScaleView100 "Normalgröße" aktivieren
ScaleViewToFit "Größe anpassen" aktivieren
ZoomInView "Vergrößern" aktivieren
ZoomOutView "Verkleinern" aktivieren
RedrawView "Aktualisieren" aktivieren
ScrollLeftView View nach links scrollen
ScrollRightView View nach rechts scrollen
ScrollUpView View nach oben scrollen
ScrollDownView View nach unten scrollen

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 249

vcFeatures

Die Instancevariable vcFeatures stellt ein, welche UI das ViewControl-Objekt
bereitstellen soll. Jedes Bit des Wertes steht für eine Eigenschaft, die einzeln zu-
oder abgeschaltet werden kann. Die Arbeit mit Bitflags ist im Programmier-
handbuch, Vol. 2, Kapitel 2.3.5.4 beschrieben.

Syntax UI-Code: vcFeatures = numVal
Lesen: <numVar> = <obj>.vcFeatures
Schreiben: <obj>.vcFeatures = numVal

numVal: numerischer Wert, Bitflags, siehe Tabelle

Die folgenden Features stehen zur Verfügung. Per Default sind alle Features
aktiviert, mit Ausnahme von "Aspektverhältnis umrechnen" und "Alle Fenster
vergrößern / verkleinern".

Konstante Wert Zugehörige UI
VCF_MAIN_100 &H4000 Normalgröße
VCF_MAIN_SCALE_TO_FIT &H2000 Größe anpassen (Hauptmenü)
VCF_ZOOM_IN &H1000 Vergrößern-Button
VCF_ZOOM_OUT &H0800 Verkleinern-Button
VCF_REDUCE &H0400 Verkleinert auf 25%, 50%,

75% im Untermenü
VCF_100 &H0200 Normal (100%) im Untermenü
VCF_ENLARGE &H0100 Vergrößert auf 125%, 150%,

175%, 200% im Untermenü
VCF_BIG_ENLARGE &H0080 Vergrößert auf 300%, 400%

im Untermenü
VCF_SCALE_TO_FIT &H0040 Größe anpassen im

Untermenü
VCF_ADJUST_ASPECT_RATIO &H0020 Aspektverhältnis umrechnen

im Untermenü
VCF_APPLY_TO_ALL &H0010 Alle Fenster vergrößern /

verkleinern im Untermenü
VCF_SHOW_HORIZONTAL &H0008 Horizontale Bildlaufleiste ein-

/ausblenden im Untermenü
VCF_SHOW_VERTICAL &H0004 Vertikale Bildlaufleiste ein-/

ausblenden im Untermenü
VCF_CUSTOM_SCALE &H0002 Ansicht eingeben (in%) ...
VCF_REDRAW &H0001 Neu Zeichnen
VC_DEFAULT_FEATURES &HFFCF Default: Alles außer

"Aspektverhältnis" und "Alle
Fenster vergrößern /
verkleinern"

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 250

vcMinZoom

Diese Instancevariable enthält den kleinstmöglichen Scale-Faktor in Prozent. Der
Defaultwert ist 25.

Syntax UI-Code: vcMinZoom = numVal
Lesen: <numVar> = <obj>.vcMinZoom
Schreiben: <obj>.vcMinZoom = numVal

numVal: numerischer Wert, in Prozent

vcMinZoom

Diese Instancevariable enthält den größtmöglichen Scale-Faktor in Prozent. Der
Defaultwert ist 400. Wenn Sie den Wert auf unter 400 setzen sollten Sie auch das
Bit VCF_BIG_ENLARGE in der Instancevariable vcFeatures zurücksetzen.

Syntax UI-Code: vcMaxZoom = numVal
Lesen: <numVar> = <obj>.vcMaxZoom
Schreiben: <obj>.Max = numVal

numVal: numerischer Wert, in Prozent

vcAttrs

Die Instancevariable vcAttrs enthält die Information, ob die Einstellungen aus dem
Untermenü "Ansichts-Optionen" an die betroffenen Views gesendet werden sollen
oder nicht. Ein Zugriff im BASIC-Code ist im Allgemeinen nicht erforderlich. Im UI-
Code können Sie vcAttrs zur Konfiguration der Default-Werte für das Untermenü
"Ansichts-Optionen" verwenden (siehe Beispiel unten).

Syntax UI-Code: vcAttrs = attrsToSet , attrsToClear
Lesen: <numVar> = <obj>.vcAttrs (0)

Da vcAttrs zwei Parameter hat erfordet die BASIC-
Syntax, dass der zu lesende Wert angegeben wird. Der
übergebene Wert wird hier jedoch ignoriert.

Schreiben: <obj>.vcAttrs = attrsToSet , attrsToClear
attrsToSet , attrsToClear: numerischer Wert, Bitflags, siehe Tabelle

Dieses Feld wird vom ViewControl Objekt automatisch verwaltet. Klickt der Nutzer
z.B. auf "Horizontale Bildlaufleiste ein-/ausblenden" im Ansicht-Menü so wird das
entsprechende Bit in vcAttrs automatsch angepasst.
Jedes Bit des Wertes steht für eine Eigenschaft, die einzeln zu- oder abgeschaltet
werden kann. Die Arbeit mit Bitflags ist im Programmierhandbuch, Vol. 2, Kapitel
2.3.5.4 beschrieben.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 251

Die folgenden Konstanten stehen zur Verfügung:

Konstante Wert Zugehörige Funktion
VCA_ADJUST_ASPECT_RATIO &h8000 Aspektverhältnis umrechnen
VCA_APPLY_TO_ALL &H4000 Alle Fenster vergrößern /

verkleinern
VCA_SHOW_HORIZONTAL &H2000 Horizontale Bildlaufleiste ein-/

ausblenden
VCA_SHOW_VERTICAL &H1000 Vertikale Bildlaufleiste ein-/

ausblenden
VC_DEFAULT_ATTRS &H3000 Default: Beide Bildlaufleisten

ein-/ ausblenden

ScaleView100 ScrollLeftView
ScaleViewToFit ScrollRightView
ZoomInView ScrollUpView
ZoomOutView ScrollDownView
RedrawView

Diese Methoden bewirken, dass das ViewControl die in der Tabelle aufgelisteten
Kommandos an das kontrollierte View sendet. Sie können damit z.B. Toolbuttons
realisieren, die die wichtigsten Operationen des View-Menüs auslösen können.
Ein Beispiel finden Sie im Ordner Beispiel\Objekte\View-Content in der Datei
"ViewControl Tool Demo". Um die grafischen Captions dieses Beispiels nutzen zu
können müssen Sie mindestens die Version 2 des Pakets "More Tool Images" von
der R-BASIC Webseite installiert haben.

Syntax am Beispiel ScaleViewToFit:
<ViewControlObj>.ScaleViewToFit

Methode Aufgabe
ScaleView100 "Normalgröße" aktivieren
ScaleViewToFit "Größe anpassen" aktivieren
ZoomInView "Vergrößern" aktivieren
ZoomOutView "Verkleinern" aktivieren
RedrawView "Aktualisieren" aktivieren
ScrollLeftView View nach links scrollen
ScrollRightView View nach rechts scrollen
ScrollUpView View nach oben scrollen
ScrollDownView View nach unten scrollen

Hinweis: Wenn das ViewControl mehrere Views kontrolliert (in vcAttrs is
VCF_APPLY_TO_ALL gesetzt und die Option ist aktiv) arbeitet diese Methoden

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 252

häufig nur mit einem der Views (mit dem, das aktuell das Target ist). Sie können
dann die Views direkt ansprechen um die gewünschte Operation auszuführen.

targetView

Die Instancevariable targetView enthält das aktive View, d.h. das View, das aktuell
vom ViewControl kontrolliert wird, oder ein Null-Objekt, falls gerade kein View aktiv
ist. Der Wert kann nur gelesen werden.

Syntax Lesen: <objVar> = <obj>.targetView

Beispiele

Im einfachsten Fall müssen Sie das ViewControl-Objekt nicht konfigurieren.

Menu DemoViewMenu
Caption$ = "Ansicht"
Children = DemoViewControl

End Object

ViewControl DemoViewControl
End Object

Um ein View mit dem ViewControl Objekt zusammen arbeiten zu lassen müssen
Sie zwei Einstellungen vornehmen:

View DemoView
DefaultTarget
viewAttrs = VA_CONTROLLED, 0
...

END Object

Nehmen wir jetzt an, wie haben eine Applikation mit 2 Views. Eins davon sollte
den Hint DefaultTarget gesetzt haben, beide das Bit VA_CONTROLLED.
Wir wollen folgendes:

- Der Zoom-Faktor soll auf 200% begrenzt werden.
- Im ViewControl soll die Option "Alle Fenster vergrößern / verkleinern"

vorhanden sein.
- Per Default soll diese Option aktiv sein.
- Per Default soll der horizontale Rollbalken verborgen sein.

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 253

Das zugehörige ViewControl sieht dann so aus:

ViewControl DemoViewControl
vcFeatures = VC_DEFAULT_FEATURES + VCF_APPLY_TO_ALL \

– VCF_BIG_ENLARGE
vcMaxZoom = 200
’ Default-Werte für Ansichts-Optionen setzen
vcAttrs = VCA_APPLY_TO_ALL, VCA_SHOW_HORIZONTAL

End Object

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 254

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 5
Einfach unter PC/GEOS programmieren

View und Content - 255

(Leerseite)

