R-BASIC

Einfach unter PC/GEOS programmieren

\O

ob
9&

Objekt-Handbuch

Volume 6
Text-Objekte, FileSelector

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4.10 Text-ObjJEKte ..cuvrrrrrrrrrririrnirnnns s 260
4.10.7 UDEIDICK «-vvveeereeeeeeeeee e eeee e e e e eeee e e e eee s aeeeeeseeee e s e sereeseeens 260
4.10.2 Arbeit mit dem TeXto e 265
4.10.3 Zeichenattributeuviiieniiii e 272
4.710.4 ADSAZAttrIDULE «vnveeiniiiei e e 276

F O TR =) i 1= G 279
4.10.6 Textobjekt ACIONS ..evvvvveieieeiiiii 282
4.10.7 Verhalten und AUSSENENccuniiiiiiiiiiie e 287
4.10.8 Text-Objekte im Delayed Modeccooviiiiiiiiiiiiiiiiiieeeeeee 291
4.10.9 VisText und LargeText .o 292

E R Lo T R VAT R =) < S 292
4.10.9.2 LargeTeXtccceiiiiiiieiiiiee e 298
4.10.10 Text in Dateien speiChernccccooie 302
I T T == 1= o o 1 311
4117 UDEIDNCK «eveeeeeeeeeeeeeeeeee ettt 311
4.11.2 Konfigurieren des FileSelectorscccccoiiiiiiiiiiiee i 312
4.11.3 Arbeit mit Token und Creatorc.coouuviiiiiiiiiiie e, 318
4.11.4 Behandeln der Notification-Messageooeeeiiiiiiiiiiiiiinne 320

4.11.5 Weitere Fahigkeitencccccc 325

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10 Text-Objekte
4.10.1 Uberblick

Die R-BASIC Textobjekte erlauben das einfache Eingeben von Text, ohne dass
Sie als Programmierer sich um irgendwelche Details kimmern missen. Die
Textobjekte behandeln Tastatur- und Mausereignisse selbstandig. Sie registrieren,
ob der Text vom Nutzer verdndert wurde und kénnen bei Bedarf Messages
aussenden, um den Rest des Programms Uber bestimmten Ereignissen zu
informieren.

In R-BASIC stehen vier Textobjekt Klassen zur Verfligung. Die Klasse Memo und
InputLine sind GenericClass Objekte und sehr einfach zu benutzen. VisText und
LargeText sind VisualClass Objekte. Sie missen mit einem VisContent in einem
View verwendet werden. Diesen Klassen ist ein eigenes Kapitel (4.10.9)
gewidmet.

Memo Die Memo-Klasse stellt einen einfachen Texteditor bereit. Sie
unterstitzt einen automatischen Zeilenumbruch und die Entertaste
beginnt einen neuen Absatz. Bei Bedarf wird ein vertikaler Rollbalken
erzeugt.

InputLine Die Klasse InputLine ist fir die Eingabe einzeiliger Texte, z.B. von
Dateinamen, gedacht. Die Entertaste 16st bei InputLine-Objekten den
Apply-Handler des Objekts aus.

VisText Objekte der Klasse VisText missen wie ein VisObj-Objekt in einem
visual Tree verwendet werden. Details zu diesem Thema finden Sie im
Kapitel 5.5. des Objekthandbuchs.

LargeText Der Vorteil der LargeText Objekie ist, dass sie beliebig viel Text
speichern kénnen (theoretisch bis zu 2 GByte), wéhrend die anderen
Textobjekte auf 4 kByte begrenzt sind.

Die meisten Instancevariablen und Methoden sind fir alle Textobjektklassen
identisch, Ausnahmen sind unten erwahnt. Keins der R-BASIC Text-Objekte
unterstitzt die Formatierung einzelner Buchstaben, Worte oder Abséatze. Alle
Formatinformationen (z.B. Font, Textgr6Be, Textstil, Ausrichtung usw.) gelten
immer fur den gesamten Text des Objekts.

Da die Textobjekte Memo und InputLine von der GenericClass abstammen erben
sie alle Eigenschaften, Hints und Fahigkeiten dieser Klasse. Fur diese Textobjekte
sind besonders die Fahigkeiten zum Geometrie-Management (Kapitel 3.3) von
Bedeutung.

Die Geometrie von VisText- und LargeText-Objekten wird vom VisContent bzw.
dem dazugehdrigen View bestimmt, in dem sie sich befinden.

Text-Objekte: Memo, InputLine - 260

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Arbeit mit dem Clipboard

Alle Textobjekte kbénnen mit der Zwischenablage (Clipboard) kommunizieren. Die
Methoden (Objektanweisungen) ClpTestCopy, ClpTestPaste, CipCopy und
ClpPaste werden unterstitzt. Eine detaillierte Beschreibung dieser Methoden
finden Sie im Kapitel "Arbeit mit der Zwischenablage" (Kapitel 5 im Handbuch

"Spezielle Themen"). Die Textobjekte verhalten sich dabei genauso wie Sie es von

Textobjekten in anderen Programmen gewohnt sind. Die wichtigsten Punkte sind:

+ ClpTestCopy liefert TRUE, wenn Text selektiert ist. Ist nichts selektiert liefert es
FALSE.

+ Die Methode ClpCopy kopiert den aktuell selektierten Text in die Zwischen-
ablage. Ist nichts selektiert wird auch nichts in die Zwischenablage kopiert. Die
globale Variable clipboardError wird gesetzt (TRUE: Text wurde ins Clipboard
kopiert, FALSE: kein Text wurde ins Clipboard kopiert).

+ Die Methode ClpPaste ersetzt den aktuell selektierten Text. Ist nichts selektiert
wird der Text an der Cursorposition eingefigt. Achtung! ClpPaste setzt die
globale Variable clipboardError immer auf FALSE. PC/GEOS liefert fur
Textobjekte keine Rickmeldung, ob die Operation erfolgreich war oder nicht.

+ ClpPaste akzeptiert nur "reine" Texte. Eventuelle Formatierungen gehen
verloren. Enthalt der Text zu viele Zeichen oder Grafiken, so erzeugt das Objekt
eine Fehlermeldung. Ist kein Text in der Zwischenablage wird die Operation
ignoriert.

Keyboard-Handler

Sie kdnnen in die Behandlung von Tastaturereignissen eingreifen indem Sie einen
Tastaturhandler fir das Textobjekt schreiben. Dazu werden die folgenden
Instancevariablen unterstitzt:

Actionhandler Instancevariablen Methoden
OnKeyPressed inputFlags —

Der OnKeyPressed-Handler wird gerufen, wenn das Textobjekt den Focus hat
und der Nutzer driickt eine Taste oder lasst sie los. Er muss als KeyboardAction
deklariert sein. Dabei steuert inputFlags, ob das Objekt selbst oder der
entsprechende BASIC Handler das Ereignis bearbeitet. Eine ausfihrliche
Beschreibung der Zusammenhénge finden Sie im Kapitel 14 (Arbeit mit der
Tastatur) im Handbuch "Spezielle Themen".

Insbesondere ist es wichtig zu wissen, dass das Textobjekt zunachst jedes
Tastaturereignis selbst behandelt, bevor es den entsprechenden BASIC Handler
aufruft. Im Kapitel 14.4 (Filtern von Tastaturereignissen) des Handbuchs
"Spezielle Themen" ist beschrieben, wie man das umgehen kann.

Text-Objekte: Memo, InputLine - 261

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Focus und Target

Textobjekte interagieren mit der Focus- und Target-Hierarchie. Es ist mdglich zu
uberwachen, ob ein Text-Objekt den Focus oder das Target hat, indem man einen
Focus- bzw. Target-Handler schreibt. Dazu werden die folgenden Actionhandler,
Instance- und Systemvariablen unterstitzt.

Actionhandler Instancevariablen Systemvariable
(nur Memo und InputLine)

OnFocusChanged defaultFocus Focus

OnTargetChanged targetable Target
defaultTarget

Die notwendigen Details zur Arbeit mit Focus und Target finden Sie im Kapitel 12
(Focus und Target) des Handbuchs "Spezielle Themen". Das Arbeiten mit Focus
und Target ist etwas fur erfahrene Programmierer und nur in wenigen Fallen
notwendig. Eine Ausnahme bildet die Implementation von speziellen Menus wie
dem "Bearbeiten" Menl. Diesem Thema ist deswegen ein eigenes Kapitel
("Spezielle Themen", Kapitel 13) gewidmet.

Hinweise zu Focus und Target bei Text-Objekten:

+ Die Verwendung des OnFocusChanged Handler ist nur sehr selten nétig. In den
meisten Fallen, in denen man zunachst an den Focus-Handler denkt, ist es
sinnvoller den OnTargetChanged Handler zu verwenden.

+ Wenn Sie zum Beispiel mehr als ein Textobjekt haben wird der OnTarget-
Changed Handler oft benutzt um die Ul entsprechend den Attributen (Font,
TextgroBe, Farben usw.) anzupassen, die im Textobjekt dargestellt werden, mit
dem der Nutzer gerade interagiert.

Ein entsprechendes Beispiel finden Sie im Kapitel 4.10.6 (Text-Objekt Actions).

Die folgenden Kapitel verwenden meist Memo oder InputLine Objekte als
Beispiele. Die Aussagen gelten aber immer fur alle Textobjekte. Ausnahmen sind
explizit erwahnt.

AuBerdem wird davon ausgegangen, dass die Textobjekte im normalen Modus
(nicht im sogenannten "Delayed Mode") arbeiten. Der Delayed Mode ist nur far
GenericClass Objekte (Memo und InputLine) verfigbar und ausfihrlich im Kapitel
3.4.2 (Delayed Mode und Statusmessage) beschrieben.

Abstammung Memo und InputLine:
GenericClass =9 Memo — InputLine

Abstammung VisText und LargeText:
VisualClass f—p» VisText —p LargeText

Text-Objekte: Memo, InputLine - 262

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Spezielle Instance-Variablen fur alle (*) Textobjekt Klassen:

Variable Syntax im Ul-Code Im BASIC-Code
maxLen (%) maxLen = numWert lesen, schreiben
textLen — nur lesen

text$ text$ = "text" lesen, schreiben
cursorPos e lesen, schreiben
selectionEnd — lesen, schreiben
selectionLen — lesen, schreiben
fontID fontID = numWert lesen, schreiben
fontSize fontSize = numWert lesen, schreiben
textStyle textStyle = numWert lesen, schreiben
textColor textColor = numWert lesen, schreiben
backColor backColor = numWert lesen, schreiben
justify Text justifyText = numWert lesen, schreiben
lineSpacing lineSpacing = numWert lesen, schreiben
margins margins = left, right [, first] lesen, schreiben
topSpace topSpace = numWert lesen, schreiben
textFilter textFilter = numWert lesen, schreiben
textAttrs textAttrs = numWert lesen, schreiben
modified modified = numWert lesen, schreiben
OnModified OnModified = <Handler> nur schreiben
OnSelectionChanged | OnSelectionChanged = <Handler>| nur schreiben

(*) maxLen wird von LargeText Objekten nicht unterstitzt. Die TextgréBe von
LargeText Objekten ist prinzipiell unbegrenzt.

Spezielle Instance-Variablen nur fur GenericClass Objekte Memo und InputLine:

Variable Syntax im Ul-Code Im BASIC-Code
TextFrame TextFrame —
TextNoFrame TextNoFrame —
SelectablelfRO SelectablelfRO —
ApplyHandler ApplyHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben

Spezielle Instance-Variablen nur fur LargeText:

Variable Syntax im Ul-Code Im BASIC-Code
approxSize approxSize = numWert lesen, schreiben

Text-Objekte: Memo, InputLine - 263

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

Methoden flr alle Textobjekt Klassen:

Methode Aufgabe

SelectedText$ Liefert den aktuell selektierten Text
TextRange$ Liefert einen bestimmten Textbereich
Append Text anhé&ngen

Insert Text einfligen

ReplaceSelection

Selektierten Text ersetzen

DeleteSelection

Selektierten Text I6schen

DeleteRange

Textbereich l6schen

ShowCursor Zur Cursorposition scrollen
Suspend Verhindert die Neudarstellung des Objekts
EndSuspend Erlaubt die Neudarstellung des Objekts wieder

Methoden nur fir Memo

und InputLine:

Methode Aufgabe

ScrollUp Hoch scrollen
ScrollDown Herunter scrollen
SendStatus Status-Handler aufrufen

Action-Handler-Typen:

Handler-Typ

Parameter

TextAction

(sender as object, isModified as integer, textLen as word,
selectionLen as word)

Beispiel: Ein typisches M

emo Text Objekt

Memo Memol Note:
Caption$ = "Note:" Enter some text
justifyCaption = J_TOP here ... 123|
text$S ="Enter some text here ..."
maxlen = 100
fixedSize = 30 + ST AVG CHAR WIDTH, 5 + ST LINES OF TEXT
END Object

Beispiel: Ein typisches In

putLine Text Objekt

InputLine NameText

Cepistamy) 5 TEEs Name: [Setag, Llib
text$ ="Setag, Llib"

maxLen = 100

ExpandWidth

ApplyHandler = ApplyNameText

END Object

Text-Objekte: Memo, InputLine - 264

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.2 Arbeit mit dem Text

Hinweis: Stringvariablen nehmen standardmaBig nur bis zu 128 Zeichen auf, mit
String(n) vereinbarte Stringvariablen kénnen bis zu 1024 Zeichen speichern.
Achten Sie beim Lesen von Text aus einem Textobjekt darauf, dass Textobjekte
bis zu 4096 Zeichen enthalten kénnen, LargeText Objekte sogar noch wesentlich
mehr. Verwenden Sie die Instancevariable maxLen, um sicher zu sein, bzw.
fragen Sie die Instancevariable textLen ab, wenn sie unsicher sind.

Instancevariable Syntax im Ul-Code Im BASIC-Code
maxLen (%) maxLen = numWert lesen, schreiben
textLen — nur lesen

text$ text$ = "text" lesen, schreiben
cursorPos — lesen, schreiben
selectionEnd —_— lesen, schreiben
selectionLen e lesen, schreiben

(*) maxLen wird von LargeText Objekten nicht unterstitzt.

Methoden:
Methode Aufgabe
SelectedText$ Liefert des aktuell selektierten Text
TextRange$ Liefert einen bestimmten Textbereich
Append Text anhé&ngen

Insert Text einfligen

ReplaceSelection

Selektierten Text ersetzen

DeleteSelection

Selektierten Text I6schen

DeleteRange

Textbereich l6schen

ShowCursor Zur Cursorposition scrollen

ScrollUp Hoch scrollen

ScrollDown Herunter scrollen

Suspend Verhindert die Neudarstellung des Objekts
EndSuspend Erlaubt die Neudarstellung des Objekts wieder

Text-Objekte: Memo, InputLine - 265

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

text$

Die Instance-Variable text$ enthalt den eigentlichen Text des Objekts. Sie kann
gelesen und geschrieben werden. Das Textobjekt stellt den neuen Text
automatisch dar, wenn sie der Instance-Variable text$ einen Wert zuweisen.

Syntax Ul-Code: text$ = "text"
Lesen: <stringVar> = <obj>.text$
Schreiben: <obj>.text$ = "text"

Kompatibilitdt: alle Textobjekte

maxLen

Die Instance-Variable maxLen enthalt die maximale Lange des Textes, den das
Objekt verwalten kann. Der Default-Wert liegt bei 1024, das ist die maximale
GroBe, die eine String-Variable in R-BASIC speichern kann. Erlaubt sind Werte
von 1 bis 4096. Fur LargeText Objekte kann die Textldnge nicht begrenzt werden,
maxLen wird nicht unterstutzt.

Syntax Ul-Code: maxLen = numWert
Lesen: <numVar> = <obj>.maxLen
Schreiben: <obj>.maxLen = numWert

Kompatibilitdt: Memo, InputLine, VisText (nicht LargeText)

+ Setzen Sie maxLen auf einen Wert, der kleiner als die aktuelle Textlange ist, so
wird der Text abgeschnitten.

+ Der Nutzer kann nicht mehr Text eingeben, als durch maxLen festgelegt ist.

+ Es ist immer eine gute ldee maxLen so klein wie nur moéglich zu wahlen.
Beispielsweise ist zur Eingabe von GEOS-Dateinamen ein Wert von 32 flr
maxLen vernunftig, da GEOS-Dateinamen nicht langer als 32 Zeichen werden
kbnnen.

+ Der Text wird immer gemeinsam mit dem Textobjekt in den Speicher geladen
wird. Wenn Sie maxLen zur Laufzeit (!) drastisch vergréBern und auch
entsprechend viel Text abspeichern kann es in sehr ungunstigen Féllen zur
Meldung "Hauptspeicher voll" kommen. Das Problem kann nicht auftreten,
wenn Sie maxLen im Ul-Code auf einen groBen Wert setzen. Der Compiler
verteilt die Textobjekte dann auf mehrere Objektblécke. Im Kapitel 2.1.4 finden
Sie Details zu diesem Problem.

Text-Objekte: Memo, InputLine - 266

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

textLen

Die Instance-Variable textLen enthalt die La4nge des aktuellen Textes.

Syntax Lesen: <numVar> = <obj>.textLen

Kompatibilitdt: Memo, InputLine, VisText (nicht LargeText)

CursorPos

Die Instancevariable cursorPos enthalt die aktuelle Position der Schreibmarke
(Cursor). Sie entspricht er Zeichenposition, hinter dem sich der Cursor befindet.
Die Position Null entspricht dem Textanfang. CursorPos kann gelesen und
geschrieben, aber nicht im Ul-Code verwendet werden. Wenn Text selektiert ist
enthélt cursorPos die Anfangsposition des selektierten Texts. Schreiben der
Cursorposition hebt eine vorhandene Textselektion auf.

Syntax Lesen: <numVar> = <obj>.cursorPos
Schreiben: <obj>.cursorPos = wert
wert: Neue Cursorposition. Null entspricht dem Textanfang.
Kompatibilitat: alle Textobjekte
SelectionEnd

Die Instancevariable selectionEnd enthalt die Endposition des aktuell selektierten
Texts. SelectionEnd ist immer gréBer oder gleich cursorPos. Ist kein Text
selektiert enthéalt selectionEnd den gleichen Wert wie cursorPos. SelectionEnd

kann gelesen und geschrieben, aber nicht im Ul-Code verwendet werden.

Syntax Lesen: <numVar> = <obj>.selectionEnd
Schreiben: <obj>.selectionEnd = wert
wert: Neue Endposition der Textselektion.
Kompatibilitat: alle Textobjekte

SelectionLen

Die Instancevariable selectionLen enthélt die Ladnge des aktuell selektierten Texts.
SelectionEnd ist immer gréBer oder gleich Null. Ist kein Text selektiert enthalt
selectionLen den Wert Null. SelectionLen kann gelesen und geschrieben, aber
nicht im Ul-Code verwendet werden.

Text-Objekte: Memo, InputLine - 267

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Syntax Lesen: <numVar> = <obj>.selectionLen
Schreiben: <obj>.selectionLen = wert

wert: Neue Lange der Textselektion.
Negative Werte selektieren den Text links vom Cursor.

Kompatibilitat: alle Textobjekte

SelectedText$

Die Methode SelectedText$ liefert den aktuell selektierten Text. Ist nichts selektiert
liefert sie einen leeren String. SelectedText$ kann nur gelesen werden. Um den
selektierten Text zu ersetzen verwenden Sie die Methode ReplaceSelection.

Syntax Lesen: <stringVar> = <obj>.SelectedText$

Kompatibilitat: alle Textobjekte

TextRange$

Die Methode TextRange$ liefert einen bestimmten Textbereich. Der Bereich wird
dabei durch die Cursorpositionen links vom zu lesenden Bereich (pos1) und die
Cursorpositionen rechts vom zu lesenden Bereich. Dadurch ergeben sich die
folgenden Zusammenhéange:
* Pos1 entspricht der Anzahl der zu ubergehenden Zeichen links vom zu
lesenden Bereich.
* Pos1 = 0 entspricht dem Lesen ab dem Textanfang, pos1 = N bedeutet:
Lesen ab dem N+1. Zeichen.
+ Die Anzahl der gelesenen Zeichen ergibt sich zu pos2 - pos 1.
AuBerdem gilt folgendes:
« Ist pos2 gréBer als die Textlange so liefert TextRange$ entsprechend weniger
Zeichen.
+ Sollte pos1 > pos2 sein so vertauscht R-BASIC die Werte automatisch.

Syntax Lesen: <stringVar> = <obj>.TextRange$ (pos1, pos2)
posi, pos2: Textbereich der gelesen werden soll.

Kompatibilitat: alle Textobjekte

Text-Objekte: Memo, InputLine - 268

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Beispiele. Beachten Sie die Werte in der zweiten Zeile!

a$ = TextObj.TextRange$ (0, 10) ' die ersten 10 Zeichen

a$ = TextObj.TextRange$ (10, 20) ' die nachsten 10 Zeichen

a$ = TextObj.TextRange$ (100, 5000) ' alles ab Zeichen 101
Append

Die Methode Append hangt Text an den vorhandenen Text an.

Syntax Schreiben: <TextObj>.Append <StringExpression>
StringExpression: ein beliebiger Stringausdruck

Kompatibilitat: alle Textobjekte

Insert

Die Methode Insert fugt Text an der aktuellen Cursorposition ein. Ist Text selektiert
wird am Anfang des selektierten Bereichs eingefligt. Die Selektion wird dabei
aufgehoben.

Syntax Schreiben: <TextObj>.Insert <StringExpression>
StringExpression: ein beliebiger Stringausdruck

Kompatibilitat: alle Textobjekte

ReplaceSelection

Die Methode ReplaceSelection ersetzt den aktuell selektierten Text. Ist nichts
selektiert wird der Text an der Cursorposition eingefligt.

Syntax Schreiben: <TextObj>.ReplaceSelection <StringExpression>
StringExpression: ein beliebiger Stringausdruck

Kompatibilitat: alle Textobjekte

Text-Objekte: Memo, InputLine - 269

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

DeleteSelection

Die Methode DeleteSelection l6scht den aktuell selektierten Text. Ist nichts
selektiert passiert nichts.

Syntax Schreiben: <TextObj>.DeleteSelection

Kompatibilitat: alle Textobjekte

DeleteRange

Die Methode DeleteRange I6scht einen bestimmten Textbereich. Der Bereich wird
dabei durch die Cursorpositionen vor (pos1) und nach dem gewlinschten Bereich
(pos2) bestimmt. Weitere Hinweise dazu finden Sie bei der Methode TextRange$.

Syntax Lesen: <stringVar> = <obj>.DeleteRange (pos1, pos2)

posi, pos2: Textbereich der geldéscht werden soll.

Kompatibilitat: alle Textobjekte
Beispiele:
TextObj.DeleteRange 0, 10 ' die ersten 10 Zeichen
TextObj.DeleteRange 100, 5000 ' alles ab Zeichen 101
ShowCursor

Die Methode ShowCursor scrollt den Text so, dass die aktuelle Cursorposition flr
den Nutzer sichtbar ist.

Syntax: <TextObj>.ShowCursor

Kompatibilitat: alle Textobjekte

ScrollDown

Die Methode ScrollDown scrollt den Text nach unten.

Syntax: <TextObj>.ScroliIDown

Kompatibilitat: GenericClass Text-Objekte: Memo, InputLine

Text-Objekte: Memo, InputLine - 270

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

ScrollUp

Die Methode ScrollUp scrollt den Text nach oben.

Syntax: <TextObj>.ScrollUp

Kompatibilitat: GenericClass Text-Objekte: Memo, InputLine

Hinweis: VisText Objekte sind nicht scrollbar. Fir LargeText-Objekte kénnen Sie
die Methode ScrollCmd des zugehdrigen Views benutzen.

Suspend

Die Methode Suspend verhindert eine Neudarstellung, solange bis die Methode
EndSuspend aufgerufen wurde. Das ist sinnvoll, wenn man mehrere Anderungen
(Font, GréBe usw.) vornehmen will, bzw. Text Stlck fur Stlick hinzufligt. Dadurch
wird ein Flackern verhindert.

Syntax BASIC- Code: <obj>.Suspend

Kompatibilitat: alle Textobjekte

EndSuspend

EndSuspend hebt den mit Suspend gesetzten Zustand wieder auf.

Syntax BASIC- Code: <obj>.EndSuspend

Kompatibilitat: alle Textobjekte

Text-Objekte: Memo, InputLine - 271

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.3 Zeichenattribute

Instancevariable Syntax im Ul-Code Im BASIC-Code
fontID fontID = numWert lesen, schreiben
fontSize fontSize = numWert lesen, schreiben
textStyle textStyle = numWert lesen, schreiben
textColor textColor = numWert lesen, schreiben

Per Default lesen die Textobjekte Font und GréBe des darzustellenden Textes aus
der GEOS.INI (Kategorie [ui], Eintrdge "editableTextFontID" und "editable-
TextFontsize"). Damit passen sie sich der GEOS-Installation des Nutzers an.

Es ist jedoch mdglich, den Texten eine bestimmte Schriftart, GréBe, Farbe und Stil
(sogenannte Zeichenattribute) zuzuweisen. Damit werden die INI-Eintrdge vom
Textobjekt ignoriert und der Text wird bei allen Nutzern auf die geforderte Weise
dargestellt.

Dabei ist es nétig, folgendes zu wissen:

1. Sie k6bnnen immer nur dem ganzen Text bestimmte Zeichenattribute zuweisen.
Alle Zeichen werden dann auf diese Weise dargestellt. Die Zuweisung
verschiedener Schriftarten oder SchriftgréBen zu einzelnen Teilen des Textes
ist also nicht méglich.

2. Textobjekte speichern die Zeichenattribute nicht einzeln, sondern in einer
gemeinsamen Datenstruktur. Weisen Sie auch nur ein einziges Zeichenattribut
zu (z.B. die Textfarbe) so wird die Datenstruktur mit allen Zeichenattributen
angelegt. Dabei gelten die folgenden Standardwerte fir die nicht explizit
zugewiesenen Attribute:

Font: URW Sans
GroBe: 12

Stil: normal
Farbe: schwarz

Beispiel:
Memo NotesText
text$ = "Noch keine Notizen eingetragen."

fontID = FID MONO
' fontSize nicht gesetzt --> 12 pt wird verwendet,
' egal was in der INI steht

textStyle = TS BOLD + TS ITALIC

textColor BLUE

END OBJECT

Text-Objekte: Memo, InputLine - 272

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

fontlD
Syntax Ul-Code: fontID = idCode
Lesen: <numVar> = <obj>.fontID
Schreiben: <obj>.fontlD = idCode
idCode: Numerischer Wert, der den Textfont bestimmt
Kompatibilitat: alle Textobjekte

PC/GEOS identifiziert Schriften (Fonts) Uber eine sogenannte Font-ID-Nummer.
Details dazu finden Sie im Kapitel 2, insbesondere Kapitel 2.2, des Handbuchs
"Spezielle Themen".

Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Fir nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

Namentlich verfugbare Font-ID’s in R-BASIC

Name der Konstante Wert GEOS-Name
FID_BISON 2560 Bison
FID_UNIVERSITY 513 University @
FID_BERKELEY 514 Berkeley
FID_MONO 6656 URW Mono
FID_SANS 4608 URW Sans
FID_ROMAN 4096 URW Roman
FID_CRANBROOK 4097 Cranbrook
FID_SYMBOLPS 6144 URW SymbolPS

“Hinweis: Die Fonts mit den ID’s FID_BISON, FID_UNIVERSITY und
FID_BERKELEY sind Bitmap-Fonts, die sich nicht zur Ausgabe auf den Drucker
eignen. Achtung! Die Kombination von Bitmap-Fonts mit bestimmten, nicht von
diesem Font unterstitzten Stilkombinationen kann zum Systemabsturz fahren.

Einige weitere Font-ID’s ohne vordefinierten Namen in R-BASIC:

1563 LED (Bitmap-Font)
53006 Fat Fracture

5632 Superb

4612 Sather Gothic

5123 Shattuck Avenue

Text-Objekte: Memo, InputLine - 273

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

fontSize

FontSize stellt die Schriftgr6Be ein. Zuléassig sind Werte von 4 bis 792.

Syntax Ul-Code: fontSize = size
Lesen: <numVar> = <obj>.fontSize
Schreiben: <obj>.fontSize = size
size: Numerischer Wert, SchriftgréBe

Kompatibilitat: alle Textobjekte

Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Fir nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

textStyle

TextStyle stellt den Textstil ein.

Syntax Ul-Code: textStyle = style
Lesen: <numVar> = <obj>.textStyle
Schreiben: <obj>.textStyle = style

size: Numerischer Wert, Textstil
Kombination von TS_ Konstanten, siehe Tabelle

Kompatibilitdt: alle Textobjekte

Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Fir nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

Textstile zur Benutzung mit textStyle

Textstil Wert Bedeutung

TS_UNDERLINE 1 unterstrichene Schrift

TS_STRIKE_THRU 2 durchgestrichene-Sehrift

TS_SUBSCRIPT 4 tiefgestellte Schrift scnin

TS_SUPERSCRIPT 8 hochgestellte Schrift "™

TS_ITALIC 16 kursive Schrift

TS_BOLD 32 fette Schrift

TS_OUTLINE 64 Wenn der Font sowohl Bitmap- und als auch
Outline-Schrift enthéalt: Verwendung der
Outline Schrift erzwingen

Text-Objekte: Memo, InputLine - 274

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

textColor

TextColor stellt die Textfarbe ein. Zulassig sind nur Indexfarben (0 bis 255).

Syntax Ul-Code: textColor = farbwert
Lesen: <numVar> = <obj>.textColor
Schreiben: <obj>.textColor = farbwert

farbwert: Numerischer Wert, Textfarbe (0 ... 255)

Kompatibilitat: alle Textobjekte

Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Fir nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

Text-Objekte: Memo, InputLine - 275

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.4 Absatzattribute

Unter Absatzattributen versteht man die Merkmale Texthintergrundfarbe,
Textausrichtung, Zeilenabstand, Réander und Absatzzwischenraume. Sie kénnen
immer nur dem ganzen Text bestimmte Absatzattribute zuweisen. Alle Absétze
werden immer auf diese Weise dargestellt.

Folgende Instancevariablen stehen fur die Absatzattribute zur Verfligung:

Instancevariable Syntax im Ul-Code Im BASIC-Code
backColor backColor = numWert lesen, schreiben
justifyText justifyText = numWert lesen, schreiben
lineSpacing lineSpacing = numWert lesen, schreiben
margins margins = left, right [, first] lesen, schreiben
topSpace topSpace = numWert lesen, schreiben
Beispiel:
Memo NotesText
text$ = "Noch keine Notizen eingetragen."

backColor = WITHE
justifyText = J_CENTER
topSpace = 10

END OBJECT

backColor

BackColor stellt die Hintergrundfarbe des Textobjekts ein. Zulédssig sind nur
Indexfarben (0 bis 255).

Ist kein Wert fur backColor gesetzt so wird die System-Hintergrundfarbe (z.B.
Grau) verwendet. <obj>.backColor liefert dann -1.

Syntax Ul-Code: backColor = farbwert
Lesen: <numVar> = <obj>.backColor
Schreiben: <obj>.backColor = farbwert
farbwert: Numerischer Wert, Hintergrundfarbe (0 ... 255)

Kompatibilitat: alle Textobjekte

Text-Objekte: Memo, InputLine - 276

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

justify Text

Justify Text stellt die Textausrichtung ein. Der Defaultwert ist J_LEFT.

Syntax Ul-Code: justifyText = jText
Lesen: <numVar> = <obj>.justifyText
Schreiben: <obj>.justifyText = jText

jText: Numerischer Wert, Ausrichtung
Zuléssige Wert: Siehe Tabelle

Kompatibilitat: alle Textobjekte

Zulassige Werte far justify Text:

Konstante Wert Bedeutung

J_CENTER 1 Text zentrieren

J_LEFT 2 Text linksbindig

J_RIGHT 4 Text rechtsbiindig

J_FULL 32 Blocksatz
lineSpacing

LineSpacing stellt den Zeilenabstand ein. Der Defaultwert (kein Wert far
lineSpacing gesetzt) ist 1.

Syntax Ul-Code: lineSpacing = abstand
Lesen: <numVar> = <obj>.lineSpacing
Schreiben: <obj>.lineSpacing = abstand

abstand: Numerischer Wert vom Typ Real
z.B. 1 (einzeilig), 1.5 oder 2 (zweizeilig)

Kompatibilitat: alle Textobjekte

Hinweis: Wenn Sie "krumme" Werte (z.B. 1.15) fir lineSpacing verwenden, kann
es passieren, dass ein falscher Bereich selektiert wird, wenn Sie eine Textzeile mit
einem Dreifachklick selektieren. Das liegt nicht an R-BASIC. Selektieren Sie dann
den gewunschten Text durch Ziehen mit der Maus. Wenn die Funktion fir Sie
wichtig ist, missen Sie probieren, ob der eingestellte Wert funktioniert. Fir read-
only Texte gibt es keine Einschrankungen.

Text-Objekte: Memo, InputLine - 277

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

margins

Margins stellt die Rander fur den Text ein. Dabei kann der linke Einzug fur die
erste Zeile unabhédngig vom linken Rand gewahlt werden. Lassen Sie den
Parameter first weg, qilt first=left, d.h. die erste Zeile beginnt dort, wo auch alle
anderen Zeilen beginnen.

Die MaBeinheit fir die Rander ist 1/12 Punkt, also sehr klein. Um einen linken
Rand von 12 Punkt Breite zu erzeugen missen Sie also einen Wert von 144
angeben.

Syntax Ul-Code: margins = left, right [, first]
Lesen: <numVar> = <obj>.margins (n)
n=0: linker Rand
n=1: rechter Rand
n=2: Einzug erste Zeile

Schreiben: <obj>.margins = left, right [, first]
left: linker Rand
right: rechter Rand
first: Einzug 1. Zeile (Default: wie left)

Kompatibilitat: alle Textobjekte
Beispiel:
Memo NotesText
text$ = "Noch keine Notizen eingetragen."
margins = 144, 144 ' Jje 12 Punkt
END OBJECT
topSpace

TopSpace (engl.: Oberer Abstand, hier Abstand Uber dem Absatz) stellt den
zusatzlichen Platz zwischen zwei durch einen Zeilenumbruch (Entertaste)
getrennten Absatzen ein.

Die MaBeinheit hierfur ist 1/12 Punkt, also sehr klein. Um einen Abstand von 12
Punkt zu erzeugen missen Sie also einen Wert von 144 angeben.

Syntax Ul-Code: topSpace = anstand
Lesen: <numVar> = <obj>.topSpace
Schreiben: <obj>.topSpace = abstand
abstand: Numerischer Wert, Absatzabstand.

Kompatibilitat: alle Textobjekte

Text-Objekte: Memo, InputLine - 278

R-BASIC - Objekt-Handbuch - Vol. 6

4.10.5 Textfilter

Einfach unter PC/GEOS programmieren

Mit Hilfe der Textfilter kénnen Sie festlegen, dass der Nutzer nur Zeichen
eingeben kann, die bestimmten Kriterien gentgen. Das ist z.B. sinnvoll, wenn der
Nutzer einen Dateinamen eingeben soll. Der entsprechende Textfilter stellt sicher,
dass nur Zeichen eingegeben werden kénnen, die in Dateinamen auch erlaubt

sind.

Instancevariable

Syntax im Ul-Code

Im BASIC-Code

textFilter

textFilter = numWert

lesen, schreiben

Wichtig! Textfilter wirken nur auf Zeichen, die Uber die Tastatur eingegeben
werden. Weder der bereits vorhandene Text noch Anderungen der Instance-
variable text$ werden beeinflusst!

Syntax Ul-Code:
Lesen:
Schreiben:

wert:

Kompatibilitat:

textFilter = wert

<numVar> = <obj>.textFilter

<obj>.textFilter = wert

Einer der Filterwerte entsprechend der Tabelle,
gegebenenfalls kombiniert mit einem der Modifier-Bits
entsprechend der zweiten Tabelle.

alle Textobjekte

Die folgenden Textfilter stehen zur Verfigung:

Konstante

Wert

TF_NONE

TF_NORMAL_ASCII

TF_DOS_CHARACTER_SET

TF_ALPHA

TF_ALPHA_NUMERIC

TF_DASHED_ALPHA_NUMERIC

TF_NUMERIC

TF_SIGNED_NUMERIC

TF_SIGNED_DECIMAL

TF_FLOAT_DECIMAL

TF_LEGAL_FILENAMES

TF_LEGAL_DOS_FILENAMES

TF_LEGAL_DOS_PATH

TF_LEGAL_DOS_VOLUME_NAMES

TF_DATE

TF_TIME

aAlalalalal—a
m_hwm_koﬁom\lmmhwm—*o

Text-Objekte: Memo, InputLine - 279

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Zusatzlich gibt es Filter-Modifier Bits. Diese kbnnen gemeinsam mit den anderen
Textfiltern verwendet werden um deren Eigenschaften zu modifizieren.

Konstante Wert (hex) Wert (dez)

TF_MAKE_UPPERCASE &h100 512

TF_ALLOW_SPACES &h200 1024

TF_NO_SPACES &h400 2048
Beispiel:

InputLine NameText
textFilter = TF ALPHA + TF MAKE UPPERCASE + TF_NO_ SPACES
End Object

Wirkung der einzelnen Filter

TF_NONE
Das ist der Default Wert. Es ist kein spezieller Filter gesetzt.

TF_NORMAL_ASCII
Dieser Filter erlaubt nur normale ASCII-Zeichen. Erweiterte ASCII-Zeichen, also
auch Umlaute, sind nicht erlaubt.

TF_DOS_CHARACTER_SET
Dieser Filter erlaubt nur Zeichen aus dem Standard-DOS-Zeichensatz.

TF_ALPHA
Dieser Filter erlaubt nur Buchstaben und Leerzeichen.

TF_ALPHA_NUMERIC
Dieser Filter erlaubt nur Buchstaben, Zahlen und Leerzeichen.

TF_DASHED_ALPHA_NUMERIC
Dieser Filter erlaubt nur Buchstaben, Zahlen und Leerzeichen sowie den
Bindestrich

TF_NUMERIC

TF_SIGNED_NUMERIC
Diese Filter erlauben nur Zeichen, die in den entsprechenden numerischen
Werten vorkommen kénnen. Leerzeichen sind erlaubt.

TF_SIGNED_DECIMAL

TF_FLOAT_DECIMAL
Diese Filter erlauben nur Zeichen, die in den entsprechenden numerischen
Werten vorkommen kénnen. Leerzeichen sind nicht erlaubt. Der Dezimaltrenner
hé&ngt von den Einstellungen des Systems ab, in Deutschland ist es Ublicher

Text-Objekte: Memo, InputLine - 280

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Weise das Komma. Das weicht von R-BASIC Konventionen ab, hier ist der
Dezimaltrenner immer ein Punkt.

TF_LEGAL_FILENAMES
Dieser Filter erlaubt nur Zeichen, die in GEOS Dateinamen vorkommen kdénnen.

TF_LEGAL_DOS_FILENAMES
Dieser Filter erlaubt nur Zeichen, die in DOS Dateinamen vorkommen kénnen.

TF_LEGAL_DOS_PATH
Dieser Filter erlaubt nur Zeichen, die in DOS Pfaden vorkommen kénnen. Er
kann mit TF_ALLOW_SPACES kombiniert werden.

TF_LEGAL_DOS_VOLUME_NAMES
Dieser Filter erlaubt nur Zeichen, die in DOS Volumenamen vorkommen
kdnnen.

TF_DATE

TF_TIME
Dieser Filter erlaubt nur Zeichen, die in Datum und Uhrzeit vorkommen kénnen
sowie Leerzeichen. Wichtig! Welche Zeichen das sind, hangt von den lokalen
Einstellungen ab.

Bedeutung der Filter-Modifier Bits

TF_MAKE_UPPERCASE
Dieser Filter bewirkt, wenn er gemeinsam mit einem der anderen Filter
angewendet wird, dass alle Buchstaben in GroBbuchstaben umgewandelt
werden. Er wirkt nicht auf Umlaute und Sonderzeichen.

TF_ALLOW_SPACES

TF_NO_SPACES
Diese Filter bestimmen, ob Leerzeichen erlaubt sind oder nicht.
TF_ALLOW_SPACES wird von VisText und LargeText nicht unterstutzt.

Text-Objekte: Memo, InputLine - 281

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.6 Textobjekt Actions

Instancevariable Syntax im Ul-Code Im BASIC-Code
modified modified = numWert lesen, schreiben
ApplyHandler (*) ApplyHandler = <Handler> nur schreiben
OnModified OnModified = <Handler> nur schreiben
OnSelectionChanged | OnSelectionChanged = <Handler>| nur schreiben

(*) ActionHandler stehen nur fir die GenericClass Objekte Memo und InputLine
zur Verfugung.

Action-Handler-Typen:
Handler-Typ Parameter

TextAction (sender as object, isModified as integer, textLen as word,
selectionLen as word)

Anmerkungen zu TextAction

Die Parameter isModified, textLen und selectionLen sind normalerweise eine
Kopie der entsprechenden Instancevariablen des Objekts. Der Zugriff auf die
Parameter ist wesentlich schneller als der direkte Zugriff auf die zugehorigen
Instancevariablen.

Die Ausnahme sind LargeText Objekte. Weil textLen und selectionLen vom Typ
word sind, kénnen sie in vielen Féllen die korrekten Werte fir ein LargeText-
Objekt nicht aufnehmen. Deswegen sind diese beiden Parameter immer Null,
wenn der Handler von einem LargeText-Objekt gerufen wurde.

Anmerkung zu Focus und Target

Textobjekte gehéren zu den seltenen Féllen, in denen der Programmierer die
Focus- und Targethierarchie benutzt. Deswegen wegen finden Sie am Ende des
Kapitels ein entsprechendes Beispiel.

Beschreibung der Instancevariablen

modified

Die Instance-Variable modified enthalt die Information, ob der Text seit dem
letzten Aussenden der Apply-Message (Aufruf des Apply-Handlers) vom Nutzer
modifiziert wurde (modified=TRUE) oder nicht (modified=FALSE). Textobjekte
eines neu gestarteten Programms sind zunéchst ebenfalls "nicht modified".

Text-Objekte: Memo, InputLine - 282

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: modified = TRUE | FALSE
Lesen: <numVar> = <obj>.modified
Schreiben: <obj>.modified = TRUE | FALSE

Kompatibilitat: alle Textobjekte

Beachten Sie, dass ein Veréandern des Textes vom BASIC-Code aus (z.B.
Belegen der Instance-Variable text$), den Text nicht als "modified" markiert, d.h.
der Wert der Instance-Variablen modified wird nicht verdndert. Sie kbnnen dies
bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified = TRUE"
verwenden.

Das Aussenden der Apply-Message setzt den Modified-Status zurtick (modified =
FALSE).

ApplyHandler

Die Instance-Variable ApplyHandler enthalt den Namen des Action-Handlers, der
aufgerufen wird, wenn der Text sein Anderungen anwenden will (engl. to apply:
Anwenden). Apply-Handler missen als TextAction deklariert sein.

Syntax Ul- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Kompatibilitat: Nur GenericClass Textobjekte Memo und InputLine

Beachten Sie: Der Apply-Handler wird nur aufgerufen, wenn der Text "modified",
d.h. vom Nutzer verandert ist. Dies passiert automatisch, wenn der Nutzer den
Text &ndert, Sie kébnnen es aber auch vom BASIC Code aus machen, indem Sie
die Instance-Variable modified mit TRUE belegen.

+ InputLine-Objekte haben im Allgemeinen einen Apply-Handler. Er wird
aufgerufen, wenn der Nutzer nach Eingabe eines Textes im Eingabefeld auf die
Entertaste drickt.

+ Memo-Objekte haben haufig keinen Apply-Handler.

+ VisText und LargeText-Objekte kbnnen keinen Apply-Handler haben.

+ Sie kénnen ein GenericClass Textobjekt (Memo und InputLine) veranlassen,
seinen Apply-Handler aufzurufen, indem Sie die von der GenericClass geerbte
Methode Apply verwenden. Das Objekt muss aber als "modified" markiert
(siehe oben). Alternativ kdénnte man dem Objekt auch den Hint
ApplyEvenlfNotModified geben. Eine ausfuhrliche Beschreibung dazu finden Sie
im Kapitel 3.4 (Die "Apply"-Message) dieses Handbuchs.

Text-Objekte: Memo, InputLine - 283

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

SUB ForceApply (obj as OBJECT)
obj.modified = TRUE'’ zu Sicherheit!
obj.Apply
END SUB

OnModified

Gelegentlich bendétigt man eine Information, wenn ein Textobjekt durch eine
Nutzereingabe vom "nicht modified" in den "modified" Zustand Ubergeht. Die
Instance-Variable OnModified enthdlt den Namen des Action-Handlers, der
aufgerufen wird, wenn das Textobjekt erstmalig nach Aussenden der letzten

Apply-Message vom Nutzer veréndert wird. OnModified-Handler missen als
TextAction deklariert sein.

Syntax Ul- Code: OnModified = <Handler>
Schreiben: <obj>.0nModified = <Handler>

Kompatibilitat: alle Textobjekte

Das Aussenden der Apply-Message setzt den "modified" Zustand des Textobjekt

zurlck. Gibt der Nutzer nun Text ein, so wird der OnModified-Handler aufgerufen.

Das heiBt im Umkehrschluss, dass der OnModified-Handler in folgenden Fallen

nicht gerufen wird:

+ Setzen der modified Instance-Variable vom BASIC Code aus.

* Verandern des Textes vom BASIC-Code aus (z.B. Belegen der Instance-
Variable text$).

+ Die Instance-Variable modified steht bereits auf TRUE, z.B. weil sie vom BASIC-
Code aus gesetzt wurde, bevor der Nutzer etwas eingegeben hat.

Beispiel: Textobjekt mit Apply- und OnModified-Handler. Der Nutzer soll einen

Dateinamen eingeben und ihn durch Dricken der Entertaste im Textobjekt

"anwenden" kénnen. Oder er soll einen extra Button dazu verwenden. Dieser soll

aber erst aktiv sein, nachdem der Nutzer etwas eingegeben hat. Die SUB

"DoSaveFile" muss natirlich irgendwo definiert sein und wird hier nicht mit

aufgefahrt.

Ul-Code

Button SaveFileButton
Caption$ = "Save File"
ActionHandler = ButtonSaveFile
enabled = FALSE ' Zundchst inaktiv
END Object

InputLine FileNameText
maxLen = 32 ' max. 32 Zeichen sinnvoll
textFilter = TF LEGAL FILENAMES ' ungiiltige Zeichen blocken
ApplyHandler = TextSaveFile
OnModified = TextIsModified
END Object

Text-Objekte: Memo, InputLine - 284

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

BASIC-Code

ButtonAction ButtonSaveFile
DoSaveFile ' macht die Arbeit
END Action

TextAction TextSaveFile
DoSaveFile ' macht die Arbeit
END Action

TextAction TextIsModified
SaveFileButton.enabled = TRUE ' Button freischalten
END Action

OnSelectionChanged

Wenn man ein "Edit" Menu implementieren will benétigt man die Information, ob
der Nutzer Text selektiert hat oder nicht und ob er den Selektionsstatus verandert.
Die Instancevariable OnSelectionChanged enthdlt den Namen des
Actionhandlers, der aufgerufen wird, wenn der Nutzer zwischen "nichts selektiert"
und "etwas selektiert" wechselt. OnSelectionChanged Handler missen als
TextAction deklariert sein. Um herauszufinden, ob Text selektiert ist oder nicht
sollten Sie den Parameter "selectionLen" abfragen. Bei LargeText Objekten
mussen Sie die Instancevariable selectionLen direkt abfragen, weil der an den
Handler Gbergebene Parameter selectionLen hier immer Null ist.

Syntax Ul- Code: OnSelectionChanged = <Handler>
Schreiben: <obj>.0OnSelectionChanged = <Handler>

Kompatibilitat: alle Textobjekte

Beispiel: Einen "Kopieren" Button im Edit Menu verwalten.

Ul-Code

Button CopyButton
Caption$ = "Kopieren"
ActionHandler = DoCopyText ' woanders implementiert
enabled = FALSE ' Anfangs inaktiv
END Object

Memo InfoText
OnSelectionChanged = HandleSelection
END Object

Text-Objekte: Memo, InputLine - 285

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

BASIC-Code

TextAction HandleSelection
IF selectionLen THEN " d.h. selectionLen <> 0
CopyButton.enabled TRUE
ELSE
CopyButton.enabled
END IF
END Action

FALSE

Beispiel fur die Verwendung des OnTargetChanged-Handlers

Wenn das Programm wissen muss, welches Text-Objekt gerade aktiv ist, bietet
sich der OnTargetChanged-Handler an. Im Beispiel wird ein Number-Objekt
verwendet, um die GréBe des Fonts im aktiven Text-Objekt anzuzeigen.

Ul-Code:

Memo Textl
fontSize = 14 : fontID = FID MONO
defaultFocus ' ja, Focus
OnTargetChanged = HandleTarget
End Object

Memo Text2
fontSize = 24 : fontID = FID_SANS

OnTargetChanged = HandleTarget
End Object

Number PointInfoNumber

Caption$ = "Aktuelle Font GroBe:"

End Object

BASIC-Code

TargetAction HandleTarget
if state = FALSE THEN RETURN ' Target verloren? Ignorieren.
PointInfoNumber.value = sender.fontSize ' UI updaten

End Action

Text-Objekte: Memo, InputLine - 286

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.7 Verhalten und Aussehen von Textobjekten

Um das Aussehen und das Verhalten der GenericClass Textobjekte Memo und
InputLine in bestimmten Situationen zu steuern, stehen die folgenden Instance-
variablen zur Verfagung.

VisText und LargeText Objekte werden in einem visual Tree verwaltet. Fir diese
Objekte steht nur textAttrs mit genau einem Attribut zur Verfligung.

Instancevariable Syntax im Ul-Code Im BASIC-Code
Memo, InputLine

TextFrame TextFrame —
TextNoFrame TextNoFrame —
SelectablelfRO SelectablelfRO —

textAttrs (*) textAttrs = numWert lesen, schreiben

(*) textAttrs steht mit Einschrankungen auch fir VisText und LargeText-Objekte
zur Verfugung.

TextFrame

Der Hint TextFrame bewirkt, dass das Textobjekt immer mit einem Rahmen
gezeichnet wird. Read-Only Textobjekte haben normalerweise keinen Rahmen.

Syntax Ul-Code: TextFrame

Kompatibilitat: Nur GenericClass Textobjekte Memo und InputLine

TextNoFrame

Der Hint TextNoFrame bewirkt, dass das Textobjekt immer ohne Rahmen
gezeichnet wird. Editierbare Texte haben normalerweise einen Rahmen.

Syntax Ul-Code: TextNoFrame

Kompatibilitdt: ~ Nur GenericClass Textobjekte Memo und InputLine

SelectablelfRO

Der Hint SelectablelfRO (selektierbar, auch wenn Read-Only) bewirkt, dass der
Nutzer read-only Texte mit der Maus selektieren kann. Drag und Drop ist dann
moglich.

Text-Objekte: Memo, InputLine - 287

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: SelectablelfRO

Kompatibilitdt: ~ Nur GenericClass Textobjekte Memo und InputLine

textAttrs

Die Instancevariable textAttrs enthalt eine Reihe von Flagbits, die das Verhalten
und die Eigenschaften des Textobjekts in bestimmten Situationen bestimmen.
Jedes Bit hat eine eigene Bedeutung. Die verschiedenen Werte kébnnen mit + oder
OR verknupft werden. Die folgende Tabelle enthélt die fur textAttrs definierten
Bitwerte. Hier nicht angegebene Werte sind intern reserviert und sollten nicht
benutzt werden. Per Default ist das Bit TA_USE_TAB_FOR_NAVIGATION fir
Memo und InputLine gesetzt.

VisText und LargeText unterstitzen nur genau ein Attribut, ndmlich TA_USE_
TAB_FOR_NAVIGATION. Dieses Bit ist fur VisText und LargeText per Default
aber nicht gesetzt.

Hinweis: R-BASIC unterstutzt die im PC/GEOS-SDK definierten Attribute. Ob ein
bestimmtes Attribut oder eine Attributkombination im konkreten Fall wirkt hangt
manchmal von den konkreten Umstéanden ab. Beispielsweise setzen einige Flags
(z.B. TA_SELECT_TEXT) setzen voraus, dass der Hint defaultFocus gesetzt ist.
Oder der Hint fixedSize verhindert trotz gesetzten TA_NEVER_SCOLLABLE, dass
das Textobjekt seine GroBe an den aktuellen Text anpasst.

Konstante Wert (hex) Wert (dez)
TA_DONT_SCROLL_TO_CHANGES &h02 2
TA_TAIL_ORIENTED &h04 4
TA_ALLOW_TEXT_OFF_END &h08 8
TA_NO_WORD_WRAPPING &h10 16
TA_INIT_SCROLLING &h20 32
TA_USE_TAB_FOR_NAVIGATION &h40 64
TA_NEVER_SCROLLABLE &h100 256
TA_SELECT_TEXT &h200 512
TA_CURSOR_AT_START &h400 1024
TA_CURSOR_AT_END &h800 2048

Syntax Ul-Code: textAttrs = wert
Lesen: <numVar> = <obj>.textAttrs
Schreiben: <obj>.textAttrs = wert

wert: Kombination aus den Bitwerten entsprechend der Tabelle.
Far VisText und LargeText wird nur das Bit TA_USE_TAB
_FOR_NAVIGATION unterstitzt. Alle anderen Werte
werden ignoriert.

Kompatibilitat: alle Textobjekte

Text-Objekte: Memo, InputLine - 288

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Beispiele:
Memo InfoText
textAttrs = TA INIT SCROLLING OR TA USE TAB FOR NAVIGATION
' Statt + kann man auch die logische Operation OR

' verwenden
End Object

InputLine OtherText
defaultFocus
textAttrs = TA SELECT TEXT
'’ Weil TA USE_TAB FOR NAVIGATION nicht angegeben ist
'’ wird die Tabulatortaste nicht zum Anspringen des
' ndchsten UI-Objekts verwendet.
End Object

Bedeutung der einzelnen Flagbits:

TA_DONT_SCROLL_TO_CHANGES
Per Default scrollen Textobjekte automatisch zu der Position, an der
Anderungen am Text, z.B. Einfligen oder L&schen, vorgenommen werden.
Dieses Flag schaltet dieses Verhalten aus.

TA_TAIL_ORIENTED
Dieses Flag sollte gesetzt sein, wenn Sie mdchten, dass das Objekt das
Textende anzeigt (engl. tail: Schwanz), statt den Beginn des Textes. In einer
scrollbaren Textbox bewirkt es, dass Text, der am Ende angefugt wird, immer
angezeigt wird.

TA_ALLOW_TEXT_OFF_END
Dieses Flag ermoglicht es, dass der Text gréBer ist, als von der Textbox
dargestellt werden kann, ohne dass die Textbox vertikale oder horizontale
Rollbalken erzeugt.

TA_NO_WORD_WRAPPING
Dieses Flag schaltet den Wortweisen Zeilenumbruch (Word wrapping) aus.

Stattdessen erfolgt ein Zeilenumbruch auch mitten im Wort.

TA_INIT_SCROLLING
Dieses Flag bewirkt, dass der Text immer Rollbalken hat, auch wenn dies nicht
erforderlich ist.

TA_USE_TAB_FOR_NAVIGATION
Dieses Flag zeigt an, dass die Tabulatortaste zum Anspringen des nachsten
Ul-Objekts benutzt werden soll, statt ein Tabulatorzeichen im Text zu
speichern. Fir Memo und InputLine ist es das einzige Flag, dass per Default
gesetzt ist.
Fiar VisText und LargeText ist es das einzige unterstitze Flag und es ist per
Default nicht gesetzt.

Text-Objekte: Memo, InputLine - 289

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

TA_NEVER_SCROLLABLE
Dieses Flag bewirkt, dass das Textobjekt bei langer werdendem Text seine
GroBe andern soll, statt Rollbalken zu erzeugen.

TA_SELECT_TEXT
Dieses Flag bewirkt, dass Textobjekte, die den Hint defaultFocus gesetzt

haben, ihren Text zum Programmstart komplett selektieren sollen. Das
erleichtert es dem Nutzer, ihn komplett zu ersetzen.

TA_CURSOR_AT_START

Dieses Flag bewirkt, dass Textobjekte, die den Hint defaultFocus gesetzt
haben, den Cursor am Textanfang positionieren.

TA_CURSOR_AT_END

Dieses Flag bewirkt, dass Textobjekte, die den Hint defaultFocus gesetzt
haben, den Cursor am Textende positionieren.

Text-Objekte: Memo, InputLine - 290

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.8 Textobjekte im Delayed Mode

Die Textobjekte Memo und InputLine kénnen im "Delayed Mode" (engl.:
verzdégerter Modus) arbeiten. Dazu muss man dem Objekt selbst bzw. einem
seiner Parents im Ul-Code den Hint MakeDelayedApply geben oder man bindet
das Objekt als Child in einem Dialog ein, dessen dialogType Instance Variable
auf DT_DELAYED_APPLY gesetzt ist. Dieser "Delayed Mode" ist ausfuhrlich im
Kapitel 3.4.2 (Delayed Mode und Status-Message) dieses Handbuchs
beschrieben, eine Beschreibung des Dialog-Objekts im Delayed Mode finden Sie
im Kapitel 4.6.6.5.

Instance Variable Syntax im Ul-Code Im BASIC-Code
StatusHandler StatusHandler = <Handler> nur schreiben
Syntax Ul- Code: StatusHandler = <Handler>

Schreiben: <obj>.StatusHandler = <Handler>

Kompatibilitat: Nur GenericClass Textobjekte Memo und InputLine

Der StatusHandler wird im Delayed Mode statt des ApplyHandlers gerufen, wenn
der Nutzer z.B. nach Eingabe eines Textes in einem InputLine-Objekt auf die
Entertaste drlckt. Der ApplyHandler hingegen wird erst auf Anforderung gerufen
(siehe Kapitel 3.4.2).

Die Instance-Variable modified kann einen Wert ungleich Null enthalten, namlich
dann, wenn der Text vom User modifiziert wurde, der ApplyHandler aber noch
nicht gerufen wurde. Der Aufruf des ApplyHandlers setzt auch im Delayed Mode
den modified-Status zurlck.

Methode Aufgabe
SendStatus Status-Handler aufrufen

Syntax BASIC-Code: <obj>.SendStatus

Kompatibilitat: Nur GenericClass Textobjekte Memo und InputLine

Die Methode SendStatus fordert das Objekt auf, seinen StatusHandler aufzurufen
(d.h. seine Status-Message zu senden).

Text-Objekte: Memo, InputLine - 291

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.9 VisText und LargeText

Die VisualClass Objekte VisText und LargeText missen als Children eines
VisContent in einem View verwendet werden. VisText-Objekte dienen dazu, Text
gemeinsam mit Grafikelementen anzuzeigen oder einzugeben. LargeText-Objekte
mussen Sie verwenden, wenn Sie groBe Textmengen (mehr als 4000 Zeichen)
darstellen oder bearbeiten wollen.

Far alle anderen Zwecke sollten Sie die GenericClass-Objekte Memo oder
InputLine verwenden.

4.10.9.1 VisText

VisText-Objekte werden ahnlich wie VisObj-Objekte verwendet. Die notwendigen
Informationen dazu finden Sie in den Kapiteln 5.3 (VisGroup), 5.4 (VisContent)
und 5.5 (VisObj). Sie kénnen Objekte der Klassen VisObj und VisText innerhalb
eines Visual Tree beliebig mischen. Allerdings kénnen VisText-Objekte keine
Children haben. Deswegen werden die diesbezlglichen Instancevariablen von
VisText-Objekten nur unterstitzt, wenn sie die eigene GréBe betreffen.

Zusatzlich zu den Text-spezifischen Instancevariablen unterstitzen VisText-
Objekte die folgenden Instancevariablen:

Eigene Instancevariablen

Variable Syntax im Ul-Code Im BASIC-Code
visTextFrame visTextFrame = width [, col [, dis [, st]]]| lesen, schreiben
visTextFrameOptions | visTextFrame = yAdd |, fill] lesen, schreiben

Einige der bei der VisGroup Class (Kapitel 5.3) bzw. der VisObj Class (Kapitel 5.5)
beschriebenen Instancevariablen sind auch fir VisText-Objekte verflgbar. lhre
wesentlichen Eigenschaften werden im Folgenden kurz beschrieben.

Variable Syntax im Ul-Code Im BASIC-Code
drawable drawable = TRUE | FALSE lesen, schreiben
detectable detectable = TRUE | FALSE lesen, schreiben
managed managed = TRUE | FALSE lesen, schreiben
visPosition visPosition = xPos, yPos lesen, schreiben
xPosition, yPosition | — nur lesen

visSize visSize = width, height lesen, schreiben
xSize, ySize — nur lesen

Text-Objekte: Memo, InputLine - 292

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

visTextFrame

Die Instancevariable visTextFrame legt fest, ob ein Rahmen um das Objekt

gezeichnet werden soll. Das entspricht in etwa der Instancevariablen TextFrame
bei GenericClass Textobjekten.

Syntax Ul-Code: visTextFrame = width [, color [, dist [, style]]
Lesen: <numVar> = <obj>.visTextFrame (0) " width
<numVar> = <obj>.visTextFrame (1) " color

<numVar> = <obj>.visTextFrame (2) " dist
<numVar> = <obj>.visTextFrame (3) ’ style

Schreiben: <obj>.visTextFrame = width [, color [, dist [, style]]

width: Breite des Rahmens. Defaultwert: 0 (kein Rahmen)
color: Farbe des Rahmens. Defaultwert: 0 (BLACK)

dist: Abstand des Rahmens vom Text-Objekt. Defaultwert: 0
style: Linienstil, siehe Tabelle. Defaultwert: LS_SOLID

Alle Parameter sind vom Datentyp Byte. Beachten Sie, dass der Rahmen
auBerhalb des Objekts gezeichnet wird. Ein 2 Pixel breiter Rahmen mit einem
Abstand (dist) von 1 vergréBert den Platzbedarf des Objekts um 3 Pixel in jede
Richtung.

Erlaubte Linienstile fir den Parameter style:

Wert | Konstante Bedeutung
0 LS_SOLID durchgehend
1 LS_DASHED gestrichelt
2 LS_DOTTED gepunktet
3 LS_DASHDOT Strich-Punkt
4 LS_DASDDOT Strich-Doppelpunkt

visTextFrameOptions

Die Instancevariable visTextFrameOptions modifiziert den Rahmen (visText-
Frame) um ein VisText Objekt.

Mit dem Parameter yAdd wird die obere Kante des Rahmens um yAdd Pixel nach
oben verschoben. Damit kdénnen Sie einem umrahmten Text ein gefélligeres
Aussehen geben. Der Rahmen wird dadurch héher, die untere Kante wird nicht
verschoben. yAdd ist vom Datentyp Byte.

Wenn Sie den Parameter fill auf TRUE setzen, dann wird der Bereich zwischen
dem Objekt und dem Rahmen mit der Text-Hintergrundfarbe gefullt. Ansonsten ist
dieser Bereich transparent. Die Einstellung fill = TRUE ist nur sinnvoll, wenn mit
visTextFrame oder mit dem Parameter yAdd ein Abstand zwischen dem Rahmen
und dem Objekt eingestellt wurde und sich das Objekt vor einem Hintergrund mit
einer abweichenden Farbe befindet.

Text-Objekte: Memo, InputLine - 293

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: visTextFrameOptions = yAdd [, fill]

Lesen: <numVar> = <obj>.visTextFrameOptions (0) ’yAdd
<numVar> = <obj>.visTextFrameOptions (1) '’ fill
<numVar> = <obj>.visTextFrame (2) " dist
<numVar> = <obj>.visTextFrame (3) ’ style

Schreiben: <obj>.visTextFrame = yAdd [, fill]

yAdd: Verschiebung der oberen Rahmenkante nach oben.
Defaultwert: 0 (keine Verschiebung)

fill: Fullen des Bereichs zwischen Objekt und Rahmen mit der
Text-Hintergrundfarbe
Defaultwert: FALSE (keine Fullung)

Beispiele fir visTextFrame und visTextFrameOptions:

Test Text Test Text Test Text
» *x X
visTextFrame = 1, RED visTextFrame = 1, RED visTextFrame = 1, RED
visTextFrameOptions = 10 visTextFrameOptions = 10, TRUE
drawable

Die Instancevariable drawable bestimmt, ob das Objekt auf den Bildschirm
gezeichnet wird oder nicht. Das entspricht in etwa der Instancevariablen visible bei
GenericClass Objekten. Allerdings wird das Objekt weiterhin bei der Berechnung
der Geometrie bertcksichtigt, auch wenn drawable auf FALSE gesetzt ist.

Siehe auch: Kapitel 5.5.2 VisObj: Grundlegende Féahigkeiten

Syntax Ul-Code: drawable = TRUE | FALSE
Lesen: <numVar> = <obj>.drawable
Schreiben: <obj>.drawable = TRUE | FALSE

detectable

Die Instancevariable detectable bestimmt, ob das Objekt auf Maus- und
Tastaturereignisse reagieren soll, oder nicht. Das entspricht in etwa der
Instancevariablen readOnly bei GenericClass Objekten.

Siehe auch: Kapitel 5.5.2 VisObj: Grundlegende Féhigkeiten

Syntax Ul-Code: detectable = TRUE | FALSE
Lesen: <numVar> = <obj>.detectable
Schreiben: <obj>.detectable = TRUE | FALSE

Text-Objekte: Memo, InputLine - 294

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

managed

Die Instancevariable managed legt fest, ob die Position des Objekts vom Geo-
metriemanager verwaltet werden soll, oder nicht. Setzen Sie den Wert auf FALSE,
so wird der Geometriemanager das Objekt ignorieren. Sie missen dann einen
Wert fur visPosition setzen.

Sie kdnnen den Wert auch auf TRUE lassen, wenn das zugehorige VisContent im
Modus customManageChildren arbeitet.

Siehe auch: Kapitel 5.5.2 VisObj: Grundlegende Féhigkeiten

Syntax Ul-Code: managed = TRUE | FALSE
Lesen: <numVar> = <obj>.managed
Schreiben: <obj>.managed = TRUE | FALSE

visPosition

Die Instance-Variable visPosition enthélt die aktuelle Position des Objekts, relativ
zu seinem VisContent.
Siehe auch: 5.3.2.1 VisGroup: GréBe und Position

Syntax Ul-Code: visPosition = xPos, yPos
xPos: x-Position
yPos: y-Position

Lesen: <numVar> = <obj>.visPosition(0) " xPos
<numVar> = <obj>.visPosition(1) "yPos

Schreiben: <obj>.visPosition = xPos, yPos [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung (Move-To-Funktion)

visSize

Die Instance-Variable visSize enthalt die aktuelle GréBe des Objekts.

Wichtig: Sie mussen einen Wert fiir visSize festlegen.

VisText-Objekte haben immer eine feste GroBe. Sie verfigen nicht Uber die
Fahigkeit, ihre eigene GrdéBe der eingegebenen Textmenge anzupassen. Sie
erzeugen auch keine Rollbalken. Wenn Sie mehr Text eingeben oder anzeigen,
als in die vorgegebene GrdBe passt, wird der Uberschussige Text nicht dargestellt.
Siehe auch: 5.3.2.1 VisGroup: GréBe und Position

Text-Objekte: Memo, InputLine - 295

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: visSize = width, height

width: Breite
height: Ho6he
Lesen: <numVar> = <obj>.visSize(0) " Breite
<numVar> = <obj>.visSize(1) " Hbhe
Schreiben: <obj>.visSize = width, height [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung

xPosition, yPosition

Diese Werte liefern die aktuelle Position des Objekts.
Siehe auch: 5.3.2.1 VisGroup: GréBe und Position

Syntax Lesen: <numVar> = <obj>.xPosition
<numVar> = <obj>.yPosition

xSize, ySize

Diese Werte liefern die aktuelle Gr6Be des Objekts in Pixeln.
Siehe auch: 5.3.2.1 VisGroup: GréBe und Position

Syntax Lesen: <numVar> = <obj>.xSize
<numVar> = <obj>.ySize

Das folgende Codefragment aus dem Beispiel "VisText Demo 2" im Ordner
"Beispiel\Objekte\VisText und LargeText" zeigt, wie man einen VisText in einen
VisualTree einbinden kann.

View DemoView
Content = DemoContent
initialSize = 400, 220
< weitere Instancevariablen >
End OBJECT

VisContent DemoContent
Children = VisObjl, VisTextl, VisObj2, VisText2
< weitere Instancevariablen >

End OBJECT

VisObj VisObjl

visSize = 120, 120

OnDraw = VisObjDraw '’ muss irgendwo implementiert sein
End OBJECT

Text-Objekte: Memo, InputLine - 296

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

VisText VisTextl
text$ = "Raumschiff\rEnterprise"
visSize = 150, 50
fontID = FID UNIVERSITY
fontSize = 16

End OBJECT

Text-Objekte: Memo, InputLine - 297

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.9.2 LargeText

LargeText Objekte bringen nur eine einzige eigene Instancevariable mit.

Variable Syntax im Ul-Code Im BASIC-Code
approxSize approxSize = numWert lesen, schreiben

Diese Variable ist per Default so vorbelegt, dass sie nur in sehr seltenen Fallen
geéndert werden muss.

View- und Content Setup

Um mit einem LargeText zusammen zu arbeiten, mussen sowohl das VisContent
als auch das zugehoérige View auf spezielle Weise initialisiert werden. Hierfur wird
die Instancevariable holdsLargeText auf den Wert TRUE gesetzt.

Ein LargeText muss das einzige Child des VisContent sein, sonst wird es
eventuell nicht angezeigt.

Ein typisches Setup fur eine View/Content-Kombination mit einem LargeText sieht
SO aus:

View DemoView
Content = DemoContent
vControl = HVC_SCROLLABLE
initialSize = 400, 250
Expandwidth
ExpandHeight

holdsLargeText=TRUE

' nicht erforderlich, aber hdufig verwendet

defaultTarget
defaultFocus
targetable = TRUE
viewAttrs = VA CONTROLLED, O ' Setzen, wenn ein ViewControl
" verwendet werden soll
End OBJECT

VisContent DemoContent
holdsLargeText=TRUE

Children = MyLargeText
End OBJECT

LargeText MyLargeText
text$ = "Ich kann ganz viel Text aufnehmen."
fontID = FID SANS
fontSize = 14

End OBJECT

Text-Objekte: Memo, InputLine - 298

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

holdsLargeText

Die Instancevariable holdsLargeText initialisiert ein View bzw. ein VisContent
Objekt so, dass sie mit einem LargeText Objekt zusammenarbeiten kénnen.

Syntax Ul-Code: holdsLargeText = TRUE
Schreiben: <obj>.holdsLargeText = TRUE | FALSE

Objektklassen: View, VisContent

Die Instancevariable kann nicht gelesen werden, weil intern eine ganze Palette
von Werten geéndert werden. Dazu gehort, dass in den Instancevariablen
viewAttrs (View) bzw. contentAttrs (VisContent) einzelne Bits gesetzt werden. Sie
kénnen diese Instancevariablen trotzdem "ganz normal" verwenden, da die Bits
unabhangig voneinander behandelt werden. Ausnahme: die Instancevariable
inputOptions des View sollten Sie nicht verandern.

LargeText Instance Variablen

LargeText Objekte arbeiten intern mit 32-Bit Koordinaten. Das hat Auswirkungen
auf die Verwendbarkeit bzw. Bedeutung einiger geerbter Instancevariablen bzw.
Handler-Parameter vom Typ WORD bzw. INTEGER (16 Bit).

+ Die von der VisTextClass geerbten Instancevariablen drawable, detectable,
managed, visPosition und visSize werden nicht unterstitzt, da sie entweder
intern verwaltet werden oder vom Datentyp WORD sind.

+ Die fur alle Klassen definierten word-groBen Instancevariablen xPosition,
yPosition, xSize und ySize liefern immer den Wert Null.

+ Die Parameter textLen und selectionLen der OnModified- und OnSelection-
Changed- Handler sind vom Typ INTEGER und daher bedeutungslos. Sie
werden immer mit dem Wert Null belegt.

approxSize

Die Instancevariable approxSize enthélt die ungefdhre Textmenge in Kilobyte, die
zu erwarten ist. Der Wert ist nicht kritisch, er kann problemlos Uberschritten
werden. Der Defaultwert betragt 400 (Kilobyte) und sollte fir die meisten
Anwendungen ausreichend sein.

Syntax Ul-Code: approxSize = numWert
Schreiben: <obj>.approxSize = numWert
Lesen: numVar = <obj>.approxSize
numWert: Ungeféahr zu erwartenden Textmenge in Kilobyte.

Der Defaultwert ist 400. Verwenden Sie Wert 10000
wenn Sie 10 MB oder mehr bendtigen.

Text-Objekte: Memo, InputLine - 299

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

Hinweise

LargeText Objekte speichern ihren Text in einer von R-BASIC verwalteten
temporaren Datei. Da sowohl einige andere Objekte als auch GStrings
temporare Dateien benutzen, verwendet R-BASIC diesen Wert, um bei Bedarf
eine weitere Datei anzulegen.

Wenn Sie den Wert 10000 (entsprechend 10 MB) verwenden, legt R-BASIC
eine Datei exklusiv flr dieses Objekt an. Damit kann der Text theoretisch bis 2
Gigabyte groB werden.

Es wird empfohlen, den Wert, wenn tberhaupt, nur im Ul-Code zu verwenden.
Das Andern von approxSize zur Laufzeit ist ein aufwéndiger Prozess.

Text-Objekte: Memo, InputLine - 300

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Hintergrundinformationen

Die folgenden Informationen sind fiir die normale Verwendung eines LargeText
Objekts nicht erforderlich.
Im Detail passiert beim Belegen der Instancevariablen holdsLargeText folgendes:

View-Objekt

Die Instancevariablen werden so gesetzt, als wirde im Ul-Code folgendes
stehen:

viewAttrs = VA DRAG_ SCROLLING , 0
inputOptions = VIO _DONT SEND KBD RELEASES
focusable = TRUE

AuBerdem wird in den viewAttrs das in R-BASIC nicht verfigbare Bit &nh100 (im
SDK: GVA_WINDOW_COORDINATE_MOUSE_EVENTS) gesetzt. Wenn Sie
holdsLargeText zur Laufzeit auf FALSE setzen wird nur dieses Bit zurlickgesetzt,
die anderen Instancevariablen werden nicht verandert.

Hinweis: Zusatzliche viewAttrs kénnen Sie im Ul-Code oder zur Laufzeit an
beliebiger Stelle setzen, da die Bits immer einzeln behandelt werden. Zusétzliche
inputOptions sollten Sie nicht setzen.

VisContent-Objekt

Die Instancevariablen werden so gesetzt, als wirde im Ul-Code folgendes
stehen:

contentAttrs = CA SAME WIDTH AS VIEW , 0
customManageChildren = TRUE

AuBerdem werden in den contentAttrs die in R-BASIC nicht mit einer Konstante
belegten Bits &h20 (im SDK: VCNA_LARGE_DOCUMENT_MODEL) und &h10
(im SDK: VCNA_WINDOW_COORDINATE_MOUSE_EVENTS) gesetzt.

Darlber hinaus werden weitere, in R-BASIC nicht verfigbare, Instancevariablen
verandert. Wenn Sie holdsLargeText zur Laufzeit auf FALSE setzen werden
sowohl die internen Instancevariablen zurtickgesetzt, also auch die contentAttrs
&h20 und &h10. Die anderen Instancevariablen werden nicht gedndert.

Hinweis: Zuséatzliche contentAttrs kénnen Sie im Ul-Code oder zur Laufzeit an
beliebiger Stelle setzen, da die Bits immer einzeln behandelt werden. Beachten
Sie, dass die oben genannten Bits der contentAttrs auch von R-BASIC aus
verandert werden kdnnen.

Text-Objekte: Memo, InputLine - 301

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.10.10 Text in Dateien speichern

Alle Textobjekte kbnnen ihren Text direkt in eine Datei schreiben und direkt aus
einer Datei lesen. Das ist insbesondere fiir LargeText-Objekte interessant. Dazu
werden die folgenden Methoden unterstitzt.

Methode Aufgabe

WriteToFile Text in eine Datei schreiben
ReplaceFromFile Text aus einer Datei ersetzen
InsertFromFile Text aus einer Datei einfigen
FileTextSize Textumfang in einer Datei ermitteln
WriteToVMFile Text in eine VM-Datei schreiben
ReplaceFromVMFile Text aus einer VM-Datei ersetzen
InsertFromVMFile Text aus einer VM-Datei einfligen
VMFileTextSize Textumfang in einer VM-Datei ermitteln

Die Methoden WriteToFile, ReplaceFromFile, InsertFromFile und FileTextSize
arbeiten mit normalen DOS-Dateien bzw. gleichwertig mit GEOS-DATEN-Dateien.
Dabei kann gleichzeitig der Zeichensatz konvertiert werden (z.B. GEOS nach
Windows), da im Hintergrund die Convert$-Funktion aufgerufen wird.

Die Methoden WriteToVMFile, ReplaceFromVMFile, InsertFromVMFile und VM-
FileTextSize arbeiten mit GEOS VM-Dateien. VM-Dateien sollten Sie verwenden,
wenn Sie mehr als nur einen Text (z.B. mehrere unabhéangige Texte oder Text und
Bilder) in einer einzigen Datei speichern wollen. Alle "groBen" Applikationen (z.B.
GeoWrite, GeoDraw, R-BASIC) speichern ihre Dokumente in VM-Dateien.

Um diese Methoden verwenden zu kbénnen, mussen Sie die Library "VMFiles"
includen. Diese Library kann separat von der R-BASIC Webseite heruntergeladen
werden.

WriteToFile

WriteToFile schreibt den vom Textobjekt dargestellten Text in eine offene DOS-
oder GEOS-Daten-Datei. Sie kdbnnen auswéhlen, ob die Zeichen dabei in einen
anderen Zeichensatz (z.B. DOS oder HTML) konvertiert werden sollen und ob der
gesamte Text oder nur Teile davon in der Datei gespeichert werden sollen.
WriteToFile schreibt immer ab der aktuellen Dateiposition, vorhandene Daten
werden Uberschrieben. Bei Bedarf wird die Datei verlangert.

Text-Objekte: Memo, InputLine - 302

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

Syntax: <obj>.WriteToFile fh [, convertMode [, start [, end]]]

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
sein.
convertMode: Bestimmt, zwischen welchen Zeichensatzen konvertiert
werden soll. Siehe unten.
Defaultwert: Null (keine Konvertierung)
start: Cursorposition, ab der geschrieben werden soll. Die Zahlung
beginnt bei Null.
Defaultwert: Null (von Anfang an)
end: Cursorposition, bis zu der geschrieben werden soll. Die
Z&hlung beginnt bei Null. End darf gr6Ber als die Textlange
sein.
Defaultwert: 4294 967 294 (alles)

Hinweise:

Flar den Parameter convertMode sind alle Werte zugelassen, die auch fur die
Funktion Convert$ zugelassen sind. Als Ersatzzeichen fir nicht konvertierbare
Zeichen wird immer der Unterstrich ’_’ verwendet.

Eine Beschreibung der Convert$-Funktion finden Sie im Kapitel 2.4.3
(Konvertierungsfunktionen) des Programmierhandbuchs.

WriteToFile verschiebt den Dateizeiger hinter den geschriebenen Bereich.
WriteToFile schreibt keine Ende-Null in die Datei. Verwenden Sie die Routine
FileWrite, wenn Sie eine Ende-Null schreiben wollen.

Ist die Datei grdBer, als der geschriebene Text, so bleiben die nicht
Uberschriebenen Daten erhalten. Verwenden Sie die Routine FileTruncate,
wenn Sie die Datei nach dem Schreiben an der aktuellen Position abschneiden
wollen. Diese Routinen und die Arbeit mit Dateien sind im Handbuch "Spezielle
Themen", Kapitel 9, beschrieben.

WriteToFile setzt die globale Variable fileError. Ist der Parameter start groBer
als verfugbarer Text wird kein Laufzeitfehler erzeugt, sondern fileError auf
ERROR_TEXT_TOO_SHORT (-22) gesetzt.

Ist der Parameter end kleiner als der Parameter start, so wird ein Laufzeitfehler
erzeugt und das Programm beendet.

Beispiele:

14

14

14

Kompletten Text in eine (offene) Datei schreiben.
Zeichen in den Windows-Zeichensatz konvertieren
GEOS-Zeilenumbriiche durch DOS-Zeilenumbriiche ersetzen

MyTextObj.WriteToFile fh, GEOS_TO WIN + CR_TO_CRLF

Text-Objekte: Memo, InputLine - 303

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

' 200 Zeichen mit HTML Codierung schreiben
" "trw" offnet evtl. vorhandene Dateien und schneidet sie ab.

DIM fh as FILE

fh = FileCreate "FILE.TXT", "trw"
MyText.WriteToFile fh, GEOS_TO_HTML + CR_TO_CRLF, 0, 200
FileClose fh

ReplaceFromFile

ReplaceFromFile ersetzt den aktuellen Text durch den in einer Datei (DOS-Datei
oder GEOS-Daten-Datei) enthaltenen Text. Dabei wird der Text bis zum
Dateiende oder bis zum Auftreten einer Ende-Null eingelesen. Eine Prufung auf
ungultige Zeichen erfolgt nicht.

Sie kénnen die zu Textmenge begrenzen und festlegen ob der Text in einen
anderen Zeichensatz (z.B. von HTML nach GEOS) konvertiert werden soll.
ReplaceFromFile liest immer ab der aktuellen Dateiposition und verschiebt den
Dateizeiger hinter den gelesenen Text.

Syntax: <obj>.ReplaceFromFile fh [, convertMode [, maxLen]]

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
sein.
convertMode: Bestimmt, zwischen welchen Zeichenséatzen konvertiert

werden soll. Siehe unten.
Defaultwert: Null (keine Konvertierung)

maxLen: Maximale Anzahl zu lesender Zeichen. MaxLen bezieht sich
auf die Datei, die Anzahl der der erzeugten (d.h. an das Text-
objekt Ubergebenen) Zeichen kann je nach convertMode
abweichen.
Defaultwert: 4294 967 294 (alles)

Hinweise:

+ FUr den Parameter convertMode sind alle Werte zugelassen, die auch fir die
Funktion Convert$ zugelassen sind. Als Ersatzzeichen fir nicht konvertierbare
Zeichen wird immer der Unterstrich ’_’ verwendet.

Eine Beschreibung der Convert$-Funktion finden Sie im Kapitel 2.4.3
(Konvertierungsfunktionen) des Programmierhandbuchs.

Warnung
Die Werte GEOS_TO_HTML, GEOS_TO_HTML_BR, GEOS_TO_UTF8 sowie

das Flag CR_TO_CRLF fur convertMode kénnen den Text verlangern, so dass
ein Textobjekt, z.B. ein Memo, ihn nicht mehr aufnehmen kann. Beim Lesen
von Text ist es allerdings selten, dass man diese Werte verwendet.

Far LargeText-Objekte existiert dieses Problem nicht.

Text-Objekte: Memo, InputLine - 304

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Beispiele:
' Den kompletten Text aus einer (offenen) DOS-Datei ersetzen

MyTextObj.ReplaceFromFile fh, DOS_TO_GEOS + CRLF_TO_CR

' Den Text durch maximal 200 Zeichen aus einer (offenen) HTML-
' Datei ersetzen. Die 200 Zeichen beziehen sich auf die Datei.

MyTextObj.ReplaceFromFile fh, HTML_TO_GEOS + CRLF_TO_CR, 200

InsertFromFile

InsertFromFile fugt Text aus einer Datei an der aktuellen Cursorposition ein. Wenn
etwas selektiert ist, wird der neue Text hinter dem selektierten Bereich eingefugt.
Ansonsten gelten die bei ReplaceFromFile angegebenen Hinweise.

Syntax: <obj>.InsertFromFile fh [, convertMode [, maxLen]]

FileTextSize

FileTextSize ermittelt die Anzahl der Zeichen, die aus einer offenen DOS- oder
GEOS-Daten-Datei mit ReplaceFromFile oder InsertFromFile maximal gelesen
werden kénnen. Dabei wird ab der aktuellen Dateiposition begonnen und am
Dateiende bzw. der nachsten Ende-Null abgebrochen. Die Ende-Null wird (wenn
vorhanden) nicht mitgezahlt.

Wird ein Parameter fir convertMode angegeben, so wird die Anzahl der Zeichen
nach der Konvertierung zurtickgeliefert.

Syntax: <numVar> = <obj>.FileTextSize (fh [, convertMode])

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
sein.
convertMode: Bestimmt, zwischen welchen Zeichensatzen konvertiert
werden soll. Siehe ReplaceFromFile.
Defaultwert: Null (keine Konvertierung)

Anmerkung: FileTextSize ist zwar eine Textobjekt-Methode, verwendet aber die
Eigenschaften des Textobjekts selbst nicht.

Text-Objekte: Memo, InputLine - 305

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Beispiel
DIM size

size = DemoMemo.FileTextSize(fh, GEOS_TO HTML)
IF size <= 4000 THEN
DemoMemo.ReplaceFromFile fh , GEOS_TO_ HTML
ELSE
MsgBox "Der Text wadre" + Str$(size-4000) + " Zeichen zu lang."
End IF

WriteToVMFile

WriteToVMFile schreibt den Text als VMArray in eine offene VM-Datei und liefert
das VMBlock-Handle des VMArrays zuruck.

Um WriteToVMFile verwenden zu kdnnen, mussen Sie die Library "VMFiles"
includen. Diese kann separat von der R-BASIC Webseite heruntergeladen
werden.

Syntax: <hanVar> = <obj>.WriteToVMFile fh [, start [, end]]

hanVar: Variable vom Typ Handle
fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen

und eine VM-Datei sein.

start: Cursorposition, ab der geschrieben werden soll. Die Zahlung
beginnt bei Null.
Defaultwert: Null (von Anfang an)

end: Cursorposition, bis zu der geschrieben werden soll. Die
Zahlung beginnt bei Null. End darf groBer als die Textlange
sein.
Defaultwert: 4294 967 294 (alles)

Hinweise:

+ WriteToVMFile speichert den Text immer so, wie er im Text-Objekt angezeigt
wird. Eine Konvertierung in andere Zeichensatze ist nicht moglich.

+ WriteToVMFile schreibt ein "Standard" VMArray mit einer ElementgréBe von 1
Byte. Es enthélt mindestens eine Ende-Null. Es ist erlaubt, das VMArray mit
den VMArray-Routinen der VMFiles-Library zu manipulieren. Die Ende-Null
darf aber nicht entfernt werden.

+ WriteToVMFile legt immer ein neues VMArray an. Arrays, die Sie nicht mehr
brauchen, missen Sie mit VMArrayDestroy vernichten.

+ WriteToVMFile setzt die globale Variable fileError. Ist der Parameter start
gréBer als verfugbarer Text wird kein Laufzeitfehler erzeugt, sondern fileError
auf ERROR_TEXT_TOOQO_SHORT (-22) gesetzt.

« Ist der Parameter end kleiner als der Parameter start, so wird ein Laufzeitfehler
erzeugt und das Programm beendet.

Beispiele: Siehe unten.

Text-Objekte: Memo, InputLine - 306

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

ReplaceFromVMFile

ReplaceFromVMFile ersetzt den aktuellen Text durch den in einer VM-Datei
enthaltenen Text. Um ReplaceFromVMFile verwenden zu kénnen, missen Sie die
Library "VMFiles" includen.

Syntax: <obj>.ReplaceFromVMFile fh, block

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
und eine VM-Datei sein.
block: Handle auf ein von WriteToVMFile geschriebenes VMArray.

Hinweise:
+ ReplaceFromVMFile beeinflusst die globale Variable fileError nicht.

InsertFromVMFile

InsertFromVMFile fagt den in einer VM-Datei enthaltenen Text an der aktuellen
Cursorposition ein. Ist etwas selektiert, so wird der neue Text hinter dem

selektierten Bereich eingeflgt.
Ansonsten gelten die bei ReplaceFromVMFile angegebenen Hinweise.

Syntax: <obj>.ReplaceFromVMFile fh, block

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
und eine VM-Datei sein.
block: Handle auf ein von WriteToVMFile geschriebenes VMArray.

Beispiele

Die Routine SaveToVMFile speichert den Text eines Textobjekts in einer Datei.
Der Parameter "t" bei VMOpen sorgt daflir, dass die Datei nach dem Offnen
abgeschnitten wird, also leer ist. Das neue VMArray wird als "Mapblock" gesetzt,
damit man spater einfach darauf zugreifen kann.

SUB SaveToVMFile()

DIM fh AS FILE

DIM blk AS HANDLE

fh = VMOpen("VMTextFile", "trw")

blk = DemoLargeText.WriteToVMFile(fh)
VMSetMapBlock (fh, blk)

VMClose(fh)

End SUB

Text-Objekte: Memo, InputLine - 307

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Die Routine LoadFormVMFile liest den Text aus der von SaveToVMFile
angelegten Datei. Bei VMOpen darf der Parameter "t" nicht angegeben werden,
damit die Daten beim Offnen der Datei erhalten bleiben.

Das VMArray mit dem Text wurde als "Mapblock" gesetzt, so kann man wieder
darauf zugreifen.

SUB LoadFromVMFile()
DIM fh AS FILE
DIM blk AS HANDLE

fh = VMOpen("VMTextFile", "rw")
blk = VMGetMapBlock(fh)
DemoLargeText.InsertFromVMFile(fh, blk)

VMClose(fh)

End SUB

Da WriteToVMFile jeweils ein neues VMArray anlegt, ist das "Ersetzen" eines
Texts in einem VMArray nicht mdglich. Also muss man das "alte" VMArray

manuell vernichten, und stattdessen das neue VMArray verwenden.

FUNCTION ReplaceVMArray(fh AS FILE) AS HANDLE
DIM oldArray, newArray AS HANDLE

'’ Neues VMArray anlegen und als MapBlock setzen
' danach altes Array vernichten (nur wenn existent!)

oldArray VMGetMapBlock(fh)
newArray = DemoMemo.WriteToVMFile(fh)

VMSetMapBlock(fh, newArray)
IF oldArray <> NullHandle() THEN VMArrayDestroy (fh, oldArray)

RETURN newArray

End FUNCTION

Ein Beispiel, wie man mehrere unabhéngige Texte in einer einzigen VM-Datei
speichert, finden Sie in der Beispieldatei "Text Speichern, komplex, VM-Datei" im
Ordner "Beispie\Objekte\Text". Dabei wird der Text nicht mehr direkt als Mapblock

gesetzt.

VMFileTextSize

VMFileTextSize ermittelt die Anzahl der Zeichen eines in einer VM-Datei
gespeicherten Textes. Die Ende-Null wird nicht mitgezahlt.

Text-Objekte: Memo, InputLine - 308

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Syntax: <numVar> = <obj>.VMFileTextSize (fh, block)

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
und eine VM-Datei sein.
block: Handle auf ein von WriteToVMFile geschriebenes VMArray.

Anmerkungen:

* VMFileTextSize ist zwar eine Textobjekt-Methode, verwendet aber die
Eigenschaften des Textobjekts selbst nicht.

* VMFileTextSize macht im Kern nichts anderes, als die Routine
VMArrayGetCount() aus der "VMFiles" Library. Sie kénnten also auch
"VMArrayGetCount(fh, block) - 1" verwenden.

Beispiel

DIM size
DIM fh as FILE
DIM block as HANDLE

< fh und block belegen >

size = DemoMemo.VMFileTextSize(fh, block)
MsgBox "Die Datei enthdlt " + Str$(size) + " Zeichen."

Tipps und Tricks: Wie kann man ...

... Text anhéngen?
Man muss den Cursor ans Ende setzen (obj.cursorPos = obj.textLen) und
dann InsertFromFile bzw. InsertFromVMFile rufen.

.. den selektierten Text ersetzen?
Man muss den selektierten Text l6schen (obj.DeleteSelection) und dann
InsertFromFile bzw. InsertFromVMFile rufen.

.. Teile eines Textes aus einer DOS-Datei lesen?
Man positioniert den Dateizeiger am Anfang des zu lesenden Bereichs und
Ubergibt InsertFromFile bzw. ReplaceFromFile als dritten Parameter die
Anzahl der zu lesenden Zeichen. Geben Sie flir convertMode Null an, wenn
der Zeichensatz nicht konvertiert werden soll.

.. Teile eines Textes aus einer VM-Datei lesen?
Man muss den Text aus der VM-Datei vollstandig lesen. Mit VMFileTextSize
kann man die Anzahl der gelesenen Zeichen ermitteln. Die Uberfllissigen
Teile 16scht man anschlieBend manuell mit obj.DeleteRange. Dabei sollte
man hinten anfangen, um sich Berechnungen zu ersparen.

.. den selektierten Text in eine Datei schreiben?
Man Ubergibt WriteToFile bzw. WriteToVMFile den selektierten Bereich als
start- bzw. end-Parameter, z.B.

Text-Objekte: Memo, InputLine - 309

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

obj.WriteToVMFile fh , obj.cursorPos , obj.selectionEnd

... Text beim Lesen / Schreiben in eine VM-Datei in einen anderen Zeichensatz
konvertieren?
Warum sollte man das tun? Am besten, Sie suchen eine andere Lésung.
Ansonsten: Schreiben Sie den Text konvertiert in eine temporare DOS-Datei
und lesen ihn von dort ohne erneute Konvertierung wieder ein. Dann kdnnen
Sie ihn in einer VM-Datei speichern. Beim Lesen gehen Sie umgekehrt vor.
Vorsicht! bei der Konvertierung ins UTF8-Format konnten Codes unter
32(dez) entstehen, die beim Einlesen in ein GEOS-Text-Objekt nicht
angezeigt werden kénnen und sogar das System crashen kénnten.

Text-Objekte: Memo, InputLine - 310

R-BASIC - Objekt-Handbuch - Vol. 6

4.11 FileSelector

4.11.1 Uberblick

Einfach unter PC/GEOS programmieren

Ein FileSelector stellt die Ul bereit, die notwendig ist, um eine Datei oder ein
Verzeichnis auszuwahlen. Klickt der Nutzer auf einen Eintrag sendet der

FileSelector eine Notification-Message aus und der

Programmierer kann

entscheiden was passiert. Haufig wird die entsprechende Datei dann gedffnet. Die

Navigation durch die Verzeichnisse handelt der FileSelector dabei selbsténdig.

Welche Dateien in der Liste angezeigt
werden kann Uber diverse Kriterien, z.B. das

_Pfad —'| _Zu Dokument I_I_.aufwerke —'|

Token der Datei oder eine Dateimaske

. tC0-ENGLISH-
eingestellt werden. .. SIProofread
Haufig ist der FileSelector Teil eines Dialogs, i B Manual - Part 1
in dem sich noch andere Objekte, z.B. ein B Manual - Table Of Contents
"Offnen" und ein "Abbrechen"-Button =B Manual Part 4 - Appendix
. i B Objects Manual, Yol. 1
befinden. i E Objects Manual, Yol. 2
[Objects Manual, Yol. 3
Abstammung:

GenericClass 1 FileSelector

Der FileSelector erbt alle Eigenschaften und Fahigkeiten der GenericClass.

Spezielle Instance-Variablen:

Instancevariable Syntax im Ul-Code Im BASIC-Code
NotificationHandler | NotificationHandler = <Handler> nur schreiben
initialPath initialPath = StdPath, "<subDir>" —
showFilesDisabled showFilesDisabled = TRUE | FALSE| lesen, schreiben
numFilesToShow numFilesToShow = anzahl lesen, schreiben
fileListWidth fileListWidth = anzahl lesen, schreiben
selection$ — lesen, schreiben
path$ — lesen, schreiben
fullPath$ — lesen, schreibe
entryFlags — nur lesen
matchToken matchToken = "TCHR", manuflD lesen, schreiben
hasMatchToken — nur lesen
matchCreator matchCreator = "TCHR", manuflD lesen, schreiben
hasMatchCreator — nur lesen
matchMask$ matchMask$ = "fileMask" lesen, schreiben
matchCriteria matchCriteria = numVal lesen, schreiben

FileSelector -311

R-BASIC - Objekt-Handbuch - Vol. 6

Action-Handler-Typen:

Einfach unter PC/GEOS programmieren

Handler-Typ Parameter
FileAction (sender as object, entryFlags as WORD, selection$ as
String)
Methoden:
Methode Aufgabe
ClearMatchToken Entfernt das matchToken aus den Instancevariablen

ClearMatchCreator

Entfernt das matchCreator-Token aus den
Instancevariablen

Suspend Verhindert ein Neueinlesen des angezeigten Ordners

EndSuspend Erlaubt das Neueinlesen des angezeigten Ordners
wieder

Rescan Liest den angezeigten Ordner neu ein

UpDirectory Wechselt in das Parent-Verzeichnis

OpenEntry Offnet das selektierte Verzeichnis

4.11.2 Konfigurieren des FileSelectors

Meistens wird der FileSelector im Ul-Code konfiguriert. Dazu stehen die folgenden
Instancevariablen zur Verfigung:

Instancevariable

Syntax im Ul-Code Im BASIC-Code

initialPath

initialPath = StdPath, "<subDir>" —

showFilesDisabled

showFilesDisabled = TRUE | FALSE| lesen, schreiben

numFilesToShow

numFilesToShow = anzahl lesen, schreiben

fileListWidth fileListWidth = anzahl lesen, schreiben
matchToken matchToken = "TCHR", manuflD lesen, schreiben
matchCreator matchCreator = "TCHR", manuflD lesen, schreiben
matchMask$ matchMask$ = "fileMask" lesen, schreiben
matchCriteria matchCriteria = numVal lesen, schreiben

Ein typisches FileSelector-Objekt sieht wie folgt aus. Im Beispiel werden die R-
BASIC Font-Dateien zur Anzeige gebracht.

justifyCaption

numFilesToShow
matchMask$ =

End OBJECT

FileSelector TestFileselector
Caption$ = "Bitte Datei auswahlen"

J_TOP

initialPath = SP_USER DATA,

NotificationHandler = FileSelected

12

"% RBF"

matchCriteria = FMC _DIRS + FMC DOS_FILES

"R-BASIC\\FONT"

FileSelector -312

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Zur Auswahl, welche Dateien in der Liste angezeigt werden sollen, stehen die
Instancevariablen matchToken (engl. to match = Gbereinstimmen), match-
Creator, matchMask$ und matchCriteria zur Verfigung. Die Defaultwerte sind
so gewahlt, dass alle Dateien und alle Verzeichnisse angezeigt werden. Geben
Sie mehrere Match-Kriterien an so missen diese gleichzeitig erfullt sein.
Widerspruchliche Kriterien z.B. das Token von GeoWrite-Dateien und das Creator-
Token von GeoDraw fuhren dazu, dass keine Dateien angezeigt werden.

initialPath
InitialPath legt den anfangs angezeigten Pfad fest. Das kann nur im Ul-Code

geschehen. Wird kein initialPath gesetzt so wird das GEOS Hauptverzeichnis
angezeigt.

Syntax Ul-Code: initialPath = stdPath, "Subdir"
stdPath: Eine StandardPath Konstante
"Subdir": Unterverzeichnis. Das kann auch ein Leerstring sein.

Beispiele
initialPath = SP_DOCUMENT, "R-BASIC\\Beispiele"
initialPath = SP_USER_DATA, ""

showFilesDisabled

ShowFilesDisabled legt fest, ob Dateien in der Liste als "disabled" angezeigt
werden. Der Nutzer sieht die Dateinamen hellgrau, kann sie aber nicht anwéhlen.
Das wird z.B. im Dialog "Speichern unter ..." verwendet.

Syntax Ul- Code: showFilesDisabled = TRUE (Defaultwert: FALSE)
Lesen: <numVar> = <Obj>.showFilesDisabled
Schreiben: <Obj>.showFilesDisabled = TRUE | FALSE

numFilesToShow

NumFilesToShow legt die Anzahl der gleichzeitig angezeigten Listeneintrage fest.

Syntax Ul- Code: numFilesToShow = numWert
Lesen: <numVar> = <Obj>.numFilesToShow
Schreiben: <Obj>.numFilesToShow = numWert
numWert: numerischer Ausdruck, bestimmt die Anzahl

FileSelector - 313

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

fileListWidth

FileListWidth legt die Breite der Liste fest. MaBeinheit ist die "mittlere Zeichen-
breite". Der Defaultwert ist Null, d.h. die Liste bestimmt die ihre Breite selbst.
FileListWidth wird selten verwendet, weil der Defaultwert im Allgemeinen passt.

Syntax Ul- Code: filesListWidth = numWert
Lesen: <numVar> = <Obj>.filesListWidth
Schreiben: <Obj>.filesListWidth = numWert
numWert: Breite der Liste, MaBeinheit: "mittlere
Zeichenbreite". Null: Defaultwert verwenden.

matchToken

Nur GEOS-Dateien mit dem passenden Token werden angezeigt. DOS-Dateien
werden nicht mehr angezeigt. Das Token bestimmt das Icon, mit dem die Datei im
GeoManager angezeigt wird.

Syntax Ul- Code: matchToken = "tchr", manuflD
Lesen: <tok> = <obj>.matchToken
Schreiben: <obj>.matchToken = "tchr", manuflD

"tchr" : 4 Buchstaben, "TokenChars"

manufID: Manufacturer ID (numerischer Wert)
<tok>: Variable vom Typ GeodeToken

Per Default ist kein Wert fir matchToken gesetzt und alle Dateien werden
angezeigt.

Beispiel: GeoDraw-Dateien anzeigen
matchToken = "DDAT", 0

Will man nur Dateien anzeigen, deren Token aus lauter Nullen besteht (das ist
z.B. bei den VM-Dateien der Fall, die vom lcon-Editor geschrieben werden), muss
man als tokenChars einen Leerstring zuweisen:

matchToken = "", 0

Das Token "™, O ist nicht identisch mit dem Zustand "kein Token gesetzt". Im
ersten Fall werden nur Dateien mit einem Token, das aus lauter Nullen besteht
angezeigt, im zweiten Fall wird das Token ignoriert (die Dateien werden nicht nach
ihrem Token gefiltert). Um ein gesetztes Token wieder zu entfernen verwenden
Sie die Methode ClearMatchToken, die weiter unten beschrieben ist.

FileSelector -314

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

matchCreator

Nur GEOS-Dateien mit dem passenden Creator-Token werden angezeigt. DOS-
Dateien werden nicht mehr angezeigt. Das Creator-Token bestimmt die
Applikation, mit der die Datei erstellt wurde. Bei Programmen ist das "GEOS",0.

Syntax Ul- Code: matchCreator = "tchr", manufiD
Lesen: <tok> = <obj>.matchCreator
Schreiben: <obj>.matchCreator = "tchr", manuflD

"tchr" 4 Buchstaben, "TokenChars"

manuflD Manufacturer ID (numerischer Wert)
<tok> Variable vom Typ GeodeToken

Per Default ist kein Wert fur matchCreator gesetzt und alle Dateien werden
angezeigt.

Beispiel: GeoWrite-Dateien anzeigen
matchCreator = "WP00", O

Will man nur Dateien anzeigen, deren Creator-Token aus lauter Nullen besteht
(das ist z.B. bei den VM-Dateien der Fall, die vom Icon-Editor geschrieben
werden), muss man als tokenChars einen Leerstring zuweisen:

matchCreator = "", 0

Das Creator-Token ", 0 ist nicht identisch mit dem Zustand "kein Token gesetzt".

Im ersten Fall werden nur Dateien mit einem Token, dass aus lauter Nullen
besteht angezeigt, im zweiten Fall wird das Creator-Token ignoriert (die Dateien
werden nicht nach ihrem Creator-Token gefiltert). Um ein gesetztes Creator-Token

wieder zu entfernen verwenden Sie die Methode ClearMatchCreator, die weiter
unten beschrieben ist.

matchMask$

Nur Dateien, die der Ubergebenen Namensmaske entsprechen, werden angezeigt.
Dabei gelten die GEOS-Namenskonventionen.
- Wildcards "*" und "?" sind zul&ssig
* (Sternchen): beliebige Anzahl (oder Null) Zeichen oder Ziffern
? Genau ein Zeichen oder eine Ziffer
: und \ sind nicht zulassig
- Die GroB- und Kleinschreibung spielt eine Rolle
- Far DOS-Dateien: GroBbuchstaben verwenden
Per Default ist kein Wert fir matchMask$ gesetzt und alle Dateien werden
angezeigt.

Syntax Ul- Code: matchMask$ = "maskString"
Lesen: <stringVar> = <obj>.matchMask$
Schreiben: <obj>.matchMask$ = "maskString"
"maskString" Eine Filtermaske fir die Dateien, z.B. "*.PCX"

FileSelector -315

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

Beispiele:
"D*" Alle Dateien, die mit einem groBen D anfangen.
"?a*" Alle Dateien, deren zweiter Buchstabe ein a ist.
" Alle Dateien, die ein a im Namen enthalten. Das a darf auch am

Anfang oder am Ende stehen.
Alle Dateien, die einen Punkt im Namen enthalten.

nx %I

"*:PCX" Alle Dateien, die auf Punkt-PCX enden.

mnxn

Alle Dateien

Wenn keine Maske gesetzt ist liefert matchMask$ einen Leerstring. Das Schreiben
eines Leerstrings l6scht eine gesetzte Maske. Funktionell sind "keine Maske
gesetzt" und "*" identisch, "keine Maske gesetzt" ist aber schneller, weil der

FileSelector keine Vergleiche ausflhrt.

matchCriteria

MatchCriteria ist ein numerischer Wert, der bestimmt, welche Art von Dateien

angezeigt werden sollen.

Syntax Ul- Code: matchCriteria = numWert
Lesen: <numVar> = <obj>.matchCriteria
Schreiben: <obj>.matchCriteria = numWert

Der Defaultwert ist FMC_ALL_FILES (= FMC_DIRS + FMC_DOS_FILES +
FMC_GEOS_EXEC + FMC_GEOS_DATA). Per Default werden alle Dateien und

Ordner angezeigt.

Erlaubte Werte:

Konstante Wert (hex)

Bedeutung

FMC_DIRS 32768 &h8000

Ordner anzeigen

FMC_DOS_FILES 16384 &h4000

Nicht-GEOS-Dateien anzeigen

FMC_GEOS_EXEC| 8192 &h2000

GEOS Programme und Libraries
anzeigen

FMC_GEOS_DATA | 4096 &h1000

GEOS VM- und Daten-Dateien
anzeigen

FMC_ALL_FILES 61440 &hF000

Alle Dateien und Ordner anzeigen.
Das entspricht der Summe der vier
Werte von oben.

FMC_MASK_CASE_INSENSITIVE
2048 &h0800

Masken unterscheiden nicht
zwischen GroB- und
Kleinbuchstaben

FMC_USE_MASK_FOR_DIRS
128 &h0080

Masken auch auf Ordner
anwenden

FileSelector - 316

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Die hier nicht angegebenen Bits sind intern verwendet und werden von R-BASIC
nicht unterstitzt. Sie missen Null sein.

Beispiele

DIM criteria as word ' oder as real
matchCriteria = FMC DIRS + FMC GEOS DATA
MyObj.matchCriteria = FMC_DIRS + FMC_ GEOS EXEC
criteria = MyObj.matchCriteria

Der Wert von matchCriteria besteht aus einzelnen Bits, die jedes eine bestimmte
Bedeutung haben (sog. BitFlags). Die Abfrage erfolgt mit der logischen Operation
AND, das setzen mit der logischen Operation OR. Das Loschen eines Bits
erfordert die Operation "AND (NOT bit_zu_léschen)".

Beispiel:
FMC_DIRS abfragen
IF FSel.matchCriteria AND FMC_DIRS THEN ...

Beispiel:
FMC_MASK_CASE_INSENSITIVE setzen ohne die anderen Flags zu dndern

FSel.matchCriteria =
FSel.matchCriteria OR FMC_MASK CASE INSENSITIVE

Beispiel:
FMC_DOS_FILES léschen ohne die anderen Flags zu andern

FSel.matchCriteria =
FSel.matchCriteria AND (NOT FMC_DOS FILES)

FileSelector -317

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.11.3 Arbeit mit Token und Creator

Instancevariable Syntax im Ul-Code Im BASIC-Code

hasMatchToken — nur lesen

hasMatchCreator — nur lesen

Methode Aufgabe

ClearMatchToken Entfernt das matchToken aus den Instancevariablen

ClearMatchCreator | Entfernt das matchCreator-Token aus den
Instancevariablen

Die Instancevariablen matchToken und matchCreator haben die Besonderheit,
dass die dazugehérigen Daten (das jeweilige GeodeToken) vorhanden sein kann
oder auch nicht. Ist das Token vorhanden werden alle Dateien entsprechend dem
Token (bzw. Creator-Token) gefiltert und nur die Dateien angezeigt, die eine
Ubereinstimmung aufweisen. Ist das Token nicht vorhanden werden die Dateien
nicht gefiltert, ihr Token (bzw. Creator-Token) ist egal.

Per Default sind keine Werte fur matchCreator und matchToken gesetzt, die
Dateien werden also nicht gefiltert. Die Filterung wird durch Setzen eines Wertes
fur dies Instancevariablen aktiviert. Es ist nun nicht méglich durch Zuweisen eines
"Leer"-Token zu den Instancevariablen matchToken bzw. matchCreator das
jeweilige Token zu l6schen. Die Filterung nach Tokens kann auf diese Weise nicht
aufgehoben werden. Diesem Zweck dienen die in diesem Kapitel beschriebenen
Methoden ClearMatchToken und ClearMatchCreator.

hasMatchToken

HasMatchToken enthalt die Information, ob mit "matchToken" ein Wert gesetzt

wurde oder nicht. Der Wert kann nur gelesen werden und liefert TRUE oder
FALSE.

Syntax Lesen: <numVar> = <obj>.hasMatchToken

hasMatchCreator

HasMatchCreator enthélt die Information, ob mit "matchCreator" ein Wert gesetzt

wurde oder nicht. Der Wert kann nur gelesen werden und liefert TRUE oder
FALSE.

Syntax Lesen: <numVar> = <Obj>.hasMatchCreator

FileSelector -318

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

ClearMatchToken

Die Methode ClearMatchToken I6scht den mit "matchToken" gesetzten Wert.

Syntax BASIC- Code: <obj>.ClearMatchToken

ClearMatchCreator

Die Methode ClearMatchCreator I6scht den mit "matchCreator" gesetzten Wert.

Syntax BASIC- Code: <obj>.ClearMatchCreator

FileSelector - 319

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.11.4 Behandlung der Notification-Message

Klickt der Nutzer auf einen Eintrag in der Liste des FileSelectors wird der
Notification-Handler des FileSelectors aufgerufen. Das kann ein Einfachklick oder
ein Doppelklick sein. AuBerdem ist es mdglich weitere Informationen Uber den
aktuell selektierten Eintrag, z.B. den Pfad zum dargestellten Verzeichnis oder ob
es sich um eine Ordner oder eine Datei handelt, zu erhalten. Dazu stehen die
folgenden Instancevariablen zur Verfigung:

Instancevariable Syntax im Ul-Code Im BASIC-Code
NotificationHandler NotificationHandler = <Handler> nur schreiben
path$ — lesen, schreiben
fullPath$ — lesen, schreibe
selection$ — lesen, schreiben
entryFlags — nur lesen
Handler-Typ Parameter
FileAction (sender as object, entryFlags as WORD, selection$ as
String)

NotificationHandler

Die Instance-Variable NotificationHandler enthélt den Namen des Handlers, der
gerufen wird, wenn der Nutzer auf einen Eintrag in der Liste klickt. Das kann ein
Einfachklick oder ein Doppelklick sein. Der Wert wird Ublicherweise im Ul-Code
gesetzt, bei Bedarf kann er auch zur Laufzeit (im BASIC-Code) gesetzt werden.

Syntax Ul- Code: NotificationHandler = <Handler>
Schreiben: <obj>. NotificationHandler = <Handler>

Wichtig! FileSelectoren kénnen nicht in Blocking-Dialogen (vgl. Kapitel 4.6.7,
DialogObj.attrs = DA_BLOCKING) verwendet werden. Blocking-Dialoge blockieren
den BASIC-Thread so lange, bis der Dialog geschlossen wird. In dieser Zeit kann
der Notification-Handler nicht ausgefihrt werden.

NotificationHandler mlssen als FileAction deklariert sein.
Der Parameter selection$ enthalt den aktuell ausgewahlten Eintrag (Dateiname

oder Ordnername). Wenn der erste Eintrag selektiert ist (aktuelles Verzeichnis
oder Wurzelverzeichnis) enthélt selection$ den Text "." (Der Text besteht nur aus

nur einem Punkt.)

FileSelector - 320

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Der Parameter entryFlags enthélt Informationen Uber den aktuell selektierten
Eintrag. Jedes Bit hat eine eigene Bedeutung. Die Abfrage der Bits erfolgt mit der
logischen Operation AND.

Folgende Werte und Konstanten sind definiert.

Konstante Wert hex Bedeutung

— 32768 &h8000 intern verwendet

FEF_SUBDIR 16384 &h4000 Ein Verzeichnis ist selektiert
FEF_OPEN 8192 &h2000 Ein Doppelklick wurde ausgefuhrt
FEF_NO_ENTRIES 4096 &h1000 Die Dateiliste ist leer
FEF_ERROR 2048 &h800 Es gab einen Fehler
FEF_TEMPLATE 1024 &h400 Die Datei ist ein "Muster"

— 512 &h200 Die Datei ist "shared-multiple"
— 256 &h100 Die Datei ist "shared-single"
FEF_READ_ONLY 128 &h80 Es ist eine "Nur Lesen" Datei

FEF_PARENT_DIR 64 &h40 Der erste Eintrag in der Liste ist
selektiert.
— 32 &h20 Der Eintrag ist disabled

Die in der Tabelle nicht aufgeflhrten Bits sind nicht definiert und sollten nicht
verwendet werden. "Shared-multiple" bzw. "shared-single" bedeutet, dass die
Datei im Netzwerk von mehreren Nutzern gleichzeitig gedffnet werden kann. Der
Nutzer kann das z.B. in GeoWrite Uber den "Dokument-Typ" im Menl "Datei"-
>"Sonstiges" festlegen.

Die typische Reaktion auf einen Doppelklick auf eine Datei besteht darin, in den
vom FileSelector angezeigten Pfad zu wechseln (Mithilfe der Instancevariable
path$) und dann die selektierte Datei zu 6ffnen.

Beispiel: Ein typischer Notification-Handler. Wir setzen voraus, dass es einen
Offnen-Button gibt, der nur Enabled werden soll, wenn eine Datei angewéhlt ist.
Ein Doppelklick auf eine Datei soll diese 6ffnen. Der Handler implementiert das
typische Vorgehen dazu. Ein Doppelklick auf ein Verzeichnis wird vom Handler
ignoriert. Der FileSelector kimmert sich selbst darum, das entsprechende
Verzeichnis zu 6ffnen und anzuzeigen.

Die Routine DoSomeThingsWithFile muss naturlich auch irgendwo definiert sein.

FileAction FileSelected
DIM fh as FILE

IF entryFlags AND FEF SUBDIR THEN
OpenButton.enabled = FALSE
RETURN ’ Verzeichnis selektiert
ELSE
OpenButton.enabled = TRUE ' Datei ist ausgewdhlt
End IF

FileSelector - 321

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

IF entryFlags AND FEF OPEN THEN ' Doppelklick

SetCurrentPath sender.path$

fh = FileOpen selection$

IF fh <> NullFile() THEN
DoSomeThingsWithFile (£fh)
FileClose fh
End IF

End IF

End ACTION

path$

Die Instancevariable path$ enthalt den angezeigten Pfad, ohne Selektion. Sie
kann gelesen und geschrieben, aber nicht im Ul-Code verwendet werden. Um den
anzuzeigenden Pfad im Ul-Code zu setzen verwenden Sie die Instancevariable
initialPath.

Syntax Lesen: <stringVar> = <obj>. path$
Schreiben: <obj>.path$ = <pathExpression>
<pathExpression>: Stringausdruck, zu setzender Pfad.
Es kann ein relativer Pfad oder ein absoluter Pfad (mit
Laufwerksbuchstabe, z.B. "C:\\DOS") sein.

Beispiel: Anzeige eines absolut angegebenen Pfades.
MyObj.path$ = "C:\\Bilder\\Kinder"

Beispiel: Anzeige des Unterverzeichnisses "Arbeit" des aktuell angezeigten
Verzeichnisses.

MyObj.path$ = "Arbeit"

Beispiel: Wechseln in das vom FileSelector angezeigte Verzeichnis
SetCurrentPath MyObj.path$

Hinweise

Schreiben in die Instancevariable path$:

« Schreiben von path$ setzt die globale Variable fileError (Null wenn OK,
ERROR_PATH_NOT_FOUND wenn der Pfad invalid ist.

+ Um in das Root eines Laufwerks zu wechseln verwendet man z.B. "C:\\"

+ Bei Pfadangaben spielt die GroB-/Kleinschreibung eine Rolle. Fir reine DOS-
Verzeichnisse sollten Sie GroBbuchstaben verwenden.

Lesen von path$

« Standard R-BASIC Strings kbénnen bis zu 128 Zeichen aufnehmen. Pfade
kénnen bis 198 Zeichen lang sein. Variablen, die einen Pfad aufnehmen sollen,
sollten als String(198) oder langer definiert sein. Beispiel:

DIM pathVar$ as STRING(200)

FileSelector - 322

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

fullPath$

Die Instancevariable fullPath$ enthalt den angezeigten Pfad einschlieBlich des

selektierten Eintrags. Sie kann gelesen und geschrieben, aber nicht im Ul-Code
verwendet werden.

Syntax Lesen: <stringVar> = <obj>. fullPath$
Schreiben: <obj>.fullPath$ = <pathExpression>
<pathExpression>: Stringausdruck, zu setzender Pfad.
Es kann ein relativer Pfad oder ein absoluter Pfad sein.

Schreiben in die Instancevariable fullPath$:
+ Das letzte Pfadelement wird als zu selektierende Eintrag interpretiert, auch
wenn es ein Verzeichnis ist. Beispiel:

MyObj.fullPath$ = "C:\\GEOS\\DOCUMENT"
zeigt das GEOS Verzeichnis an, wobei DOCUMENT selektiert ist.

Um das Root eines Verzeichnisses zu selektieren hdngt man einen Backslash

an:
MyObj.fullPath$ = "C:\\GEOS\\DOCUMENT\\"

zeigt das GEOS\DOCUMENT Verzeichnis an. Oder man verwendet path$.

+ Schreiben von fullPath$ setzt die globale Variable fileError (Null wenn OK,
ERROR_PATH_NOT_FOUND wenn der Pfad invalid ist.

+ Um in das Root eines Laufwerks zu selektieren verwendet man z.B. "C:\\"

+ Bei Pfadangaben spielt die GroB-/Kleinschreibung eine Rolle. Fur reine DOS-
Verzeichnisse sollten Sie GroBbuchstaben verwenden.

Lesen von fullPath$

« Standard R-BASIC Strings kénnen bis zu 128 Zeichen aufnehmen. Pfade
kénnen bis 198 Zeichen lang sein. Hinzu kommt die Selektion (max. 32
Zeichen) und der Backslash. Variablen, die einen Pfad aufnehmen sollen,
sollten als String(231) oder langer definiert sein. Beispiel:

DIM pathVar$ as STRING(235)

selection$

Die Instancevariable selection$ enthdlt den aktuell ausgewéhlten Eintrag
(Dateiname oder Ordnername). Sie kann gelesen und geschrieben, aber nicht im
Ul-Code verwendet werden.

Syntax Lesen: <stringVar> = <obj>. selection$
Schreiben: <obj>.selection$ = <stringExpression>
<stringExpression>: Stringausdruck, zu selektierender Eintrag

Wenn der erste Eintrag selektiert ist (aktuelles Verzeichnis oder
Wurzelverzeichnis) enthalt selection$ den Text "." (Der Text besteht nur aus nur
einem Punkt.)

FileSelector - 323

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Hinweise:

+ Schreiben von selection$ setzt die globale Variable fileError (Null wenn OK,
ERROR_PATH_NOT_FOUND wenn der Eintrag nicht existiert.

+ Um den ersten Eintrag zu selektieren kann man "." oder einen Leerstring
Ubergeben.

Beispiel: Lesen der Selektion

DIM sel$ as String(32) ' Das reicht
sel$ = MyObj.selection$

Beispiel: Selektieren des Unterverzeichnisses "Arbeit". Das Verzeichnis wird nur
selektiert, der FileSelector wechselt nicht in das Verzeichnis

MyObj.selection$ = "Arbeit"

entryFlags

EntryFlags enthélt die Informationen Uber den aktuell selektierten Eintrag, die
auch an den Parameter "entryFlags" des FileSelector NotificationHandlers
ubergeben werden. Eine Beschreibung der einzelnen Flagbits finden Sie dort. Der
Wert kann nur gelesen werden.

Syntax Lesen: <numVar> = <obj>.entryFlags

Beispiel: Abfrage ob eine Datei selektiert ist

DIM flags
flags = MyObj.entryFlags
IF (flags AND FEF_SUBDIR) = 0 THEN
MsgBox "Eine Datei ist selektiert"
END IF

Beispiel: Ein "Open"-Handler

Wir setzen einen FileSelector (DemoFileSelector) voraus, der den "Offnen"-Button
nicht enabled oder disabled. Der Buttonhandler muss daher entscheiden ob eine
Datei selektiert ist oder ein Verzeichnis und entsprechend reagieren.

ButtonAction OpenFileOrFolder
DIM flags as word

flags = DemoFileSelector.entryFlags

IF flags AND FEF SUBDIR THEN
DemoFileSelector.OpenEntry ' Verzeichnis 6ffnen
ELSE
SetCurrentPath DemoFileSelector.path$
MsgBox "Eine Datei ist selektiert"
' Hier die Datei Offnen ...
End IF

End Action

FileSelector - 324

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

4.11.5 Weitere Fahigkeiten

Dieser Abschnitt beschreibt einige Fahigkeiten des FileSelectors die gelegentlich
bendtigt werden. Dafir sind die folgenden Methoden implementiert:

Methode Aufgabe
Suspend Verhindert ein Neueinlesen des angezeigten Ordners
EndSuspend Erlaubt das Neueinlesen des angezeigten Ordners
wieder
Rescan Liest den angezeigten Ordner neu ein
UpDirectory Wechselt in das Parent-Verzeichnis
OpenEntry Offnet das selektierte Verzeichnis
Suspend

Die Methode Suspend verhindert ein Rescan (erneutes Einlesen des angezeigten
Ordners) solange bis die Methode EndSuspend aufgerufen wurde. Das ist
sinnvoll, wenn man mehrere match-Attribute andern will.

Syntax BASIC- Code: <obj>.Suspend

EndSuspend

EndSuspend hebt den mit Suspend gesetzten Zustand wieder auf.

Syntax BASIC- Code: <obj>.EndSuspend

Rescan

Veranlasst den FileSelector das Verzeichnis neu einzulesen. Der FileSelector fuhrt
auch im "Suspend" Zustand einen Rescan aus, hebt den "Suspend" Zustand aber
nicht auf.

Syntax BASIC- Code: <obj>.Rescan

FileSelector - 325

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

UpDirectory

Die Methode UpDirectory wechselt in das tUbergeordnete Verzeichnis.

Syntax BASIC- Code: <obj>.UpDirectory

OpenEntry

Die Methode OpenEntry wechselt in das selektierte Verzeichnis und zeigt dieses
an. Ist er erste Eintrag im FileSelector selektiert (Aktuelles Verzeichnis, kein
Unterverzeichnis) wird ins Ubergeordnete Verzeichnis gesprungen. Ist eine Datei
selektiert passiert nichts.

Syntax BASIC- Code: <obj>.0penEntry

FileSelector - 326

R-BASIC - Objekt-Handbuch - Vol. 6

Einfach unter PC/GEOS programmieren

(Leerseite)

FileSelector - 327

