

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 6
Text-Objekte, FileSelector

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4.10 Text-Objekte ... 260
4.10.1 Überblick ... 260
4.10.2 Arbeit mit dem Text ... 265
4.10.3 Zeichenattribute .. 272
4.10.4 Absatzattribute .. 276
4.10.5 Textfilter .. 279
4.10.6 Textobjekt Actions .. 282
4.10.7 Verhalten und Aussehen .. 287
4.10.8 Text-Objekte im Delayed Mode .. 291
4.10.9 VisText und LargeText ... 292

4.10.9.1 VisText .. 292
4.10.9.2 LargeText .. 298

4.10.10 Text in Dateien speichern ... 302

4.11 FileSelector ... 311
4.11.1 Überblick ... 311
4.11.2 Konfigurieren des FileSelectors .. 312
4.11.3 Arbeit mit Token und Creator .. 318
4.11.4 Behandeln der Notification-Message .. 320
4.11.5 Weitere Fähigkeiten .. 325

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 260

4.10 Text-Objekte

4.10.1 Überblick

Die R-BASIC Textobjekte erlauben das einfache Eingeben von Text, ohne dass
Sie als Programmierer sich um irgendwelche Details kümmern müssen. Die
Textobjekte behandeln Tastatur- und Mausereignisse selbständig. Sie registrieren,
ob der Text vom Nutzer verändert wurde und können bei Bedarf Messages
aussenden, um den Rest des Programms über bestimmten Ereignissen zu
informieren.

In R-BASIC stehen vier Textobjekt Klassen zur Verfügung. Die Klasse Memo und
InputLine sind GenericClass Objekte und sehr einfach zu benutzen. VisText und
LargeText sind VisualClass Objekte. Sie müssen mit einem VisContent in einem
View verwendet werden. Diesen Klassen ist ein eigenes Kapitel (4.10.9)
gewidmet.

Memo Die Memo-Klasse stellt einen einfachen Texteditor bereit. Sie
unterstützt einen automatischen Zeilenumbruch und die Entertaste
beginnt einen neuen Absatz. Bei Bedarf wird ein vertikaler Rollbalken
erzeugt.

InputLine Die Klasse InputLine ist für die Eingabe einzeiliger Texte, z.B. von
Dateinamen, gedacht. Die Entertaste löst bei InputLine-Objekten den
Apply-Handler des Objekts aus.

VisText Objekte der Klasse VisText müssen wie ein VisObj-Objekt in einem
visual Tree verwendet werden. Details zu diesem Thema finden Sie im
Kapitel 5.5. des Objekthandbuchs.

LargeText Der Vorteil der LargeText Objekte ist, dass sie beliebig viel Text
speichern können (theoretisch bis zu 2 GByte), während die anderen
Textobjekte auf 4 kByte begrenzt sind.

Die meisten Instancevariablen und Methoden sind für alle Textobjektklassen
identisch, Ausnahmen sind unten erwähnt. Keins der R-BASIC Text-Objekte
unterstützt die Formatierung einzelner Buchstaben, Worte oder Absätze. Alle
Formatinformationen (z.B. Font, Textgröße, Textstil, Ausrichtung usw.) gelten
immer für den gesamten Text des Objekts.

Da die Textobjekte Memo und InputLine von der GenericClass abstammen erben
sie alle Eigenschaften, Hints und Fähigkeiten dieser Klasse. Für diese Textobjekte
sind besonders die Fähigkeiten zum Geometrie-Management (Kapitel 3.3) von
Bedeutung.
Die Geometrie von VisText- und LargeText-Objekten wird vom VisContent bzw.
dem dazugehörigen View bestimmt, in dem sie sich befinden.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 261

Arbeit mit dem Clipboard

Alle Textobjekte können mit der Zwischenablage (Clipboard) kommunizieren. Die
Methoden (Objektanweisungen) ClpTestCopy, ClpTestPaste, ClpCopy und
ClpPaste werden unterstützt. Eine detaillierte Beschreibung dieser Methoden
finden Sie im Kapitel "Arbeit mit der Zwischenablage" (Kapitel 5 im Handbuch
"Spezielle Themen"). Die Textobjekte verhalten sich dabei genauso wie Sie es von
Textobjekten in anderen Programmen gewohnt sind. Die wichtigsten Punkte sind:
• ClpTestCopy liefert TRUE, wenn Text selektiert ist. Ist nichts selektiert liefert es

FALSE.
• Die Methode ClpCopy kopiert den aktuell selektierten Text in die Zwischen-

ablage. Ist nichts selektiert wird auch nichts in die Zwischenablage kopiert. Die
globale Variable clipboardError wird gesetzt (TRUE: Text wurde ins Clipboard
kopiert, FALSE: kein Text wurde ins Clipboard kopiert).

• Die Methode ClpPaste ersetzt den aktuell selektierten Text. Ist nichts selektiert
wird der Text an der Cursorposition eingefügt. Achtung! ClpPaste setzt die
globale Variable clipboardError immer auf FALSE. PC/GEOS liefert für
Textobjekte keine Rückmeldung, ob die Operation erfolgreich war oder nicht.

• ClpPaste akzeptiert nur "reine" Texte. Eventuelle Formatierungen gehen
verloren. Enthält der Text zu viele Zeichen oder Grafiken, so erzeugt das Objekt
eine Fehlermeldung. Ist kein Text in der Zwischenablage wird die Operation
ignoriert.

Keyboard-Handler

Sie können in die Behandlung von Tastaturereignissen eingreifen indem Sie einen
Tastaturhandler für das Textobjekt schreiben. Dazu werden die folgenden
Instancevariablen unterstützt:

Actionhandler Instancevariablen Methoden
OnKeyPressed inputFlags ––

Der OnKeyPressed-Handler wird gerufen, wenn das Textobjekt den Focus hat
und der Nutzer drückt eine Taste oder lässt sie los. Er muss als KeyboardAction
deklariert sein. Dabei steuert inputFlags, ob das Objekt selbst oder der
entsprechende BASIC Handler das Ereignis bearbeitet. Eine ausführliche
Beschreibung der Zusammenhänge finden Sie im Kapitel 14 (Arbeit mit der
Tastatur) im Handbuch "Spezielle Themen".
Insbesondere ist es wichtig zu wissen, dass das Textobjekt zunächst jedes
Tastaturereignis selbst behandelt, bevor es den entsprechenden BASIC Handler
aufruft. Im Kapitel 14.4 (Filtern von Tastaturereignissen) des Handbuchs
"Spezielle Themen" ist beschrieben, wie man das umgehen kann.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 262

Focus und Target

Textobjekte interagieren mit der Focus- und Target-Hierarchie. Es ist möglich zu
überwachen, ob ein Text-Objekt den Focus oder das Target hat, indem man einen
Focus- bzw. Target-Handler schreibt. Dazu werden die folgenden Actionhandler,
Instance- und Systemvariablen unterstützt.

Actionhandler Instancevariablen Systemvariable
(nur Memo und InputLine)

OnFocusChanged defaultFocus Focus
OnTargetChanged targetable Target

defaultTarget

Die notwendigen Details zur Arbeit mit Focus und Target finden Sie im Kapitel 12
(Focus und Target) des Handbuchs "Spezielle Themen". Das Arbeiten mit Focus
und Target ist etwas für erfahrene Programmierer und nur in wenigen Fällen
notwendig. Eine Ausnahme bildet die Implementation von speziellen Menüs wie
dem "Bearbeiten" Menü. Diesem Thema ist deswegen ein eigenes Kapitel
("Spezielle Themen", Kapitel 13) gewidmet.

Hinweise zu Focus und Target bei Text-Objekten:
• Die Verwendung des OnFocusChanged Handler ist nur sehr selten nötig. In den

meisten Fällen, in denen man zunächst an den Focus-Handler denkt, ist es
sinnvoller den OnTargetChanged Handler zu verwenden.

• Wenn Sie zum Beispiel mehr als ein Textobjekt haben wird der OnTarget-
Changed Handler oft benutzt um die UI entsprechend den Attributen (Font,
Textgröße, Farben usw.) anzupassen, die im Textobjekt dargestellt werden, mit
dem der Nutzer gerade interagiert.
Ein entsprechendes Beispiel finden Sie im Kapitel 4.10.6 (Text-Objekt Actions).

Die folgenden Kapitel verwenden meist Memo oder InputLine Objekte als
Beispiele. Die Aussagen gelten aber immer für alle Textobjekte. Ausnahmen sind
explizit erwähnt.
Außerdem wird davon ausgegangen, dass die Textobjekte im normalen Modus
(nicht im sogenannten "Delayed Mode") arbeiten. Der Delayed Mode ist nur für
GenericClass Objekte (Memo und InputLine) verfügbar und ausführlich im Kapitel
3.4.2 (Delayed Mode und Statusmessage) beschrieben.

Abstammung Memo und InputLine:
GenericClass Memo InputLine

Abstammung VisText und LargeText:
VisualClass VisText LargeText

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 263

Spezielle Instance-Variablen für alle (*) Textobjekt Klassen:
Variable Syntax im UI-Code Im BASIC-Code
maxLen (*) maxLen = numWert lesen, schreiben
textLen –– nur lesen
text$ text$ = "text" lesen, schreiben
cursorPos ––– lesen, schreiben
selectionEnd ––– lesen, schreiben
selectionLen ––– lesen, schreiben
fontID fontID = numWert lesen, schreiben
fontSize fontSize = numWert lesen, schreiben
textStyle textStyle = numWert lesen, schreiben
textColor textColor = numWert lesen, schreiben
backColor backColor = numWert lesen, schreiben
justifyText justifyText = numWert lesen, schreiben
lineSpacing lineSpacing = numWert lesen, schreiben
margins margins = left, right [, first] lesen, schreiben
topSpace topSpace = numWert lesen, schreiben
textFilter textFilter = numWert lesen, schreiben
textAttrs textAttrs = numWert lesen, schreiben
modified modified = numWert lesen, schreiben
OnModified OnModified = <Handler> nur schreiben
OnSelectionChanged OnSelectionChanged = <Handler> nur schreiben

(*) maxLen wird von LargeText Objekten nicht unterstützt. Die Textgröße von
LargeText Objekten ist prinzipiell unbegrenzt.

Spezielle Instance-Variablen nur für GenericClass Objekte Memo und InputLine:
Variable Syntax im UI-Code Im BASIC-Code
TextFrame TextFrame ––
TextNoFrame TextNoFrame ––
SelectableIfRO SelectableIfRO ––
ApplyHandler ApplyHandler = <Handler> nur schreiben
StatusHandler StatusHandler = <Handler> nur schreiben

Spezielle Instance-Variablen nur für LargeText:
Variable Syntax im UI-Code Im BASIC-Code
approxSize approxSize = numWert lesen, schreiben

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 264

Methoden für alle Textobjekt Klassen:
Methode Aufgabe
SelectedText$ Liefert den aktuell selektierten Text
TextRange$ Liefert einen bestimmten Textbereich
Append Text anhängen
Insert Text einfügen
ReplaceSelection Selektierten Text ersetzen
DeleteSelection Selektierten Text löschen
DeleteRange Textbereich löschen
ShowCursor Zur Cursorposition scrollen
Suspend Verhindert die Neudarstellung des Objekts
EndSuspend Erlaubt die Neudarstellung des Objekts wieder

Methoden nur für Memo und InputLine:
Methode Aufgabe
ScrollUp Hoch scrollen
ScrollDown Herunter scrollen
SendStatus Status-Handler aufrufen

Action-Handler-Typen:
Handler-Typ Parameter
TextAction (sender as object, isModified as integer, textLen as word,

selectionLen as word)

Beispiel: Ein typisches Memo Text Objekt
Memo Memo1
Caption$ = "Note:"
justifyCaption = J_TOP
text$ ="Enter some text here ..."
maxlen = 100
fixedSize = 30 + ST_AVG_CHAR_WIDTH, 5 + ST_LINES_OF_TEXT
END Object

Beispiel: Ein typisches InputLine Text Objekt
InputLine NameText
Caption$ = "Name:"
text$ ="Setag, Llib"
maxLen = 100
ExpandWidth
ApplyHandler = ApplyNameText
END Object

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 265

4.10.2 Arbeit mit dem Text

Hinweis: Stringvariablen nehmen standardmäßig nur bis zu 128 Zeichen auf, mit
String(n) vereinbarte Stringvariablen können bis zu 1024 Zeichen speichern.
Achten Sie beim Lesen von Text aus einem Textobjekt darauf, dass Textobjekte
bis zu 4096 Zeichen enthalten können, LargeText Objekte sogar noch wesentlich
mehr. Verwenden Sie die Instancevariable maxLen, um sicher zu sein, bzw.
fragen Sie die Instancevariable textLen ab, wenn sie unsicher sind.

Instancevariable Syntax im UI-Code Im BASIC-Code
maxLen (*) maxLen = numWert lesen, schreiben
textLen –– nur lesen
text$ text$ = "text" lesen, schreiben
cursorPos ––– lesen, schreiben
selectionEnd ––– lesen, schreiben
selectionLen ––– lesen, schreiben

(*) maxLen wird von LargeText Objekten nicht unterstützt.

Methoden:
Methode Aufgabe
SelectedText$ Liefert des aktuell selektierten Text
TextRange$ Liefert einen bestimmten Textbereich
Append Text anhängen
Insert Text einfügen
ReplaceSelection Selektierten Text ersetzen
DeleteSelection Selektierten Text löschen
DeleteRange Textbereich löschen
ShowCursor Zur Cursorposition scrollen
ScrollUp Hoch scrollen
ScrollDown Herunter scrollen
Suspend Verhindert die Neudarstellung des Objekts
EndSuspend Erlaubt die Neudarstellung des Objekts wieder

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 266

text$

Die Instance-Variable text$ enthält den eigentlichen Text des Objekts. Sie kann
gelesen und geschrieben werden. Das Textobjekt stellt den neuen Text
automatisch dar, wenn sie der Instance-Variable text$ einen Wert zuweisen.

Syntax UI-Code: text$ = "text"
Lesen: <stringVar> = <obj>.text$
Schreiben: <obj>.text$ = "text"

Kompatibilität: alle Textobjekte

maxLen

Die Instance-Variable maxLen enthält die maximale Länge des Textes, den das
Objekt verwalten kann. Der Default-Wert liegt bei 1024, das ist die maximale
Größe, die eine String-Variable in R-BASIC speichern kann. Erlaubt sind Werte
von 1 bis 4096. Für LargeText Objekte kann die Textlänge nicht begrenzt werden,
maxLen wird nicht unterstützt.

Syntax UI-Code: maxLen = numWert
Lesen: <numVar> = <obj>.maxLen
Schreiben: <obj>.maxLen = numWert

Kompatibilität: Memo, InputLine, VisText (nicht LargeText)

• Setzen Sie maxLen auf einen Wert, der kleiner als die aktuelle Textlänge ist, so
wird der Text abgeschnitten.

• Der Nutzer kann nicht mehr Text eingeben, als durch maxLen festgelegt ist.
• Es ist immer eine gute Idee maxLen so klein wie nur möglich zu wählen.

Beispielsweise ist zur Eingabe von GEOS-Dateinamen ein Wert von 32 für
maxLen vernünftig, da GEOS-Dateinamen nicht länger als 32 Zeichen werden
können.

• Der Text wird immer gemeinsam mit dem Textobjekt in den Speicher geladen
wird. Wenn Sie maxLen zur Laufzeit (!) drastisch vergrößern und auch
entsprechend viel Text abspeichern kann es in sehr ungünstigen Fällen zur
Meldung "Hauptspeicher voll" kommen. Das Problem kann nicht auftreten,
wenn Sie maxLen im UI-Code auf einen großen Wert setzen. Der Compiler
verteilt die Textobjekte dann auf mehrere Objektblöcke. Im Kapitel 2.1.4 finden
Sie Details zu diesem Problem.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 267

textLen

Die Instance-Variable textLen enthält die Länge des aktuellen Textes.

Syntax Lesen: <numVar> = <obj>.textLen

Kompatibilität: Memo, InputLine, VisText (nicht LargeText)

CursorPos

Die Instancevariable cursorPos enthält die aktuelle Position der Schreibmarke
(Cursor). Sie entspricht er Zeichenposition, hinter dem sich der Cursor befindet.
Die Position Null entspricht dem Textanfang. CursorPos kann gelesen und
geschrieben, aber nicht im UI-Code verwendet werden. Wenn Text selektiert ist
enthält cursorPos die Anfangsposition des selektierten Texts. Schreiben der
Cursorposition hebt eine vorhandene Textselektion auf.

Syntax Lesen: <numVar> = <obj>.cursorPos
Schreiben: <obj>.cursorPos = wert

wert: Neue Cursorposition. Null entspricht dem Textanfang.

Kompatibilität: alle Textobjekte

SelectionEnd

Die Instancevariable selectionEnd enthält die Endposition des aktuell selektierten
Texts. SelectionEnd ist immer größer oder gleich cursorPos. Ist kein Text
selektiert enthält selectionEnd den gleichen Wert wie cursorPos. SelectionEnd
kann gelesen und geschrieben, aber nicht im UI-Code verwendet werden.

Syntax Lesen: <numVar> = <obj>.selectionEnd
Schreiben: <obj>.selectionEnd = wert
wert: Neue Endposition der Textselektion.

Kompatibilität: alle Textobjekte

SelectionLen

Die Instancevariable selectionLen enthält die Länge des aktuell selektierten Texts.
SelectionEnd ist immer größer oder gleich Null. Ist kein Text selektiert enthält
selectionLen den Wert Null. SelectionLen kann gelesen und geschrieben, aber
nicht im UI-Code verwendet werden.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 268

Syntax Lesen: <numVar> = <obj>.selectionLen
Schreiben: <obj>.selectionLen = wert

wert: Neue Länge der Textselektion.
Negative Werte selektieren den Text links vom Cursor.

Kompatibilität: alle Textobjekte

SelectedText$

Die Methode SelectedText$ liefert den aktuell selektierten Text. Ist nichts selektiert
liefert sie einen leeren String. SelectedText$ kann nur gelesen werden. Um den
selektierten Text zu ersetzen verwenden Sie die Methode ReplaceSelection.

Syntax Lesen: <stringVar> = <obj>.SelectedText$

Kompatibilität: alle Textobjekte

TextRange$

Die Methode TextRange$ liefert einen bestimmten Textbereich. Der Bereich wird
dabei durch die Cursorpositionen links vom zu lesenden Bereich (pos1) und die
Cursorpositionen rechts vom zu lesenden Bereich. Dadurch ergeben sich die
folgenden Zusammenhänge:

• Pos1 entspricht der Anzahl der zu übergehenden Zeichen links vom zu
lesenden Bereich.

• Pos1 = 0 entspricht dem Lesen ab dem Textanfang, pos1 = N bedeutet:
Lesen ab dem N+1. Zeichen.

• Die Anzahl der gelesenen Zeichen ergibt sich zu pos2 - pos 1.
Außerdem gilt folgendes:

• Ist pos2 größer als die Textlänge so liefert TextRange$ entsprechend weniger
Zeichen.

• Sollte pos1 > pos2 sein so vertauscht R-BASIC die Werte automatisch.

Syntax Lesen: <stringVar> = <obj>.TextRange$ (pos1, pos2)

pos1, pos2: Textbereich der gelesen werden soll.

Kompatibilität: alle Textobjekte

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 269

Beispiele. Beachten Sie die Werte in der zweiten Zeile!
a$ = TextObj.TextRange$ (0, 10) ’ die ersten 10 Zeichen
a$ = TextObj.TextRange$ (10, 20) ’ die nächsten 10 Zeichen
a$ = TextObj.TextRange$ (100, 5000) ’ alles ab Zeichen 101

Append

Die Methode Append hängt Text an den vorhandenen Text an.

Syntax Schreiben: <TextObj>.Append <StringExpression>

StringExpression: ein beliebiger Stringausdruck

Kompatibilität: alle Textobjekte

Insert

Die Methode Insert fügt Text an der aktuellen Cursorposition ein. Ist Text selektiert
wird am Anfang des selektierten Bereichs eingefügt. Die Selektion wird dabei
aufgehoben.

Syntax Schreiben: <TextObj>.Insert <StringExpression>

StringExpression: ein beliebiger Stringausdruck

Kompatibilität: alle Textobjekte

ReplaceSelection

Die Methode ReplaceSelection ersetzt den aktuell selektierten Text. Ist nichts
selektiert wird der Text an der Cursorposition eingefügt.

Syntax Schreiben: <TextObj>.ReplaceSelection <StringExpression>

StringExpression: ein beliebiger Stringausdruck

Kompatibilität: alle Textobjekte

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 270

DeleteSelection

Die Methode DeleteSelection löscht den aktuell selektierten Text. Ist nichts
selektiert passiert nichts.

Syntax Schreiben: <TextObj>.DeleteSelection

Kompatibilität: alle Textobjekte

DeleteRange

Die Methode DeleteRange löscht einen bestimmten Textbereich. Der Bereich wird
dabei durch die Cursorpositionen vor (pos1) und nach dem gewünschten Bereich
(pos2) bestimmt. Weitere Hinweise dazu finden Sie bei der Methode TextRange$.

Syntax Lesen: <stringVar> = <obj>.DeleteRange (pos1, pos2)

pos1, pos2: Textbereich der gelöscht werden soll.

Kompatibilität: alle Textobjekte

Beispiele:
TextObj.DeleteRange 0, 10 ’ die ersten 10 Zeichen
TextObj.DeleteRange 100, 5000 ’ alles ab Zeichen 101

ShowCursor

Die Methode ShowCursor scrollt den Text so, dass die aktuelle Cursorposition für
den Nutzer sichtbar ist.

Syntax: <TextObj>.ShowCursor

Kompatibilität: alle Textobjekte

ScrollDown

Die Methode ScrollDown scrollt den Text nach unten.

Syntax: <TextObj>.ScrollDown

Kompatibilität: GenericClass Text-Objekte: Memo, InputLine

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 271

ScrollUp

Die Methode ScrollUp scrollt den Text nach oben.

Syntax: <TextObj>.ScrollUp

Kompatibilität: GenericClass Text-Objekte: Memo, InputLine

Hinweis: VisText Objekte sind nicht scrollbar. Für LargeText-Objekte können Sie
die Methode ScrollCmd des zugehörigen Views benutzen.

Suspend

Die Methode Suspend verhindert eine Neudarstellung, solange bis die Methode
EndSuspend aufgerufen wurde. Das ist sinnvoll, wenn man mehrere Änderungen
(Font, Größe usw.) vornehmen will, bzw. Text Stück für Stück hinzufügt. Dadurch
wird ein Flackern verhindert.

Syntax BASIC- Code: <obj>.Suspend

Kompatibilität: alle Textobjekte

EndSuspend

EndSuspend hebt den mit Suspend gesetzten Zustand wieder auf.

Syntax BASIC- Code: <obj>.EndSuspend

Kompatibilität: alle Textobjekte

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 272

4.10.3 Zeichenattribute

Instancevariable Syntax im UI-Code Im BASIC-Code
fontID fontID = numWert lesen, schreiben
fontSize fontSize = numWert lesen, schreiben
textStyle textStyle = numWert lesen, schreiben
textColor textColor = numWert lesen, schreiben

Per Default lesen die Textobjekte Font und Größe des darzustellenden Textes aus
der GEOS.INI (Kategorie [ui], Einträge "editableTextFontID" und "editable-
TextFontsize"). Damit passen sie sich der GEOS-Installation des Nutzers an.

Es ist jedoch möglich, den Texten eine bestimmte Schriftart, Größe, Farbe und Stil
(sogenannte Zeichenattribute) zuzuweisen. Damit werden die INI-Einträge vom
Textobjekt ignoriert und der Text wird bei allen Nutzern auf die geforderte Weise
dargestellt.

Dabei ist es nötig, folgendes zu wissen:

1. Sie können immer nur dem ganzen Text bestimmte Zeichenattribute zuweisen.
Alle Zeichen werden dann auf diese Weise dargestellt. Die Zuweisung
verschiedener Schriftarten oder Schriftgrößen zu einzelnen Teilen des Textes
ist also nicht möglich.

2. Textobjekte speichern die Zeichenattribute nicht einzeln, sondern in einer
gemeinsamen Datenstruktur. Weisen Sie auch nur ein einziges Zeichenattribut
zu (z.B. die Textfarbe) so wird die Datenstruktur mit allen Zeichenattributen
angelegt. Dabei gelten die folgenden Standardwerte für die nicht explizit
zugewiesenen Attribute:

Font: URW Sans
Größe: 12
Stil: normal
Farbe: schwarz

Beispiel:
Memo NotesText
text$ = "Noch keine Notizen eingetragen."
fontID = FID_MONO
’ fontSize nicht gesetzt --> 12 pt wird verwendet,
’ egal was in der INI steht

textStyle = TS_BOLD + TS_ITALIC
textColor = BLUE
END OBJECT

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 273

fontID

Syntax UI-Code: fontID = idCode
Lesen: <numVar> = <obj>.fontID
Schreiben: <obj>.fontID = idCode

idCode: Numerischer Wert, der den Textfont bestimmt

Kompatibilität: alle Textobjekte

PC/GEOS identifiziert Schriften (Fonts) über eine sogenannte Font-ID-Nummer.
Details dazu finden Sie im Kapitel 2, insbesondere Kapitel 2.2, des Handbuchs
"Spezielle Themen".
Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Für nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

Namentlich verfügbare Font-ID’s in R-BASIC

Name der Konstante Wert GEOS-Name
FID_BISON 2560 Bison (1)

FID_UNIVERSITY 513 University (1)

FID_BERKELEY 514 Berkeley (1)

FID_MONO 6656 URW Mono
FID_SANS 4608 URW Sans
FID_ROMAN 4096 URW Roman
FID_CRANBROOK 4097 Cranbrook
FID_SYMBOLPS 6144 URW SymbolPS

(1)Hinweis: Die Fonts mit den ID’s FID_BISON, FID_UNIVERSITY und
FID_BERKELEY sind Bitmap-Fonts, die sich nicht zur Ausgabe auf den Drucker
eignen. Achtung! Die Kombination von Bitmap-Fonts mit bestimmten, nicht von
diesem Font unterstützten Stilkombinationen kann zum Systemabsturz führen.

Einige weitere Font-ID’s ohne vordefinierten Namen in R-BASIC:
1563 LED (Bitmap-Font)
53006 Fat Fracture
5632 Superb
4612 Sather Gothic
5123 Shattuck Avenue

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 274

fontSize

FontSize stellt die Schriftgröße ein. Zulässig sind Werte von 4 bis 792.

Syntax UI-Code: fontSize = size
Lesen: <numVar> = <obj>.fontSize
Schreiben: <obj>.fontSize = size

size: Numerischer Wert, Schriftgröße

Kompatibilität: alle Textobjekte

Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Für nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

textStyle

TextStyle stellt den Textstil ein.

Syntax UI-Code: textStyle = style
Lesen: <numVar> = <obj>.textStyle
Schreiben: <obj>.textStyle = style

size: Numerischer Wert, Textstil
Kombination von TS_ Konstanten, siehe Tabelle

Kompatibilität: alle Textobjekte

Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Für nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

Textstile zur Benutzung mit textStyle

Textstil Wert Bedeutung
TS_UNDERLINE 1 unterstrichene Schrift
TS_STRIKE_THRU 2 durchgestrichene Schrift
TS_SUBSCRIPT 4 tiefgestellte Schrift Schrift

TS_SUPERSCRIPT 8 hochgestellte Schrift Schrift

TS_ITALIC 16 kursive Schrift
TS_BOLD 32 fette Schrift
TS_OUTLINE 64 Wenn der Font sowohl Bitmap- und als auch

Outline-Schrift enthält: Verwendung der
Outline Schrift erzwingen

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 275

textColor

TextColor stellt die Textfarbe ein. Zulässig sind nur Indexfarben (0 bis 255).

Syntax UI-Code: textColor = farbwert
Lesen: <numVar> = <obj>.textColor
Schreiben: <obj>.textColor = farbwert

farbwert: Numerischer Wert, Textfarbe (0 ... 255)

Kompatibilität: alle Textobjekte

Bitte beachten Sie, dass fontID, fontSize, textStyle und textColor vom Textobjekt
in einer gemeinsamen Datenstruktur gespeichert werden. Für nicht explizit belegte
Zeichenattribute wird ein Standardwert verwendet.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 276

4.10.4 Absatzattribute

Unter Absatzattributen versteht man die Merkmale Texthintergrundfarbe,
Textausrichtung, Zeilenabstand, Ränder und Absatzzwischenräume. Sie können
immer nur dem ganzen Text bestimmte Absatzattribute zuweisen. Alle Absätze
werden immer auf diese Weise dargestellt.

Folgende Instancevariablen stehen für die Absatzattribute zur Verfügung:

Instancevariable Syntax im UI-Code Im BASIC-Code
backColor backColor = numWert lesen, schreiben
justifyText justifyText = numWert lesen, schreiben
lineSpacing lineSpacing = numWert lesen, schreiben
margins margins = left, right [, first] lesen, schreiben
topSpace topSpace = numWert lesen, schreiben

Beispiel:
Memo NotesText
text$ = "Noch keine Notizen eingetragen."
backColor = WITHE
justifyText = J_CENTER
topSpace = 10
END OBJECT

backColor

BackColor stellt die Hintergrundfarbe des Textobjekts ein. Zulässig sind nur
Indexfarben (0 bis 255).
Ist kein Wert für backColor gesetzt so wird die System-Hintergrundfarbe (z.B.
Grau) verwendet. <obj>.backColor liefert dann -1.

Syntax UI-Code: backColor = farbwert
Lesen: <numVar> = <obj>.backColor
Schreiben: <obj>.backColor = farbwert

farbwert: Numerischer Wert, Hintergrundfarbe (0 ... 255)

Kompatibilität: alle Textobjekte

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 277

justifyText

JustifyText stellt die Textausrichtung ein. Der Defaultwert ist J_LEFT.

Syntax UI-Code: justifyText = jText
Lesen: <numVar> = <obj>.justifyText
Schreiben: <obj>.justifyText = jText

jText: Numerischer Wert, Ausrichtung
Zulässige Wert: Siehe Tabelle

Kompatibilität: alle Textobjekte

Zulässige Werte für justifyText:

Konstante Wert Bedeutung
J_CENTER 1 Text zentrieren
J_LEFT 2 Text linksbündig
J_RIGHT 4 Text rechtsbündig
J_FULL 32 Blocksatz

lineSpacing

LineSpacing stellt den Zeilenabstand ein. Der Defaultwert (kein Wert für
lineSpacing gesetzt) ist 1.

Syntax UI-Code: lineSpacing = abstand
Lesen: <numVar> = <obj>.lineSpacing
Schreiben: <obj>.lineSpacing = abstand

abstand: Numerischer Wert vom Typ Real
z.B. 1 (einzeilig), 1.5 oder 2 (zweizeilig)

Kompatibilität: alle Textobjekte

Hinweis: Wenn Sie "krumme" Werte (z.B. 1.15) für lineSpacing verwenden, kann
es passieren, dass ein falscher Bereich selektiert wird, wenn Sie eine Textzeile mit
einem Dreifachklick selektieren. Das liegt nicht an R-BASIC. Selektieren Sie dann
den gewünschten Text durch Ziehen mit der Maus. Wenn die Funktion für Sie
wichtig ist, müssen Sie probieren, ob der eingestellte Wert funktioniert. Für read-
only Texte gibt es keine Einschränkungen.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 278

margins

Margins stellt die Ränder für den Text ein. Dabei kann der linke Einzug für die
erste Zeile unabhängig vom linken Rand gewählt werden. Lassen Sie den
Parameter first weg, gilt first=left, d.h. die erste Zeile beginnt dort, wo auch alle
anderen Zeilen beginnen.
Die Maßeinheit für die Ränder ist 1/12 Punkt, also sehr klein. Um einen linken
Rand von 12 Punkt Breite zu erzeugen müssen Sie also einen Wert von 144
angeben.

Syntax UI-Code: margins = left, right [, first]
Lesen: <numVar> = <obj>.margins (n)

n = 0: linker Rand
n = 1: rechter Rand
n = 2: Einzug erste Zeile

Schreiben: <obj>.margins = left, right [, first]
left: linker Rand
right: rechter Rand
first: Einzug 1. Zeile (Default: wie left)

Kompatibilität: alle Textobjekte

Beispiel:
Memo NotesText
text$ = "Noch keine Notizen eingetragen."
margins = 144, 144 ’ je 12 Punkt
END OBJECT

topSpace

TopSpace (engl.: Oberer Abstand, hier Abstand über dem Absatz) stellt den
zusätzlichen Platz zwischen zwei durch einen Zeilenumbruch (Entertaste)
getrennten Absätzen ein.
Die Maßeinheit hierfür ist 1/12 Punkt, also sehr klein. Um einen Abstand von 12
Punkt zu erzeugen müssen Sie also einen Wert von 144 angeben.

Syntax UI-Code: topSpace = anstand
Lesen: <numVar> = <obj>.topSpace
Schreiben: <obj>.topSpace = abstand

abstand: Numerischer Wert, Absatzabstand.

Kompatibilität: alle Textobjekte

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 279

4.10.5 Textfilter

Mit Hilfe der Textfilter können Sie festlegen, dass der Nutzer nur Zeichen
eingeben kann, die bestimmten Kriterien genügen. Das ist z.B. sinnvoll, wenn der
Nutzer einen Dateinamen eingeben soll. Der entsprechende Textfilter stellt sicher,
dass nur Zeichen eingegeben werden können, die in Dateinamen auch erlaubt
sind.

Instancevariable Syntax im UI-Code Im BASIC-Code
textFilter textFilter = numWert lesen, schreiben

Wichtig! Textfilter wirken nur auf Zeichen, die über die Tastatur eingegeben
werden. Weder der bereits vorhandene Text noch Änderungen der Instance-
variable text$ werden beeinflusst!

Syntax UI-Code: textFilter = wert
Lesen: <numVar> = <obj>.textFilter
Schreiben: <obj>.textFilter = wert

 wert: Einer der Filterwerte entsprechend der Tabelle,
gegebenenfalls kombiniert mit einem der Modifier-Bits
entsprechend der zweiten Tabelle.

Kompatibilität: alle Textobjekte

Die folgenden Textfilter stehen zur Verfügung:

Konstante Wert
TF_NONE 0
TF_NORMAL_ASCII 1
TF_DOS_CHARACTER_SET 2
TF_ALPHA 3
TF_ALPHA_NUMERIC 4
TF_DASHED_ALPHA_NUMERIC 5
TF_NUMERIC 6
TF_SIGNED_NUMERIC 7
TF_SIGNED_DECIMAL 8
TF_FLOAT_DECIMAL 9
TF_LEGAL_FILENAMES 10
TF_LEGAL_DOS_FILENAMES 11
TF_LEGAL_DOS_PATH 12
TF_LEGAL_DOS_VOLUME_NAMES 13
TF_DATE 14
TF_TIME 15

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 280

Zusätzlich gibt es Filter-Modifier Bits. Diese können gemeinsam mit den anderen
Textfiltern verwendet werden um deren Eigenschaften zu modifizieren.

Konstante Wert (hex) Wert (dez)
TF_MAKE_UPPERCASE &h100 512
TF_ALLOW_SPACES &h200 1024
TF_NO_SPACES &h400 2048

Beispiel:
InputLine NameText
textFilter = TF_ALPHA + TF_MAKE_UPPERCASE + TF_NO_SPACES
End Object

Wirkung der einzelnen Filter

TF_NONE
Das ist der Default Wert. Es ist kein spezieller Filter gesetzt.

TF_NORMAL_ASCII
Dieser Filter erlaubt nur normale ASCII-Zeichen. Erweiterte ASCII-Zeichen, also
auch Umlaute, sind nicht erlaubt.

TF_DOS_CHARACTER_SET
Dieser Filter erlaubt nur Zeichen aus dem Standard-DOS-Zeichensatz.

TF_ALPHA
Dieser Filter erlaubt nur Buchstaben und Leerzeichen.

TF_ALPHA_NUMERIC
Dieser Filter erlaubt nur Buchstaben, Zahlen und Leerzeichen.

TF_DASHED_ALPHA_NUMERIC
Dieser Filter erlaubt nur Buchstaben, Zahlen und Leerzeichen sowie den
Bindestrich

TF_NUMERIC
TF_SIGNED_NUMERIC

Diese Filter erlauben nur Zeichen, die in den entsprechenden numerischen
Werten vorkommen können. Leerzeichen sind erlaubt.

TF_SIGNED_DECIMAL
TF_FLOAT_DECIMAL

Diese Filter erlauben nur Zeichen, die in den entsprechenden numerischen
Werten vorkommen können. Leerzeichen sind nicht erlaubt. Der Dezimaltrenner
hängt von den Einstellungen des Systems ab, in Deutschland ist es üblicher

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 281

Weise das Komma. Das weicht von R-BASIC Konventionen ab, hier ist der
Dezimaltrenner immer ein Punkt.

TF_LEGAL_FILENAMES
Dieser Filter erlaubt nur Zeichen, die in GEOS Dateinamen vorkommen können.

TF_LEGAL_DOS_FILENAMES
Dieser Filter erlaubt nur Zeichen, die in DOS Dateinamen vorkommen können.

TF_LEGAL_DOS_PATH
Dieser Filter erlaubt nur Zeichen, die in DOS Pfaden vorkommen können. Er
kann mit TF_ALLOW_SPACES kombiniert werden.

TF_LEGAL_DOS_VOLUME_NAMES
Dieser Filter erlaubt nur Zeichen, die in DOS Volumenamen vorkommen
können.

TF_DATE
TF_TIME

Dieser Filter erlaubt nur Zeichen, die in Datum und Uhrzeit vorkommen können
sowie Leerzeichen. Wichtig! Welche Zeichen das sind, hängt von den lokalen
Einstellungen ab.

Bedeutung der Filter-Modifier Bits

TF_MAKE_UPPERCASE
Dieser Filter bewirkt, wenn er gemeinsam mit einem der anderen Filter
angewendet wird, dass alle Buchstaben in Großbuchstaben umgewandelt
werden. Er wirkt nicht auf Umlaute und Sonderzeichen.

TF_ALLOW_SPACES
TF_NO_SPACES

Diese Filter bestimmen, ob Leerzeichen erlaubt sind oder nicht.
TF_ALLOW_SPACES wird von VisText und LargeText nicht unterstützt.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 282

4.10.6 Textobjekt Actions

Instancevariable Syntax im UI-Code Im BASIC-Code
modified modified = numWert lesen, schreiben
ApplyHandler (*) ApplyHandler = <Handler> nur schreiben
OnModified OnModified = <Handler> nur schreiben
OnSelectionChanged OnSelectionChanged = <Handler> nur schreiben

(*) ActionHandler stehen nur für die GenericClass Objekte Memo und InputLine
zur Verfügung.

Action-Handler-Typen:
Handler-Typ Parameter
TextAction (sender as object, isModified as integer, textLen as word,

selectionLen as word)

Anmerkungen zu TextAction

Die Parameter isModified, textLen und selectionLen sind normalerweise eine
Kopie der entsprechenden Instancevariablen des Objekts. Der Zugriff auf die
Parameter ist wesentlich schneller als der direkte Zugriff auf die zugehörigen
Instancevariablen.
Die Ausnahme sind LargeText Objekte. Weil textLen und selectionLen vom Typ
word sind, können sie in vielen Fällen die korrekten Werte für ein LargeText-
Objekt nicht aufnehmen. Deswegen sind diese beiden Parameter immer Null,
wenn der Handler von einem LargeText-Objekt gerufen wurde.

Anmerkung zu Focus und Target

Textobjekte gehören zu den seltenen Fällen, in denen der Programmierer die
Focus- und Targethierarchie benutzt. Deswegen wegen finden Sie am Ende des
Kapitels ein entsprechendes Beispiel.

Beschreibung der Instancevariablen

modified

Die Instance-Variable modified enthält die Information, ob der Text seit dem
letzten Aussenden der Apply-Message (Aufruf des Apply-Handlers) vom Nutzer
modifiziert wurde (modified=TRUE) oder nicht (modified=FALSE). Textobjekte
eines neu gestarteten Programms sind zunächst ebenfalls "nicht modified".

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 283

Syntax UI-Code: modified = TRUE | FALSE
Lesen: <numVar> = <obj>.modified
Schreiben: <obj>.modified = TRUE | FALSE

Kompatibilität: alle Textobjekte

Beachten Sie, dass ein Verändern des Textes vom BASIC-Code aus (z.B.
Belegen der Instance-Variable text$), den Text nicht als "modified" markiert, d.h.
der Wert der Instance-Variablen modified wird nicht verändert. Sie können dies
bei Bedarf selbst machen, indem Sie die Anweisung "<obj>.modified = TRUE"
verwenden.
Das Aussenden der Apply-Message setzt den Modified-Status zurück (modified =
FALSE).

ApplyHandler

Die Instance-Variable ApplyHandler enthält den Namen des Action-Handlers, der
aufgerufen wird, wenn der Text sein Änderungen anwenden will (engl. to apply:
Anwenden). Apply-Handler müssen als TextAction deklariert sein.

Syntax UI- Code: ApplyHandler = <Handler>
Schreiben: <obj>.ApplyHandler = <Handler>

Kompatibilität: Nur GenericClass Textobjekte Memo und InputLine

Beachten Sie: Der Apply-Handler wird nur aufgerufen, wenn der Text "modified",
d.h. vom Nutzer verändert ist. Dies passiert automatisch, wenn der Nutzer den
Text ändert, Sie können es aber auch vom BASIC Code aus machen, indem Sie
die Instance-Variable modified mit TRUE belegen.

• InputLine-Objekte haben im Allgemeinen einen Apply-Handler. Er wird
aufgerufen, wenn der Nutzer nach Eingabe eines Textes im Eingabefeld auf die
Entertaste drückt.

• Memo-Objekte haben häufig keinen Apply-Handler.

• VisText und LargeText-Objekte können keinen Apply-Handler haben.

• Sie können ein GenericClass Textobjekt (Memo und InputLine) veranlassen,
seinen Apply-Handler aufzurufen, indem Sie die von der GenericClass geerbte
Methode Apply verwenden. Das Objekt muss aber als "modified" markiert
(siehe oben). Alternativ könnte man dem Objekt auch den Hint
ApplyEvenIfNotModified geben. Eine ausführliche Beschreibung dazu finden Sie
im Kapitel 3.4 (Die "Apply"-Message) dieses Handbuchs.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 284

SUB ForceApply (obj as OBJECT)
obj.modified = TRUE’ zu Sicherheit!
obj.Apply
END SUB

OnModified

Gelegentlich benötigt man eine Information, wenn ein Textobjekt durch eine
Nutzereingabe vom "nicht modified" in den "modified" Zustand übergeht. Die
Instance-Variable OnModified enthält den Namen des Action-Handlers, der
aufgerufen wird, wenn das Textobjekt erstmalig nach Aussenden der letzten
Apply-Message vom Nutzer verändert wird. OnModified-Handler müssen als
TextAction deklariert sein.

Syntax UI- Code: OnModified = <Handler>
Schreiben: <obj>.OnModified = <Handler>

Kompatibilität: alle Textobjekte

Das Aussenden der Apply-Message setzt den "modified" Zustand des Textobjekt
zurück. Gibt der Nutzer nun Text ein, so wird der OnModified-Handler aufgerufen.
Das heißt im Umkehrschluss, dass der OnModified-Handler in folgenden Fällen
nicht gerufen wird:
• Setzen der modified Instance-Variable vom BASIC Code aus.
• Verändern des Textes vom BASIC-Code aus (z.B. Belegen der Instance-

Variable text$).
• Die Instance-Variable modified steht bereits auf TRUE, z.B. weil sie vom BASIC-

Code aus gesetzt wurde, bevor der Nutzer etwas eingegeben hat.
Beispiel: Textobjekt mit Apply- und OnModified-Handler. Der Nutzer soll einen
Dateinamen eingeben und ihn durch Drücken der Entertaste im Textobjekt
"anwenden" können. Oder er soll einen extra Button dazu verwenden. Dieser soll
aber erst aktiv sein, nachdem der Nutzer etwas eingegeben hat. Die SUB
"DoSaveFile" muss natürlich irgendwo definiert sein und wird hier nicht mit
aufgeführt.

UI-Code
Button SaveFileButton
Caption$ = "Save File"
ActionHandler = ButtonSaveFile
enabled = FALSE ’ Zunächst inaktiv
END Object

InputLine FileNameText
maxLen = 32 ’ max. 32 Zeichen sinnvoll
textFilter = TF_LEGAL_FILENAMES ’ ungültige Zeichen blocken
ApplyHandler = TextSaveFile
OnModified = TextIsModified
END Object

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 285

BASIC-Code
ButtonAction ButtonSaveFile
DoSaveFile ’ macht die Arbeit
END Action

TextAction TextSaveFile
DoSaveFile ’ macht die Arbeit
END Action

TextAction TextIsModified
SaveFileButton.enabled = TRUE ’ Button freischalten
END Action

OnSelectionChanged

Wenn man ein "Edit" Menü implementieren will benötigt man die Information, ob
der Nutzer Text selektiert hat oder nicht und ob er den Selektionsstatus verändert.
Die Instancevariable OnSelectionChanged enthält den Namen des
Actionhandlers, der aufgerufen wird, wenn der Nutzer zwischen "nichts selektiert"
und "etwas selektiert" wechselt. OnSelectionChanged Handler müssen als
TextAction deklariert sein. Um herauszufinden, ob Text selektiert ist oder nicht
sollten Sie den Parameter "selectionLen" abfragen. Bei LargeText Objekten
müssen Sie die Instancevariable selectionLen direkt abfragen, weil der an den
Handler übergebene Parameter selectionLen hier immer Null ist.

Syntax UI- Code: OnSelectionChanged = <Handler>
Schreiben: <obj>.OnSelectionChanged = <Handler>

Kompatibilität: alle Textobjekte

Beispiel: Einen "Kopieren" Button im Edit Menü verwalten.

UI-Code
Button CopyButton
Caption$ = "Kopieren"
ActionHandler = DoCopyText ’ woanders implementiert
enabled = FALSE ’ Anfangs inaktiv
END Object

Memo InfoText
OnSelectionChanged = HandleSelection
END Object

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 286

BASIC-Code
TextAction HandleSelection
IF selectionLen THEN ’ d.h. selectionLen <> 0
CopyButton.enabled = TRUE

ELSE
CopyButton.enabled = FALSE

END IF
END Action

Beispiel für die Verwendung des OnTargetChanged-Handlers
Wenn das Programm wissen muss, welches Text-Objekt gerade aktiv ist, bietet
sich der OnTargetChanged-Handler an. Im Beispiel wird ein Number-Objekt
verwendet, um die Größe des Fonts im aktiven Text-Objekt anzuzeigen.

UI-Code:
Memo Text1
fontSize = 14 : fontID = FID_MONO
defaultFocus ’ ja, Focus
OnTargetChanged = HandleTarget

End Object

Memo Text2
fontSize = 24 : fontID = FID_SANS
OnTargetChanged = HandleTarget

End Object

Number PointInfoNumber
Caption$ = "Aktuelle Font Größe:"

End Object

BASIC-Code
TargetAction HandleTarget
if state = FALSE THEN RETURN ’ Target verloren? Ignorieren.
PointInfoNumber.value = sender.fontSize ’ UI updaten

End Action

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 287

4.10.7 Verhalten und Aussehen von Textobjekten

Um das Aussehen und das Verhalten der GenericClass Textobjekte Memo und
InputLine in bestimmten Situationen zu steuern, stehen die folgenden Instance-
variablen zur Verfügung.
VisText und LargeText Objekte werden in einem visual Tree verwaltet. Für diese
Objekte steht nur textAttrs mit genau einem Attribut zur Verfügung.

Instancevariable Syntax im UI-Code Im BASIC-Code
Memo, InputLine
TextFrame TextFrame ––
TextNoFrame TextNoFrame ––
SelectableIfRO SelectableIfRO ––
textAttrs (*) textAttrs = numWert lesen, schreiben

(*) textAttrs steht mit Einschränkungen auch für VisText und LargeText-Objekte
zur Verfügung.

TextFrame

Der Hint TextFrame bewirkt, dass das Textobjekt immer mit einem Rahmen
gezeichnet wird. Read-Only Textobjekte haben normalerweise keinen Rahmen.

Syntax UI-Code: TextFrame

Kompatibilität: Nur GenericClass Textobjekte Memo und InputLine

TextNoFrame

Der Hint TextNoFrame bewirkt, dass das Textobjekt immer ohne Rahmen
gezeichnet wird. Editierbare Texte haben normalerweise einen Rahmen.

Syntax UI-Code: TextNoFrame

Kompatibilität: Nur GenericClass Textobjekte Memo und InputLine

SelectableIfRO

Der Hint SelectableIfRO (selektierbar, auch wenn Read-Only) bewirkt, dass der
Nutzer read-only Texte mit der Maus selektieren kann. Drag und Drop ist dann
möglich.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 288

Syntax UI-Code: SelectableIfRO

Kompatibilität: Nur GenericClass Textobjekte Memo und InputLine

textAttrs

Die Instancevariable textAttrs enthält eine Reihe von Flagbits, die das Verhalten
und die Eigenschaften des Textobjekts in bestimmten Situationen bestimmen.
Jedes Bit hat eine eigene Bedeutung. Die verschiedenen Werte können mit + oder
OR verknüpft werden. Die folgende Tabelle enthält die für textAttrs definierten
Bitwerte. Hier nicht angegebene Werte sind intern reserviert und sollten nicht
benutzt werden. Per Default ist das Bit TA_USE_TAB_FOR_NAVIGATION für
Memo und InputLine gesetzt.
VisText und LargeText unterstützen nur genau ein Attribut, nämlich TA_USE_
TAB_FOR_NAVIGATION. Dieses Bit ist für VisText und LargeText per Default
aber nicht gesetzt.

Hinweis: R-BASIC unterstützt die im PC/GEOS-SDK definierten Attribute. Ob ein
bestimmtes Attribut oder eine Attributkombination im konkreten Fall wirkt hängt
manchmal von den konkreten Umständen ab. Beispielsweise setzen einige Flags
(z.B. TA_SELECT_TEXT) setzen voraus, dass der Hint defaultFocus gesetzt ist.
Oder der Hint fixedSize verhindert trotz gesetzten TA_NEVER_SCOLLABLE, dass
das Textobjekt seine Größe an den aktuellen Text anpasst.

Konstante Wert (hex) Wert (dez)
TA_DONT_SCROLL_TO_CHANGES &h02 2
TA_TAIL_ORIENTED &h04 4
TA_ALLOW_TEXT_OFF_END &h08 8
TA_NO_WORD_WRAPPING &h10 16
TA_INIT_SCROLLING &h20 32
TA_USE_TAB_FOR_NAVIGATION &h40 64
TA_NEVER_SCROLLABLE &h100 256
TA_SELECT_TEXT &h200 512
TA_CURSOR_AT_START &h400 1024
TA_CURSOR_AT_END &h800 2048

Syntax UI-Code: textAttrs = wert
Lesen: <numVar> = <obj>.textAttrs
Schreiben: <obj>.textAttrs = wert

 wert: Kombination aus den Bitwerten entsprechend der Tabelle.
Für VisText und LargeText wird nur das Bit TA_USE_TAB
_FOR_NAVIGATION unterstützt. Alle anderen Werte
werden ignoriert.

Kompatibilität: alle Textobjekte

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 289

Beispiele:
Memo InfoText
textAttrs = TA_INIT_SCROLLING OR TA_USE_TAB_FOR_NAVIGATION
’ Statt + kann man auch die logische Operation OR
’ verwenden

End Object

InputLine OtherText
defaultFocus
textAttrs = TA_SELECT_TEXT
’ Weil TA_USE_TAB_FOR_NAVIGATION nicht angegeben ist
’ wird die Tabulatortaste nicht zum Anspringen des
’ nächsten UI-Objekts verwendet.

End Object

Bedeutung der einzelnen Flagbits:

TA_DONT_SCROLL_TO_CHANGES
Per Default scrollen Textobjekte automatisch zu der Position, an der
Änderungen am Text, z.B. Einfügen oder Löschen, vorgenommen werden.
Dieses Flag schaltet dieses Verhalten aus.

TA_TAIL_ORIENTED
Dieses Flag sollte gesetzt sein, wenn Sie möchten, dass das Objekt das
Textende anzeigt (engl. tail: Schwanz), statt den Beginn des Textes. In einer
scrollbaren Textbox bewirkt es, dass Text, der am Ende angefügt wird, immer
angezeigt wird.

TA_ALLOW_TEXT_OFF_END
Dieses Flag ermöglicht es, dass der Text größer ist, als von der Textbox
dargestellt werden kann, ohne dass die Textbox vertikale oder horizontale
Rollbalken erzeugt.

TA_NO_WORD_WRAPPING
Dieses Flag schaltet den Wortweisen Zeilenumbruch (Word wrapping) aus.
Stattdessen erfolgt ein Zeilenumbruch auch mitten im Wort.

TA_INIT_SCROLLING
Dieses Flag bewirkt, dass der Text immer Rollbalken hat, auch wenn dies nicht
erforderlich ist.

TA_USE_TAB_FOR_NAVIGATION
Dieses Flag zeigt an, dass die Tabulatortaste zum Anspringen des nächsten
UI-Objekts benutzt werden soll, statt ein Tabulatorzeichen im Text zu
speichern. Für Memo und InputLine ist es das einzige Flag, dass per Default
gesetzt ist.
Für VisText und LargeText ist es das einzige unterstütze Flag und es ist per
Default nicht gesetzt.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 290

TA_NEVER_SCROLLABLE
Dieses Flag bewirkt, dass das Textobjekt bei länger werdendem Text seine
Größe ändern soll, statt Rollbalken zu erzeugen.

TA_SELECT_TEXT
Dieses Flag bewirkt, dass Textobjekte, die den Hint defaultFocus gesetzt
haben, ihren Text zum Programmstart komplett selektieren sollen. Das
erleichtert es dem Nutzer, ihn komplett zu ersetzen.

TA_CURSOR_AT_START
Dieses Flag bewirkt, dass Textobjekte, die den Hint defaultFocus gesetzt
haben, den Cursor am Textanfang positionieren.

TA_CURSOR_AT_END
Dieses Flag bewirkt, dass Textobjekte, die den Hint defaultFocus gesetzt
haben, den Cursor am Textende positionieren.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 291

4.10.8 Textobjekte im Delayed Mode

Die Textobjekte Memo und InputLine können im "Delayed Mode" (engl.:
verzögerter Modus) arbeiten. Dazu muss man dem Objekt selbst bzw. einem
seiner Parents im UI-Code den Hint MakeDelayedApply geben oder man bindet
das Objekt als Child in einem Dialog ein, dessen dialogType Instance Variable
auf DT_DELAYED_APPLY gesetzt ist. Dieser "Delayed Mode" ist ausführlich im
Kapitel 3.4.2 (Delayed Mode und Status-Message) dieses Handbuchs
beschrieben, eine Beschreibung des Dialog-Objekts im Delayed Mode finden Sie
im Kapitel 4.6.6.5.

Instance Variable Syntax im UI-Code Im BASIC-Code
StatusHandler StatusHandler = <Handler> nur schreiben

Syntax UI- Code: StatusHandler = <Handler>
Schreiben: <obj>.StatusHandler = <Handler>

Kompatibilität: Nur GenericClass Textobjekte Memo und InputLine

Der StatusHandler wird im Delayed Mode statt des ApplyHandlers gerufen, wenn
der Nutzer z.B. nach Eingabe eines Textes in einem InputLine-Objekt auf die
Entertaste drückt. Der ApplyHandler hingegen wird erst auf Anforderung gerufen
(siehe Kapitel 3.4.2).

Die Instance-Variable modified kann einen Wert ungleich Null enthalten, nämlich
dann, wenn der Text vom User modifiziert wurde, der ApplyHandler aber noch
nicht gerufen wurde. Der Aufruf des ApplyHandlers setzt auch im Delayed Mode
den modified-Status zurück.

Methode Aufgabe
SendStatus Status-Handler aufrufen

Syntax BASIC-Code: <obj>.SendStatus

Kompatibilität: Nur GenericClass Textobjekte Memo und InputLine

Die Methode SendStatus fordert das Objekt auf, seinen StatusHandler aufzurufen
(d.h. seine Status-Message zu senden).

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 292

4.10.9 VisText und LargeText

Die VisualClass Objekte VisText und LargeText müssen als Children eines
VisContent in einem View verwendet werden. VisText-Objekte dienen dazu, Text
gemeinsam mit Grafikelementen anzuzeigen oder einzugeben. LargeText-Objekte
müssen Sie verwenden, wenn Sie große Textmengen (mehr als 4000 Zeichen)
darstellen oder bearbeiten wollen.
Für alle anderen Zwecke sollten Sie die GenericClass-Objekte Memo oder
InputLine verwenden.

4.10.9.1 VisText

VisText-Objekte werden ähnlich wie VisObj-Objekte verwendet. Die notwendigen
Informationen dazu finden Sie in den Kapiteln 5.3 (VisGroup), 5.4 (VisContent)
und 5.5 (VisObj). Sie können Objekte der Klassen VisObj und VisText innerhalb
eines Visual Tree beliebig mischen. Allerdings können VisText-Objekte keine
Children haben. Deswegen werden die diesbezüglichen Instancevariablen von
VisText-Objekten nur unterstützt, wenn sie die eigene Größe betreffen.

Zusätzlich zu den Text-spezifischen Instancevariablen unterstützen VisText-
Objekte die folgenden Instancevariablen:

Eigene Instancevariablen
Variable Syntax im UI-Code Im BASIC-Code

 visTextFrame visTextFrame = width [, col [, dis [, st]]] lesen, schreiben
 visTextFrameOptions visTextFrame = yAdd [, fill] lesen, schreiben

Einige der bei der VisGroup Class (Kapitel 5.3) bzw. der VisObj Class (Kapitel 5.5)
beschriebenen Instancevariablen sind auch für VisText-Objekte verfügbar. Ihre
wesentlichen Eigenschaften werden im Folgenden kurz beschrieben.

Variable Syntax im UI-Code Im BASIC-Code
drawable drawable = TRUE | FALSE lesen, schreiben
detectable detectable = TRUE | FALSE lesen, schreiben
managed managed = TRUE | FALSE lesen, schreiben
visPosition visPosition = xPos, yPos lesen, schreiben
xPosition, yPosition –– nur lesen
visSize visSize = width, height lesen, schreiben
xSize, ySize –– nur lesen

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 293

visTextFrame

Die Instancevariable visTextFrame legt fest, ob ein Rahmen um das Objekt
gezeichnet werden soll. Das entspricht in etwa der Instancevariablen TextFrame
bei GenericClass Textobjekten.

Syntax UI-Code: visTextFrame = width [, color [, dist [, style]]
Lesen: <numVar> = <obj>.visTextFrame (0) ’ width

<numVar> = <obj>.visTextFrame (1) ’ color
<numVar> = <obj>.visTextFrame (2) ’ dist
<numVar> = <obj>.visTextFrame (3) ’ style

Schreiben: <obj>.visTextFrame = width [, color [, dist [, style]]

width: Breite des Rahmens. Defaultwert: 0 (kein Rahmen)
color: Farbe des Rahmens. Defaultwert: 0 (BLACK)
dist: Abstand des Rahmens vom Text-Objekt. Defaultwert: 0
style: Linienstil, siehe Tabelle. Defaultwert: LS_SOLID

Alle Parameter sind vom Datentyp Byte. Beachten Sie, dass der Rahmen
außerhalb des Objekts gezeichnet wird. Ein 2 Pixel breiter Rahmen mit einem
Abstand (dist) von 1 vergrößert den Platzbedarf des Objekts um 3 Pixel in jede
Richtung.

Erlaubte Linienstile für den Parameter style:

Wert Konstante Bedeutung
 0 LS_SOLID durchgehend
 1 LS_DASHED gestrichelt
 2 LS_DOTTED gepunktet
 3 LS_DASHDOT Strich-Punkt
 4 LS_DASDDOT Strich-Doppelpunkt

visTextFrameOptions

Die Instancevariable visTextFrameOptions modifiziert den Rahmen (visText-
Frame) um ein VisText Objekt.
Mit dem Parameter yAdd wird die obere Kante des Rahmens um yAdd Pixel nach
oben verschoben. Damit können Sie einem umrahmten Text ein gefälligeres
Aussehen geben. Der Rahmen wird dadurch höher, die untere Kante wird nicht
verschoben. yAdd ist vom Datentyp Byte.
Wenn Sie den Parameter fill auf TRUE setzen, dann wird der Bereich zwischen
dem Objekt und dem Rahmen mit der Text-Hintergrundfarbe gefüllt. Ansonsten ist
dieser Bereich transparent. Die Einstellung fill = TRUE ist nur sinnvoll, wenn mit
visTextFrame oder mit dem Parameter yAdd ein Abstand zwischen dem Rahmen
und dem Objekt eingestellt wurde und sich das Objekt vor einem Hintergrund mit
einer abweichenden Farbe befindet.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 294

Syntax UI-Code: visTextFrameOptions = yAdd [, fill]
Lesen: <numVar> = <obj>.visTextFrameOptions (0) ’ yAdd

<numVar> = <obj>.visTextFrameOptions (1) ’ fill
<numVar> = <obj>.visTextFrame (2) ’ dist
<numVar> = <obj>.visTextFrame (3) ’ style

Schreiben: <obj>.visTextFrame = yAdd [, fill]

yAdd: Verschiebung der oberen Rahmenkante nach oben.
Defaultwert: 0 (keine Verschiebung)

fill: Füllen des Bereichs zwischen Objekt und Rahmen mit der
Text-Hintergrundfarbe
Defaultwert: FALSE (keine Füllung)

Beispiele für visTextFrame und visTextFrameOptions:

visTextFrame = 1, RED visTextFrame = 1, RED visTextFrame = 1, RED

visTextFrameOptions = 10 visTextFrameOptions = 10, TRUE

drawable

Die Instancevariable drawable bestimmt, ob das Objekt auf den Bildschirm
gezeichnet wird oder nicht. Das entspricht in etwa der Instancevariablen visible bei
GenericClass Objekten. Allerdings wird das Objekt weiterhin bei der Berechnung
der Geometrie berücksichtigt, auch wenn drawable auf FALSE gesetzt ist.
Siehe auch: Kapitel 5.5.2 VisObj: Grundlegende Fähigkeiten

Syntax UI-Code: drawable = TRUE | FALSE
Lesen: <numVar> = <obj>.drawable
Schreiben: <obj>.drawable = TRUE | FALSE

detectable

Die Instancevariable detectable bestimmt, ob das Objekt auf Maus- und
Tastaturereignisse reagieren soll, oder nicht. Das entspricht in etwa der
Instancevariablen readOnly bei GenericClass Objekten.
Siehe auch: Kapitel 5.5.2 VisObj: Grundlegende Fähigkeiten

Syntax UI-Code: detectable = TRUE | FALSE
Lesen: <numVar> = <obj>.detectable
Schreiben: <obj>.detectable = TRUE | FALSE

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 295

managed

Die Instancevariable managed legt fest, ob die Position des Objekts vom Geo-
metriemanager verwaltet werden soll, oder nicht. Setzen Sie den Wert auf FALSE,
so wird der Geometriemanager das Objekt ignorieren. Sie müssen dann einen
Wert für visPosition setzen.
Sie können den Wert auch auf TRUE lassen, wenn das zugehörige VisContent im
Modus customManageChildren arbeitet.
Siehe auch: Kapitel 5.5.2 VisObj: Grundlegende Fähigkeiten

Syntax UI-Code: managed = TRUE | FALSE
Lesen: <numVar> = <obj>.managed
Schreiben: <obj>.managed = TRUE | FALSE

visPosition

Die Instance-Variable visPosition enthält die aktuelle Position des Objekts, relativ
zu seinem VisContent.
Siehe auch: 5.3.2.1 VisGroup: Größe und Position

Syntax UI-Code: visPosition = xPos, yPos
xPos: x-Position
yPos: y-Position

Lesen: <numVar> = <obj>.visPosition(0) ’ xPos
<numVar> = <obj>.visPosition(1) ’ yPos

Schreiben: <obj>.visPosition = xPos, yPos [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung (Move-To-Funktion)

visSize

Die Instance-Variable visSize enthält die aktuelle Größe des Objekts.

Wichtig: Sie müssen einen Wert für visSize festlegen.
VisText-Objekte haben immer eine feste Größe. Sie verfügen nicht über die
Fähigkeit, ihre eigene Größe der eingegebenen Textmenge anzupassen. Sie
erzeugen auch keine Rollbalken. Wenn Sie mehr Text eingeben oder anzeigen,
als in die vorgegebene Größe passt, wird der überschüssige Text nicht dargestellt.
Siehe auch: 5.3.2.1 VisGroup: Größe und Position

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 296

Syntax UI-Code: visSize = width, height
width: Breite
height: Höhe

Lesen: <numVar> = <obj>.visSize(0) ’ Breite
<numVar> = <obj>.visSize(1) ’ Höhe

Schreiben: <obj>.visSize = width, height [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung

xPosition, yPosition

Diese Werte liefern die aktuelle Position des Objekts.
Siehe auch: 5.3.2.1 VisGroup: Größe und Position

Syntax Lesen: <numVar> = <obj>.xPosition
<numVar> = <obj>.yPosition

xSize, ySize

Diese Werte liefern die aktuelle Größe des Objekts in Pixeln.
Siehe auch: 5.3.2.1 VisGroup: Größe und Position

Syntax Lesen: <numVar> = <obj>.xSize
<numVar> = <obj>.ySize

Das folgende Codefragment aus dem Beispiel "VisText Demo 2" im Ordner
"Beispiel\Objekte\VisText und LargeText" zeigt, wie man einen VisText in einen
VisualTree einbinden kann.

View DemoView
Content = DemoContent
initialSize = 400, 220
< weitere Instancevariablen >

End OBJECT

VisContent DemoContent
Children = VisObj1, VisText1, VisObj2, VisText2
< weitere Instancevariablen >

End OBJECT

VisObj VisObj1
visSize = 120, 120
OnDraw = VisObjDraw ’ muss irgendwo implementiert sein

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 297

VisText VisText1
text$ = "Raumschiff\rEnterprise"
visSize = 150, 50
fontID = FID_UNIVERSITY
fontSize = 16

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 298

4.10.9.2 LargeText

LargeText Objekte bringen nur eine einzige eigene Instancevariable mit.

Variable Syntax im UI-Code Im BASIC-Code
approxSize approxSize = numWert lesen, schreiben

Diese Variable ist per Default so vorbelegt, dass sie nur in sehr seltenen Fällen
geändert werden muss.

View- und Content Setup

Um mit einem LargeText zusammen zu arbeiten, müssen sowohl das VisContent
als auch das zugehörige View auf spezielle Weise initialisiert werden. Hierfür wird
die Instancevariable holdsLargeText auf den Wert TRUE gesetzt.
Ein LargeText muss das einzige Child des VisContent sein, sonst wird es
eventuell nicht angezeigt.

Ein typisches Setup für eine View/Content-Kombination mit einem LargeText sieht
so aus:

View DemoView
Content = DemoContent
vControl = HVC_SCROLLABLE
initialSize = 400, 250
ExpandWidth
ExpandHeight

holdsLargeText=TRUE

’ nicht erforderlich, aber häufig verwendet
defaultTarget
defaultFocus
targetable = TRUE
viewAttrs = VA_CONTROLLED, 0 ’ Setzen, wenn ein ViewControl

’ verwendet werden soll
End OBJECT

VisContent DemoContent
holdsLargeText=TRUE
Children = MyLargeText

End OBJECT

LargeText MyLargeText
text$ = "Ich kann ganz viel Text aufnehmen."
fontID = FID_SANS
fontSize = 14

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 299

holdsLargeText

Die Instancevariable holdsLargeText initialisiert ein View bzw. ein VisContent
Objekt so, dass sie mit einem LargeText Objekt zusammenarbeiten können.

Syntax UI-Code: holdsLargeText = TRUE
Schreiben: <obj>.holdsLargeText = TRUE | FALSE

Objektklassen: View, VisContent

Die Instancevariable kann nicht gelesen werden, weil intern eine ganze Palette
von Werten geändert werden. Dazu gehört, dass in den Instancevariablen
viewAttrs (View) bzw. contentAttrs (VisContent) einzelne Bits gesetzt werden. Sie
können diese Instancevariablen trotzdem "ganz normal" verwenden, da die Bits
unabhängig voneinander behandelt werden. Ausnahme: die Instancevariable
inputOptions des View sollten Sie nicht verändern.

LargeText Instance Variablen

LargeText Objekte arbeiten intern mit 32-Bit Koordinaten. Das hat Auswirkungen
auf die Verwendbarkeit bzw. Bedeutung einiger geerbter Instancevariablen bzw.
Handler-Parameter vom Typ WORD bzw. INTEGER (16 Bit).

• Die von der VisTextClass geerbten Instancevariablen drawable, detectable,
managed, visPosition und visSize werden nicht unterstützt, da sie entweder
intern verwaltet werden oder vom Datentyp WORD sind.

• Die für alle Klassen definierten word-großen Instancevariablen xPosition,
yPosition, xSize und ySize liefern immer den Wert Null.

• Die Parameter textLen und selectionLen der OnModified- und OnSelection-
Changed- Handler sind vom Typ INTEGER und daher bedeutungslos. Sie
werden immer mit dem Wert Null belegt.

approxSize

Die Instancevariable approxSize enthält die ungefähre Textmenge in Kilobyte, die
zu erwarten ist. Der Wert ist nicht kritisch, er kann problemlos überschritten
werden. Der Defaultwert beträgt 400 (Kilobyte) und sollte für die meisten
Anwendungen ausreichend sein.

Syntax UI-Code: approxSize = numWert
Schreiben: <obj>.approxSize = numWert
Lesen: numVar = <obj>.approxSize

numWert: Ungefähr zu erwartenden Textmenge in Kilobyte.
Der Defaultwert ist 400. Verwenden Sie Wert 10000
wenn Sie 10 MB oder mehr benötigen.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 300

Hinweise
• LargeText Objekte speichern ihren Text in einer von R-BASIC verwalteten

temporären Datei. Da sowohl einige andere Objekte als auch GStrings
temporäre Dateien benutzen, verwendet R-BASIC diesen Wert, um bei Bedarf
eine weitere Datei anzulegen.

• Wenn Sie den Wert 10000 (entsprechend 10 MB) verwenden, legt R-BASIC
eine Datei exklusiv für dieses Objekt an. Damit kann der Text theoretisch bis 2
Gigabyte groß werden.

• Es wird empfohlen, den Wert, wenn überhaupt, nur im UI-Code zu verwenden.
Das Ändern von approxSize zur Laufzeit ist ein aufwändiger Prozess.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 301

Hintergrundinformationen

Die folgenden Informationen sind für die normale Verwendung eines LargeText
Objekts nicht erforderlich.
Im Detail passiert beim Belegen der Instancevariablen holdsLargeText folgendes:

View-Objekt

Die Instancevariablen werden so gesetzt, als würde im UI-Code folgendes
stehen:

viewAttrs = VA_DRAG_SCROLLING , 0
inputOptions = VIO_DONT_SEND_KBD_RELEASES
focusable = TRUE

Außerdem wird in den viewAttrs das in R-BASIC nicht verfügbare Bit &h100 (im
SDK: GVA_WINDOW_COORDINATE_MOUSE_EVENTS) gesetzt. Wenn Sie
holdsLargeText zur Laufzeit auf FALSE setzen wird nur dieses Bit zurückgesetzt,
die anderen Instancevariablen werden nicht verändert.

Hinweis: Zusätzliche viewAttrs können Sie im UI-Code oder zur Laufzeit an
beliebiger Stelle setzen, da die Bits immer einzeln behandelt werden. Zusätzliche
inputOptions sollten Sie nicht setzen.

VisContent-Objekt

Die Instancevariablen werden so gesetzt, als würde im UI-Code folgendes
stehen:

contentAttrs = CA_SAME_WIDTH_AS_VIEW , 0
customManageChildren = TRUE

Außerdem werden in den contentAttrs die in R-BASIC nicht mit einer Konstante
belegten Bits &h20 (im SDK: VCNA_LARGE_DOCUMENT_MODEL) und &h10
(im SDK: VCNA_WINDOW_COORDINATE_MOUSE_EVENTS) gesetzt.
Darüber hinaus werden weitere, in R-BASIC nicht verfügbare, Instancevariablen
verändert. Wenn Sie holdsLargeText zur Laufzeit auf FALSE setzen werden
sowohl die internen Instancevariablen zurückgesetzt, also auch die contentAttrs
&h20 und &h10. Die anderen Instancevariablen werden nicht geändert.

Hinweis: Zusätzliche contentAttrs können Sie im UI-Code oder zur Laufzeit an
beliebiger Stelle setzen, da die Bits immer einzeln behandelt werden. Beachten
Sie, dass die oben genannten Bits der contentAttrs auch von R-BASIC aus
verändert werden können.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 302

4.10.10 Text in Dateien speichern

Alle Textobjekte können ihren Text direkt in eine Datei schreiben und direkt aus
einer Datei lesen. Das ist insbesondere für LargeText-Objekte interessant. Dazu
werden die folgenden Methoden unterstützt.

Methode Aufgabe
WriteToFile Text in eine Datei schreiben
ReplaceFromFile Text aus einer Datei ersetzen
InsertFromFile Text aus einer Datei einfügen
FileTextSize Textumfang in einer Datei ermitteln
WriteToVMFile Text in eine VM-Datei schreiben
ReplaceFromVMFile Text aus einer VM-Datei ersetzen
InsertFromVMFile Text aus einer VM-Datei einfügen
VMFileTextSize Textumfang in einer VM-Datei ermitteln

Die Methoden WriteToFile, ReplaceFromFile, InsertFromFile und FileTextSize
arbeiten mit normalen DOS-Dateien bzw. gleichwertig mit GEOS-DATEN-Dateien.
Dabei kann gleichzeitig der Zeichensatz konvertiert werden (z.B. GEOS nach
Windows), da im Hintergrund die Convert$-Funktion aufgerufen wird.

Die Methoden WriteToVMFile, ReplaceFromVMFile, InsertFromVMFile und VM-
FileTextSize arbeiten mit GEOS VM-Dateien. VM-Dateien sollten Sie verwenden,
wenn Sie mehr als nur einen Text (z.B. mehrere unabhängige Texte oder Text und
Bilder) in einer einzigen Datei speichern wollen. Alle "großen" Applikationen (z.B.
GeoWrite, GeoDraw, R-BASIC) speichern ihre Dokumente in VM-Dateien.
Um diese Methoden verwenden zu können, müssen Sie die Library "VMFiles"
includen. Diese Library kann separat von der R-BASIC Webseite heruntergeladen
werden.

WriteToFile

WriteToFile schreibt den vom Textobjekt dargestellten Text in eine offene DOS-
oder GEOS-Daten-Datei. Sie können auswählen, ob die Zeichen dabei in einen
anderen Zeichensatz (z.B. DOS oder HTML) konvertiert werden sollen und ob der
gesamte Text oder nur Teile davon in der Datei gespeichert werden sollen.
WriteToFile schreibt immer ab der aktuellen Dateiposition, vorhandene Daten
werden überschrieben. Bei Bedarf wird die Datei verlängert.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 303

Syntax: <obj>.WriteToFile fh [, convertMode [, start [, end]]]

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
sein.

convertMode: Bestimmt, zwischen welchen Zeichensätzen konvertiert
werden soll. Siehe unten.
Defaultwert: Null (keine Konvertierung)

start: Cursorposition, ab der geschrieben werden soll. Die Zählung
beginnt bei Null.
Defaultwert: Null (von Anfang an)

end: Cursorposition, bis zu der geschrieben werden soll. Die
Zählung beginnt bei Null. End darf größer als die Textlänge
sein.
Defaultwert: 4 294 967 294 (alles)

Hinweise:
• Für den Parameter convertMode sind alle Werte zugelassen, die auch für die

Funktion Convert$ zugelassen sind. Als Ersatzzeichen für nicht konvertierbare
Zeichen wird immer der Unterstrich ’_’ verwendet.
Eine Beschreibung der Convert$-Funktion finden Sie im Kapitel 2.4.3
(Konvertierungsfunktionen) des Programmierhandbuchs.

• WriteToFile verschiebt den Dateizeiger hinter den geschriebenen Bereich.
• WriteToFile schreibt keine Ende-Null in die Datei. Verwenden Sie die Routine

FileWrite, wenn Sie eine Ende-Null schreiben wollen.
• Ist die Datei größer, als der geschriebene Text, so bleiben die nicht

überschriebenen Daten erhalten. Verwenden Sie die Routine FileTruncate,
wenn Sie die Datei nach dem Schreiben an der aktuellen Position abschneiden
wollen. Diese Routinen und die Arbeit mit Dateien sind im Handbuch "Spezielle
Themen", Kapitel 9, beschrieben.

• WriteToFile setzt die globale Variable fileError. Ist der Parameter start größer
als verfügbarer Text wird kein Laufzeitfehler erzeugt, sondern fileError auf
ERROR_TEXT_TOO_SHORT (-22) gesetzt.

• Ist der Parameter end kleiner als der Parameter start, so wird ein Laufzeitfehler
erzeugt und das Programm beendet.

Beispiele:
’ Kompletten Text in eine (offene) Datei schreiben.
’ Zeichen in den Windows-Zeichensatz konvertieren
’ GEOS-Zeilenumbrüche durch DOS-Zeilenumbrüche ersetzen

MyTextObj.WriteToFile fh, GEOS_TO_WIN + CR_TO_CRLF

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 304

’ 200 Zeichen mit HTML Codierung schreiben
’ "trw" öffnet evtl. vorhandene Dateien und schneidet sie ab.

DIM fh as FILE

fh = FileCreate "FILE.TXT", "trw"
MyText.WriteToFile fh, GEOS_TO_HTML + CR_TO_CRLF, 0, 200
FileClose fh

ReplaceFromFile

ReplaceFromFile ersetzt den aktuellen Text durch den in einer Datei (DOS-Datei
oder GEOS-Daten-Datei) enthaltenen Text. Dabei wird der Text bis zum
Dateiende oder bis zum Auftreten einer Ende-Null eingelesen. Eine Prüfung auf
ungültige Zeichen erfolgt nicht.
Sie können die zu Textmenge begrenzen und festlegen ob der Text in einen
anderen Zeichensatz (z.B. von HTML nach GEOS) konvertiert werden soll.
ReplaceFromFile liest immer ab der aktuellen Dateiposition und verschiebt den
Dateizeiger hinter den gelesenen Text.

Syntax: <obj>.ReplaceFromFile fh [, convertMode [, maxLen]]

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
sein.

convertMode: Bestimmt, zwischen welchen Zeichensätzen konvertiert
werden soll. Siehe unten.
Defaultwert: Null (keine Konvertierung)

maxLen: Maximale Anzahl zu lesender Zeichen. MaxLen bezieht sich
auf die Datei, die Anzahl der der erzeugten (d.h. an das Text-
objekt übergebenen) Zeichen kann je nach convertMode
abweichen.
Defaultwert: 4 294 967 294 (alles)

Hinweise:
• Für den Parameter convertMode sind alle Werte zugelassen, die auch für die

Funktion Convert$ zugelassen sind. Als Ersatzzeichen für nicht konvertierbare
Zeichen wird immer der Unterstrich ’_’ verwendet.
Eine Beschreibung der Convert$-Funktion finden Sie im Kapitel 2.4.3
(Konvertierungsfunktionen) des Programmierhandbuchs.

Warnung
Die Werte GEOS_TO_HTML, GEOS_TO_HTML_BR, GEOS_TO_UTF8 sowie
das Flag CR_TO_CRLF für convertMode können den Text verlängern, so dass
ein Textobjekt, z.B. ein Memo, ihn nicht mehr aufnehmen kann. Beim Lesen
von Text ist es allerdings selten, dass man diese Werte verwendet.
Für LargeText-Objekte existiert dieses Problem nicht.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 305

Beispiele:
’ Den kompletten Text aus einer (offenen) DOS-Datei ersetzen

MyTextObj.ReplaceFromFile fh, DOS_TO_GEOS + CRLF_TO_CR

’ Den Text durch maximal 200 Zeichen aus einer (offenen) HTML-
’ Datei ersetzen. Die 200 Zeichen beziehen sich auf die Datei.

MyTextObj.ReplaceFromFile fh, HTML_TO_GEOS + CRLF_TO_CR, 200

InsertFromFile

InsertFromFile fügt Text aus einer Datei an der aktuellen Cursorposition ein. Wenn
etwas selektiert ist, wird der neue Text hinter dem selektierten Bereich eingefügt.
Ansonsten gelten die bei ReplaceFromFile angegebenen Hinweise.

Syntax: <obj>.InsertFromFile fh [, convertMode [, maxLen]]

FileTextSize

FileTextSize ermittelt die Anzahl der Zeichen, die aus einer offenen DOS- oder
GEOS-Daten-Datei mit ReplaceFromFile oder InsertFromFile maximal gelesen
werden können. Dabei wird ab der aktuellen Dateiposition begonnen und am
Dateiende bzw. der nächsten Ende-Null abgebrochen. Die Ende-Null wird (wenn
vorhanden) nicht mitgezählt.
Wird ein Parameter für convertMode angegeben, so wird die Anzahl der Zeichen
nach der Konvertierung zurückgeliefert.

Syntax: <numVar> = <obj>.FileTextSize (fh [, convertMode])

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
sein.

convertMode: Bestimmt, zwischen welchen Zeichensätzen konvertiert
werden soll. Siehe ReplaceFromFile.
Defaultwert: Null (keine Konvertierung)

Anmerkung: FileTextSize ist zwar eine Textobjekt-Methode, verwendet aber die
Eigenschaften des Textobjekts selbst nicht.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 306

Beispiel
DIM size

size = DemoMemo.FileTextSize(fh, GEOS_TO_HTML)
IF size <= 4000 THEN
DemoMemo.ReplaceFromFile fh , GEOS_TO_HTML

ELSE
 MsgBox "Der Text wäre" + Str$(size-4000) + " Zeichen zu lang."
End IF

WriteToVMFile

WriteToVMFile schreibt den Text als VMArray in eine offene VM-Datei und liefert
das VMBlock-Handle des VMArrays zurück.
Um WriteToVMFile verwenden zu können, müssen Sie die Library "VMFiles"
includen. Diese kann separat von der R-BASIC Webseite heruntergeladen
werden.

Syntax: <hanVar> = <obj>.WriteToVMFile fh [, start [, end]]

hanVar: Variable vom Typ Handle
fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen

und eine VM-Datei sein.
start: Cursorposition, ab der geschrieben werden soll. Die Zählung

beginnt bei Null.
Defaultwert: Null (von Anfang an)

end: Cursorposition, bis zu der geschrieben werden soll. Die
Zählung beginnt bei Null. End darf größer als die Textlänge
sein.
Defaultwert: 4 294 967 294 (alles)

Hinweise:
• WriteToVMFile speichert den Text immer so, wie er im Text-Objekt angezeigt

wird. Eine Konvertierung in andere Zeichensätze ist nicht möglich.
• WriteToVMFile schreibt ein "Standard" VMArray mit einer Elementgröße von 1

Byte. Es enthält mindestens eine Ende-Null. Es ist erlaubt, das VMArray mit
den VMArray-Routinen der VMFiles-Library zu manipulieren. Die Ende-Null
darf aber nicht entfernt werden.

• WriteToVMFile legt immer ein neues VMArray an. Arrays, die Sie nicht mehr
brauchen, müssen Sie mit VMArrayDestroy vernichten.

• WriteToVMFile setzt die globale Variable fileError. Ist der Parameter start
größer als verfügbarer Text wird kein Laufzeitfehler erzeugt, sondern fileError
auf ERROR_TEXT_TOO_SHORT (-22) gesetzt.

• Ist der Parameter end kleiner als der Parameter start, so wird ein Laufzeitfehler
erzeugt und das Programm beendet.

Beispiele: Siehe unten.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 307

ReplaceFromVMFile

ReplaceFromVMFile ersetzt den aktuellen Text durch den in einer VM-Datei
enthaltenen Text. Um ReplaceFromVMFile verwenden zu können, müssen Sie die
Library "VMFiles" includen.

Syntax: <obj>.ReplaceFromVMFile fh, block

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
und eine VM-Datei sein.

block: Handle auf ein von WriteToVMFile geschriebenes VMArray.

Hinweise:
• ReplaceFromVMFile beeinflusst die globale Variable fileError nicht.

InsertFromVMFile

InsertFromVMFile fügt den in einer VM-Datei enthaltenen Text an der aktuellen
Cursorposition ein. Ist etwas selektiert, so wird der neue Text hinter dem
selektierten Bereich eingefügt.
Ansonsten gelten die bei ReplaceFromVMFile angegebenen Hinweise.

Syntax: <obj>.ReplaceFromVMFile fh, block

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
und eine VM-Datei sein.

block: Handle auf ein von WriteToVMFile geschriebenes VMArray.

Beispiele

Die Routine SaveToVMFile speichert den Text eines Textobjekts in einer Datei.
Der Parameter "t" bei VMOpen sorgt dafür, dass die Datei nach dem Öffnen
abgeschnitten wird, also leer ist. Das neue VMArray wird als "Mapblock" gesetzt,
damit man später einfach darauf zugreifen kann.
SUB SaveToVMFile()
DIM fh AS FILE
DIM blk AS HANDLE

fh = VMOpen("VMTextFile", "trw")
blk = DemoLargeText.WriteToVMFile(fh)
VMSetMapBlock(fh, blk)
VMClose(fh)

End SUB

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 308

Die Routine LoadFormVMFile liest den Text aus der von SaveToVMFile
angelegten Datei. Bei VMOpen darf der Parameter "t" nicht angegeben werden,
damit die Daten beim Öffnen der Datei erhalten bleiben.
Das VMArray mit dem Text wurde als "Mapblock" gesetzt, so kann man wieder
darauf zugreifen.
SUB LoadFromVMFile()
DIM fh AS FILE
DIM blk AS HANDLE

fh = VMOpen("VMTextFile", "rw")
blk = VMGetMapBlock(fh)
DemoLargeText.InsertFromVMFile(fh, blk)
VMClose(fh)

End SUB

Da WriteToVMFile jeweils ein neues VMArray anlegt, ist das "Ersetzen" eines
Texts in einem VMArray nicht möglich. Also muss man das "alte" VMArray
manuell vernichten, und stattdessen das neue VMArray verwenden.

FUNCTION ReplaceVMArray(fh AS FILE) AS HANDLE
DIM oldArray, newArray AS HANDLE

’ Neues VMArray anlegen und als MapBlock setzen
’ danach altes Array vernichten (nur wenn existent!)

oldArray = VMGetMapBlock(fh)
newArray = DemoMemo.WriteToVMFile(fh)
VMSetMapBlock(fh, newArray)
IF oldArray <> NullHandle() THEN VMArrayDestroy (fh, oldArray)

RETURN newArray

End FUNCTION

Ein Beispiel, wie man mehrere unabhängige Texte in einer einzigen VM-Datei
speichert, finden Sie in der Beispieldatei "Text Speichern, komplex, VM-Datei" im
Ordner "Beispiel\Objekte\Text". Dabei wird der Text nicht mehr direkt als Mapblock
gesetzt.

VMFileTextSize

VMFileTextSize ermittelt die Anzahl der Zeichen eines in einer VM-Datei
gespeicherten Textes. Die Ende-Null wird nicht mitgezählt.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 309

Syntax: <numVar> = <obj>.VMFileTextSize (fh, block)

fh: Variable oder Ausdruck vom Typ FILE. Die Datei muss offen
und eine VM-Datei sein.

block: Handle auf ein von WriteToVMFile geschriebenes VMArray.

Anmerkungen:
• VMFileTextSize ist zwar eine Textobjekt-Methode, verwendet aber die

Eigenschaften des Textobjekts selbst nicht.
• VMFileTextSize macht im Kern nichts anderes, als die Routine

VMArrayGetCount() aus der "VMFiles" Library. Sie könnten also auch
"VMArrayGetCount(fh, block) - 1" verwenden.

Beispiel
DIM size
DIM fh as FILE
DIM block as HANDLE

< fh und block belegen >

size = DemoMemo.VMFileTextSize(fh, block)
MsgBox "Die Datei enthält " + Str$(size) + " Zeichen."

Tipps und Tricks: Wie kann man ...

... Text anhängen?
Man muss den Cursor ans Ende setzen (obj.cursorPos = obj.textLen) und
dann InsertFromFile bzw. InsertFromVMFile rufen.

... den selektierten Text ersetzen?
Man muss den selektierten Text löschen (obj.DeleteSelection) und dann
InsertFromFile bzw. InsertFromVMFile rufen.

... Teile eines Textes aus einer DOS-Datei lesen?
Man positioniert den Dateizeiger am Anfang des zu lesenden Bereichs und
übergibt InsertFromFile bzw. ReplaceFromFile als dritten Parameter die
Anzahl der zu lesenden Zeichen. Geben Sie für convertMode Null an, wenn
der Zeichensatz nicht konvertiert werden soll.

... Teile eines Textes aus einer VM-Datei lesen?
Man muss den Text aus der VM-Datei vollständig lesen. Mit VMFileTextSize
kann man die Anzahl der gelesenen Zeichen ermitteln. Die überflüssigen
Teile löscht man anschließend manuell mit obj.DeleteRange. Dabei sollte
man hinten anfangen, um sich Berechnungen zu ersparen.

... den selektierten Text in eine Datei schreiben?
Man übergibt WriteToFile bzw. WriteToVMFile den selektierten Bereich als
start- bzw. end-Parameter, z.B.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

Text-Objekte: Memo, InputLine - 310

obj.WriteToVMFile fh , obj.cursorPos , obj.selectionEnd

... Text beim Lesen / Schreiben in eine VM-Datei in einen anderen Zeichensatz
konvertieren?
Warum sollte man das tun? Am besten, Sie suchen eine andere Lösung.
Ansonsten: Schreiben Sie den Text konvertiert in eine temporäre DOS-Datei
und lesen ihn von dort ohne erneute Konvertierung wieder ein. Dann können
Sie ihn in einer VM-Datei speichern. Beim Lesen gehen Sie umgekehrt vor.
Vorsicht! bei der Konvertierung ins UTF8-Format könnten Codes unter
32(dez) entstehen, die beim Einlesen in ein GEOS-Text-Objekt nicht
angezeigt werden können und sogar das System crashen könnten.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 311

4.11 FileSelector

4.11.1 Überblick

Ein FileSelector stellt die UI bereit, die notwendig ist, um eine Datei oder ein
Verzeichnis auszuwählen. Klickt der Nutzer auf einen Eintrag sendet der
FileSelector eine Notification-Message aus und der Programmierer kann
entscheiden was passiert. Häufig wird die entsprechende Datei dann geöffnet. Die
Navigation durch die Verzeichnisse handelt der FileSelector dabei selbständig.
Welche Dateien in der Liste angezeigt
werden kann über diverse Kriterien, z.B. das
Token der Datei oder eine Dateimaske
eingestellt werden.
Häufig ist der FileSelector Teil eines Dialogs,
in dem sich noch andere Objekte, z.B. ein
"Öffnen" und ein "Abbrechen"-Button
befinden.

Abstammung:
GenericClass FileSelector

Der FileSelector erbt alle Eigenschaften und Fähigkeiten der GenericClass.

Spezielle Instance-Variablen:
Instancevariable Syntax im UI-Code Im BASIC-Code
NotificationHandler NotificationHandler = <Handler> nur schreiben
initialPath initialPath = StdPath, "<subDir>" ––
showFilesDisabled showFilesDisabled = TRUE | FALSE lesen, schreiben
numFilesToShow numFilesToShow = anzahl lesen, schreiben
fileListWidth fileListWidth = anzahl lesen, schreiben
selection$ –– lesen, schreiben
path$ –– lesen, schreiben
fullPath$ –– lesen, schreibe
entryFlags –– nur lesen
matchToken matchToken = "TCHR", manufID lesen, schreiben
hasMatchToken –– nur lesen
matchCreator matchCreator = "TCHR", manufID lesen, schreiben
hasMatchCreator –– nur lesen
matchMask$ matchMask$ = "fileMask" lesen, schreiben
matchCriteria matchCriteria = numVal lesen, schreiben

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 312

Action-Handler-Typen:
Handler-Typ Parameter
FileAction (sender as object, entryFlags as WORD, selection$ as

String)

Methoden:
Methode Aufgabe
ClearMatchToken Entfernt das matchToken aus den Instancevariablen
ClearMatchCreator Entfernt das matchCreator-Token aus den

Instancevariablen
Suspend Verhindert ein Neueinlesen des angezeigten Ordners
EndSuspend Erlaubt das Neueinlesen des angezeigten Ordners

wieder
Rescan Liest den angezeigten Ordner neu ein
UpDirectory Wechselt in das Parent-Verzeichnis
OpenEntry Öffnet das selektierte Verzeichnis

4.11.2 Konfigurieren des FileSelectors

Meistens wird der FileSelector im UI-Code konfiguriert. Dazu stehen die folgenden
Instancevariablen zur Verfügung:

Instancevariable Syntax im UI-Code Im BASIC-Code
initialPath initialPath = StdPath, "<subDir>" ––
showFilesDisabled showFilesDisabled = TRUE | FALSE lesen, schreiben
numFilesToShow numFilesToShow = anzahl lesen, schreiben
fileListWidth fileListWidth = anzahl lesen, schreiben
matchToken matchToken = "TCHR", manufID lesen, schreiben
matchCreator matchCreator = "TCHR", manufID lesen, schreiben
matchMask$ matchMask$ = "fileMask" lesen, schreiben
matchCriteria matchCriteria = numVal lesen, schreiben

Ein typisches FileSelector-Objekt sieht wie folgt aus. Im Beispiel werden die R-
BASIC Font-Dateien zur Anzeige gebracht.
FileSelector TestFileselector
Caption$ = "Bitte Datei auswählen"
justifyCaption = J_TOP
initialPath = SP_USER_DATA, "R-BASIC\\FONT"
NotificationHandler = FileSelected
numFilesToShow = 12
matchMask$ = "*.RBF"
matchCriteria = FMC_DIRS + FMC_DOS_FILES

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 313

Zur Auswahl, welche Dateien in der Liste angezeigt werden sollen, stehen die
Instancevariablen matchToken (engl. to match = übereinstimmen), match-
Creator, matchMask$ und matchCriteria zur Verfügung. Die Defaultwerte sind
so gewählt, dass alle Dateien und alle Verzeichnisse angezeigt werden. Geben
Sie mehrere Match-Kriterien an so müssen diese gleichzeitig erfüllt sein.
Widersprüchliche Kriterien z.B. das Token von GeoWrite-Dateien und das Creator-
Token von GeoDraw führen dazu, dass keine Dateien angezeigt werden.

initialPath

InitialPath legt den anfangs angezeigten Pfad fest. Das kann nur im UI-Code
geschehen. Wird kein initialPath gesetzt so wird das GEOS Hauptverzeichnis
angezeigt.

Syntax UI-Code: initialPath = stdPath, "Subdir"
stdPath: Eine StandardPath Konstante
"Subdir": Unterverzeichnis. Das kann auch ein Leerstring sein.

Beispiele
initialPath = SP_DOCUMENT, "R-BASIC\\Beispiele"
initialPath = SP_USER_DATA, ""

showFilesDisabled

ShowFilesDisabled legt fest, ob Dateien in der Liste als "disabled" angezeigt
werden. Der Nutzer sieht die Dateinamen hellgrau, kann sie aber nicht anwählen.
Das wird z.B. im Dialog "Speichern unter ..." verwendet.

Syntax UI- Code: showFilesDisabled = TRUE (Defaultwert: FALSE)
Lesen: <numVar> = <Obj>.showFilesDisabled
Schreiben: <Obj>.showFilesDisabled = TRUE | FALSE

numFilesToShow

NumFilesToShow legt die Anzahl der gleichzeitig angezeigten Listeneinträge fest.

Syntax UI- Code: numFilesToShow = numWert
Lesen: <numVar> = <Obj>.numFilesToShow
Schreiben: <Obj>.numFilesToShow = numWert

numWert: numerischer Ausdruck, bestimmt die Anzahl

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 314

fileListWidth

FileListWidth legt die Breite der Liste fest. Maßeinheit ist die "mittlere Zeichen-
breite". Der Defaultwert ist Null, d.h. die Liste bestimmt die ihre Breite selbst.
FileListWidth wird selten verwendet, weil der Defaultwert im Allgemeinen passt.

Syntax UI- Code: filesListWidth = numWert
Lesen: <numVar> = <Obj>.filesListWidth
Schreiben: <Obj>.filesListWidth = numWert

numWert: Breite der Liste, Maßeinheit: "mittlere
Zeichenbreite". Null: Defaultwert verwenden.

matchToken

Nur GEOS-Dateien mit dem passenden Token werden angezeigt. DOS-Dateien
werden nicht mehr angezeigt. Das Token bestimmt das Icon, mit dem die Datei im
GeoManager angezeigt wird.

Syntax UI- Code: matchToken = "tchr", manufID
Lesen: <tok> = <obj>.matchToken
Schreiben: <obj>.matchToken = "tchr", manufID

"tchr" : 4 Buchstaben, "TokenChars"
manufID: Manufacturer ID (numerischer Wert)
<tok>: Variable vom Typ GeodeToken

Per Default ist kein Wert für matchToken gesetzt und alle Dateien werden
angezeigt.

Beispiel: GeoDraw-Dateien anzeigen
matchToken = "DDAT", 0

Will man nur Dateien anzeigen, deren Token aus lauter Nullen besteht (das ist
z.B. bei den VM-Dateien der Fall, die vom Icon-Editor geschrieben werden), muss
man als tokenChars einen Leerstring zuweisen:

matchToken = "", 0

Das Token "", 0 ist nicht identisch mit dem Zustand "kein Token gesetzt". Im
ersten Fall werden nur Dateien mit einem Token, das aus lauter Nullen besteht
angezeigt, im zweiten Fall wird das Token ignoriert (die Dateien werden nicht nach
ihrem Token gefiltert). Um ein gesetztes Token wieder zu entfernen verwenden
Sie die Methode ClearMatchToken, die weiter unten beschrieben ist.

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 315

matchCreator

Nur GEOS-Dateien mit dem passenden Creator-Token werden angezeigt. DOS-
Dateien werden nicht mehr angezeigt. Das Creator-Token bestimmt die
Applikation, mit der die Datei erstellt wurde. Bei Programmen ist das "GEOS",0.

Syntax UI- Code: matchCreator = "tchr", manufID
Lesen: <tok> = <obj>.matchCreator
Schreiben: <obj>.matchCreator = "tchr", manufID

"tchr" 4 Buchstaben, "TokenChars"
manufID Manufacturer ID (numerischer Wert)
<tok> Variable vom Typ GeodeToken

Per Default ist kein Wert für matchCreator gesetzt und alle Dateien werden
angezeigt.

Beispiel: GeoWrite-Dateien anzeigen
matchCreator = "WP00", 0

Will man nur Dateien anzeigen, deren Creator-Token aus lauter Nullen besteht
(das ist z.B. bei den VM-Dateien der Fall, die vom Icon-Editor geschrieben
werden), muss man als tokenChars einen Leerstring zuweisen:

matchCreator = "", 0

Das Creator-Token "", 0 ist nicht identisch mit dem Zustand "kein Token gesetzt".
Im ersten Fall werden nur Dateien mit einem Token, dass aus lauter Nullen
besteht angezeigt, im zweiten Fall wird das Creator-Token ignoriert (die Dateien
werden nicht nach ihrem Creator-Token gefiltert). Um ein gesetztes Creator-Token
wieder zu entfernen verwenden Sie die Methode ClearMatchCreator, die weiter
unten beschrieben ist.

matchMask$

Nur Dateien, die der übergebenen Namensmaske entsprechen, werden angezeigt.
Dabei gelten die GEOS-Namenskonventionen.

- Wildcards "*" und "?" sind zulässig
* (Sternchen): beliebige Anzahl (oder Null) Zeichen oder Ziffern
? Genau ein Zeichen oder eine Ziffer
: und \ sind nicht zulässig

- Die Groß- und Kleinschreibung spielt eine Rolle
- Für DOS-Dateien: Großbuchstaben verwenden

Per Default ist kein Wert für matchMask$ gesetzt und alle Dateien werden
angezeigt.

Syntax UI- Code: matchMask$ = "maskString"
Lesen: <stringVar> = <obj>.matchMask$
Schreiben: <obj>.matchMask$ = "maskString"

"maskString" Eine Filtermaske für die Dateien, z.B. "*.PCX"

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 316

Beispiele:
"D*" Alle Dateien, die mit einem großen D anfangen.
"?a*" Alle Dateien, deren zweiter Buchstabe ein a ist.
"*a*" Alle Dateien, die ein a im Namen enthalten. Das a darf auch am

Anfang oder am Ende stehen.
"*.*" Alle Dateien, die einen Punkt im Namen enthalten.
"*.PCX" Alle Dateien, die auf Punkt-PCX enden.
"*" Alle Dateien

Wenn keine Maske gesetzt ist liefert matchMask$ einen Leerstring. Das Schreiben
eines Leerstrings löscht eine gesetzte Maske. Funktionell sind "keine Maske
gesetzt" und "*" identisch, "keine Maske gesetzt" ist aber schneller, weil der
FileSelector keine Vergleiche ausführt.

matchCriteria

MatchCriteria ist ein numerischer Wert, der bestimmt, welche Art von Dateien
angezeigt werden sollen.

Syntax UI- Code: matchCriteria = numWert
Lesen: <numVar> = <obj>.matchCriteria
Schreiben: <obj>.matchCriteria = numWert

Der Defaultwert ist FMC_ALL_FILES (= FMC_DIRS + FMC_DOS_FILES +
FMC_GEOS_EXEC + FMC_GEOS_DATA). Per Default werden alle Dateien und
Ordner angezeigt.

Erlaubte Werte:
Konstante Wert (hex) Bedeutung
FMC_DIRS 32768 &h8000 Ordner anzeigen
FMC_DOS_FILES 16384 &h4000 Nicht-GEOS-Dateien anzeigen
FMC_GEOS_EXEC 8192 &h2000 GEOS Programme und Libraries

anzeigen
FMC_GEOS_DATA 4096 &h1000 GEOS VM- und Daten-Dateien

anzeigen
FMC_ALL_FILES 61440 &hF000 Alle Dateien und Ordner anzeigen.

Das entspricht der Summe der vier
Werte von oben.

FMC_MASK_CASE_INSENSITIVE Masken unterscheiden nicht
2048 &h0800 zwischen Groß- und

Kleinbuchstaben
FMC_USE_MASK_FOR_DIRS Masken auch auf Ordner

128 &h0080 anwenden

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 317

Die hier nicht angegebenen Bits sind intern verwendet und werden von R-BASIC
nicht unterstützt. Sie müssen Null sein.

Beispiele
DIM criteria as word ’ oder as real
matchCriteria = FMC_DIRS + FMC_GEOS_DATA
MyObj.matchCriteria = FMC_DIRS + FMC_GEOS_EXEC
criteria = MyObj.matchCriteria

Der Wert von matchCriteria besteht aus einzelnen Bits, die jedes eine bestimmte
Bedeutung haben (sog. BitFlags). Die Abfrage erfolgt mit der logischen Operation
AND, das setzen mit der logischen Operation OR. Das Löschen eines Bits
erfordert die Operation "AND (NOT bit_zu_löschen)".

Beispiel:
FMC_DIRS abfragen

IF FSel.matchCriteria AND FMC_DIRS THEN ...

Beispiel:
FMC_MASK_CASE_INSENSITIVE setzen ohne die anderen Flags zu ändern

FSel.matchCriteria =
FSel.matchCriteria OR FMC_MASK_CASE_INSENSITIVE

Beispiel:
FMC_DOS_FILES löschen ohne die anderen Flags zu ändern

FSel.matchCriteria =
FSel.matchCriteria AND (NOT FMC_DOS_FILES)

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 318

4.11.3 Arbeit mit Token und Creator

Instancevariable Syntax im UI-Code Im BASIC-Code
hasMatchToken –– nur lesen
hasMatchCreator –– nur lesen

Methode Aufgabe
ClearMatchToken Entfernt das matchToken aus den Instancevariablen
ClearMatchCreator Entfernt das matchCreator-Token aus den

Instancevariablen

Die Instancevariablen matchToken und matchCreator haben die Besonderheit,
dass die dazugehörigen Daten (das jeweilige GeodeToken) vorhanden sein kann
oder auch nicht. Ist das Token vorhanden werden alle Dateien entsprechend dem
Token (bzw. Creator-Token) gefiltert und nur die Dateien angezeigt, die eine
Übereinstimmung aufweisen. Ist das Token nicht vorhanden werden die Dateien
nicht gefiltert, ihr Token (bzw. Creator-Token) ist egal.

Per Default sind keine Werte für matchCreator und matchToken gesetzt, die
Dateien werden also nicht gefiltert. Die Filterung wird durch Setzen eines Wertes
für dies Instancevariablen aktiviert. Es ist nun nicht möglich durch Zuweisen eines
"Leer"-Token zu den Instancevariablen matchToken bzw. matchCreator das
jeweilige Token zu löschen. Die Filterung nach Tokens kann auf diese Weise nicht
aufgehoben werden. Diesem Zweck dienen die in diesem Kapitel beschriebenen
Methoden ClearMatchToken und ClearMatchCreator.

hasMatchToken

HasMatchToken enthält die Information, ob mit "matchToken" ein Wert gesetzt
wurde oder nicht. Der Wert kann nur gelesen werden und liefert TRUE oder
FALSE.

Syntax Lesen: <numVar> = <obj>.hasMatchToken

hasMatchCreator

HasMatchCreator enthält die Information, ob mit "matchCreator" ein Wert gesetzt
wurde oder nicht. Der Wert kann nur gelesen werden und liefert TRUE oder
FALSE.

Syntax Lesen: <numVar> = <Obj>.hasMatchCreator

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 319

ClearMatchToken

Die Methode ClearMatchToken löscht den mit "matchToken" gesetzten Wert.

Syntax BASIC- Code: <obj>.ClearMatchToken

ClearMatchCreator

Die Methode ClearMatchCreator löscht den mit "matchCreator" gesetzten Wert.

Syntax BASIC- Code: <obj>.ClearMatchCreator

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 320

4.11.4 Behandlung der Notification-Message

Klickt der Nutzer auf einen Eintrag in der Liste des FileSelectors wird der
Notification-Handler des FileSelectors aufgerufen. Das kann ein Einfachklick oder
ein Doppelklick sein. Außerdem ist es möglich weitere Informationen über den
aktuell selektierten Eintrag, z.B. den Pfad zum dargestellten Verzeichnis oder ob
es sich um eine Ordner oder eine Datei handelt, zu erhalten. Dazu stehen die
folgenden Instancevariablen zur Verfügung:

Instancevariable Syntax im UI-Code Im BASIC-Code
NotificationHandler NotificationHandler = <Handler> nur schreiben
path$ –– lesen, schreiben
fullPath$ –– lesen, schreibe
selection$ –– lesen, schreiben
entryFlags –– nur lesen

Handler-Typ Parameter
FileAction (sender as object, entryFlags as WORD, selection$ as

String)

NotificationHandler

Die Instance-Variable NotificationHandler enthält den Namen des Handlers, der
gerufen wird, wenn der Nutzer auf einen Eintrag in der Liste klickt. Das kann ein
Einfachklick oder ein Doppelklick sein. Der Wert wird üblicherweise im UI-Code
gesetzt, bei Bedarf kann er auch zur Laufzeit (im BASIC-Code) gesetzt werden.

Syntax UI- Code: NotificationHandler = <Handler>
Schreiben: <obj>.NotificationHandler = <Handler>

Wichtig! FileSelectoren können nicht in Blocking-Dialogen (vgl. Kapitel 4.6.7,
DialogObj.attrs = DA_BLOCKING) verwendet werden. Blocking-Dialoge blockieren
den BASIC-Thread so lange, bis der Dialog geschlossen wird. In dieser Zeit kann
der Notification-Handler nicht ausgeführt werden.

NotificationHandler müssen als FileAction deklariert sein.

Der Parameter selection$ enthält den aktuell ausgewählten Eintrag (Dateiname
oder Ordnername). Wenn der erste Eintrag selektiert ist (aktuelles Verzeichnis
oder Wurzelverzeichnis) enthält selection$ den Text "." (Der Text besteht nur aus
nur einem Punkt.)

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 321

Der Parameter entryFlags enthält Informationen über den aktuell selektierten
Eintrag. Jedes Bit hat eine eigene Bedeutung. Die Abfrage der Bits erfolgt mit der
logischen Operation AND.

Folgende Werte und Konstanten sind definiert.
Konstante Wert hex Bedeutung
–– 32768 &h8000 intern verwendet
FEF_SUBDIR 16384 &h4000 Ein Verzeichnis ist selektiert
FEF_OPEN 8192 &h2000 Ein Doppelklick wurde ausgeführt
FEF_NO_ENTRIES 4096 &h1000 Die Dateiliste ist leer
FEF_ERROR 2048 &h800 Es gab einen Fehler
FEF_TEMPLATE 1024 &h400 Die Datei ist ein "Muster"
–– 512 &h200 Die Datei ist "shared-multiple"
–– 256 &h100 Die Datei ist "shared-single"
FEF_READ_ONLY 128 &h80 Es ist eine "Nur Lesen" Datei
FEF_PARENT_DIR 64 &h40 Der erste Eintrag in der Liste ist

selektiert.
–– 32 &h20 Der Eintrag ist disabled

Die in der Tabelle nicht aufgeführten Bits sind nicht definiert und sollten nicht
verwendet werden. "Shared-multiple" bzw. "shared-single" bedeutet, dass die
Datei im Netzwerk von mehreren Nutzern gleichzeitig geöffnet werden kann. Der
Nutzer kann das z.B. in GeoWrite über den "Dokument-Typ" im Menü "Datei"-
>"Sonstiges" festlegen.

Die typische Reaktion auf einen Doppelklick auf eine Datei besteht darin, in den
vom FileSelector angezeigten Pfad zu wechseln (Mithilfe der Instancevariable
path$) und dann die selektierte Datei zu öffnen.

Beispiel: Ein typischer Notification-Handler. Wir setzen voraus, dass es einen
Öffnen-Button gibt, der nur Enabled werden soll, wenn eine Datei angewählt ist.
Ein Doppelklick auf eine Datei soll diese öffnen. Der Handler implementiert das
typische Vorgehen dazu. Ein Doppelklick auf ein Verzeichnis wird vom Handler
ignoriert. Der FileSelector kümmert sich selbst darum, das entsprechende
Verzeichnis zu öffnen und anzuzeigen.
Die Routine DoSomeThingsWithFile muss natürlich auch irgendwo definiert sein.

FileAction FileSelected
DIM fh as FILE

IF entryFlags AND FEF_SUBDIR THEN
OpenButton.enabled = FALSE
RETURN ’ Verzeichnis selektiert

 ELSE
OpenButton.enabled = TRUE ’ Datei ist ausgewählt
End IF

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 322

IF entryFlags AND FEF_OPEN THEN ’ Doppelklick
SetCurrentPath sender.path$
fh = FileOpen selection$
IF fh <> NullFile() THEN
DoSomeThingsWithFile(fh)
FileClose fh
End IF

End IF

End ACTION

path$

Die Instancevariable path$ enthält den angezeigten Pfad, ohne Selektion. Sie
kann gelesen und geschrieben, aber nicht im UI-Code verwendet werden. Um den
anzuzeigenden Pfad im UI-Code zu setzen verwenden Sie die Instancevariable
initialPath.

Syntax Lesen: <stringVar> = <obj>.path$
Schreiben: <obj>.path$ = <pathExpression>

<pathExpression>: Stringausdruck, zu setzender Pfad.
Es kann ein relativer Pfad oder ein absoluter Pfad (mit
Laufwerksbuchstabe, z.B. "C:\\DOS") sein.

Beispiel: Anzeige eines absolut angegebenen Pfades.
MyObj.path$ = "C:\\Bilder\\Kinder"

Beispiel: Anzeige des Unterverzeichnisses "Arbeit" des aktuell angezeigten
Verzeichnisses.

MyObj.path$ = "Arbeit"

Beispiel: Wechseln in das vom FileSelector angezeigte Verzeichnis
SetCurrentPath MyObj.path$

Hinweise
Schreiben in die Instancevariable path$:
 • Schreiben von path$ setzt die globale Variable fileError (Null wenn OK,

ERROR_PATH_NOT_FOUND wenn der Pfad invalid ist.
 • Um in das Root eines Laufwerks zu wechseln verwendet man z.B. "C:\\"
 • Bei Pfadangaben spielt die Groß-/Kleinschreibung eine Rolle. Für reine DOS-

Verzeichnisse sollten Sie Großbuchstaben verwenden.
Lesen von path$
 • Standard R-BASIC Strings können bis zu 128 Zeichen aufnehmen. Pfade

können bis 198 Zeichen lang sein. Variablen, die einen Pfad aufnehmen sollen,
sollten als String(198) oder länger definiert sein. Beispiel:
DIM pathVar$ as STRING(200)

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 323

fullPath$

Die Instancevariable fullPath$ enthält den angezeigten Pfad einschließlich des
selektierten Eintrags. Sie kann gelesen und geschrieben, aber nicht im UI-Code
verwendet werden.

Syntax Lesen: <stringVar> = <obj>.fullPath$
Schreiben: <obj>.fullPath$ = <pathExpression>

<pathExpression>: Stringausdruck, zu setzender Pfad.
Es kann ein relativer Pfad oder ein absoluter Pfad sein.

Schreiben in die Instancevariable fullPath$:
 • Das letzte Pfadelement wird als zu selektierende Eintrag interpretiert, auch

wenn es ein Verzeichnis ist. Beispiel:
MyObj.fullPath$ = "C:\\GEOS\\DOCUMENT"

zeigt das GEOS Verzeichnis an, wobei DOCUMENT selektiert ist.
Um das Root eines Verzeichnisses zu selektieren hängt man einen Backslash
an:

MyObj.fullPath$ = "C:\\GEOS\\DOCUMENT\\"
zeigt das GEOS\DOCUMENT Verzeichnis an. Oder man verwendet path$.

 • Schreiben von fullPath$ setzt die globale Variable fileError (Null wenn OK,
ERROR_PATH_NOT_FOUND wenn der Pfad invalid ist.

 • Um in das Root eines Laufwerks zu selektieren verwendet man z.B. "C:\\"
 • Bei Pfadangaben spielt die Groß-/Kleinschreibung eine Rolle. Für reine DOS-

Verzeichnisse sollten Sie Großbuchstaben verwenden.
Lesen von fullPath$
 • Standard R-BASIC Strings können bis zu 128 Zeichen aufnehmen. Pfade

können bis 198 Zeichen lang sein. Hinzu kommt die Selektion (max. 32
Zeichen) und der Backslash. Variablen, die einen Pfad aufnehmen sollen,
sollten als String(231) oder länger definiert sein. Beispiel:
DIM pathVar$ as STRING(235)

selection$

Die Instancevariable selection$ enthält den aktuell ausgewählten Eintrag
(Dateiname oder Ordnername). Sie kann gelesen und geschrieben, aber nicht im
UI-Code verwendet werden.

Syntax Lesen: <stringVar> = <obj>.selection$
Schreiben: <obj>.selection$ = <stringExpression>

<stringExpression>: Stringausdruck, zu selektierender Eintrag

Wenn der erste Eintrag selektiert ist (aktuelles Verzeichnis oder
Wurzelverzeichnis) enthält selection$ den Text "." (Der Text besteht nur aus nur
einem Punkt.)

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 324

Hinweise:
• Schreiben von selection$ setzt die globale Variable fileError (Null wenn OK,

ERROR_PATH_NOT_FOUND wenn der Eintrag nicht existiert.
 • Um den ersten Eintrag zu selektieren kann man "." oder einen Leerstring

übergeben.

Beispiel: Lesen der Selektion
DIM sel$ as String(32) ’ Das reicht
sel$ = MyObj.selection$

Beispiel: Selektieren des Unterverzeichnisses "Arbeit". Das Verzeichnis wird nur
selektiert, der FileSelector wechselt nicht in das Verzeichnis

MyObj.selection$ = "Arbeit"

entryFlags

EntryFlags enthält die Informationen über den aktuell selektierten Eintrag, die
auch an den Parameter "entryFlags" des FileSelector NotificationHandlers
übergeben werden. Eine Beschreibung der einzelnen Flagbits finden Sie dort. Der
Wert kann nur gelesen werden.

Syntax Lesen: <numVar> = <obj>.entryFlags

Beispiel: Abfrage ob eine Datei selektiert ist
DIM flags
flags = MyObj.entryFlags
IF (flags AND FEF_SUBDIR) = 0 THEN
MsgBox "Eine Datei ist selektiert"
END IF

Beispiel: Ein "Open"-Handler
Wir setzen einen FileSelector (DemoFileSelector) voraus, der den "Öffnen"-Button
nicht enabled oder disabled. Der Buttonhandler muss daher entscheiden ob eine
Datei selektiert ist oder ein Verzeichnis und entsprechend reagieren.
ButtonAction OpenFileOrFolder
DIM flags as word

flags = DemoFileSelector.entryFlags

IF flags AND FEF_SUBDIR THEN
DemoFileSelector.OpenEntry ’ Verzeichnis öffnen

ELSE
SetCurrentPath DemoFileSelector.path$
MsgBox "Eine Datei ist selektiert"
’ Hier die Datei öffnen ...

End IF

End Action

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 325

4.11.5 Weitere Fähigkeiten

Dieser Abschnitt beschreibt einige Fähigkeiten des FileSelectors die gelegentlich
benötigt werden. Dafür sind die folgenden Methoden implementiert:

Methode Aufgabe
Suspend Verhindert ein Neueinlesen des angezeigten Ordners
EndSuspend Erlaubt das Neueinlesen des angezeigten Ordners
wieder
Rescan Liest den angezeigten Ordner neu ein
UpDirectory Wechselt in das Parent-Verzeichnis
OpenEntry Öffnet das selektierte Verzeichnis

Suspend

Die Methode Suspend verhindert ein Rescan (erneutes Einlesen des angezeigten
Ordners) solange bis die Methode EndSuspend aufgerufen wurde. Das ist
sinnvoll, wenn man mehrere match-Attribute ändern will.

Syntax BASIC- Code: <obj>.Suspend

EndSuspend

EndSuspend hebt den mit Suspend gesetzten Zustand wieder auf.

Syntax BASIC- Code: <obj>.EndSuspend

Rescan

Veranlasst den FileSelector das Verzeichnis neu einzulesen. Der FileSelector führt
auch im "Suspend" Zustand einen Rescan aus, hebt den "Suspend" Zustand aber
nicht auf.

Syntax BASIC- Code: <obj>.Rescan

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 326

UpDirectory

Die Methode UpDirectory wechselt in das übergeordnete Verzeichnis.

Syntax BASIC- Code: <obj>.UpDirectory

OpenEntry

Die Methode OpenEntry wechselt in das selektierte Verzeichnis und zeigt dieses
an. Ist er erste Eintrag im FileSelector selektiert (Aktuelles Verzeichnis, kein
Unterverzeichnis) wird ins übergeordnete Verzeichnis gesprungen. Ist eine Datei
selektiert passiert nichts.

Syntax BASIC- Code: <obj>.OpenEntry

R-BASIC - Objekt-Handbuch - Vol. 6
Einfach unter PC/GEOS programmieren

FileSelector - 327

(Leerseite)

