

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 7
ColorSelector, DocumentGuardian, PrintControl,

PageSizeControl

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

4.12 ColorSelector ... 332

4.13 DocumentGuardian .. 338
4.13.1 Konfiguration .. 340
4.13.2 Verwalten von Dokumenten .. 343
4.13.3 Services .. 347

4.14 PrintControl .. 349
4.14.1 Überblick über das Drucken ... 351
4.14.2 Korrektes Setzen der Instancevariablen 353
4.14.3 Konfigurieren des PrintControl-Objekts 354
4.14.4 Vorbereiten für den Druck ... 358

4.14.4.1 Dokumentgröße und Dokumentränder 358
4.14.4.2 Mehrseitiger Druck .. 360
4.14.4.3 Nutzereigaben verifizieren .. 362
4.14.4.4 Starten des Ausdrucks .. 363
4.14.4.5 Ein Beispiel ... 364

4.14.5 Der Druckprozess ... 365
4.14.5.1 Die Standardprozedur ... 365
4.14.5.2 Die Papiergröße verwenden ... 368
4.14.5.3 Mehrere Seiten drucken ... 370
4.14.5.4 Hintergrundinformationen zum Thema Layout 372

4.14.6 Drucken von Text .. 374
4.14.7 Drucken spezieller Objekte ... 375
4.14.8 Unterstützung des Dokument-Interfaces 378
4.14.9 Tipps und Tricks ... 379

4.15 PageSizeControl .. 381

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

ColorSelector - 332

4.12 ColorSelector

Ein ColorSelector stellt die UI bereit, die notwendig ist, um eine Farbe, ein
Füllmuster oder ein Füllraster auszuwählen.

Welche der Eigenschaften (Farbe, Füllmuster, Raster) dem Nutzer zur Auswahl
angeboten werden kann eingestellt werden. Per Default sind es nur die Index-
farben.

Sie können einen Actionhandler vereinbaren, der gerufen werden soll, wenn der
Nutzer eine der Eigenschaften ändert oder Sie können die eingestellten
Eigenschaften manuell abfragen.

Abstammung:
GenericClass ColorSelector

Der ColorSelector erbt alle Eigenschaften und Fähigkeiten der GenericClass.

Spezielle Instance-Variablen:
Instancevariable Syntax im UI-Code Im BASIC-Code
ColorChangedHandler ColorChangedHandler = <Handler> nur schreiben
csFeatures csFeatures = numVal lesen, schreiben
csColor csColor = numVal lesen, schreiben
csIndexColor –– nur lesen
csDrawMask csDrawMask = numVal lesen, schreiben
csDrawMaskValue csDrawMaskValue = numVal lesen, schreiben
csFillPattern csFillPattern = numVal lesen, schreiben

Action-Handler-Typen:
Handler-Typ Parameter
ColorAction (sender as object, csColor as DWord, csDrawMask as

Byte, csFillPattern as Byte)

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

ColorSelector - 333

csFeatures

Die Instancevariable csFeatures bestimmt, welche UI der ColorSelector dem
Nutzer anbietet. Per Default ist nur das Bit CSI_INDEX gesetzt, das heißt der
ColorSelector bietet nur die Liste mit den ersten 16 Indexfarben an. Die folgenden
Werte stehen für csFeatures zur Verfügung:

Konstante Wert hex. Bereitgestellte Eigenschaft
CSF_FILL_PATTERN 1 &h1 Auswahl an Füllmustern
CSF_DRAW_MASK 2 &h2 Füll-Raster (0 bis 100%)
CSF_RGB 4 &h4 Farbauswahl über RGB-Werte
CSF_INDEX 8 &h8 Farbauswahl über Indexfarben
– 16 &h10 Gefüllt / Ungefüllt
CSF_MORE_COLORS 32 &h20 Dialogbox "Weitere Farben"

Beachten Sie, dass csFeatures Bitflags sind. Eine Verknüpfung der einzelnen
Werte ist mit dem Operator ’+’ oder mit einem logischen OR möglich.

Beispiel: Ein ColorSelector der die Indexfarben und das Einstellen von RGB-
Werten unterstützt.
ColorSelector DemoColors
csFeatures = CFS_INDEX OR CSF_RGB

End Object

Hinweise:
• Der Selector für "gefüllt / ungefüllt" (csFeatures Wert 16) kann zwar aktiviert

werden, unter R-BASIC ist jedoch kein Zugriff darauf möglich.
• Die ColorSelector Tools aus den Menüleisten sind unter R-BASIC nicht

verfügbar. Sie können Sie als RadioButtonGroups nachbilden.

csColor, csIndexColor

Die Instancevariable csColor enthält den aktuell vom ColorSelector ausgewählten
Farbwert. Es hängt von den Umständen ab, ob csColor beim Auslesen einen
RGB-Farbwert oder einen Indexwert liefert. Selbst wenn eine Indexfarbe gewählt
ist kann csColor einen (natürlich den zugehörigen) RGB-Farbwert liefern. Wenn
Sie sicher sein wollen, dass Sie eine Indexfarbwert erhalten müssen Sie die
Instancevariable csIndexColor abfragen. Sollte eine Farbe ausgewählt sein, der
kein Farbindex entspricht wird derjenige Index zurückgegeben, der der
ausgewählten Farbe am besten entspricht.
Für die Zuweisung an csColor sind sowohl RGB- als auch Indexfarben zulässig,
csIndexColor kann nur gelesen werden.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

ColorSelector - 334

Syntax Lesen: <numVar> = <obj>.csColor
<numVar> = <obj>.csIndexColor

Schreiben: <obj>.csColor = farbwert
UI-Code: csColor = farbwert

 farbwert: RGB-Farbwert oder Indexfarbe

Die numerischen Werte der Indexfarben liegen im Bereich von Null bis 255. RGB-
Farbwerte berechnen sich nach der Formel "rot + 256*grün + 65536*blau +
16777216" oder gleichwertig hexadezimal "rot + &h100*grün + &h10000*blau +
&h1000000". Mehr zum Thema Farben finden Sie im Kapitel 2.8.2 "Beschreibung
von Farben" des R-BASIC Programmierhandbuchs.

csDrawMask, csDrawMaskValue

Der ColorSelector bietet unter der Bezeichnung "Raster" eine Auswahl von
Füllmustern an, die als "Transparenzgrad" angesehen werden können. Die
numerischen Werte dieser Füllmuster liegen im Bereich von 25 (vollständig
deckend, Raster 100%) bis 89 (vollständig transparent, Raster 0%). Das sind 64
Stufen für den Transparenzgrad. Die Instancevariable csDrawMask enthält diese
numerischen Werte. Sie kann gelesen und geschrieben werden.
Die Instancevariable csDrawMaskValue enthält die aus csDrawMask berechneten
Prozentwerte (0 bis 100). Dabei wird intern die folgende Formel benutzt:

csDrawMaskValue = (89 - csDrawMask) * 100 / 64
Beim Schreiben von csDrawMaskValue wird die entsprechende Umkehrformel
verwendet. Beachten Sie, dass es durch die Stufung in 64 Schritte zu leichten
Abweichungen der Werte kommen kann.

Syntax Lesen: <numVar> = <obj>.csDrawMask
Schreiben: <obj>.csDrawMask = raster
UI-Code: csDrawMask = raster

raster: Numerischer Wert des Rasters, Werte 25 bis 89

Syntax Lesen: <numVar> = <obj>.csDrawMaskValue
Schreiben: <obj>.csDrawMaskValue = raster
UI-Code: csDrawMaskValue = raster

raster: Numerischer Wert des Rasters, in Prozent (0 bis 100)

Die Werte für csDrawMask können direkt mit den Feldern lineDrawMask,
areaDrawMask und textDrawMask der Systemvariablen "graphic" verwendet
werden um das Füllmuster von Linien, Flächen und Texten einzustellen. Alternativ
können Sie den Wert von csFillPattern oder jeden anderen Wert von 0 bis 255 für
die Felder lineDrawMask, areaDrawMask und textDrawMask der Systemvariablen
"graphic" benutzen. Mehr zum Thema Füllmuster finden Sie im Programmierhand-
buch, Kapitel 2.8.4 (Die Systemvariable "graphic": Mixmodes und mehr) sowie im
Anhang, Abschnitt C. Dort sind weitere Beispiele für Füllmuster angegeben.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

ColorSelector - 335

csFillPattern

Der ColorSelector bietet eine kleine Auswahl von grafischen Füllmustern an. Die
Instancevariable csFillPattern enthält diese Auswahl. Im Bild sind die zugehörigen
numerischen Werte dargestellt.

25 24 23 4 5 8 9

Syntax Lesen: <numVar> = <obj>.csFillPattern
Schreiben: <obj>.csFillPattern = muster
UI-Code: csFillPattern = muster

 muster: Numerischer Wert des Füllmusters

Diese Füllmuster können mit den Feldern lineDrawMask, areaDrawMask und
textDrawMask der Systemvariablen "graphic" verwendet werden um das
Füllmuster von Linien, Flächen und Texten einzustellen. Alternativ können Sie den
Wert von csDrawMask oder jeden anderen Wert von 0 bis 255 für die Felder
lineDrawMask, areaDrawMask und textDrawMask der Systemvariablen "graphic"
benutzen. Mehr zum Thema Füllmuster finden Sie im R-BASIC Programmierhand-
buch, Kapitel 2.8.4 (Die Systemvariable "graphic": Mixmodes und mehr) sowie im
Anhang, Abschnitt C. Dort sind weitere Beispiele für Füllmuster angegeben.

ColorChangedHandler

Die Instancevariable ColorChangedHandler enthält den Namen des Action-
Handlers der aufgerufen werden soll, wenn der Nutzer eine der vom ColorSelector
angebotenen Eigenschaften (also auch Raster und Füllmuster) ändert.

Syntax UI- Code: ColorChangedHandler = <Handler>
Schreiben: <obj>.ColorChangedHandler = <Handler>

ColorChangedHandler müssen als ColorAction deklariert sein. Diesem Handler
werden die folgenden Parameter übergeben:

sender: Der ColorSelector, der den Handler aufgerufen hat.
csColor: Der aktuell ausgewählte Farbwert. Das kann eine RGB-Farbe

oder eine Indexfarbe sein. Selbst wenn eine Indexfarbe gewählt
ist kann csColor einen (natürlich den zugehörigen) RGB-Farbwert
enthalten.

csDrawMask: Der aktuell ausgewählte Wert für das Füllraster. Mögliche Werte
liegen im Bereich von 25 (Raster = 100%) bis 89 (Raster = 0%).

csFillPattern: Der aktuell ausgewählte Wert für das Füllmuster. Mögliche Werte
sind 25, 24, 23, 4, 5, 8 und 9.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

ColorSelector - 336

Beispiel: Der Actionhandler soll eine farbige Figur auf dem Bildschirm zeichnen.
Farbe und Füllmuster sollen durch den ColorSelector, der den ActionHandler
gerufen hat, bestimmt werden. Da in R-BASIC Raster und Füllmuster nicht
gleichzeitig angewendet werden können wird der Raster-Wert dann verwendet,
wenn das Füllmuster auf "vollständig ausgefüllt" gestellt ist. Dem entspricht die in
R-BASIC definierte Konstante DM_100 mit dem Zahlenwert 25.

ColorAction ColorChangedNotification
DIM mask

IF csFillPattern = DM_100 THEN
mask = csDrawMask

ELSE
mask = csFillPattern

END IF

’ Belegen der Systemvariablen graphic
graphic.areaDrawMask = mask
graphic.areaColor = csColor

FillEllipse 10, 10, 300, 150

END ACTION

Der dazugehörige ColorSelector ist folgendermaßen definiert:

ColorSelector DemoColorSel
caption$ = "Farbauswahl"
justifyCaption = J_CENTER
DrawInBox
csFeatures = CSF_INDEX + CSF_MORE_COLORS + CSF_RGB + \

CSF_FILL_PATTERN + CSF_DRAW_MASK
csDrawMask = 58
csFillPattern = 8
ColorChangedHandler = ColorChangedNotification

End OBJECT

Dieser ColorSelector ruft den Handler ColorChangedNotification jedes Mal, wenn
der Nutzer die Farbe, das Füllmuster oder das Raster ändert. Ändert er alle drei
Eigenschaften wird der Handler auch drei Mal gerufen. Um das zu umgehen
definieren Sie am einfachsten keinen ColorChangedHandler und fragen die Werte
für csColor, csDrawMask und csFillPattern manuell ab. Das kann z.B. in einem
Button-Handler (Button "Anwenden") geschehen.

Die hier beschriebenen Codefragmente finden Sie komplett als Beispiel unter
"R-BASIC\Beispiel\Objekte\Grafik\ColorSelector Demo".

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

ColorSelector - 337

Erfahrene Programmierer finden vielleicht die folgenden Informationen hilfreich:

Wenn Sie im UI Code des ColorSelectors den Hint MakeDelayedApply setzen
oder den ColorSelector in einem Dialog verwenden, der den Dialogtyp dialogType
= DT_DELAYED_APPLY hat, arbeitet der ColorSelector im sogenannten "Delayed
Mode", der im Kapitel 3.4.2 beschrieben ist. In diesem Modus ruft der
ColorSelector seinen ColorChangedHandler erst auf, wenn er durch Aufruf der
Methode "Apply" dazu aufgefordert wird.
Innerhalb eines Dialogs mit dialogType = DT_DELAYED_APPLY wird der
benötigte "Anwenden" Button automatisch erzeugt und auch die Methode "Apply"
wird automatisch gerufen. Das System nimmt Ihnen also sehr viel Arbeit ab.
Ansonsten müssen Sie den Button selbst definieren. Der ActionHandler sieht dann
so aus:

BUTTONACTION SendApply
DemoColorSel.Apply

END ACTION

Beachten Sie, dass Sie keinen Zugriff auf die Status-Messages des
ColorSelectors haben. Diese werden auf Systemebene intern verwendet.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 338

4.13 DocumentGuardian

Viele Programme arbeiten mit Dokumenten, die der Nutzer anlegen, bearbeiten,
speichern und weitergeben kann. Objekte der Klasse DocumentGuardian
erleichtern Ihnen den Umgang mit solchen Dokumenten, indem Sie allgemeine
Informationen, die bei der Arbeit mit Dokumenten anfallen, verwalten. Dazu zählen
z.B. der Name und der Pfad zur Dokumentendatei sowie das FileHandle der
offenen Datei. Außerdem können Objekte der Klasse DocumentGuardian
vorhandenen Dokumente öffnen, neue Dokumente anlegen und offene
Dokumente schließen. Dabei berücksichtigen sie z.B. den Dateityp und das
Token, behandeln schreibgeschützte Dateien korrekt und vieles mehr. Auf diese
Weise entlasten diese Objekte den BASIC-Programmierer von einer Vielzahl von
Standardaufgaben.

DocumentGuardian-Objekte sind dafür ausgelegt mit der Library
"DocumentTools" zusammenzuarbeiten. Diese Library bietet z.B. die zur
Dateiarbeit nötigen Dialogboxen wie "Öffnen" und "Speichern unter" an. Im
Handbuch "Spezielle Themen", Kapitel 15, ("Implementieren eines Dokument-
Interfaces") finden Sie eine ausführliche Beschreibung wie man die Arbeit mit
Dokumenten unter Verwendung der DocumentTools Library und eines
DocumentGuardian-Objekts organisiert. Bitte lesen Sie dort nach, wenn Sie
ausführliche Beispiele oder weitergehende Erklärungen benötigen.
Zur Vereinfachung kann der gesamte Dokument-Interface Code über ein R-
BASIC Menu in ihr Programm eingebaut werden. Dazu verwenden Sie das Menü
"Extras" -> "Code Bausteine" -> "Dokument-Interface". Dort können Sie auch
festlegen, welche Teile des Dokumentinterfaces Sie unterstützen wollen, z.B. ob
Sie Musterdokumente unterstützen wollen oder nicht.

Im Prinzip läuft die Arbeit mit DocumentGuardian-Objekten so ab:
• Vereinbaren Sie ein DocumentGuardian-Objekt im UI-Code oder erzeugen Sie

sein oder mehrere DocumentGuardian-Objekte zur Laufzeit (mit CreateObject).
• Initialisieren Sie das Objekt durch Belegen der Instancevariablen configData

und ButtonHandler.
• Öffnen Sie ein vorhandenes Dokument mit der Methode OpenDocument oder

erzeugen Sie ein neues Dokument mit CreateNewDocument.
• Um Daten aus der Dokument-Datei zu lesen oder in die Datei zu schreiben

benötigen Sie das FILE Handle der Datei. Das bekommen Sie über die
Instancevariable documentHandle.
Wichtig: Das FILE Handle der Dokumentendatei kann sich im Laufe der Zeit
ändern, z.B. wenn die Datei umbenannt (Menüpunkte "Speichern unter" oder
"Umbenennen") oder verschoben wird (Menüpunkt "Verschieben nach").
Deswegen sollten Sie das FILE Handle nicht irgendwo zwischenspeichern.

• Wenn Sie Informationen über den Zustand der Datei wissen oder ändern
wollen, können Sie die Instancevariable documentState und die Methode Set-
DocumentState verwenden. Insbesondere sollten Sie SetDocumentState rufen,
wenn Sie die Datei als geändert markieren wollen.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 339

• Weitere wichtige Informationen über die offene Datei speichern die Instance-
variablen documentName$ und documentPath$. DocumentUserData können
Sie verwenden, um beliebige weitere Informationen über die Datei abzulegen.

• Um ein Dokument zu schließen verwenden Sie die Methode CloseDocument.
• Wenn GEOS herunterfährt bzw. wieder neu startet übernehmen die Methoden

HandleShutdown und HandleRestart alle notwendigen Schritte um die Datei
zu schließen und beim Neustart automatisch wieder zu öffnen.

Abstammung:
GenericClass DocumentGuardian

Objekte der Klasse DocumentGuardian sind per Default nicht sichtbar (visible =
FALSE). Sie können in den generic Tree eingebunden werden. Werden sie auf
visible = TRUE gesetzt verhalten sie sich wie eine Group. Die unterstützen das
Geometriemanagement und können Children haben.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
ButtonHandler ButtonHandler = <Handler> nur schreiben
configData –– lesen, schreiben
documentState –– nur lesen
documentHandle –– nur lesen
documentName$ –– nur lesen
documentPath$ –– nur lesen
documentUserData –– lesen, schreiben

Methoden:
Methode Aufgabe
SetDocumentState Informationen über das Dokument ändern
CreateNewDocument Neues Dokument anlegen
OpenDocument Vorhandenes Dokument öffnen
CloseDocument Aktuelles Dokument schließen
HandleShutdown System-Shutdown behandeln
HandleRestart System Neustart behandeln

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 340

4.13.1 Konfiguration

ConfigData

Damit das DocumentGuardian seine Aufgaben, z.B. eine Datei anzulegen oder zu
öffnen, erfüllen kann, benötigt es diverse Informationen. Dazu gehören der
Dateityp (DOS-, GEOS-Daten- oder VM-Datei), für GEOS-Daten- und VM-Dateien
das Token und einiges mehr. Außerdem arbeitet das DocumentGuardian-Objekt
eng mit der "DocumentTools"-Library zusammen. Diese Library entlastet den
Programmierer, indem Sie zum Beispiel die typischen Dialogboxen zum Öffnen
oder "Speichern unter" von Dateien bereitstellt. Die für die Arbeit dieser Library
nötigen Informationen werden ebenfalls vom DocumentGuardian-Objekt
bereitgestellt.

Die Instancevariable configData enthält eine Struktur, die alle für die oben
genannten Zwecke erforderlichen Informationen enthält. Die Struktur ist
folgendermaßen definiert:

STRUCT DocumentConfigStruct
noDocumentString$ As String(32)
templateFolder$ As String(32)
nameForNew$ As String(32)
fileType As word
token As GeodeToken
creatorToken As GeodeToken
matchMask$ As String(32)
matchFlags As Word
reserved(4) As Word

End Struct

Bedeutung der einzelnen Felder:

noDocumentString$
NoDocumentString$ enthält den Text, den die Methode DocumentName$
zurückgeben soll, wenn kein Dokument geöffnet ist. Ein typischer Wert wäre
"kein Dokument".

templateFolder$
TemplateFolder$ enthält den Unterordner im SP_TEMPLATE-Verzeichnis, in
dem das Programm Templates ("Muster-Dateien") speichert. Das Document-
Guardian-Objekt stellt sicher, dass der Ordner existiert.

nameForNew$
NameForNew$ enthält den Kerntext, aus dem das DocumentGuardian-Objekt
durch Hinzufügen einer Zahl von 1 bis 99 einen Namen für eine neue Datei
bilden soll.
NameForNew$ hat das Format "core*.ext" oder "core". Beispiele:
 Aus "LEER*.RBF" wird "LEER1.RBF", "LEER2.RBF" bis "LEER99.RBF"
 Aus "NEU*" wird "NEU2", "NEU2" bis "NEU99"
 Aus "namenlos " wird "namenlos 1", "namenlos 2" bis "namenlos 99"

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 341

Wichtig: Sie sind selbst dafür zuständig, dass der nach dem oben genannten
Schema gebildete Name zum Dateityp passt, für DOS-Dateien also das Format
8+3 eingehalten wird.

fileType
FileType enthält den Typ der Dokumentendatei. Gültige Werte sind GFT_VM,
GFT_DATA und GFT_NOT_GEOS_FILE. Erfahrene Programmierer sollten
VM-Dateien (GFT_VM) verwenden, für alle anderen empfiehlt sich GFT_DATA
(GEOS-Daten-Dateien). Diese unterstützen wie die VM-Dateien die Geos-
Attribute wie Token und CreatorToken. DOS-Dateien (GFT_NOT_GEOS_FILE)
sollten Sie nur dann verwenden, wenn Sie einen wirklich guten Grund dafür
haben.

token, creatorToken
Token und CreatorToken enthalten das Token und das CreatorToken der Datei
für GEOS-Daten- und VM-Dateien. Beim Anlegen einer neuen Datei setzt das
DocumentGuardian-Objekt Token und CreatorToken automatisch.

matchMask$, matchFlags
MatchMask$ und matchFlags werden vom DocumentGuardian-Objekt nicht
selbst verwendet, sondern sind zur Arbeit der DocumentTools-Library
notwendig. MatchFlags enthält die Information, welche Eigenschaften der Datei
der im "Öffnen"-Dialog angezeigte FileSelector zum Filtern der Dateien
verwenden soll. MatchMask$ enthält die Dateimaske, die verwendet wird, falls
das entsprechende Bit in MatchFlags gesetzt ist.

reserved
Diese 10 Bytes sind für eventuelle spätere Erweiterungen vorgesehen. Sie
dürfen diese Werte nicht verwenden.

Zur Verwendung mit matchFlags sind die folgenden Konstanten definiert:

Konstante Wert Bedeutung
DOC_MATCH_TOKEN 1 Feld "token" verwenden
DOC_MATCH_CREATOR 2 Feld "creatorToken" verwenden
DOC_MATCH_MASK 4 Feld "matchMask$" verwenden
DOC_MATCH_TYPE 8 Feld "fileType" verwenden

Für DOS-Dateien wird oft die Kombination "DOC_MATCH_TYPE + DOC_-
MATCH_MASK" verwendet, währen für GEOS-Daten- und VM-Dateien oft
"DOC_MATCH_TOKEN" oder "DOC_MATCH_TOKEN + DOC_MATCH_-
CREATOR" verwendet wird.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 342

Beispiel:
SUB DoInitDocumentGuardian(guardian as object)
DIM dc as DocumentConfigStruct

’ ButtonHandler kann hier oder im UI-Code gesetzt werden
guardian.ButtonHandler = DocumentAndToolButtonHandler

dc.noDocumentString$ = "kein Dokument"
dc.templateFolder$ = "DemoTemplates"
dc.nameForNew$ = "Unbenanntes Dokument "

dc.fileType = GFT_DATA
dc.creatorToken.tokenChars = "PHON"
dc.creatorToken.manufid = 5
dc.token.manufid = 5
dc.token.tokenChars = "PHO2"

’dc.matchMask$ = "*.TXX" # nicht benötigt für GEOS-Dateien
dc.matchFlags = DOC_MATCH_TOKEN

guardian.configData = dc
END SUB

ButtonHandler

Die Instancevariable ButtonHandler enthält einen Handler, der von der
DocumentTools-Library benötigt wird. Er muss als ButtonAction deklariert sein und
wird gerufen, wenn der Nutzer einen Button im "Neu/Öffnen" Dialog anklickt.
Dieser Dialog wird von der Routine DTNewOpenDialog aus der DocumentTools
Library erzeugt. Weitere Informationen dazu finden Sie im Handbuch der Library.

Syntax UI-Code: ButtonHandler = <Handler>
Schreiben: <obj>.ButtonHandler = <Handler>

Beispiel:
DocumentGuardian MyDocObj
ButtonHandler = DocumentAndToolButtonHandler

End Object

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 343

4.13.2 Verwalten von Dokumenten

CreateNewDocument

Mit der Methode CreateNewDocument legt das DocumentGuardian Objekt ein
neues Dokument entsprechend den in der Instancevariablen configData gespei-
cherten Werten an.

• Der Name der neuen Datei wird aus configData.nameForNew und einer Zahl
gebildet.

• Der Dateityp (DOS-, GEOS-Daten- oder GEOS-VM-Datei) wird von
configData.fileType bestimmt.

• Für GEOS-Daten- und VM-Dateien wird Token (configData.token) und
CreatorToken (configData.creatorToken) gesetzt.

• VM-Dateien werden so initialisiert, dass sie mit der "VMFiles" Library
verwendet werden können. Details zur Arbeit mit VM-Dateien finden Sie Im
Handbuch der "VMFiles" Library

• Achtung! Sollte das DocumentGuardian-Objekt noch eine Dokument-Datei
offen haben wird sie ohne Nachfragen geschlossen.

Die neue Dokument-Datei wird im aktuellen Ordner angelegt. Die globale Variable
fileError wird gesetzt (Null oder Fehlercode).

Syntax BASIC-Code: <obj>.CreateNewDocument

Beispiel:
MyDocObj.CreateNewDocument
MsgBox "Die neue Datei hat den Namen: " + MyDocObj.documentName$

OpenDocument

Mit der Methode OpenDocument öffnet das DocumentGuardian Objekt ein
vorhandenes Dokument. Sollte das DocumentGuardian-Objekt noch eine
Dokument-Datei offen haben wird sie ohne Nachfragen geschlossen.
Die globale Variable fileError wird gesetzt (Null oder Fehlercode).

Syntax BASIC-Code: <obj>.OpenDocument "name" [, forceRO]
"name": Dateiname der zu öffnenden Datei
forceRO: FALSE: normal öffnen (Default)

TRUE: schreibgeschützt öffnen

Beispiel:
MyDocObj.OpenDocument "MyDoc"

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 344

CloseDocument

Mit der Methode CloseDocument schließt das DocumentGuardian Objekt das
aktuell von ihm geöffnete Dokument. Ist das Dokument noch unbenannt (das Bit
DOCS_UNTITLED ist gesetzt in der Instancevariablen documentState) so wird die
Datei nach dem Schließen gelöscht. Für den seltenen Fall, dass Sie nicht
möchten, dass unbenannte Dokumente nach dem Schließen gelöscht werden,
müssen Sie FALSE als Parameter angeben. Die globale Variable fileError wird in
beiden Fällen gesetzt (Null oder Fehlercode).

Syntax BASIC-Code: <obj>.CloseDocument
<obj>.CloseDocument FALSE

Beispiele:
MyDocObj.CloseDocument
MyDocObj.CloseDocument FALSE

DocumentHandle

Diese Instancevariable enthält das File-Handle der aktuell vom Document-
Guardian geöffneten Datei. Ist kein Dokument geöffnet enthält documentHandle
ein NullHandle.

Syntax Lesen: <fh> = <obj>.documentHandle
<fh>: Variable vom Typ FILE

Beispiel:
DIM fh as FILE
DIM text$
fh = MyDocObj.documentHandle
IF fh <> NullFile() THEN
text$ = FileReadLine$ (fh)

End IF

DocumentName$

DocumentName$ enthält den Namen der aktuell vom DocumentGuardian
geöffneten Datei. Ist kein Dokument geöffnet enthält documentName$ den Text,
der im Feld "noDocumentString" der Instancevariablen configData gespeichert ist.

Syntax Lesen: <stringVar> = <obj>.documentName$
<stringVar>: Variable vom Typ String

Beispiel:
MyPrimary.Caption2$ = MyDocObj.documentName$

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 345

DocumentPath$

DocumentPath$ enthält den Pfad zur aktuell vom DocumentGuardian geöffneten
Datei. Ist kein Dokument geöffnet documentPath$ den Pfad zur zuletzt geöffneten
Datei.

Syntax Lesen: <stringVar> = <obj>.documentPath$
<stringVar>: String-Variable, die 200 Zeichen aufnehmen kann.

Normale Stringvariablen können bis zu 128 Zeichen aufnehmen. Das ist in den
meisten Fällen ausreichend, kann jedoch zu wenig sein, weil Pfade bis zu 198
Zeichen lang sein können.

Beispiel:
DIM path$(200)
path$ = MyDocObj.documentPath$
MsgBox "Das Dokument liegt im Ordner ’" + path$ + "’."

documentState, SetDocumentState

Die Instancevariable documentState enthält Informationen (Flagbits) über den
aktuellen Zustand des vom DocumentGuardian-Objekt verwalteten Dokuments.
DocumentState enthält den Wert Null wenn kein Dokument offen ist. Folgende Bits
sind definiert:

Konstante Wert Bedeutung
DOCS_OPEN 1 Es ist ein Dokument offen
DOCS_MODIFIED 2 Das Dokument wurde geändert. (*)
DOCS_UNTITLED 4 Das Dokument ist neu und hat noch

keinen vom Nutzer vergebenen Namen.
DOCS_READ_ONLY 8 Das Dokument ist schreibgeschützt
DOCS_EDIT_TEMPLATE 16 Es ist ein Muster in Bearbeitung (**)

(*) Das Bit DOCS_MODIFIED wird vom DocumentGuardian-Objekt weder auto-
matisch gesetzt noch zurückgesetzt. Es wird von der "DocumentTools" Library
benötigt. Deswegen muss der Programmierer es auf dem aktuellen Stand
halten.

(**) Das Bit DOCS_EDIT_TEMPLATE wird vom DocumentGuardian-Objekt nicht
automatisch gesetzt. Es wird benutzt um sicherzustellen, dass der nächste
"Öffnen"-Dialog den Dokument-Ordner anzeigt, und nicht dem der aktuell
offenen Datei (den Template-Ordner). Der Programmierer sollte es setzen,
wenn er ein Muster zum Bearbeiten öffnet. Es wird beim Schließen dieser
Datei automatisch zurückgesetzt.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 346

Die Instancevariable documentState kann nur gelesen werden. Um sie zu ändern
verwenden Sie die Methode SetDocumentState. Sie erwartet zwei Parameter: die
Bits, die zu setzen sind und die Bits, die zu löschen sind. Das vereinfacht die
Verwaltung des Dokumentstatus wesentlich. SetDocumentState kann nur die Bits
DOCS_MODIFIED, DOCS_UNTITLED und DOCS_EDIT_TEMPLATE ändern.
Wenn kein Dokument offen ist können diese Bits nicht gesetzt werden.

Syntax BASIC-Code: <numVar> = <obj>.documentState

Syntax BASIC-Code: <obj>.SetDocumentState bitsToSet, bitsToClear

Beispiele:
DIM state
state = MyDocumentGuardian.documentState
IF state = 0 THEN MsgBox "Es ist kein Dokument offen."
IF state AND DOCS_UNTITLED THEN MsgBox "Das Dokument ist neu."

’ Dokumentstatus auf "geändert" setzen
MyDocumentGuardian.SetDocumentState DOCS_MODIFIED, 0

’ Dokumentstatus auf "ungeändert" setzen
MyDocumentGuardian.SetDocumentState 0, DOCS_MODIFIED

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 347

4.13.3 Services

HandleShutdown, HandleRestart

Wenn GEOS herunterfährt muss das DocumentGuardian-Objekt das aktuelle
Dokument schließen und beim Wiederhochfahren muss das gleiche Dokument
wieder geöffnet werden. Darum kümmern sich die Methoden HandleShutdown
und HandleRestart. Diese Methoden sollten im OnExit bzw. im OnStartup-Handler
des Programms gerufen werden. Im Handbuch "Spezielle Themen", Kapitel 15,
("Implementieren eines Dokument-Interfaces") finden Sie ein ausführlicheres und
kommentiertes Beispiel dazu.

Syntax BASIC-Code: <obj>.HandleShutdown
<obj>.HandleRestart

Beispiel:
SYSTEMACTION DocExitHandler
 IF flags AND AF_SHUTDOWN THEN
 DocumentObj.HandleShutdown

 Else
 ! Hier Dokument ggf. Speichern und normal schließen
 End IF
END ACTION

SYSTEMACTION DocStartupHandler
IF flags AND AF_RESTORE THEN

DocumentObj.HandleRestart
End IF

END ACTION

documentUserData

Manchmal ist es wünschenswert, Dokumentdaten an einem sicheren Platz
abzuspeichern, ohne sie in die Dokumentendatei zu schreiben. Zum Beispiel
"überleben" globale Variablen eine Systemrestart nicht. Die Instancevariable
documentUserData kann eine einzelne Strukturvariable (d.h. bis zu 3500 Byte)
aufnehmen. Wie bei jeder anderen Instancevariablen von R-BASIC Objekten
stehen die Daten nach einem Systemrestart automatisch wieder zur Verfügung.
Eine andere Anwendung wäre, wenn Sie ein Programm schreiben, dass mit
mehreren offenen Dokumenten gleichzeitig umgehen kann, wobei jedes offene
Dokument sein eigenes DocumentGuardian-Objekt hat. DocumentUserData
könnte dann die Dokument-spezifischen Daten enthalten.

DocumentUserData ist zuweisungskompatibel mit jeder Art von Strukturvariablen.
Beim Schreiben müssen Sie allerdings die Größe der Struktur extra angeben.
Beim Lesen müssen Sie selbst darauf achten, dass die Strukturen kompatibel
sind, R-BASIC führt weder eine Typ- noch eine Größenprüfung aus. Aber es ist

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

DocumentGuardian - 348

sichergestellt, dass niemals mehr Bytes kopiert werden, als die Variable auf der
linken Seite der Zuweisung aufnehmen kann.

Es ist zulässig mehrfach hintereinander Strukturen verschiedenen Typs und
verschiedener Größe in die Instancevariable zu schreiben. R-BASIC optimiert
jedes Mal den verwendeten Speicher, so dass kein Platz verschwendet wird.

Syntax Schreiben: <obj>.documentUserData = <struct>, size
<struct>: Strukturausdruck beliebigen Typs
size Größe der Struktur

Lesen: <sturctVar> = <obj>.documentUserData
<structVar>: Strukturvariable des Typs, der beim Schreiben

 verwendet wurde.

Beispiel:
Wir definieren eine Struktur, die Referenzen auf zwei Objekte enthält (ein View-
Objekt und ein Display-Objekt), die zur Darstellung der Dokumentdaten
Verwendung finden könnten. Dann definieren wir eine Strukturvariable, belegen
diese und speichern die Informationen im DocumentGuardian Objekt.

STRUCT MyObjects
docView as OBJECT
docDiaplay as OBJECT

End Struct

DIM ob, ob2 as MyObjects

ob.docView = MyView
ob.docDisplay = MyDisplay

guardian.documentUserData = ob, sizeof(ob)
....
ob2 = guardian.documentUserData

....

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 349

4.14 PrintControl

Wenn Sie aus einem R-BASIC-Programm heraus drucken wollen müssen Sie ein
PrintControl-Objekt benutzen. Das PrintControl-Objekt stellt den "Drucken"-Dialog
bereit und steuert alle für das Drucken notwendigen Vorgänge. Wenn der Nutzer
die Möglichkeit haben soll, die Seitengröße des Dokuments einzustellen, sollten
Sie zusätzlich ein PageSizeControl Objekt verwenden, dass alle für die Einstellung
der Seitengröße notwendige UI bereitstellt.

Abstammung:
GenericClass PrintControl

Objekte der Klasse PrintControl selbst sind unsichtbar. Sie müssen aber in den
generic Tree eingebunden werden, damit der "Drucken"-Dialog angezeigt werden
kann.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
pcAttrs pcAttrs = attrWert lesen, schreiben
pcAppUI pcAppUI = <Obj> ––
totalPageRange totalPageRange = start, end lesen, schreiben
userPageRange userPageRange = start, end lesen, schreiben
pcDocSize pcDocSize = width, height lesen, schreiben
pcDocMargins pcDocMargins =

left, top, right, bottom lesen, schreiben
pcLayout pcLayout = layoutWert lesen, schreiben
pcPaperSizeInfo –– nur Lesen
printJobName$ printJobName$ = "Name" nur Schreiben
OnPrint OnPrint = <Handler> lesen, schreiben
OnVerifyPrint OnVerifyPrint = <Handler> lesen, schreiben
printMode –– nur Lesen

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 350

Methoden:
Methode Aufgabe
InitiatePrint "Drucken" Dialogbox anzeigen und drucken
PrintingVerified Überprüfen der Nutzereingaben beendet
ReportProgress Druckfortschritt für Nutzer anzeigen
ReportProgressText Druckfortschritt für Nutzer anzeigen
PrintNewPage Neue Seite beginnen
PrintingCompleted Grafik- und Textausgabe fertig

Daten an Drucker senden
PrintingCancelled Drucken abbrechen

Action-Handler-Typen:
Handler-Typ Parameter
DrawAction (sender as object, width, height as word)

Spezielle Routinen:
Routine Deklaration
PrintObj SUB PrintObj (obj as object, x, y as word)

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 351

4.14.1 Überblick über das Drucken

Um unter R-BASIC zu drucken benötigen Sie die folgenden Objekte
- ein "Drucken" Button, der sich üblicher Weise im Datei-Menü befindet
- ein PrintControl-Objekt
- gegebenenfalls ein PageSizeControl Objekt.
Das PrintControl-Objekt arbeitet intern mit der "Spool"-Library zusammen. Diese
Library sorgt für das Drucken im Hintergrund und arbeitet mit den Druckertreibern
zusammen.

Im Einzelnen passiert folgendes:
1. Der Nutzer aktiviert den "Drucken" Button.

Daraufhin wird der ActionHandler dieses Buttons aufgerufen.
2. Im ActionHandler des Drucken-Buttons müssen Sie das PrintControl-Objekt

initialisieren, soweit das noch nicht im UI-Code passiert ist.
Sie müssen an dieser Stelle sicherstellen, dass folgende Instancevariablen
korrekt belegt sind:
- pcDocSize, pcDocMargins, pcLayout (Größe und Layout des Dokuments)

Ausnahme: Wenn Sie die Größe des Papiers im Drucker als Dokument-
größe verwenden wollen, sollten Sie diese Instancevariablen erst im
OnPrintHandler setzen.

- bei mehrseitigen Druckaufträgen: totalPageRange, userPageRange (zu
druckender Seitenbereich)

- printJobName$ (Name des Printjobs)
Die letzte Anweisung dieses Handlers muss der Aufruf der InitiatePrint
Methode des PrintControl-Objekts sein.

3. Das PrintControl-Objekt präsentiert den "Drucken" Dialog. Der Nutzer hat hier
die Möglichkeit den Drucker, die Papiersorte und vieles mehr auszuwählen.
Mit dem aktivieren des "Drucken" Buttons in diesem Dialog beginnt der
eigentliche Druckvorgang.

4. Wenn das PrintControl-Objekt einen OnVerifyPrint-Handler hat wird dieser
jetzt gerufen. Das Programm kann hier prüfen, ob die Eingaben des Nutzers
im Drucken-Dialog konsistent sind und ihn gegebenenfalls zur Korrektur
seiner Eingaben auffordern.
Besitzt das PrintControl-Objekt keinen OnVerifyPrint-Handler - was sehr
häufig der Fall ist - wird dieser Schritt übersprungen.

5. Die Spool-Library erzeugt einen GString, in dem alle Druckausgaben
zwischengespeichert werden, und übergibt ihn an das PrintControl-Objekt.

6. Das PrintControl-Objekt ruft seinen OnPrint Handler. Dabei setzt es den
GString von der Spool-Library als Screen. Alle Grafik- und Textausgaben
gehen jetzt in dieses GString.

7. Der OnPrint-Handler muss die folgenden Schritte abarbeiten:
a) Falls noch nicht im Actionhandler des Printbuttons geschehen: Belegen

der Instancevariablen pcDocSize, pcDocMargins und pcLayout des
PrintControl-Objekts

b) Sehr häufig:
• Setzen des Fonts für den Ausdruck (Anweisung: FontSetGeos). Der

Standardfont sieht beim Ausdruck nicht so toll aus.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 352

• Setzen des Koordinatenursprungs so, dass der linke und obere Rand
standardmäßig nicht bedruckt wird (Anweisung: ScreenSetTranslation,
Beispiele siehe unten).

c) Ausgabe von Grafik oder Text auf den Drucker. Es sind alle Grafik- und
Textbefehle zulässig. Sie können als Programmierer so tun, als ob das zu
bedruckende Blatt Papier der Bildschirm ist.
Um den Nutzer über den Druckfortschritt zu informieren können Sie in
regelmäßigen Abständen, z.B. am Beginn jeder neuen Seite, eine der
Methoden ReportProgress oder ReportProgressText aufrufen.
Um eine neue Seite zu beginnen müssen die die Methode PrintNewPage
des PrintControl-Objekts aufrufen.

d) Wenn Sie alles gedruckt haben müssen Sie die Methode Printing-
Completed aufrufen. Sie wirft automatisch die letzte gedruckte Seite aus.
Falls Sie den Druckvorgang vorzeitig abbrechen wollen rufen Sie satt
PrintingCompleted die Methode PrintingCancelled auf. Der Spooler bricht
dann den Druckjob ab.

8. Das PrintControl-Objekt setzt den Screen zurück und informiert den Spooler,
dass der Druck beendet ist.

9. Der Spooler kommuniziert mit dem Druckertreiber und prüft, ob die auszu-
druckende Seite aufs Papier passt. Falls nicht wird der Nutzer gefragt, ob er
die Seite herunterskalieren oder auf mehrere Blätter verteilen will.

10. Der Druckertreiber übersetzt die GEOS - Grafik- und Textkommandos in die
Sprache des Druckers. Die Seiten werden jetzt endlich gedruckt.

Beispiele, in denen typische Fälle behandelt werden, finden Sie im Ordner R-
BASIC\Beispiel\Objekte\Drucken.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 353

4.14.2 Korrektes Setzen der Instancevariablen

Wichtig für das problemlose Drucken ist das korrekte Belegen der Instance-
variablen des PrintControl-Objekts. Prinzipiell gibt es drei Stellen, an denen die
Instancevariablen belegt werden können: im UI-Code, im Actionhandler des
Drucken-Buttons und im OnPrint-Handler des PrintControl-Objekts.

Die folgende Tabelle enthält Empfehlungen, wo die entsprechenden Instance-
variablen sinnvoller Weise gesetzt werden sollten. Für einfache Fälle reicht es
aus, die Werte fest im UI-Code zu setzen. In den meisten Fällen ist der Action-
handler des Drucken-Buttons der richtige Platz zum Belegen der entsprechenden
Instancevariablen. Nur wenn dort die gewünschte Funktionalität nicht erreicht
werden kann sollten Sie auf den OnPrint-Handler ausweichen. In diesem Fall wird
empfohlen, die Initialisierungen vor der ersten Text- oder Grafikausgabe zu
machen.

Spezielle Instance-Variablen:
Variable Defaultwert UI-Code Actionhandler OnPrint

belassen des Drucken Handler
Buttons

pcAttrs X X
totalPageRange X X X
userPageRange X X X Lesen
pcDocSize X X X
pcDocMargins X X X
pcLayout X X X X
pcPaperSizeInfo Lesen
printJobName$ (X) (X) X X
printMode Lesen

Beachten Sie, dass es nicht zulässig ist, für pcDocSize und pcDocMargins die
Defaultwerte zu belassen (da diese jeweils Null sind).

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 354

4.14.3 Konfigurieren des PrintControl-Objekts

Die Basiskonfiguration des PrintControl-Objekts findet im UI-Code statt.

pcAttrs

Die Instancevariable pcAttrs beschreibt die Eigenschaften und Fähigkeiten, die
durch das PrintControl-Objekt bereitgestellt werden sollen. pcAttrs enthält Bitflags,
d.h. jedes Bit hat eine eigene Bedeutung.

Syntax: UI-Code pcAttrs = attrWert
Schreiben <obj>.pcAttrs = attrWert
Lesen: <numVar> = <obj>.pcAttrs

attrWert: Numerischer Wert
Kombination der PCA_-Konstanten, siehe Tabelle

Für pcAttrs sind folgende Werte definiert. Hier nicht aufgeführte Bits müssen Null
bleiben!
Die meisten der in der Tabelle angegeben Bit erfordern keine weiter Unterstützung
durch das Programm. Ausnahmen sind:

PCA_VERIFY_PRINT
PCA_PROGRESS_PERCENT / PCA_PROGRESS_PAGE,
PCA_PAGE_CONTROLS

Konstante Wert hex. Default gesetzt
PCA_NO_PRINTER_CONTROLS 32868 &h8000
PCA_SEE_IF_DOC_WILL_FIT 16384 &h4000 X
PCA_MARK_APP_BUSY 8192 &h2000
PCA_VERIFY_PRINT 4096 &h1000
PCA_SHOW_PROGRESS 2048 &h800 X
PCA_PROGRESS_PERCENT 1024 &h400
PCA_PROGRESS_PAGE 512 &h200
PCA_FORCE_ROTATION 256 &h100
PCA_COPY_CONTROLS 128 &h80 X
PCA_PAGE_CONTROLS 64 &h40 X
PCA_QUALITY_CONTROLS 32 &h20 X
PCA_USES_DIALOG_BOX 16 &h10 X
PCA_GRAPHICS_MODE 8 &h8 X
PCA_TEXT_MODE 4 &h4 X
PC_DEFAULT_ATTRS 18684 &h48FC X

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 355

Bedeutung der einzelnen Bits:

PCA_NO_PRINTER_CONTROLS legt fest, dass der Nutzer den Drucker nicht
auswählen kann.

PCA_SEE_IF_DOC_WILL_FIT bewirkt, dass der Spooler prüft, ob eine Doku-
mentseite auf eine Seite im Drucker passt und gegebenenfalls nachfragt,
wie weiter verfahren werden soll.

PCA_MARK_APP_BUSY ändert während des Druckens den Mauszeiger in
eine Sanduhr. Das ist nützlich für längere Printjobs.

PCA_VERIFY_PRINT bewirkt, dass der OnVerifyPrint-Handler zur Überprüfung
der Nutzereingaben im Drucken-Dialog verwendet wird.

PCA_SHOW_PROGRESS bewirkt, dass während des Druckens eine Fort-
schrittsbox angezeigt wird. Sie können bei Bedarf die Methode Report-
ProgressText aufrufen um die Anzeige zu aktualisieren.

PCA_PROGRESS_PERCENT, PCA_PROGRESS_PAGE. Diese Bits bewirken,
der Fortschritt in der Fortschrittsbox als Prozentwert oder in der Form
"Seite (von Seiten)" (oder beides) angezeigt wird. Der genaue Text der
Anzeige hängt von der konkreten GEOS-Version ab.
Wenn Sie diese Bits verwenden müssen Sie in regelmäßigen Abständen
die Methode ReportProgress aufrufen um die Anzeige zu aktualisieren.

PCA_FORCE_ROTATION bewirkt, dass die Ausgabe auf jeden Fall im
Querformat erfolgt. Normalerweise wird dieses Bit nicht gesetzt, so das
der Spooler entscheiden kann, wie er zu große Dokumente optimal
verteilt. Die "GeoBanner" Applikation nutzt dieses Bit um das Querformat
zu erzwingen.

PCA_COPY_CONTROLS legt fest, ob der Nutzer die Anzahl der zu drucken-
den Kopien einstellen kann.

PCA_PAGE_CONTROLS legt fest, ob der Nutzer den zu druckenden Seiten-
bereich einstellen kann.

PCA_QUALITY_CONTROLS legt fest ob der Nutzer die Druckqualität einstellen
kann oder nicht.

PCA_USES_DIALOG_BOX legt fest, dass das PrintControl Objekt den
"Drucken"-Dialog anzeigen soll.

PCA_GRAPHICS_MODE, PCA_TEXT_MODE
Diese beiden Bits legen fest, ob der Controller die Optionen "Text-Modus"
und / oder "Grafik-Modus" anbieten soll. Sie sollten diese Bits gesetzt
lassen. Bei Druckern, die nicht über die entsprechenden Fähigkeiten
verfügen bietet das PrintControl-Objekt die zugehörige Option gar nicht
an.

PC_DEFAULT_ATTRS enthält die Summe (logische ODER-Kombination) aller
per Default gesetzten Attribute.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 356

Beispiele:

’ Ein PrintControl-Objekt ohne Auswahl der zu druckenden Seiten
’ z.B. weil es immer genau eine Seite gibt wie in GeoDraw
PrintControl DemoPrintControl
pcAttrs = PC_DEFAULT_ATTRS AND (NOT PCA_PAGE_CONTROLS)
< ... >

End OBJECT

’ Ein PrintControl-Objekt wobei die Fortschrittsbox für die
Verwendung der Methode ReportProgressText vorbereitet ist

PrintControl DemoPrintControl
pcAttrs = PC_DEFAULT_ATTRS OR PCA_PROGRESS_PERCENT
< ... >

End OBJECT

pcAppUI

In vielen Fällen ist es erforderlich, dass programmspezifische Einstellungen vor
dem Drucken vorgenommen werden müssen. Zum Beispiel kann eine
Textverarbeitung eine Serienbrief-Option anbieten oder eine Tabellenkalkulation
bietet die Möglichkeit an, Zeilen- und Spaltennamen zu drucken. Für diesen
Zweck kann man über die Instancevariable pcAppUI ein UI-Objekt angeben, dass
dann in die Drucken-Dialogbox eingebaut wird. Sehr häufig wird hier eine Group
verwendet, die dann die weiteren UI-Objekte enthält.
Das Objekt darf noch nicht an anderer Stelle in den generic Tree eingebunden
sein. Und es sollte auf visible = FALSE gesetzt sein.
Obwohl das Objekt noch nicht im generic Tree ist können Sie mit ihm und seinen
Children ohne Einschränkung kommunizieren. Sie dürfen z.B. Instancevariablen
verändern (etwa die gesetzten Optionen einer OptionGroup verändern) und auch
Objekt-Methoden aufrufen.

Syntax: UI-Code pcAppUI = <obj>
<obj> Objekt, das zur Drucken-Dialogbox hinzugefügt werden soll.

Das Objekt darf nicht in den generic Tree eingebunden sein.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 357

Beispiel:
PrintControl DemoPrintControl
pcAttrs = PC_DEFAULT_ATTRS AND \

(NOT (PCA_PAGE_CONTROLS or PCA_QUALITY_CONTROLS))
pcAppUI = ExtraPrintGroup
< ... >

End OBJECT
Group ExtraPrintGroup
Caption$ = "Sonstige Optionen"
Children = ExtraPrintOptionGroup
visible = FALSE
DrawInBox : ExpandWidth
End Object

OptionGroup ExtraPrintOptionGroup
Children = ExtraPrintOption
selection = 0

End OBJECT
Option ExtraPrintOption
Caption$ = "Hintergrund drucken"
identifier = 1

End OBJECT

Die Abfrage der Option kann im OnPrint Handler folgendermaßen erfolgen:

’ Hintergrund drucken?
IF ExtraPrintOptionGroup.selection AND 1 THEN
< ... >
END IF

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 358

4.14.4 Vorbereiten für den Druck

4.14.4.1 Dokumentgröße und Dokumentränder

GEOS unterscheidet grundsätzlich zwischen dem Format des Papiers im Drucker
und dem Format (Seitengröße) des zu druckenden Dokuments. Stimmen die
Formate nicht überein so kümmert sich Spooler - gegebenenfalls mit Nachfrage
beim Nutzer - darum, die Seiten vernünftig aufs Papier zu bringen. Typische Fälle,
zum Beispiel, dass ein Dokument im Querformat erstellt wurde und deshalb
gedreht werden muss, handelt der Spooler selbständig und intelligent.

Damit dieses Zusammenspiel reibungslos klappt müssen Sie dem PrintControl-
Objekt die Größe und die Ränder des auszudruckenden Dokuments mitteilen.
Dazu dienen die Instancevariablen pcDocSize und pcDocMargins.
Über die Instancevariable pcLayout teilen Sie dem PrintControl-Objekt z.B. mit,
ob Ihr Dokument im Hoch- oder Querformat vorliegt.

Bei Anwendungen mit fester Dokumentgröße können Sie Größe und Ränder im
UI-Code setzen. Ansonsten ist der übliche Platz der ActionHandler des "Drucken"
Buttons. Nur wenn Sie die Dokumentgröße an die Größe des Papiers im Drucker
anpassen wollen setzen Sie diese Werte im OnPrint Handler.

pcDocSize

Die Instancevariable pcDocSize enthält die Größe des Dokuments, einschließlich
der Ränder. Die Einheit ist ein typografischer Point (= 1/72 Zoll bzw. 0,35378 cm).
Der größte erlaubte Wert für Breite und Höhe sind jeweils 32767 Point. Das
entspricht etwa 1,15 m.
Die Default-Werte für pcDocSize sind Null, pcDocSize muss gesetzt werden,
bevor ein Dokument gedruckt werden kann. Das kann im UI-Code oder im
Actionhandler des Drucken-Buttons erfolgen.

Syntax: UI-Code pcDocSize = width, heigth
Schreiben <obj>.pcDocSize = width, heigth
Lesen: <numVar> = <obj>.pcDocSize (n)

width: Breite des Dokuments, in Point
height: Höhe des Dokuments, in Point
n: Information, welcher Wert gelesen werden soll, siehe

Tabelle (PS steht für Page-Size)

Tabelle: Informationen, die von pcDocSize gelesen werden sollen
Konstante Wert Information
PS_WIDTH 4 Breite des Dokuments
PS_HEIGHT 5 Höhe des Dokuments

Wichtig: Wenn Ihr Dokument breiter ist als hoch sollten Sie auch pcLayout auf
PL_PAPER_LANDSCAPE setzen.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 359

pcDocMargins

Die Instancevariable pcDocMargins enthält die Ränder des zu druckenden Doku-
ments. Die Einheit ist ein typografischer Point, das ist 1/72 Zoll (0,35378 cm).
Die Default-Werte für pcDocMargins sind Null, pcDocMargins muss gesetzt
werden, bevor das Dokument gedruckt wird.

Syntax: UI-Code pcDocMargins = left, top, right, bottom
Schreiben <obj>.pcDocMargins = left, top, right, bottom
Lesen: <numVar> = <obj>.pcDocMargins (n)

top: Oberer Rand, in Point
left: Linker Rand, in Point
right: Rechter Rand, in Point
bottom: Unterer Rand, in Point
n: Information, welcher Wert gelesen werden soll, siehe

Tabelle (PS steht für Page-Size)

Konstante Wert Information
PS_LEFT_MARGIN 0 Linker Rand
PS_TOP_MARGIN 1 Oberer Rand
PS_RIGHT_MARGIN 2 Rechter Rand
PS_BOTTOM_MARGIN 3 Unterer Rand

Beispiel: Berechnung der Breite zu bedruckenden Bereichs im Dokument
DIM width
width = MyPrintControl.pcDocSize(PS_WIDTH) \

- MyPrintControl.pcDocMargins(PS_LEFT) \
- MyPrintControl.pcDocMargins(PS_RIGHT)

pcLayout

Die Instancevariable pcLayout muss je nach Breite und Höhe des Dokuments
entweder auf den Wert PL_PAPER (Defaultwert, normales Papier, Hochformat)
oder PL_PAPER_LANDSCAPE (normales Papier, Querformat) gesetzt werden.
Prinzipiell unterstützt GEOS weitere Layouttypen. Diese sind weiter unten, im
Kapitel 4.14.5.4 ohne Gewähr aufgelistet.

Syntax: UI-Code pcLayout = layoutWert
Schreiben <obj>.pcLayout = layoutWert
Lesen: <numVar> = <obj>.pcLayout

Konstante Wert Bedeutung
PL_PAPER 0 Normales Papier, Hochformat
PL_PAPER_LANDSCAPE 8 Normales Papier, Querformat

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 360

4.14.4.2 Mehrseitiger Druck

Wenn Sie Dokumente mit mehreren Seiten drucken wollen müssen Sie im
Actionhandler des "Drucken" Buttons den zu druckenden Seitenbereich festlegen.
Ein setzen der Werte im UI-Code ist möglich, aber nur sinnvoll, wenn die Anzahl
der zu druckenden Seiten nicht variabel ist.

totalPageRange

Die Instancevariable totalPageRange enthält die Seitennummern des Dokuments.
Der erste Wert (erste zu druckende Seite) ist meist 1, es sind jedoch auch die Null
oder sogar negative Werte erlaubt. Der Maximalwert beträgt jeweils 32767.
Wenn Ihr Programm nur eine einzelne Seite drucken kann (wie z.B. GeoDraw)
brauchen Sie keinen Wert für totalPageRange zu setzen, da die Defaultwerte für
Startseite und Endseite jeweils 1 sind.

Syntax: UI-Code totalPageRange = start, end
Schreiben <obj>.totalPageRange = start, end
Lesen: <numVar> = <obj>.totalPageRange (n)

start: Nummer der ersten Seite
end: Nummer der letzten Seite
n: Information, welcher Wert gelesen werden soll

n = 0: erste druckbare Seite lesen
n = 1: letzte druckbare Seite lesen

userPageRange

Die Instancevariable userPageRange enthält den vom Nutzer zum Drucken aus-
gewählten Seitenbereich. Damit der Nutzer die Möglichkeit hat, den zu
druckenden Seitenbereich im Drucken-Dialog auszuwählen, muss das Bit PCA_-
PAGE_CONTROLS in der Instancevariable pcAttrs gesetzt sein. Per Default ist
dieses Bit gesetzt.
Bevor das PrintControl-Objekt den Drucken-Dialog anzeigt korrigiert es eventuell
widersprüchliche Werte von totalPageRange und userPageRange. Wurde zum
Beispiel im UI-Code userPageRange auf einen Bereich gesetzt, der von
totalPageRange nicht abgedeckt wird, so korrigiert das PrintControl-Objekt die
Werte für userPageRange, bevor es den Dialog anzeigt.

Wenn Sie dem Nutzer die Möglichkeit geben, die zu druckenden Seiten
auswählen, müssen Sie auch selbst dafür sorgen, dass genau diese Seiten
gedruckt werden. Dazu müssen Sie userPageRange im OnPrint-Handler auslesen
und entsprechend berücksichtigen. Das PrintControl-Objekt stellt nur die
passenden UI-Objekte bereit, es benutzt die vom Nutzer ausgewählten Werte
nicht selbst.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 361

Syntax: UI-Code userPageRange = start, end
Schreiben <obj>.userPageRange = start, end
Lesen: <numVar> = <obj>.userPageRange (n)

start: Nummer der ersten Seite
end: Nummer der letzten Seite
n: Information, welcher Wert gelesen werden soll

n = 0: erste ausgewählte Seite lesen
n = 1: letzte ausgewählte Seite lesen

Achtung: Die Werte für userPageRange sind nur gültig, wenn folgendes gilt:
• Die Drucken-Dialogbox ist oder war schon auf dem Schirm.
• Das Bit PCA_PAGE_CONTROLS in der Instancevariable pcAttrs ist gesetzt.

Per Default ist dieses Bit gesetzt.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 362

4.14.4.3 Nutzereigaben verifizieren

Das PrintControl-Objekt sorgt im Normalfall selbst dafür, dass die Nutzereingaben
im Drucken-Dialog konsistent sind. Zum Beispiel korrigiert es die zu druckenden
Seitennummer automatisch, wenn der Nutzer für die letzte zu druckende Seite
eine kleinere Seitennummer angegeben hat, als für die erste zu druckende Seite.
Falls Sie aber eigene UI-Objekte in der Drucken-Dialogbox haben (Instance-
variable pcAppUI), bei denen der Nutzer inkonsistente Angaben machen könnte,
müssen Sie diese Überprüfung selbst durchführen. Zu diesem Zweck gibt es die
Instancevariable OnVerifyPrint und die Methode PrintingVerified. Damit der
OnVerifyPrint-Handler gerufen wird, müssen Sie zusätzlich das Bit PCA_VERIFY-
_PRINT in der Instancevariablen pcAttrs setzen.

OnVerifyPrint

Die Instancevariable OnVerifyPrint enthält einen Actionhandler. Er muss als
ButtonAction deklariert sein wird aufgerufen, wenn der Nutzer den "Drucken"
Button im Drucken-Dialog aktiviert hat, aber noch bevor der Drucken-Dialog
geschlossen wird. Sie sollten hier die Konsistenz der Nutzereingaben prüfen und
den Nutzer gegebenenfalls auf seinen Fehler aufmerksam machen. Alternativ
können Sie auch die Nutzereingaben korrigieren, um sie konsistent zu machen.
Die letzte Anweisung in diesem Handler muss der Aufruf der Methode
PrintingVerified sein.

Syntax: UI-Code OnVerifyPrint = <Handler>
Schreiben <obj>.OnVerifyPrint = <Handler>
Lesen: ––
 <Handler>: Name des Actionhandlers

Der Handler muss als ButtonAction deklariert sein

Achtung! Der OnVerifyPrint-Handler wird nur gerufen, wenn das Bit PCA_-
VERIFY_PRINT in der Instancevariablen pcAttrs gesetzt ist.

PrintingVerified

Die Methode PrintingVerified muss innerhalb des OnVerifyPrint Handlers
aufgerufen werden. Sie teilt dem PrintControl-Objekt mit, dass das Überprüfen der
Nutzereingaben abgeschlossen ist.
Wird als Parameter TRUE übergeben war die Überprüfung erfolgreich. Die
Drucken-Dialogbox wird geschlossen und das Drucken wird fortgesetzt.
Wird als Parameter FALSE übergeben war die Überprüfung nicht erfolgreich. Die
Drucken-Dialogbox wird nicht geschlossen und der Nutzer kann seine Eingaben
korrigieren.

Syntax: BASIC-Code <obj>.PrintingVerified TRUE | FALSE

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 363

4.14.4.4 Starten des Ausdrucks

Als letzte Operation im Actionhandler des "Drucken" Buttons müssen Sie den
Ausdruck starten, indem Sie die InitiatePrint-Methode aufrufen. Üblicher Weise vor
vorher noch ein Name für den Printjob festgelegt.

printJobName$

Der Spooler benötigt zum Drucken einen Namen, über den der Nutzer den
Druckjob identifizieren kann. Dieser Name wird in der Dialogbox "Drucker-
steuerung" (aus dem Express-Menü) angezeigt. Durch Belegen der Instance-
variablen printJobName$ legen Sie diesen Namen fest. Üblicher Weise wird hier
der Name des auszudruckenden Dokuments verwendet. Wenn Ihr Programm
nicht mit Dokumenten arbeitet sollten Sie einen anderen, aussagekräftigen Namen
(max. 32 Zeichen) verwenden. Die können aber auch den Defaultwert ("R-BASIC
Print Job") lassen.
Sie sollten printJobName$ immer im Actionhandler des Drucken-Buttons setzen.
Wenn Sie ihn nur im UI-Code setzen wird er vom R-BASIC Translator nicht
erkannt und kann daher nicht übersetzt werden.

Syntax: UI-Code printJobName$ = "name"
Lesen: ––
Schreiben: <obj>.printJobName$ = "name"

"name": Bezeichnung des Druckjobs, max. 32 Zeichen

Tipp: Wenn Sie mit dem PostScript Druckertreiber in eine Datei Drucken und dann
das Windows-Programm PDFCreator zum Umwandeln der entstandenen Dateien
in eine PDF-Datei verwenden, wird printJobName$ auch als Vorschlag für den
Namen der PDF-Datei verwendet.

InitiatePrint

Üblicher Weise wird diese Methode am Ende des Actionhandlers des "Drucken"
Buttons gerufen. Vorher sollten Sie das PrintControl-Objekt initialisiert haben.
Nach dem Aufruf der Methode InitiatePrint zeigt das PrintControl-Objekt die
"Drucken"-Dialogbox an und der eigentliche Druckvorgang beginnt.

Syntax: BASIC-Code <obj>.InitiatePrint

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 364

4.14.4.5 Ein Beispiel

Das folgende Codefragment zeigt die prinzipiellen Schritte für einen Actionhandler
des "Drucken"-Buttons. Alle Zahlen geben Werte in typografischen Punkt (pt) an.
Sie sind nur als Beispiele zu verstehen.

BUTTONACTION PrintButtonHandler

’ Dokumentgröße: ca. 17,6 cm x 28,2 cm
DemoPrintControl.pcDocSize = 500, 800

’ Ränder: links 5,3 cm, sonst 1,7 cm
DemoPrintControl.pcDocMargins = 150, 50, 50, 50

’ Layout: Papier, Hochformt
DemoPrintControl.pcLayout = PL_PAPER

’ Wir haben 5 Seiten
DemoPrintControl.totalPageRange = 1, 5
DemoPrintControl.userPageRange = 1, 5

DemoPrintControl.printJobName$ = "Dokument Size Demo"
DemoPrintControl.InitiatePrint

END ACTION

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 365

4.14.5 Der Druckprozess

4.14.5.1 Die Standardprozedur

Einige Schritte müssen für jeden Druckprozess durchgeführt werden. Diese sind
hier beschrieben. Besonderheiten für Spezialfälle finden Sie in den weiteren
Unterkapiteln.

OnPrint

Der OnPrint-Handler erledigt die eigentliche Arbeit des Druckens. Er wird
aufgerufen, wenn der Nutzer den "Drucken" Button im "Drucken"-Dialog aktiviert.
OnPrint-Handler müssen als DrawAction deklariert sein. Der Programmierer kann
davon ausgehen, dass das zu bedruckende Blatt Papier der Bildschirm ist. Die
können die Druckausgaben (Text und Grafik) in beliebiger Reihenfolge an
beliebiger Position ausgeben. Es ist nicht erforderlich, dass Sie "von oben nach
unten" vorgehen.
Um eine neue Seite zu beginnen müssen Sie die Methode PrintNewPage
aufrufen. Am Ende des Druckens muss der Aufruf der Methode Printing-
Completed erfolgen.

Syntax: UI-Code OnPrint = <Handler>
Schreiben <obj>.OnPrint = <Handler>
Lesen: ––
 <Handler>: Name des Actionhandlers

Der Handler muss als DrawAction deklariert sein.

Handler-Typ Parameter
DrawAction (sender as object, width, height as word)

Bedeutung der Parameter:
• Der Parameter "sender" enthält das PrintControl-Objekt.
• Der Parameter "height" enthält die Höhe des bedruckbaren Bereichs des

Papiers, gemessen in pt, also die Höhe des Papiers abzüglich der
Druckerränder.

• Der Parameter "width" enthält die Breite des bedruckbaren Bereichs des
Papiers, gemessen in pt, also die Breite des Papiers abzüglich der
Druckerränder.

Hingegen enthalten die globalen Variablen MaxX und MaxY die maximale x- bzw.
y-Koordinate Ihres Dokuments, ohne Berücksichtigung der Ränder. Das entspricht
den Werten, die in der Instancevariablen pcDocSize abgelegt wurden. Da die
Grafikkoordinaten bei Null beginnen enthalten MaxX und MaxY jeweils den um 1
verminderten Wert.

Wichtig: Es ist nicht erlaubt während des Druckens ein anderes Objekt zum
Screen zu machen, auch nicht kurzzeitig. Wenn Sie z.B. Debugging-Informationen

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 366

ausgeben wollen müssen Sie ein Textobjekt oder die Anweisung MsgBox
verwenden.

Beim Drucken werden alle Koordinaten in der Einheit "typografischer Punkt" (pt)
angegeben. Ein Zoll (2,54 cm) hat genau 72 pt. Damit gilt:

1 pt ≈ 0,35278 mm
1 mm ≈ 2,8346 pt

Für genauere Umrechnungen sollten Sie folgende Formeln verwenden

position_in_Punkt = position_in_cm * 72 / 2,54
position_in_cm = position_in_Punkt * 2,54 / 72

GEOS trennt grundsätzlich die Größe des Dokuments von der Größe des Papiers
im Drucker. Wenn ihr Dokument nicht aufs Papier passt fragt der Spooler nach, ob
Sie das Dokument über mehrere Seiten verteilen oder die Größe anpassen soll.
Sie können also drucken, ohne sich um die Größe des Papiers im Drucker
Gedanken zu machen. Wenn Sie wünschen, die Druckausgaben manuell an die
Größe des Papiers und an die Randeinstellungen des Druckers anzupassen,
lesen Sie bitte den nächsten Abschnitt.

Beispiel: Ein sehr einfacher OnPrint-Handler. Es wird vorausgesetzt, dass das
PrintControl-Objekt bereits korrekt initialisiert ist.

DRAWACTION PrintHandler

FontSetGeos(FID_SANS, 12)
Print atXY 200, 300;"R-BASIC Print Test"
FillEllipse 220, 320, 420, 520, LIGHT_RED

sender.PrintingCompleted
END ACTION

Moderne Drucker können häufig bis an den Blattrand drucken oder zumindest bis
knapp davor, auch wenn der Druckertreiber einen breiteren Rand meldet. Da es
erlaubt ist, auch über den vom Druckertreiber gemeldeten Rand hinaus zu
drucken können Sie den folgenden OnPrintHandler verwenden um die wahren
Fähigkeiten Ihres Druckers auszutesten. Es wird wieder vorausgesetzt, dass das
PrintControl-Objekt bereits korrekt initialisiert ist. Insbesondere muss pcDocSize
belegt worden sein, damit MaxX und MaxY gültige Werte enthalten.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 367

DRAWACTION PrintHandler
INK LIGHT_BLUE
FillEllipse -100, -100, 100, 100
FillEllipse MaxX - 100, MaxY - 100, MaxX + 100, MaxY + 100

sender.PrintingCompleted
END ACTION

Beispiele für typische Situationen finden Sie bei den R-BASIC Beispieldateien im
Ordner R-BASIC\Beispiel\Objekte\Drucken.

PrintingCompleted

Die Methode PrintingCompleted informiert das PrintControl-Objekt, dass Ausgabe
von Grafik und Text beendet ist und dass der Spooler die Daten an den Drucker
senden kann.

Syntax: BASIC-Code <obj>.PrintingCompleted

PrintingCancelled

Die Methode PrintingCancelled informiert das PrintControl-Objekt, dass der Druck
abgebrochen werden soll. Sie kann anstelle der Methode PrintingCompleted
aufgerufen werden. Das PrintControl-Objekt fordert dann den Spooler auf, alle
bisher gedruckten Daten zu verwerfen.

Syntax: BASIC-Code <obj>.PrintingCancelled

printMode

Einige Drucker bieten im "Drucken"-Dialog die Option, in hoher, mittlerer oder
niedriger Qualität zu drucken. Das PrintControl-Objekt leitet die diesbezügliche
Nutzerauswahl direkt an den Spooler weiter, so dass Sie sich darum nicht weiter
kümmern müssen. In sehr seltenen Fällen könnte man diese Information jedoch
benötigen, z.B. um die zu druckenden Daten auszuwählen. Dann kann man die
Instancevariable printMode abfragen. Sie liefert einem numerischen Wert, je
nachdem ob in hoher (4), mittlerer (2) oder niedriger Qualität (0) gedruckt werden
soll.

Syntax: BASIC-Code <numVar> = <obj>.printMode

Hinweis: Der Wert von printMode ist erst gültig, nachdem die Drucken-Dialogbox
angezeigt wurde (d.h. er ist gültig im OnVerifyPrint- und im OnPrint-Handler).

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 368

4.14.5.2 Die Papiergröße verwenden

Oftmals ist es gewünscht, die Druckausgaben manuell an die Größe des Papiers
und an die Randeinstellungen des Druckers anzupassen. In diesem Fall sollten
Sie Größe, Ränder und Layout des Dokuments nicht im Actionhandler des
"Drucken"-Buttons, sondern im OnPrint-handler setzen.

Um die Größe des Papiers und die Druckerränder zu erfahren können Sie
folgendermaßen vorgehen:

• Abfrage der Instancevariablen pcPaperSizeInfo. Diese liefert alle benötigten
Informationen.

• Der Parameter "width" des Handlers enthält die Breite des bedruckbaren
Bereichs des Papiers, gemessen in pt, also die Breite des Papiers abzüglich
der Druckerränder.

• Der Parameter "height" des Handlers enthält die Höhe des bedruckbaren
Bereichs des Papiers, gemessen in pt, also die Höhe des Papiers abzüglich
der Druckerränder.

Hingegen enthalten die globalen Variablen MaxX und MaxY die maximale x- bzw.
y-Koordinate Ihres Dokuments, ohne Berücksichtigung der Ränder. Das entspricht
den Werten, die in der Instancevariablen pcDocSize abgelegt wurden. Da die
Grafikkoordinaten bei Null beginnen enthalten MaxX und MaxY jeweils den um 1
verminderten Wert.

pcPaperSizeInfo

Die Instancevariable pcPaperSizeInfo enthält alle Informationen über das im
Drucker befindliche Papier. Genau genommen enthält sie die Informationen über
das Papier und den Drucker, die der Nutzer im "Drucken" -Dialog ausgewählt hat.
PcPaperSizeInfo kann nur gelesen werden und ist nur innerhalb des OnPrint-
Handlers und des OnVerifyPrint-Handlers gültig.

Syntax Lesen: <numVar> = <obj>.pcPaperSizeInfo (n)
n: Welche Information soll gelesen werden

Erlaubte Werte: siehe Tabelle

Tabelle: Informationen, die pcPaperSizeInfo liefern soll. Alle Werte werden in
typografischen Punkt (pt) angegeben.

Konstante Wert Information
PS_LEFT_MARGIN 0 Linker Rand
PS_TOP_MARGIN 1 Oberer Rand
PS_RIGHT_MARGIN 2 Rechter Rand
PS_BOTTOM_MARGIN 3 Unterer Rand
PS_WIDTH 4 Breite des Papiers
PS_HEIGHT 5 Höhe des Papiers
PS_LAYOUT 6 Layout-Information

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 369

Das folgende Codefragment zeigt das prinzipielle Vorgehen: Wir passen Größe,
Ränder und Layout des Dokuments dem Papier im Drucker an.

DRAWACTION DoPrintHandler

DemoPrintControl.pcDocMargins = \
DemoPrintControl.pcpaperSizeInfo(PS_LEFT_MARGIN), \
DemoPrintControl.pcpaperSizeInfo(PS_TOP_MARGIN), \
DemoPrintControl.pcpaperSizeInfo(PS_BOTTOM_MARGIN), \
DemoPrintControl.pcpaperSizeInfo(PS_RIGHT_MARGIN)

DemoPrintControl.pcDocSize = \
DemoPrintControl.pcPaperSizeInfo(PS_WIDTH), \
DemoPrintControl.pcPaperSizeInfo(PS_HEIGHT)

DemoPrintControl.pcLayout = \
DemoPrintControl.pcPaperSizeInfo(PS_LAYOUT)

< ... hier Grafik zeichnen ... >

’ Printcontrol informieren, dass wir fertig sind
DemoPrintControl.printJobName$ = "Papier Drucktest"
DemoPrintControl.PrintingCompleted

END ACTION

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 370

4.14.5.3 Mehrere Seiten drucken

Wenn Sie ein mehrseitiges Dokument drucken wollen, müssen Sie die
Instancevariable userPageRange des PrintControl-Objekts abfragen und selbst
dafür sorgen, dass nur genau die Seiten gedruckt werden, die der Nutzer
ausgewählt hat. Um eine neue Seite zu beginnen rufen Sie die Methode
PrintNewPage auf. Außerdem sollten Sie den Nutzer über den Druckfortschritt
informieren, indem sie regelmäßig, z.B. am Beginn jeder neuen Seite eine der
Methoden ReportProgress oder ReportProgressText aufrufen. Das ermöglicht
dem Nutzer auch, den Druckprozess vorzeitig abzubrechen.

PrintNewPage

Die Methode PrintNewPage beginnt eine neue Seite. Sie wird bei mehrseitigen
Druckaufträgen als Trennung zwischen den einzelnen Druckseiten benötigt.

Syntax: BASIC-Code <obj>.PrintNewPage

ReportProgress, ReportProgressText

Mit den Methoden ReportProgress und ReportProgressText können Sie dem
Nutzer den Druckfortschritt anzeigen. Das empfiehlt sich bei langwierigen oder
mehrseitigen Druckaufträgen. Voraussetzung ist, dass das Bit PCA_SHOW-
_PROGRESS in der Instancevariablen pcAttrs gesetzt ist. Dieses Bit ist per
Default gesetzt.
Der Fortschrittsdialog enthält einen "Abbrechen" Button. ReportProgress und
ReportProgressText liefern TRUE zurück, wenn der Nutzer den "Abbrechen"
Button gedrückt hat, andernfalls liefern sie FALSE. Es ist der Job des
Programmierers, den Druckprozess abzubrechen, wenn der Nutzer den
"Abbrechen"-Button gedrückt hat.

Syntax: <numVar> = <obj>.ReportProgress (type, wert)
type: RPT_PAGE oder RPT_PERCENT, siehe Tabelle
wert: Aktuelle Seite (bei RPT_PAGE) oder Prozentwert (bei

RPT_PERCENT)
Syntax: <numVar> = <obj>.ReportProgressText (text$)

text$: Anzuzeigender Text

Damit die Methode ReportProgress verwendet werden kann muss in der
Instancevariablen pcAttrs neben dem per Default gesetzten Bit PCA_SHOW-
_PROGRESS mindestens eins der Bits PCA_PROGRESS_PAGE oder
PCA_PROGRESS_PERCENT gesetzt sein. Üblicherweise wird ReportProgress
am Anfang jeder zu druckenden Seite gerufen. Zur Arbeit mit ReportProgress sind
die folgenden Konstanten definiert:

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 371

Konstante Wert Bedeutung
RPT_PAGE 0 Anzeige in der Form "Seite N von X Seiten ".

Das Bit PCA_PROGRESS_PAGE muss
gesetzt sein.

PRT_PERCENT 2 Anzeige in der Form: "Verlauf N". Das Bit
PCA_PROGRESS_PERCENT muss gesetzt
sein.

Damit die Methode ReportProgressText verwendet werden kann muss in der
Instancevariablen pcAttrs nur das Bit PCA_SHOW_PROGRESS gesetzt sein. Das
ist per Default der Fall. Sie sind völlig frei in der Gestaltung des anzuzeigenden
Textes. Verwenden Sie ReportProgressText, wenn ReportProgress Ihren
Ansprüchen nicht genügt.

Beispiel: Ein OnPrint-Handler der mehrere Seiten ausdrucken kann. Die Routine
Printpage(n) erledigt den eigentlichen Ausdruck der Seite. Wir kapseln den Aufruf
dieser Routine in die Anweisungen ScreenSaveState / ScreenRestoreState. Damit
kann die Routine beliebige Koordinatentransformationen vornehmen (z.B. den
Koordinatenursprung so setzen, dass die Ränder nicht bedruckt werden).
Den kompletten Sourcecode finden Sie im Ordner R-BASIC\Beispiel\Objekte\
Drucken.

DRAWACTION DoPrintHandler
DIM pstart, pend, n, cancel, info$

’ Auslesen der vom Nutzer ausgewählten Seiten
pstart = DemoPrintControl.userpageRange(0)
pend = DemoPrintControl.userpageRange(1)

’ ausgewählte Seiten drucken. Mit Abfrage ob Abbruch
FOR n = pstart TO pend
IF n <> pstart then DemoPrintControl.PrintNewPage
info$ = "Drucke Seite"+Str$(n)
cancel = DemoPrintControl.ReportProgressText$ (info$)
IF cancel THEN

DemoPrintControl.PrintingCancelled
RETURN
End IF

ScreenSaveState ’ Ausgangszustand sichern
Printpage(n) ’ Seite Drucken
ScreenRestoreState ’ Ausgangszustand wieder herstellen

NEXT N

DemoPrintControl.PrintingCompleted

END ACTION

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 372

4.14.5.4 Hintergrundinformationen zum Thema Layout

Für die meisten Programmierer wird es ausreichen, die Instancevariable pcLayout
auf einen der Werte PL_PAPER (Defaultwert, normales Papier, Hochformat) oder
PL_PAPER_LANDSCAPE (normales Papier, Querformat) zu setzen. Das ist
prinzipiell auch für Umschläge anwendbar.

PC/GEOS definiert jedoch weitergehende Layoutinformationen für Dokumente. So
kann man z.B. festlegen ob Briefumschläge links oben oder rechts unten
beschriftet werden sollen. Diese Layoutinformation sind jedoch offensichtlich als
Information für den Programmierer gedacht, der dann die Adresse passend
positionieren kann. Eine Auswirkung auf den Spooler konnte bei eigenen Tests
jedenfalls nicht bestätigt werden.

Die folgenden Informationen sind direkt dem PC/GEOS SDK entnommen. Der
Programmierer von R-BASIC garantiert nicht für Vollständigkeit und Richtigkeit.

Die Instancevariable pcLayout enthält die Layout-Informationen für das Dokument.
Der numerische Wert von pcLayout ist ein 16-Bit Bitfeld, das folgendermaßen
aufgebaut ist:

13 Bit Zusatzinformationen 3 Bit Layout-Typ

GEOS unterstützt drei Layout-Typen: Papier (PL_PAPER) Umschläge
(PL_ENVELOPE) und Etiketten (PL_LABEL). Zur Arbeit mit dem Layout sind die
folgenden Konstanten definiert.

Konstante Wert Bedeutung
PL_PAPER 0 Normales Papier, Hochformat
PL_PAPER_LANDSCAPE 8 Normales Papier, Querformat
PL_ENVELOPE 2 Umschlag
PL_LABEL 4 Etiketten

Normales Papier

Für normales Papier hat pcLayout die folgende Struktur:

0: Hochformat (Default)
1: Querformat

Layout-Typ: Papier

0 0 0

Die Konstanten PL_PAPER (= 0) und PL_PAPER_LANDSCAPE (= 8) können
pcLayout direkt zugewiesen werden um das entsprechende Layout einzustellen.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 373

Beispiel:
PrintControl MyPrintControl
pcLayout = PL_PAPER_LANDSCAPE
< ... >

End Object

Umschlag

Für Umschläge hat pcLayout die folgende Struktur:

2 Bit:
Orientierung

Layout-Typ:
Umschlag

0 1 0

2 Bit:
Position

Für Orientierung und Position sind die folgenden Werte zugelassen:

Wert Wirkung Position Wirkung Orientierung
0 Links Hochformat links
1 Zentriert Hochformat rechts
2 Rechts Querformat links
3 –– Querformat rechts

Der Wert für pcLayout berechnet sich nach folgender Formel:

pcLayout = PL_ENVELOPE + 8 * Orientierung + 32 * Position

Etiketten

Der Druck von Etiketten bedeutet, dass eine bestimmte Anzahl von Etiketten
(Aufklebern) neben- und untereinander gedruckt werden sollen. Dieses Prinzip
lässt sich z.B. auch für Visitenkarten verwenden. Für Etiketten hat pcLayout die
folgende Struktur:

6 Bit:
Anzahl Zeilen

6 Bit:
Anzahl Spalten

Layout-Typ:
Etiketten

1 0 0

Für die Anzahl der Etiketten nebeneinander (Spalten) und untereinander (Zeilen)
stehen jeweils 6 Bit zur Verfügung. Der Maximalwert ist also 63. Zur Berechnung
des Layoutwerts benutzen Sie die folgende Formel:

pcLayout = PL_LABEL + 8 * spalten + 512 * zeilen

Leider berücksichtigt der Spooler diese Informationen nicht, wenn er ein
Dokument auf mehrere Seiten aufteilt.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 374

4.14.6 Drucken von Text

Um Text auf den Drucker auszugeben haben Sie zwei Möglichkeiten. Die
einfachste Möglichkeit ist die Verwendung der Print-Anweisung. Dieses Kapitel
enthält einige Tipps zu dieser Möglichkeit. Die andere Möglichkeit ist, ein Text-
Objekt direkt auszudrucken. Diese Möglichkeit wird im nächsten Kapitel
beschrieben.

Grundsätzlich können Sie die Print-Anweisung genauso verwenden, wie dies bei
der Ausgabe von Text in ein BitmapContent-Objekt oder im OnDraw-Handler
eines beliebigen Objekts möglich ist. Das heißt insbesondere, dass Sie Text - wie
jede andere Grafik auch - nicht von oben nach unten ausgeben müssen. Sehr
häufig werden Sie dazu die Anweisung "Print atXY .. " verwenden.

Zusätzlich sollten sie folgende Fakten kennen:
• Intern verwaltet R-BASIC auch bei Drucken die Cursorposition. Mehrere Print-

Anweisungen werden also linksbündig und untereinander erscheinen.
• Alle Formatierungsfunktionen der Print-Anweisung (Trennzeichen Komma und

Semikolon, Positionierung mit at und atXY, Farbanweisungen) sind erlaubt.
• Der Standard-Font ist URW Mono (fontID: FID_MONO) 14 Punkt. Es empfiehlt

sich daher mit der Anweisung FontSetGEOS() einen günstigeren Font
einzustellen. Um den Texthintergrund transparent zu machen verwenden Sie
die Anweisung "Paper BG_TRANSPARENT".

• Der Ausgabescreen ist im "Layout-Modus". Das heißt es gibt keine Restrik-
tionen für die Textausgabe. Sie können negative Koordinaten verwenden oder
über den Rand schreiben. Es erfolgt kein automatischer Zeilenumbruch an der
rechten Blattseite.

• Das Drucken von Block-Grafik-Zeichen ist möglich.

Window und Locate

Es ist möglich, die Anweisungen Window und Locate (siehe Programmier-
handbuch, Kapitel 2.9.2.1) zu verwenden. Um den automatischen Zeilenumbruch
am rechten Fensterrand zu aktivieren, müssen Sie außerdem in den "Page-Mode"
wechseln. Die verschiedenen Ausgabemodi sind im Programmierhandbuch,
Kapitel 2.9.2.4 (Scrollmode, Pagemode und Layoutmode) beschrieben. Die
folgende Codesequenz grenzt das Textausgabefenster auf 51 Zeichen Breite und
31 Zeilen Höhe ein, wobei die linke obere Fensterecke auf der Cursorposition 2:5
liegt. Achtung! Im Geos-Font-Mode sind die Zeichen unterschiedlich breit. Es
passen damit meist mehr als 51 Zeichen in die Zeile!
Die Anweisung Print Chr(17); stellt den Pagemode ein. Gelangt der Cursor ans
Fensterende springt er wieder nach links oben.

Window 2, 32, 5, 55
Print Chr$(17);

Profitipp: Größe eines Zeichens
Die Anweisungen Window und Locate ermitteln die (durchschnittliche) Breite und
Höhe eines Zeichens aus den globalen Variablen "printFont.charWidth" und
"printFont.lineHeight" (siehe Spezielle Themen, Kapitel 2.7).

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 375

4.14.7 Drucken spezieller Objekte

Es ist möglich, Objekte anzuweisen, sich selbst auf den Bildschirm zu zeichnen,
das Objekt also auszudrucken. Dazu gibt es die Anweisung PrintObj. Folgende
Objektklassen sind dafür vorgesehen, mit PrintObj korrekt zusammenzuarbeiten:

• Memo, InputLine, VisText und LargeText
• BitmapContent
• Canvas
• Image
• VisContent und VisObj

Alle anderen Objektklassen können auch mit PrintObj verwendet werden.
Allerdings erwarten diese Objekte häufig, dass bestimmte Voraussetzungen erfüllt
sind. Es kann z.B. sein, dass der Textfont korrekt gesetzt sein muss oder (sehr
häufig), dass der Hintergrund bereits gelöscht (einfarbig) ist. Ob der Ausdruck
dann Ihren Bedürfnissen entspricht, können Sie nur ausprobieren.

PrintObj

Die Routine PrintObj gibt ein Objekt an den Drucker aus. Das Objekt wird aufge-
fordert, sich selbst zu zeichnen. Die meisten Objekte müssen auf dem Bildschirm
sein, um ausgedruckt werden zu können. Ausnahmen sind unten beschrieben. Sie
können prüfen, ob ein generic Class Objekt druckbar ist, indem Sie die
Instancevariable fullyVisible abfragen (siehe Objekthandbuch, Kapitel 3.2, Objekt
States).

Syntax: PrintObj <obj>, x, y
 <obj>: Objekt, dass ausgedruckt werden soll

x: x-Koordinate der linken oberen Ecke
y: y-Koordinate der linken oberen Ecke

Tipp für Profis: PrintObj kann für beliebige Screens, nicht nur beim Drucken,
verwendet werden.

Textobjekte

Textobjekte drucken sich so aus, wie sie aktuell auf dem Bildschirm erscheinen.
Das betrifft insbesondere die Schriftart, Schriftgröße usw. aber auch die Breite des
Textobjekts. Es wird der komplette Text gedruckt, auch wenn Teile davon nicht auf
dem Bildschirm zu sehen sind. Sie können die Anweisung ScreenSetClipRect
verwenden (siehe Objekt-Handbuch, Kapitel 2.3.2, Clipping), um die Ausgabe auf
einen bestimmten Bereich zu begrenzen.
Wenn Sie keinen druckbaren Font gesetzt haben (siehe Instancevariable fontID),
wählt das Textobjekt selbst einen druckbaren Font aus.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 376

Memo und InputLine: Je nach gesetzten Instancevariablen (backColor, readOnly,
TextNoFrame, TextFrame) druckt das Textobjekt eine farbigen Hintergrund
und/oder einen Rahmen. Rollbalken werden nicht mit gedruckt.

VisText und LargeText: Diese Textobjekte ignorieren die Hintergrundfarbe
(Instancevariable backColor) und drucken den Text immer transparent. Sie
können die Objekte selbst drucken oder das zugehörige VisContent.

BitmapContent

BitmapContent-Objekte können immer gedruckt werden, auch wenn
• das zugehörige View nicht auf dem Schirm ist,
• das BitmapContent mit einem View verbunden ist.

Um nur einen Ausschnitt aus einer Bitmap zu drucken können Sie die Anweisung
ScreenSetClipRect verwenden (siehe Objekt-Handbuch, Kapitel 2.3.2, Clipping).

Neben der Nutzung der Routine PrintObj können Bitmaps auch über ihr Bitmap-
handle gedruckt werden. Das folgende Codefragment demonstriert das.

DIM bmpHan as HANDLE
bmpHan = DemoContent.GetBitmapHandle
DrawBitmap bmpHan, 50, 100

Auf diese Weise können auch Offscreen Bitmaps (siehe Programmierhandbuch,
Kapitel 2.8.6.4) gedruckt werden.

Canvas

Canvas-Objekte können immer gedruckt werden, auch wenn sie nicht auf dem
Schirm sichtbar sind. Es müssen aber folgende Voraussetzungen erfüllt sein:

• Das Objekt arbeitet im "buffered" Modus.
• Der OnDraw-Handler muss mindestens einmal ausgeführt worden sein. Dazu

muss das Objekt mindestens einmal auf dem Bildschirm sichtbar gewesen
sein.

Hinweise:
• Captions von Canvas-Objekten werden eventuell nicht oder nicht korrekt

gedruckt.
• Anstatt das Canvas-Objekt mit der Anweisung PrintObj zu drucken könnten Sie

vielleicht den Code des OnDraw-Handlers in eine SUB auslagern und diese
dann zum Drucken aufrufen.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 377

Image

Image-Objekte können immer gedruckt werden, auch wenn sie nicht auf dem
Schirm sichtbar sind. Voraussetzung ist, dass das Objekt seine Grafik geladen
hat. Dazu muss es mindestes einmal auf dem Schirm sichtbar gewesen sein. Um
nur einen Ausschnitt aus dem Bild des Image-Objekts zu drucken können Sie die
Anweisung ScreenSetClipRect verwenden (siehe Objekt-Handbuch, Kapitel 2.3.2,
Clipping).

VisContent und VisObj

VisContent und VisObj-Objekte können immer gedruckt werden, auch wenn
• das zugehörige View nicht auf dem Schirm ist,
• das VisContent mit einem View verbunden ist,
• das VisObj kein Parent hat.

Es müssen aber folgende Voraussetzungen erfüllt sein:
• Wenn das Objekt einen OnDraw-Handler hat, muss es im "buffered" Modus

arbeiten.
• Der OnDraw-Handler muss mindestens einmal ausgeführt worden sein. Dazu

muss das Objekt mindestens einmal auf dem Bildschirm sichtbar gewesen
sein.

Wird ein VisContent-Objekt gedruckt, so werden seine Children automatisch mit
gedruckt. Der Ausdruck beschränkt sich dabei nicht auf den im View sichtbaren
Bereich. Um den zu druckenden Bereich einzuschränken können Sie die
Anweisung ScreenSetClipRect verwenden (siehe Objekt-Handbuch, Kapitel 2.3.2,
Clipping).

Falls Sie ein VisObj-Objekt drucken, das Children hat, werden die Children
ebenfalls mit gedruckt.

Anstatt VisContent- oder VisObj-Objekte mit der Anweisung PrintObj zu drucken
könnten Sie vielleicht den Code des OnDraw-Handlers in eine SUB auslagern und
diese dann zum Drucken aufrufen. Dieses Vorgehen druckt allerdings die Children
des VisContent-Objekts nicht mit.

View

Die Verwendung von PrintObj mit einem View-Objekt druckt nur einen Rahmen
und die Rollbalken. Das Content-Objekt wird nicht mit gedruckt.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 378

4.14.8 Unterstützung des Dokument-Interfaces

Falls Sie mit druckbaren Dokumenten arbeiten kann es passieren, dass der Nutzer
das Dokument direkt über den Dateimanager (GeoManager, Menüpunkt
"Drucken" im Dateimenü) ausdrucken will. Damit wird das Dokument zum Drucken
an Ihr Programm übergeben.

Das Application-Objekt Ihres Programms aktiviert in diesem Fall automatisch das
PrintControl-Objekt (und damit den "Drucken" Dialog). Allerdings müssen Sie noch
sicherstellen, dass das PrintControl-Objekt korrekt initialisiert ist. Das passiert
meistens im Actionhandler des "Drucken" Buttons. Deshalb müssen Sie dafür
sorgen, dass dieser Actionhandler auch aufgerufen wird. Das ist sehr einfach.

Wenn Sie mit Dokumenten arbeiten haben Sie im Allgemeinen sowohl einen
OnStartup-Handler als auch einen OnConnection-Handler. Diese Handler wissen
bereits wie man ein übergebenes Dokument öffnet. Die Details dazu finden Sie im
Handbuch "Spezielle Themen", Kapitel 15. Das einzige was Sie noch zusätzlich
tun müssen ist, die Methode "Activate" des "Drucken" Buttons aufzurufen, wenn
das Dokument zum Drucken übergeben wurde. Die entsprechende Information ist
im Parameter "flags" des Handlers gespeichert. Wenn das Bit AF_FOR_PRINT
gesetzt ist wurde das Dokument zum Drucken übergeben. In diesem Fall müssen
Sie als allerletzte Aktion die Activate-Methode des "Drucken" Buttons aufrufen:

SYSTEMACTION MyOnStartupHandler

<... hier alles andere erledigen ...>

IF flags AND AF_FOR_PRINT THEN MyPrintButton.Activate
End Action

SYSTEMACTION MyOnConnectionHandler

<... hier alles andere erledigen ...>

IF flags AND AF_FOR_PRINT THEN MyPrintButton.Activate
End Action

Falls Sie nur einen "leeren" ActionHandler für den "Drucken" Button haben, das
heißt, er macht nichts weiter als die InitiatePrint-Methode des PrintControl-Objekts
aufzurufen, können Sie sich den Aufruf des Button-Handlers im OnStartup und im
OnConnection Handler auch schenken. Das Application-Objekt ruft die Initiate-
Print-Methode automatisch auf.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 379

4.14.9 Tipps und Tricks

Es druckt nicht ...

Zu den häufigsten Fehlern beim Drucken gehören:
• Sie haben vergessen, die Instancevariablen pcDocSize und / oder pcDoc-

Margins zu belegen oder Sie haben sie widersprüchlich belegt.
• Sie haben das PrintControl-Objekt nicht in den Objekt-Tree eingebunden.
• Sie haben die Methode PrintingCompleted nicht gerufen
• Sie haben das Bit PCA_VERIFY_PRINT in der Instancevariablen pcAttrs

gesetzt, aber keinen OnVerifyPrint-Handler gesetzt oder dieser ruft die Methode
PrintingVerified nicht.

• Sie haben ScreenSetClipRect verwendet und vergessen, das Clipping-
Rechteck zurückzusetzen. Die Kombination ScreenSaveState / ScreenRestore-
State ist hier leider nicht geeignet. Sie müssen ein neues, ausreichend großes
Clipping-Rechteck setzen. Auf der sicheren Seite sind Sie mit der Anweisung:

ScreenSetClipRect -32000, -32000, 32000, 32000

Farbprobleme

Die Standardpalette von GEOS und dem Hostsystem (Windows, Linux) stimmt im
Allgemeinen nicht überein. Bei Druckertreibern, die das nicht berücksichtigen oder
bei der Umrechnung Fehler machen kann daher beim Ausdruck zu "unerklär-
lichen" Farbverfälschungen kommen. Beim Ausdruck über den PostScript-Treiber
tritt das Problem sogar auf, wenn Sie mit einer der 16 Grundfarben (oder dem zu-
gehörigen RGB-Wert) in eine 24-Bit-Bitmap zeichnen. In vielen Fällen stört dies
nicht, aber falls doch können Sie das Problem mit folgenden Strategien umgehen:

• Vermeiden Sie die stark betroffenen Farben. Unter Windows und Linux sind
das CYAN, LIGHT_CYAN, VIOLET und LIGHT_VIOLET.

• Benutzen Sie eine RGB-Farbe, deren RGB-Farbwerte geringfügig von den
RGB-Werten der Standardfarben abweichen. Die folgende Routine ändert
dazu den Rotanteil der Farbe um 1.
Function GetSaveColorRGB(index as real) as Real
DIM r,g,b
r = RedOf(index);
g = GreenOf(index);
b = BlueOf(index);
IF r > 0 THEN r = r-1 : else r=1
Return RGB(r,g,b)
End Function

• Wenn Sie auf 256 Farben angewiesen sind können Sie statt der 16 Grund-
farben (Farbwerte 0 bis 15) eine "ähnliche" Farbe aus der oberen 256-Farb-
Palette (dem sogenannten Farbwürfel) verwenden. Die folgende Routine zeigt,
wie man das machen kann.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PrintControl - 380

Function GetSaveColor(index as real) as Real
ON index SWITCH

CASE BLACK: RETURN 0 ’ 0 -> 0
CASE BLUE: RETURN 43 ’ 1 -> 43
CASE GREEN: RETURN 58 ’ 2 -> 58
CASE CYAN: RETURN 61 ’ 3 -> 61
CASE RED: RETURN 148 ’ 4 -> 148
CASE VIOLET: RETURN 151 ’ 5 -> 151
CASE BROWN: RETURN 161 ’ 6 -> 161
CASE LIGHT_GRAY: RETURN 27 ’ 7 -> 27
CASE DARK_GRAY: RETURN 20 ’ 8 -> 20
CASE LIGHT_BLUE: RETURN 129 ’ 9 -> 129
CASE LIGHT_GREEN: RETURN 144 ’ 10 -> 144
CASE LIGHT_CYAN: RETURN 147 ’ 11 -> 147
CASE LIGHT_RED: RETURN 234 ’ 12 -> 234
CASE LIGHT_VIOLET: RETURN 237 ’ 13 -> 237
CASE YELLOW: RETURN 252 ’ 14 -> 252
CASE WHITE: RETURN WHITE ’ 15 -> 15

End SWITCH
RETURN index ’ ansonsten: nicht ändern

End Function

Das Programm "TunePro" (© by Rabe-Soft) ermöglicht Ihnen, einen passen-
den Farbcode zu finden. Klicken Sie auf "UI anpassen" und dann auf "Farbe
wählen". Alternativ werden Ihnen die R-G-B-Anteile einer Index-Farbe z.B. im
"Flächenattribute" Dialog angezeigt, wenn Sie auf "Weitere Farben" klicken.
Sie können dann die BASIC-Funktion IndexOf (r, g, b) verwenden um den
zugehörigen Index (Farbcode) zu erfahren.

Drucken mit höherer Präzision

Beim Ausdruck können die Koordinaten mit einer Präzision von einem typo-
grafischen Punkt (1 pt, ca. 0,35 mm) angegeben werden. Will man Objekte
präzisier platzieren muss man den Ausgabescreen herunterskalieren und dann die
Koordinaten mit dem Skalierungsfaktor multiplizieren. Die folgende Sequenz
zeichnet ein rotes Viereck der Kantenlänge 100.25 pt x 200.5 pt an die Position
x = 50.25 und y = 75.5 bei einer Präzision von 0.25 pt.

DIM x, y
x = 50.25
y = 75.5
ScreenSetScale 1/4, 1/4
FillRect 4*x, 4*y, 4*(x+110.25), 4*(y + 200.5), LIGHT_RED

Beachten Sie, dass GEOS die Breite von Linien nicht herunterskaliert. Um die
Linienbreite auf 1/4 pt zu setzen verwenden Sie die Anweisung:

graphic.lineWidth = 0.25

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PageSizeControl - 381

4.15 PageSizeControl

Das PageSizeControl-Objekt stellt in einer Dialogbox die UI bereit, um Größe,
Ränder und Layout eines Dokuments auszuwählen. Das PageSizeControl-Objekt
stellt nur die UI bereit, es ist Aufgabe des Programmierers die Werte auch zu
verwenden.

Abstammung:
GenericClass PageSizeControl

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
pageSize –– lesen, schreiben
pageMargins –– lesen, schreiben
pageLayout –– lesen, schreiben
pscFeatures pscFeatures = featuresWert lesen, schreiben

Methoden:
Methode Aufgabe
ShowDialog PageSize-Dialogbox anzeigen

Beim Programmstart lädt das PageSizeControl-Objekt Seitengröße, Ränder und
Layout vom Treiber des Standarddruckers des Systems (auch wenn der Drucker
nicht angeschlossen ist). Es ist deshalb nicht möglich, die Werte für pageSize,
pageMargins, und pageLayout im UI-Code zu setzen.

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PageSizeControl - 382

pscFeatures

Die Instancevariable pscFeatures enthält die Information, welche der möglichen
UI-Elemente des PageSizeControl-Objekts angezeigt werden sollen.

Syntax UI-Code: <obj>.pscFeatures = featuresWert
Lesen: <numVar> = <obj>.pscFeatures
Schreiben: <obj>.pscFeatures = featuresWert

featuresWert: Anzuzeigende UI, siehe Tabelle

Der Wert für pscFeatures enthält Bitflags. Jedes Bit schaltet ein UI-Element ein
oder aus. Wichtig! das Bit PSCF_CUSTOM_SIZE muss immer gesetzt sein,
sonst crasht das System. Es sind folgende Konstanten definiert:

Konstante Wert Anzuzeigende UI
PSCF_MARGINS 16 Eingabefelder für die Ränder
PSCF_CUSTOM_SIZE 8 Breite und Höhe des Dokuments
PSCF_LAYOUT 4 Hoch- oder Querformat
PSCF_SIZE_LIST 2 Liste verfügbarer Papiersorten
PSCF_PAGE_TYPE 1 Papier oder Umschlag
PSC_DEFAULT_FEATURES 15 CustomSize, Layout, Liste, PageType

Beispiel: Ein PageSizeControl-Objekt, dass die Eingabefelder für die Ränder
anzeigt, aber die Auswahl Papier/Umschlag nicht zulässt. Beachten Sie, dass das
PageSizeControl-Objekt einen Caption-Wert benötigt. In vielen Fällen wird das
PageSizeControl-Objekt als FileMenuChild eines Primary-Objekts in der generic
Tree eingebunden.

PageSizeControl DemoPageSizeControl
Caption$ = "Seitengröße"
pscFeatures = PSC_DEFAULT_FEATURES \

+ PSCF_MARGINS - PSCF_PAGE_TYPE
End OBJECT

pageSize

Die Instancevariable pageSize enthält die Größe des zu druckenden Dokuments,
angegeben in typografischen Punkt (pt). Sie können die Größe des Dokuments
völlig unabhängig vom Papier im Drucker wählen, allerdings ist es oft eine gute
Idee, die Dokumentgröße an die Papiergröße anzupassen. Deswegen initialisiert
das PageSizeControl-Objekt die Werte für pageSize mit der Papiergröße im
Standarddrucker.
PageSize kann im UI-Code nicht gesetzt werden. Wenn Sie einen von der
Papiergröße im Standarddrucker abweichenden Wert einstellen wollen müssen
Sie das im OnStartup-Handler ihres Programms tun (siehe Beispiel unten).

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PageSizeControl - 383

Synatx Schreiben: <obj>.pageSize = width, height
Lesen: <numVar> = <obj>.pageSize (n)

n: Information, welcher Wert gelesen werden soll, siehe
Tabelle (PS steht für Page-Size)

Tabelle: Mögliche Parameter beim Lesen von pageSize. Alle Werte werden in
typografischen Punkt (pt) angegeben.

Konstante Wert Information
PS_WIDTH 4 Breite des Dokuments
PS_HEIGHT 5 Höhe des Dokuments

pageMargins

Die Instancevariable pageMargins enthält die Ränder des zu druckenden
Dokuments, angegeben in typografischen Punkt (pt). Das PageSizeControl-Objekt
initialisiert die Werte für pageMargins mit den Rändern des Papiers im
Standarddrucker.
PageMargins kann im UI-Code nicht gesetzt werden. Wenn Sie einen von den
Rändern im Standarddrucker abweichenden Wert einstellen wollen, müssen Sie
das im OnStartup-Handler ihres Programms tun (siehe Beispiel unten).

Synatx Schreiben: <obj>.pageMargins = left, top, right, bottom
Lesen: <numVar> = <obj>.pageMargins (n)

n: Information, welcher Wert gelesen werden soll, siehe
Tabelle (PS steht für Page-Size)

Tabelle: Mögliche Parameter beim Lesen von pageMargins. Alle Werte werden in
typografischen Punkt (pt) angegeben.

Konstante Wert Information
PS_LEFT_MARGIN 0 Linker Rand
PS_TOP_MARGIN 1 Oberer Rand
PS_RIGHT_MARGIN 2 Rechter Rand
PS_BOTTOM_MARGIN 3 Unterer Rand

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PageSizeControl - 384

pageLayout

Die Instancevariable pageLayout enthält die Layoutinformationen des zu
druckenden Dokuments. Detaillierte Informationen zur Bedeutung des Werts von
pageLayout finden Sie weiter oben, bei der Instancevariablen pcLayout des
PrintControl-Objekts. Das PageSizeControl-Objekt unterstützt die Layouttypen
PL_PAPER und PL_ENVELOPE. PL_LABEL wird nicht unterstützt.

Synatx Schreiben: <obj>.pageLayout = layoutWert
Lesen: <numVar> = <obj>.pageLayout

layoutWert: Siehe pcLayout des PrintControl-Objekts

Beispiel: Verwendung eines PageSizeControl-Objekts zur Einstellung der
Dokument-Größe. Den kompletten Sourcecode finden Sie im Ordner R-BASIC\
Beispiel\Objekte\Drucken.

UI-Code: Wir wollen auch die Seitenränder einstellen. Die logische OR-Operation
setzt das Bit PSCF_MARGINS ohne die anderen Bits zu beeinflussen. Zur
Demonstration haben wir auch noch ein Tastenkürzel (Strg-e) vergeben.
PageSizeControl DemoPageSizeControl
Caption$ = "Seitengröße" , 1
kbdShortcut = ASC("e") + KSM_CTRL + KSM_PHYSICAL
pscFeatures = PSC_DEFAULT_FEATURES OR PSCF_MARGINS

End OBJECT

Wir möchten, dass unser PageSizeControl die Werte von Standarddrucker durch
eigene Werte ersetzt. Deswegen müssen wir einen OnStartup-Handler verein-
baren.
Application DemoApplication
 Children = DemoPrimary
 OnStartup = AppStartupHander
END Object

Im AppStartupHander überschreiben wir die Werte, die unser PageSizeControl
vom Standarddrucker gelesen hat. Der Faktor 72/2,54 rechnet einen cm-Wert in
typografische Punt (pt) um.
SYSTEMACTION AppStartupHander
’ Seitengröße: A4 (21,0 cm x 29,7 cm)
’ Seitenränder: links 3 cm, sonst 1,5 cm
’ Randgröße: 1,5 cm -> 1.5*72/2.54 = 42.52 pt
DemoPageSizeControl.pageSize = 21*72/2.54, 29.7*72/2.54
DemoPageSizeControl.pageMargins = 85, 43, 43, 43
DemoPageSizeControl.pageLayout = PL_PAPER

END ACTION

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PageSizeControl - 385

Vor dem Drucken müssen wir die Daten aus dem PageSizeControl-Objekt noch
an das PrintControl-Objekt weiterrechen. Das passiert im Handler des "Drucken"-
Buttons:
BUTTONACTION PrintButtonHandler

DemoPrintControl.pcDocSize = \
DemoPageSizeControl.pageSize(PS_WIDTH), \
DemoPageSizeControl.pageSize(PS_HEIGHT)

DemoPrintControl.pcDocMargins = \
DemoPageSizeControl.pagemargins(PS_LEFT_MARGIN), \
DemoPageSizeControl.pagemargins(PS_TOP_MARGIN), \
DemoPageSizeControl.pagemargins(PS_RIGHT_MARGIN), \
DemoPageSizeControl.pagemargins(PS_BOTTOM_MARGIN)

DemoPrintControl.pcLayout = DemoPageSizeControl.pagelayout

DemoPrintControl.printJobName$ = "PageSizeControl Demo"
DemoPrintControl.InitiatePrint

END ACTION

ShowDialog

Wenn Sie das PageSizeControl-Objekt in den generic Tree einbinden erzeugt es,
wie bei einem Dialog, einen Button, mit dem man die Dialogbox des Objekts
aufrufen kann. Die Methode ShowDialog wird nur benötigt, wenn Sie das
PageSizeControl-Objekt von einer zweiten Stelle im Programm aus aufrufen
wollen. Das kann zum Beispiel ein Tool-Button sein.

Syntax: <obj>.ShowDialog

Beispiel:
BUTTONACTION PageSizeToolButtonHandler
DemoPageSizeControl.ShowDialog

END ACTION

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PageSizeControl - 386

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 7
Einfach unter PC/GEOS programmieren

PageSizeControl - 387

(Leerseite)

