

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 8
 Canvas, Image, Display, DisplayGroup,

DisplayControl

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

4.16 Canvas .. 392

4.17 Image .. 400
4.17.1 Überblick ... 400
4.17.2 Anzeige von Bildern .. 402
4.17.3 Spezielle Attribute ... 407
4.17.4 Animationen .. 411

4.18 Display und zugehörige Objekte .. 416
4.18.1 Überblick ... 414
4.18.2 Display .. 415
4.18.3 DisplayGroup .. 421
4.18.4 DisplayControl .. 425

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 392

4.16 Canvas

Überblick

Ein Canvasobjekt (engl: Leinwand) dient dazu, eine Grafik anzuzeigen. Diese
Grafik liegt nicht als vorgefertigtes Bild vor, sondern wird zur Laufzeit gezeichnet.
Bei Bedarf kann sich die vom Canvasobjekt angezeigte Grafik also ändern. Dazu
verfügt das Canvas Objekt über folgende Fähigkeiten:

• OnDraw Handler: Dieser Handler wird gerufen, wenn sich das Objekt auf dem
Bildschirm darstellt. Der OnDraw Handler zeichnet die Grafik.

• Gepufferte Darstellung: Wenn gewünscht kann das Objekt die Grafik, die der
OnDraw Handler gezeichnet hat, intern abspeichern. Sie kann dann abgerufen
werden ohne den OnDraw Handler erneut auszuführen. Das ist wesentlich
schneller und geht auch, wenn Ihr Programm gerade mit anderen Operationen
beschäftigt ist.

Innerhalb des OnDraw Handlers wird das Canvasobjekt automatisch zu Screen,
so dass Grafik und Text einfach ausgegeben werden können. Für viele Zwecke ist
das nicht nur ausreichend, sondern auch die bessere Wahl. In Vergleich zu einem
BitmapContent-Objekt benötigt das Canvasobjekt viel weniger Speicher, da es
keine Bitmap im Hintergrund verwaltet. Und es benötigt kein Viewobjekt als
Partner, ist also einfacher zu handhaben.

Verwenden Sie ein Canvasobjekt, wenn Sie eine einfache Grafik, z.B. ein Logo,
ein Schema oder einen grafisch gestalteten Text, darstellen wollen, die sich im
Programmablauf nicht oder nur selten ändern. Für grafische Ausgaben, die
während des Programmablaufs ständig angepasst werden müssen, wie
Statusmeldungen (z.B. "Schritt 5 von 10") oder bewegte Grafiken ist das
Canvasobjekt nicht optimal. Beispiele zur Verwendung des Canvas-Objekts finden
Sie im Ordner "Beispiel\Objekte\Grafik".

Abstammung:
GenericClass Canvas

Das Canvasobjekt erbt alle Eigenschaften und Fähigkeiten der GenericClass. Von
besonderer Bedeutung sind dabei die Fähigkeiten zum Geometriemanagement
(siehe Kapitel 3.3). Insbesondere die Hints fixedSize, initialSize, ExpandWidth
und/oder ExpandHeight werden häufig genutzt, da das Canvas Objekt "von sich
aus" keine vorgegebene Größe hat und sonst möglicherweise unsichtbar klein ist.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnDraw OnDraw = <Handler> nur schreiben
defaultColor defaultColor = fg, bg lesen, schreiben
buffered buffered = TRUE lesen, schreiben
bufferedDataSize bufferedDataSize = <Wert> lesen, schreiben

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 393

Methoden:
Methode Aufgabe
Dirty Weist das Objekt an, sich neu darzustellen

Action-Handler-Typen:
Handler-Typ Parameter
DrawAction (sender as object, width, height as word)

Mausunterstützung

Das Canvasobjekt unterstützt die Behandlung von Mausereignissen. Eine
detaillierte Beschreibung der Arbeit mit der Maus finden Sie im Handbuch
"Spezielle Themen", Kapitel 17.
Es ist möglich, innerhalb eines Maushandlers Grafiken oder Text auf den Bild-
schirm auszugeben. Dazu müssen Sie das Objekt explizit zum Screen machen.
Häufig werden Sie außerdem die Maus grabben. Ein entsprechendes Beispiel
("Canvas Maus Demo") finden Sie im Ordner "Beispiel\Objekte\Grafik".
Beachten Sie aber, dass das Canvas-Objekt die Grafik- und Textausgaben nicht
abspeichert! Sie werden nicht wieder gezeichnet, wenn das Objekt sich selbst neu
darstellt.

Der gepufferte Modus

Im gepufferten Modus speichert das Objekt die darzustellende Grafik zwischen.
Dadurch muss nicht jedes Mal der OnDraw-Handler gerufen werden, wenn sich
das Objekt neu auf dem Bildschirm darstellen muss. Um den gepufferten Modus
zu aktivieren verwenden Sie die Instancevariable buffered. Sie müssen dem
Objekt auch mitteilen, wie groß die zu speichernde Datenmenge ungefähr (!) ist.
Dazu verwenden Sie die die Instancevariable bufferedDataSize.
Es wird empfohlen, den gepufferten Modus zu verwenden.

Normaler Modus (buffered = FALSE):
Jedes Mal, wenn sich das Objekt auf dem Bildschirm neu darstellen muss,
wird der BASIC OnDraw Handler gerufen. Das ist der Standardmodus. Für
viele, insbesondere einfache Anwendungen ist er ausreichend.

Gepufferter Modus (buffered = TRUE)
Wenn sich das Objekt auf dem Bildschirm neu darstellen muss, wird die
zwischengespeicherte Grafik dargestellt. Der BASIC OnDraw Handler wird
nicht gerufen.

Vorteile des gepufferten Modus
- deutlich schnellere Darstellung

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 394

- Darstellung auch dann, wenn das BASIC-Programm "beschäftigt" ist. Wenn
Ihr Programm eine hohe "Hintergrundaktivität" hat, z.B. bei einem Spiel,
sollten Sie unbedingt den gepufferten Modus verwenden.

Nachteile des gepufferten Modus
- Die Grafik kann sich Größenänderungen des Objekts nicht anpassen.

Verkleinert sich das Objekt wird möglicherweise "über den Rand" gezeichnet.

Einschalten des gepufferten Modus
Setzen Sie die Instancevariable buffered auf TRUE.
Das Objekt fordert Speicher zum Zwischenspeichern der Grafikbefehle an.
Dann wird der OnDraw Handler gerufen. Die Grafikausgaben gehen aber
nicht nur auf den Schirm, sondern werden parallel dazu vom Objekt
"mitgeschnitten".

Sie können die Variablen buffered und bufferedDataSize auch schon im UI-
Code setzen. Dann wird die gepufferte Grafik gleich beim Programmstart
aufgebaut.

Ausschalten des gepufferten Modus
Setzen Sie die Instancevariable buffered auf FALSE.
Das Objekt gibt den angeforderten Speicher frei. Anschließend wird der
OnDraw Handler gerufen um das Objekt neu darzustellen.

Verwenden des OnDraw Handlers

Der OnDraw-Handler übernimmt die Darstellung der vom Objekt angezeigten
Grafik. Das gilt sowohl für den normalen als auch für den gepufferten Modus, im
gepufferten Modus wird der OnDraw-Handler genau einmal gerufen.
Während der OnDraw Handler läuft, wird das Canvas Objekt zum Screen, das
heißt, alle Grafikausgaben gehen über dieses Objekt direkt auf den Bildschirm. Sie
können alle Grafikbefehle verwenden, Farben ändern, Texte ausgeben usw.,
selbst Manipulationen des Koordinatensystems (siehe Kapitel 2.3.3) sind möglich.
Falls ein globaler Screen gesetzt ist (siehe Kapitel 2.3) wird dessen Status vorher
gesichert und anschließend wieder hergestellt, so dass es keine gegenseitige
Beeinflussung geben kann. Mit einer Ausnahme: Alle Einstellungen rund um den
Block-Grafik-Modus (siehe Handbuch "Spezielle Themen", Kapitel 2.5) sind immer
global. Ändern Sie hier innerhalb eines OnDraw Handlers etwas (z.B. durch
Laden eines anderen Zeichensatzes) wirkt sich das auf alle anderen Teile des
Programms aus.

Beispiel UI Code:
Canvas DemoCanvas
fixedsize = 300, 200
OnDraw = DemoDraw

END OBJECT

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 395

Beispiel Handler:
DRAWACTION DemoDraw
Paper 203
CLS
graphic.linewidth = 5
Circle 150, 100,50, LIGHT_BLUE
Print atxy 110,100;"Hallo"

END ACTION

Das Canvasobjekt führt ein automatisches Clipping aus, d.h. die Grafikteile, die
über den Rand des Objekts ragen, werden nicht gezeichnet.
Sie können die aktuelle Größe des Zeichenbereichs ermitteln, indem Sie die
Systemvariablen MaxX und MaxY abfragen. Da ist insbesondere dann hilfreich,
wenn das Objekt seine Größe verändern kann, z.B. wenn die Hints ExpandWidth
und ExpandHeight gesetzt sind.

Beispiel UI:
Canvas DemoCanvas
initialSize = 150, 150
OnDraw = DrawCircleHandler
ExpandWidth
ExpandHeight

END OBJECT

Beispiel Code. Es entsteht ein Viertelkreis.

DRAWACTION DrawCircleHandler
FillEllipse 0, 0, 2*MaxX, 2*MaxY, LIGHT_BLUE

END ACTION

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 396

Beschreibung der Instancevariablen

OnDraw

Die Instance-Variable OnDraw enthält den Namen des Handlers, der die Grafik
zeichnen soll. Dieser muss als DrawAction vereinbart sein. Der Wert wird
üblicherweise im UI-Code gesetzt.

Syntax UI- Code: OnDraw = <Handler>
Schreiben: <obj>.OnDraw = <Handler>

Bei Bedarf kann der OnDraw-Handler auch zur Laufzeit (im BASIC-Code) gesetzt
werden. In diesem Fall stellt sich das Objekt automatisch neu dar.
Hinweis: Der neue OnDraw Handler wird erst ausgeführt nachdem der Handler,
der die Zuweisung ausgeführt hat beendet ist!

defaultColor

Die Instance-Variable defaultColor enthält die Farben, die beim Aufruf des
OnDraw Handlers eingestellt werden. Dabei setzt R-BASIC die Farben
folgendermaßen:

Hintergrundfarbe: bg
Text-, Linien- und Flächenfarbe: fg

Das ist prinzipiell so, als würde automatisch die Anweisung "COLOR fg, bg"
ausgeführt, kostet aber deutlich weniger Zeit.

Syntax UI-Code: defaultColor = fg, bg
fg: Vordergrund (foreground)
bg: Hintergrund (background)

fg und bg müssen Indexfarben sein. RGB-Farben
sind nicht zulässig.

Lesen: <numVar> = <obj>.defaultColor (0) ’ fg
<numVar> = <obj>.defaultColor (1) ’ bg

Schreiben: <obj>.defaultColor = fg, bg

Canvas Objekte ohne die Anweisung defaultColor verwenden die Farben
"schwarz auf weiß".

buffered

Die Instancevariable buffered legt fest, ob das Canvasobjekt die anzuzeigende
Grafik zwischenspeichert (buffered = TRUE, "gepufferter" Modus) oder nicht
(buffered = FALSE, normaler Modus). FALSE ist der Defaultwert.
Wenn Sie den gepufferten Modus aktivieren sollten Sie ebenfalls die Instance-
variable bufferedDataSize (siehe unten) im Blick haben.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 397

Syntax UI- Code: buffered = TRUE
Schreiben: <obj>.buffered = TRUE | FALSE
Lesen: <numVar> = <obj>.buffered

Ändern Sie den Wert der Instancevariablen buffered von FALSE auf TRUE oder
von TRUE auf FALSE, so ruft das Objekt seinen OnDraw-Handler und stellt sich
neu auf dem Bildschirm dar.

bufferedDataSize

Im gepufferten Modus fordert das Objekt Speicher (in einer Datei) an, um die
darzustellende Grafik zu speichern. BufferedDataSize enthält die Information, wie
groß der benötigte Speicher ungefähr (!) ist. Der Wert ist nicht kritisch. Wenn Sie
hier einen falschen Wert angeben, passiert im Allgemeinen nichts.

Syntax UI- Code: bufferedDataSize = <Wert>
Schreiben: <obj>.bufferedDataSize = <Wert>
Lesen: <numVar> = <obj>.bufferedDataSize

<Wert>: numerische Konstante, siehe aus der Tabelle unten

Der Defaultwert für bufferedDataSize ist DS_TINY. Das ist ein sinnvoller Wert,
wenn Sie nur Grafikbefehle verwenden und keine Bitmapgrafiken ausgeben. Die
folgende Tabelle enthält die zulässigen Werte:

Konstante Wert Zu erwartende Datenmenge
DS_TINY 0 nicht mehr als 10 .. 20 kByte
DS_SMALL 1 nicht mehr als 50 .. 100 kByte
DS_MEDIUM 2 nicht mehr als 500 kByte ... 1 MB
DS_LARGE 3 nicht mehr als 5 MByte
DS_HUGE 4 möglicherweise mehr als 5 MByte

Beispiele, in welchen Situationen welche Datenmengen zu erwarten sind, finden
Sie im Programmierhandbuch, Kapitel 2.8.5, bei der Beschreibung des Befehls
StartRecordGS.

Dirty

Die Methode Dirty (engl: schmutzig) bewirkt, dass sich das Objekt neu darstellt,
indem es seinen OnDraw Handler ruft. Verwenden Sie diese Methode wenn sich
Daten, die zur Darstellung des Objekts relevant sind, geändert haben. Wenn das
Objekt z.B. eine Pyramide darstellt und die Höhe der Pyramide hat sich geändert,
dann müssen Sie die Dirty-Methode rufen, damit das Objekt die Pyramide mit der
neuen Höhe zeichnet.

Syntax im BASIC Code: <obj>.Dirty

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 398

Die Dirty Methode arbeitet auch im gepufferten Modus. Das Objekt gibt die alte
gepufferte Grafik automatisch frei und speichert die neue ab.

Tipps und Tricks

• Per Default ist im OnDraw-Handler der LAYOUT Modus eingestellt. Das
bedeutet, dass Textausgaben, die über den Rand des Ausgabefensters
hinausgehen, keine neue Zeile eröffnen und beliebige, auch negative Cursor-
Koordinaten erlaubt sind. Alternativ können Sie im OnDraw-Handler den PAGE
Modus aktivieren, bei dem die Textausgabe auf das aktuelle Textfenster
begrenzt wird.
PAGE und LAYOUT Modus werden durch Ausgeben eines speziellen
Steuerzeichens mit dem Print-Befehl aktiviert:

PAGE Modus Print "\17" oder Print Chr$(17)
LAYOUT Modus Print "\19" oder Print Chr$(19)

In der KeyCodes Library sind entsprechende Konstanten definiert.
Achtung! Der SCROLL-Modus (Print "\18") wird von Canvasobjekten nicht
unterstützt und kann zu seltsamen Ergebnissen führen.

• Canvasobjekte unterstützen die Zwischenablage nur im gepufferten Modus. Die
Methoden ClpTestCopy und ClpTestPaste fragen daher als erstes ab, ob der
gepufferte Modus aktiv ist. ClpCopy funktioniert im gepufferten Modus immer,
ClpPaste akzeptiert Bitmaps und GStrings in der Zwischenablage.
Beachten Sie, dass das Objekt seine Größe nach einer "Paste" Operation nicht
an die neue Grafik anpasst. Unter Umständen wird die eingefügte Grafik über
den Rand des Objekts hinaus gezeichnet.
Im normalen Modus wird keine Clipboardarbeit unterstützt. ClpCopy und
ClpPaste setzen die globale Variable clipboardError auf TRUE.

• Vermeiden Sie die Verwendung des Befehls CLS im OnDraw-Handler. CLS
ignoriert eventuelle Koordinatentransformationen und zeichnet ein Rechteck in
der aktuellen Hintergrundfarbe. Diese Farbe ist meist nicht identisch mit der
"Hintergrundfarbe" ihres GEOS-Systems. Im gepufferten Modus werden zudem
vorher gezeichnete Objekte nicht entfernt, sondern nur überdeckt.

• Ein Canvas-Objekt kann mit der Anweisung PrintObj gedruckt (also auf einen
Drucker ausgegeben) werden. Diese Anweisung ist im Objekthandbuch, Kapitel
4.14.7 (Drucken spezieller Objekte) beschrieben. Das Canvas-Objekt muss
dazu im gepufferten Modus arbeiten.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Canvas - 399

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 400

4.17 Image

4.17.1 Überblick

Ein Imageobjekt dient dazu, eine Grafik anzuzeigen, die als fertiges Bild in einer
Datei oder in der PictureList vorliegt. Der Programmierer muss nichts weiter tun
als die anzuzeigende Grafik zu spezifizieren. Um den Rest kümmert sich das
Imageobjekt. Sie können dem Objekt auch jederzeit eine andere Grafik zuweisen,
es gibt keinen speziellen Befehl um den von der aktuellen Grafik eventuell
belegten Speicher freizugeben. Darum kümmert sich das Objekt automatisch.
Das Imageobjekt kann auch Animationen ohne weiteres Zutun des
Programmierers abspielen. Dabei können Sie festlegen, ob die Animation
automatisch oder erst durch einen Programmbefehl gestartet werden soll.

Unterstützte Grafik-Formate:
• Bitmap Dateien: JPG, BMP, ICO, PCX, GIF, TGA, RLE, DIB, SCR (BreadBox

SplashScreen)
• Animationen: GIF, FLC, FLI, BreadBox QuickCam Format
• Resource-Maker Dateien (Bitmaps und GStrings)
• Sonstige: GEOS Hintergrund-Dateien

Abstammung:
GenericClass Image

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
ImageFile ImageFile = stdPath, "file" nur schreiben
ImagePicture ImagePicture = "name" nur schreiben
ImageResource ImageResource = stdPath, "file", "name"

nur schreiben
numPicts –– nur lesen
pictNum pictNum = n lesen, schreiben
imgInfo –– nur lesen
imgState –– nur lesen
scale scale = scaleX, scaleY lesen, schreiben
drawPos drawPos = x0, y0 lesen, schreiben
borderColor borderColor = ul, br lesen, schreiben
bgColor bgColor = col, drawMask lesen, schreiben
autoSize autoSize = TRUE | FALSE lesen, schreiben
autoStart autoStart = TRUE | FALSE lesen, schreiben
currentFrame –– lesen, schreiben
numFrames –– nur lesen
animationTics –– lesen, schreiben

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 401

Methoden:
Methode Aufgabe
Redraw Weist das Objekt an, sich neu darzustellen
AnimationStart Startet die Animation
AnimationStop Stoppt die Animation
AnimationNext Ruft den nächsten Frame der Animation auf

Das Imageobjekt erbt alle Eigenschaften und Fähigkeiten der GenericClass. Von
besonderer Bedeutung sind dabei die Fähigkeiten zum Geometriemanagement
(siehe Kapitel 3.3). Insbesondere die Hints fixedSize, initialSize, ExpandWidth
und/oder ExpandHeight werden häufig genutzt, da das Image Objekt "von sich
aus" keine vorgegebene Größe hat und sonst möglicherweise unsichtbar klein ist.
Beachten Sie in diesem Zusammenhang auch die Instancevariable "autoSize".

Mausunterstützung

Das Imageobjekt unterstützt die Behandlung von Mausereignissen. Eine
detaillierte Beschreibung der Arbeit mit der Maus finden Sie im Handbuch
"Spezielle Themen", Kapitel 17.
Es ist möglich, innerhalb eines Maushandlers Grafiken oder Text auf den Bild-
schirm auszugeben. Dazu müssen Sie das Objekt explizit zum Screen machen.
Häufig werden Sie außerdem die Maus grabben. Ein auf das Imageobjekt
übertragbares Beispiel finden Sie hier: "Beispiel\Objekte\Grafik\Canvas Maus
Demo". Beachten Sie aber, dass das Imageobjekt die Grafik- und Textausgaben
nicht abspeichert! Sie werden nicht wieder gezeichnet, wenn das Objekt sich
selbst neu darstellt.

Clipboard

Das Imageobjekt kann die aktuell dargestellte Grafik mit der Methode ClpCopy in
die Zwischenablage kopieren. Diese Methode ist für alle Objektklassen definiert.
Lesen aus der Zwischenablage wird nicht unterstützt.
Um herauszufinden, ob das Objekt eine Grafik darstellt, die ins Clipboard kopiert
werden kann, können Sie die Methode ClpTestCopy verwenden. Diese Methode
liefert TRUE wenn keine Grafik spezifiziert wurde, wenn die Grafikdatei nicht
gelesen werden konnte oder in jedem anderen Fehlerfall.

Kopieren oder Drucken der Grafik

Um die aktuell dargestellte Grafik auf einen Drucker auszugeben verwenden Sie
bitte die Routine PrintObj, die im Kapitel 4.14.7 (Drucken Spezieller Objekte) im
Objekthandbuch beschrieben ist. Diese Routine können Sie auch verwenden, um
die aktuell angezeigte Grafik auf das aktuelle Screenobjekt zu "drucken". Der
Screen kann dabei eine Bitmap, ein GString oder was auch immer sein. Alternativ
können Sie die Grafik zunächst ins Clipboard kopieren und vorn dort z.B. mit den
Befehlen ClipboardGetGS oder ClipboardGetBitmap holen.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 402

4.17.2 Anzeige von Bildern

Grafiken für das Image-Objekt können aus drei Quellen stammen: aus externen
Bilddateien (Instancevariable ImageFile), aus der PictureList (Instancevariable
ImagePicture) oder aus einer Resource-Datei (Instancevariable
ImageResource). Außerdem haben Sie die Möglichkeit, Informationen über die
angezeigte Grafik oder die Grafikdatei zu erhalten (Instancevariablen numPicts,
pictNum, imgInfo und imgState).
Die Instancevariable ImageFile kann auch eine Animation spezifizieren. Die
Details dazu werden im nächsten Abschnitt besprochen.
Die Methode Redraw ermöglicht ein Neuzeichnen der angezeigten Grafik.

ImageFile

ImageFile enthält den kompletten Pfad zur anzuzeigenden Datei. Wenn das
Programm startet öffnet das Imageobjekt die Datei, lädt (kopiert) die Grafik und
schließt die Datei wieder. Um zu prüfen, ob das Objekt ein Bild geladen hat
können Sie die Instancevariable "numPicts" abfragen.
Wenn ImageFile eine Animation spezifiziert kann die Animation automatisch
gestartet werden (siehe unten, Instancevariable "autoStart"). Während die
Animation läuft bleibt die Datei die ganze Zeit offen.

Syntax UI- Code: imageFile = stdPath, "file"
Schreiben: <obj>.imageFile = stdPath, "file"
Lesen: ––

stdPath: Standardpfad-Konstante oder Null, siehe Tabelle.
"file" Name der anzuzeigenden Datei. Pfadangaben sind

zulässig. Siehe Tabelle.

Wird der Wert zur Laufzeit zugewiesen stellt sich das Objekt sofort neu dar.
Außerdem wird die globale Variable fileError gesetzt.

Zulässige Kombinationen für stdPath und "file"
stdPath "file" Anmerkung
Standardpfad relativer Pfad zu einer Datei
Konstante z.B. SP_USER_DATA, "Bild.PCX"

 SP_DOCUMENT, "Bilder\\Bild.BMP"
Null Absoluter Pfad zu einer Datei

z.B. 0, "D:\\Bilder\\Tools\\Circle.ICO"
Null relativer Pfad zu einer Datei Nicht im UI Code

d.h. relativ zum aktuellen Verzeichnis zulässig
z.B. 0, "Baum.BMP"
 0, "Pflanzen\\Baum.BMP"

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 403

Beispiele
Image DemoImage
imageFile = SP_DOCUMENT, "IMAGES\\SUNSET.JPG"

End Object

Image DemoImage
imageFile = SP_USER_DATA, "BACKGRND\\Froggy Bumps"

End Object

DemoImage.imageFile = 0, "D:\\Bilder\\TEST3.RLE"

ImagePicture

ImagePicture enthält den Namen einer Grafik aus der PictureList. Die Grafik kann
eine Bitmap oder ein GString sein.
Die Verwendung der PictureList wird im Programmierhandbuch, Kapitel 2.8.6.2
(Verwendung der "PictureList") beschrieben.

Syntax UI- Code: imagePicture = "name"
Schreiben: <obj>.imagePicture = "name"
Lesen: ––

"name" Name der Grafik in der PictureList

Wird der Wert zur Laufzeit zugewiesen stellt sich das Objekt sofort neu dar. Um zu
prüfen, ob das Objekt das Bild in der PictureList gefunden hat können Sie die
Instancevariable "numPicts" abfragen.

Beispiele
Image DemoImage
imagePicture = "Segler"

End Object

DemoImage.imagePicture = "Diagram"

ImageResource

ImageResource ermöglicht dem Imageobjekt Grafiken (Bitmaps und GStrings) aus
einer Resource-Maker Datei ohne weitere Unterstützung des Programmierers
anzuzeigen. Der Resource-Maker ist © by Rabe-Soft und kann von der Website
des Programmierers (www.rbettsteller.de) heruntergeladen werden.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 404

Wenn das Programm startet öffnet das Imageobjekt die Datei, lädt (kopiert) die
Grafik und schließt die Datei wieder. Um zu prüfen, ob das Objekt ein Bild geladen
hat können Sie die Instancevariable "numPicts" abfragen.

Syntax UI- Code: imageResource = stdPath, "file", "name"
Schreiben: <obj>.imageResource = stdPath, "file", "name"
Lesen: ––

stdPath: Standardpfad-Konstante oder Null, siehe ImageFile.
"file" Name der Resource-Datei. Pfadangaben sind zulässig.

Siehe ImageFile.
"name" Name des Grafik-Eintrags in der Resource-Datei.

Wird der Wert zur Laufzeit zugewiesen stellt sich das Objekt sofort neu dar.
Außerdem wird die globale Variable fileError gesetzt.

Achtung! Falls die spezifizierte Datei keine gültige Resource-Datei ist crasht das
System! Sie können im Zweifelsfall das Token abfragen.

Beispiele
Image DemoImage
imageResource = SP_DOCUMENT, "IMAGES\\Test Resource", "Erde"

End Object

Image DemoImage
imageResource = SP_USER_DATA,\

"R-BASIC\\BIN\\Rainer\\SuperGame\\Super ImgResorce",\
"SiegerAnimation"

End Object

DemoImage.imageResource = 0, "D:\\TestResource", "Grafik1"

numPicts

Die Instancevariable numPicts enthält die Anzahl der Bilder in der Bilddatei.
Kommt das Bild aus einer Resource oder aus der PictureList enthält numPicts den
Wert 1. Im Fehlerfall oder wenn noch kein Bild zugewiesen wurde enthält
numPicts den Wert Null. Sie können numPicts verwenden, um zu prüfen ob das
Objekt ein Bild anzeigt oder nicht. Außerdem können Sie die globale Variable
fileError abfragen. Verwenden Sie die Routine ErrorText$() um den Fehlercode in
fileError in einen verständlichen Text zu übersetzen.

Syntax UI- Code: ––
Schreiben: ––
Lesen: <numVar> = <obj>.numPicts

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 405

pictNum

Die Instancevariable pictNum enthält die Nummer des gerade angezeigten Bildes
für den Fall, dass die Datei mehr als ein Bild enthält. Das kann z.B. bei ICO
Dateien zutreffen. Das erste Bild hat die Nummer Null. Es gilt also immer
pictNum < numPicts. Für Bilder aus einer Resource oder aus der PictureList ist der
Wert immer Null. Weisen Sie der Instancevariablen einen ungültigen Wert zu, so
wird sie automatisch auf Null gesetzt.

Syntax UI- Code: pictNum = num
Schreiben: <obj>.pictNum = num
Lesen: <numVar> = <obj>.pictNum

ImgInfo

Die Instancevariable imgInfo liefert eine Struktur des Typs GraphicInfo. Diese
enthält detaillierte Informationen über das aktuell vom Objekt angezeigte Bild. Die
Struktur GraphicInfo ist im Anhang C beschrieben.

Syntax Lesen: <var> = <obj>.imgInfo
var: Variable vom Typ GraphicInfo

Die Struktur GraphicInfo ist wie folgt definiert:
STRUCT GraphicInfo
sizeX as WORD
sizeY as WORD
bitsPerPixel as WORD
numImages as WORD

End STRUCT

Hinweis:
Die von der Instancevariablen imgInfo gelieferten Daten können sich von denen,
die von der Routine GetImageInfo geliefert werden (siehe Programmierhandbuch,
Kapitel 2.8.6.3 Externe Bilddateien), unterscheiden. Das kann mehrere Gründe
haben:
• Bei Dateien, die mehrere Bilder enthalten können (z.B. ICO oder GIF Dateien)

liefert GetImageInfo immer die Informationen für das erste Bild, imgInfo jedoch
die Informationen für das vom Image-Objekt gerade angezeigte Bild. Dadurch
können sich sowohl die Farbtiefe (GraphicInfo Feld bitsPerPixel) als auch die
Bildgröße (GraphicInfo Felder sizeX und sizeY) unterschieden.

• Bilder die mit 4 Bit per Pixel oder mit 32 Bit per Pixel kodiert sind werden vom
Image-Objekt mit 8 bzw. 24 Bit per Pixel dargestellt. Die Instancevariable
imgInfo liefert deswegen niemals eine Farbtiefe von 4 oder 32 Bit, die Routine
GetImageInfo hingegen schon.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 406

ImgState

Die Instancevariable imgState enthält die Information, welche Art von Bild das
Objekt gerade darstellt. Der Wert kann nur gelesen werden.

Syntax Lesen: <numVar> = <obj>.imgState

ImgState liefert einen der folgenden Werte zurück:
Konstante Wert Bedeutung
IMGS_NO_IMAGE 0 Kein Bild oder Fehler
IMGS_BITMAP 1 Standbild, Bitmap
IMGS_GSTRING 2 Standbild, GString
IMGS_ANIMATION_RUNNING 3 Laufende Animation
IMGS_ANIMATION_PAUSE 4 Pausierte Animation

Redraw

Die Methode Redraw bewirkt, dass sich das Objekt neu auf dem Bildschirm
darstellt. Der Aufruf der Methode ist nur selten notwendig. Ein Beispiel wäre, wenn
Sie in einem Maushandler etwas auf den Screen gezeichnet haben und das
einfach wieder löschen wollen.

Syntax: <obj>.Redraw [drawBackground]
drawBackground: TRUE | FALSE (Default: FALSE)

Beispiel:
DemoImage.Redraw
DemoImage.Redraw TRUE

DrawBackground = TRUE bewirkt, dass das Objekt seinen Hintergrund ebenfalls
neu zeichnet. Das kann erforderlich sein, wenn die Grafik transparente Anteile
enthält oder Sie die Instancevariablen drawPos, borderColor und / oder bgColor
verwendet haben.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 407

4.17.3 Spezielle Attribute

Neben dem "einfachen" Darstellen von Bildern und Animationen können Sie die
Eigenschaften des Imageobjekts in gewissen Grenzen einstellen. Insbesondere
können Sie festlegen, dass die Grafik vergrößert oder verkleinert dargestellt wird
(Instancevariable scale), an eine andere Position als die linke obere Ecke
gezeichnet wird (Instancevariable drawPos), Sie können einen Rahmen um die
Grafik zeichnen (Instancevariable borderColor) und einen farbigen Hintergrund
festlegen (Instancevariable bgColor). Außerdem können Sie festlegen, dass das
Objekt seine Größe an die Größe der dargestellten Grafik anpassen soll
(Instancevariable autoSize).

Scale

Scale enthält einen Faktor, um den die Grafik bei der Darstellung gestreckt oder
gestaucht wird. In den meisten Fällen brauchen Sie keinen Skalierungsfaktor zu
setzen, weil der Defaultwert in x- und in y-Richtung 1 ist.

Syntax UI- Code: scale = scaleX, scaleY
Schreiben: <obj>.scale = scaleX, scaleY
Lesen: <numVar> = <obj>.scale(n)

n= 0: x-Skalierungsfaktor lesen
n= 1: y-Skalierungsfaktor lesen

scaleX: Skalierungsfaktor in x-Richtung
scaleY: Skalierungsfaktor in y-Richtung

Beispiel: Grafik in doppelter Größe darstellen:
Image DemoImage
imageFile = SP_DOCUMENT, "IMAGES\\SUNSET.JPG"
scale = 2, 2

End Object

DrawPos

Die Instancevariable drawPos enthält die Koordinaten, auf die die linke obere
Ecke der Grafik gezeichnet werden soll. Der Defaultwert ist (0; 0). Negative
Koordinaten sind zulässig.

Syntax UI- Code: drawPos = x0, y0
Schreiben: <obj>.drawPos = x0, y0
Lesen: <numVar> = <obj>.drawPos(n)

n= 0: x-Position lesen
n= 1: y-Position lesen

x0, y0 Koordinaten

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 408

borderColor

Die Instancevariable borderColor enthält Farbwerte um einen dünnen Rahmen um
das Objekt zu zeichnen. Die Defaultwerte sind jeweils –1, das heißt per Default
wird kein Rahmen gezeichnet.
Der Rahmen wird immer um das ganze Objekt gezeichnet, auch wenn die Grafik
kleiner als Objekt ist und/oder nicht auf die Position (0; 0) gezeichnet wird.

Syntax UI- Code: borderColor = ltCol, rbCol
Schreiben: <obj>.borderColor = ltCol, rbCol
Lesen: <numVar> = <obj>.borderColor(n)

n= 0: ltCol lesen
n= 1: brCol lesen

ltCol: Farbwert für die Linien links und oben (left, top)
-1: Links und oben keinen Rahmen zeichnen (Default)

rbCol: Farbwert für die Linien rechts und unten (right, bottom)
-1: Rechts und unten keinen Rahmen zeichnen (Default)

Für ltCol und rbCol sind nur Indexfarben zulässig.

bgColor

Mit der Instancevariablen bgColor kann man eine Hintergrundfarbe für die Grafik
festlegen. Das kann sinnvoll sein, wenn die Grafik transparente Anteile enthält.
Der Defaultwert für den Parameter col ist –1, das heißt es wird die vom System
vorgegeben Hintergrundfarbe ohne Füllmuster verwendet.

Syntax UI- Code: bgColor = col, pattern
Schreiben: <obj>.bgColor = col, pattern
Lesen: <numVar> = <obj>.bgColor(n)

n= 0: Farbe col lesen
n= 1: Füllmuster pattern lesen

col: Farbwert für den Hintergrund (nur Indexfarben erlaubt)
-1: Systemhintergrund verwenden (Default)

pattern: Füllmuster (erlaubte Werte: siehe Tabelle unten)

BgColor ist für alle GenericClass Objekte definiert und erwartet einen Farbwert für
das unselektierte und einen für das selektiert Objekt. Da dies bei Image-Objekten
nicht sinnvoll ist wird der zweite Parameter als Füllmuster-Wert interpretiert. Wenn
Sie kein Muster, sondern eine vollständig gefüllte Fläche wünschen, müssen Sie
die Konstante DM_100 (Wert: 25) als zweiten Parameter verwenden.
Füllmuster werden im Programmierhandbuch, Kapitel 2.8.4 (Die Systemvariable
"graphic": Mixmodes und mehr) beschrieben. Im Anhang C finden Sie
verschiedene Beispiele für die von GEOS bereitgestellten Füllmuster.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 409

Tabelle: Erlaubte Werte für Füllmuster
Wert Konstante Bedeutung

 0 - 24 – Von GEOS bereitgestellte Muster.
25 DM_100 "Normalzustand", 100% Deckung.

26 - 88 – Unterschiedliche "Transparenzgrade". Größere
Werte entsprechen höherer Transparenz.

89 DM_0 Null % Deckung, vollständig transparent.
128 DM_INVERSE Wird zu einem der anderen Werte addiert. Das

Muster wird invertiert.

Beispiele:
Die folgenden Bilder setzen folgende Objektdeklaration voraus:
Image DemoImage
imageFile = 0, "D:\\Bilder\\TEST3.RLE"
fixedSize = 80, 80

End OBJECT

Von links nach rechts wurden folgende Zeilen hinzugefügt:
• keine (Standardansicht, Grafik auf Position (0; 0))
• drawPos = 8, 8

borderColor= WHITE, BLACK
• drawPos = 8, 8

borderColor= WHITE, BLACK
bgColor = LIGHT_BLUE, DM_100

Die Umrandung und der Hintergrund (Instancevariablen borderColor und bgColor)
werden auch dann gezeichnet, wenn dem Objekt keine Grafik zugewiesen ist
(oder wenn die Grafik ungültig ist). Das Behandeln von Mausereignissen ist in
allen diesen Fällen trotzdem möglich. Das kann man benutzen um sehr einfach
eine farbige Fläche zu erzeugen. Bitte beachten Sie das Füllmuster im dritten
Beispiel.

Von links nach rechts wurden folgende Zeilen hinzugefügt:
• keine (Standarddarstellung im Fehlerfall)
• borderColor= WHITE, BLACK

bgColor = LIGHT_GREEN, DM_100
• borderColor= WHITE, BLACK

bgColor = BLACK, 8 ’ Versuchen Sie auch bgColor = RED, 8 + 128

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 410

autoSize

Die Instancevariable autoSize bestimmt, ob das Objekt seine Größe an die
dargestellte Grafik anpassen soll. Der Defaultwert ist FALSE (Größe nicht
automatisch berechnen).
Hat autoSize den Wert TRUE so berechnet das Objekt seine Größe automatisch
neu, wenn das Programm startet oder wenn es eine neue Grafik darstellen soll.
Intern setzt das Objekt den Hint "fixedSize" um seine Größe festzulegen. Dabei
kommen folgende Formeln zur Anwendung:

Breite = breite_der_grafik + 2 * drawPos_x
Höhe = höhe_der_grafik + 2 * drawPos_y

Durch dieses Vorgehen wird ein "Rahmen" um die eigentliche Grafik erzeugt,
wenn Sie die Instancevariable "drawPos" verwenden.

Syntax UI- Code: autoSize = TRUE
Der Defaultwert ist FALSE.

Schreiben: <obj>.autoSize = TRUE | FALSE
Lesen: <numVar> = <obj>.autoSize

Sie können die Größe des Imageobjekts bei der automatischen Berechnung
begrenzen, indem Sie die Hints "minimumSize" und "maximumSize" verwenden.
Der Berechnungsalgorithmus prüft, ob einer oder beide dieser Hints gesetzt sind
und schränkt die Werte für Breite und Höhe des Objekts so ein, dass die
minimalen und maximalen Werte nicht überschritten werden. Diese Werte werden
dann an den Hint "fixedSize" übergeben.

Wichtige Hinweise:
• Bei der Berechnung der Größe wird der Skalierungsfaktor (Instancevariable

"scale") nicht berücksichtigt.
• Wählen Sie aus einer Datei mit mehreren Bildern (z.B. einer ICO Datei) ein

neues Bild aus, so berechnet das Imageobjekt seine Größe jedes Mal neu.
• Wenn Sie "autoSize" zu Laufzeit auf TRUE setzen berechnet das Objekt seine

Größe umgehend neu und stellt sich neu dar. Das gilt auch, wenn sie bereits
TRUE ist.

• Eine Neubelegung der Instancevariable "drawPos" bewirkt keine Neube-
rechnung der Größe des Objekts.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 411

4.17.4 Animationen

Das Image-Objekt kann Animationen automatisch ohne weiteres Zutun des
Programmierers abspielen. Die Berechnung und Darstellung der Bilder erfolgt
dabei im Hintergrund, so dass Ihr BASIC Programm ganz normal weiterarbeiten
kann.
Um eine Animation mit einem Image-Objekt darzustellen müssen Sie dem Objekt
nur eine Datei zuweisen, die eine Animation enthält (Instancevariable ImageFile).
Mit den Methoden AnimationStart, AnimationStop und AnimationNext haben
Sie volle Kontrolle über das Abspielen der Animation. Mit der Instancevariablen
autoStart können Sie festlegen, dass die Animation automatisch startet.
Informationen über den aktuellen Status der Animation bekommen Sie mit den
Instancevariablen currentFrame, numFrames, animationTics (kann auch
gesetzt werden um die Geschwindigkeit zu ändern) sowie den weiter oben
beschriebenen Instancevariablen imgInfo und imgState.

AnimationStart

Die Methode AnimationStart startet eine Animation. Sie können AnimationStart
auch zum Fortsetzen einer mit AnimationStop angehaltenen Animation
verwenden. Wenn Sie im UI Code die Instancevariable autoStart auf TRUE
gesetzt haben startet die Animation beim Laden des Programms automatisch,
ohne den Aufruf von AnimationStart.

Syntax: <obj>.AnimationStart

AnimationStop

Die Methode AnimationStop hält eine laufende Animation an. Falls Sie eine
Animation in einer Dialogbox haben sollten Sie nach dem Schließen der Dialogbox
AnimationStop rufen, damit die Animation nicht unnötig im Hintergrund weiterläuft.

Syntax: <obj>.AnimationStop

AnimationNext

Die Methode AnimationNext wählt das nächste Bild einer angehaltenen Animation
an. AnimationNext ist wirkungslos bei einer laufenden Animation.

Syntax: <obj>.AnimationNext

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 412

Beispiel. Die im Objekt DemoImage laufende Animation wird für 3 Sekunden
gestoppt, dann wird das nächste Bild angezeigt und nach weiteren 3 Sekunden wir
die Animation mit normaler Geschwindigkeit fortgesetzt.

DemoImage.AnimationStop
Pause 30
DemoImage.AnimationNext
Pause 30
DemoImage.AnimationStart

autoStart

Die Instancevariable autoStart bestimmt, ob ein vom Imageobjekt angezeigte
Animation beim Starten des Programms oder bei der Zuweisung einer neuen
Datei automatisch abgespielt werden soll oder nicht. Der Defaultwert ist FALSE
(Animation nicht automatisch starten). Beachten Sie, dass eine gestartete
Animation "im Hintergrund" weiterläuft auch wenn das Imageobjekt gerade nicht
sichtbar ist. Setzen Sie "autoStart" nur dann auf TRUE, wenn es wirklich
notwendig ist.
Wenn Sie "autoStart" zu Laufzeit auf TRUE setzen wird die Animation sofort
gestartet.

Syntax UI- Code: autoStart = TRUE
Der Defaultwert ist FALSE.

Schreiben: <obj>.autoStart = TRUE | FALSE
Lesen: <numVar> = <obj>.autoStart

currentFrame

Die Instancevariable currentFrame enthält die Nummer des aktuell angezeigten
Bildes der Animation. Die Zählung beginnt bei Null. Der Wert kann jederzeit
gelesen werden. Ein Setzen zur Laufzeit ist nur möglich, wenn die Animation
gerade nicht läuft. Im UI-Code kann der Wert nicht gesetzt werden.

Syntax UI- Code: ––
Schreiben: <obj>.currentFrame = wert
Lesen: <numVar> = <obj>.currentFrame

Hinweis: Das Aufrufen eines speziellen Frames kann manchmal etwas dauern,
weil das Aussehen eines Bildes vom Aussehen der vorhergehenden Bilder
abhängen kann. Deshalb muss das Image Objekt möglicherweise einen großen
Teil der Animation erneut dekodieren um den gewünschten Frame anzuzeigen.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Image - 413

numFrames

Die Instancevariable numFrames enthält die Anzahl der Bilder in einer Animation.
Im Fehlerfall enthält numFrames den Wert Null. Außerdem können Sie im
Fehlerfall die globale Variable fileError abfragen, um das Problem einzugrenzen.
Verwenden Sie die Routine ErrorText$() um den Fehlercode in fileError in einen
verständlichen Text zu übersetzen.

Syntax UI- Code: ––
Schreiben: ––
Lesen: <numVar> = <obj>.numFrames

animationTics

Die Instancevariable animationTics enthält die Zeit zwischen zwei benachbarten
Frames einer Animation, gemessen in tics (1 tic = 1/60 s). Je kleiner der Wert ist,
desto schneller läuft die Animation. Der Wert kann zur Laufzeit gelesen und
geschrieben, aber nicht im UI Code gesetzt werden.
Wird der Wert bei laufender Animation gesetzt so ändert das Imageobjekt die
Abspielgeschwindigkeit sofort.

Syntax UI- Code: ––
Schreiben: <obj>.animationTics = <Wert>
Lesen: <numVar> = <obj>.animationTics

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 414

4.18 Display und zugehörige Objekte

4.18.1 Überblick

Jede große Applikation (z.B. Write, R-BASIC) zeigt ihre Dokumente in eigenen
Fenstern an. Diese Fenster gehören der Objektklasse Display an. Displayobjekte
enthalten ähnlich wie Dialoge weitere UI-Objekte, z.B. Views, Memos, Buttons
oder Listen. Der Bereich, in dem die Displays dargestellt werden, ist ein Objekt der
Klasse DisplayGroup. Die DisplayGroup managet die Displays, organisiert z.B.
dass sie überlappend dargestellt werden oder sich den Platz aufteilen. Dabei hat
die DisplayGroup selbst keine UI, mit der der Nutzer interagieren kann. Das
übernimmt ein Objekt der Klasse DisplayControl, das sich üblicher Weise im
"Fenster" Menü befindet. Der Vorteil von dieser Trennung ist, dass man mehrere
DisplayGroups haben kann, die alle über das Fenster-Menü gesteuert werden.

Eine typische Konfiguration: Eine DisplayGroup mit zwei Displays. Das
DisplayControl befindet sich im "Fenster" Menü.

Displays, DisplayGroup und DisplayControl arbeiten im Hintergrund eng
zusammen. Im Kern ist es so, dass die DisplayGroup weiß, welche Displays
(Fenster) es gibt, da sie die Children der DisplayGroup sind. Sie sendet eine
Message an das DisplayControl, das daraufhin eine Liste der vorhandenen
Fenster aufbaut. Wählt der Nutzer aus dieser Liste ein Display aus so sendet das
DisplayControl eine Message an die DisplayGroup. Diese wiederum wählt das
geforderte Display aus. Genauso verhält es sich, wenn der Nutzer den Eintrag
"Überlappend", "Bildschirmfüllend" oder "Aufteilen" auswählt. Die DisplayGroup
bekommt den Befehl vom DisplayControl und organisiert die Anzeige
entsprechend. Im Gegenzug bekommt das DisplayControl eine Message, wenn
der Nutzer z.B. auf ein bestimmtes Display klickt und es so zum aktiven Fenster
macht. All das passiert ohne weiteres Zutun des Programmierers.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 415

Application

Primary

DisplayControl

Fenster MenüDisplayGroup

Display 1 Display 2 Display 3

Messages

Prinzipielle Organisation von Display, DisplayGroup und DisplayControl

Das System organisiert diese Zusammenarbeit intern über die Target-Hierarchie.
Das stellt auch sicher, dass die Zusammenarbeit mit mehreren DisplayGroups
funktioniert. Hintergrundinformationen zur Target-Hierarchie finden Sie im
Handbuch Spezielle Themen, Vol. 2, Kapitel 12. Für die Verwendung von Display,
DisplayGroup und DisplayControl müssen Sie in diesem Zusammenhang
folgendes wissen:

• Sie müssen der DisplayGroup (falls Sie mehrere haben: genau einer) den Hint
defaultTarget geben. Andernfalls weiß das DisplayControl nicht, mit wem es
zusammenarbeiten soll und baut die Fenster-Liste nicht automatisch auf.

• Falls Sie verhindern wollen, dass eine DisplayGroup auf die Messages des
DisplayControl reagiert, so müssen Sie ihre Instancevariable targetable auf
FALSE setzen.

4.18.2 Display

Objekte der Klasse Display sind die "Fenster" in
denen alle großen Applikationen ihre Daten
anzeigen. Displays müssen Children eines
DisplayGroup Objekts sein. Die Displays selbst
enthalten weitere UI-Objekte, die die eigentlichen
Informationen darstellen. Im Bild links ist das ein
Memo-Objekt.

Abstammung:
GenericClass Display

Das Displayobjekt erbt alle Eigenschaften und Fähigkeiten der GenericClass. Von
besonderer Bedeutung sind dabei die Fähigkeiten zum Geometriemanagement,
insbesondere die Window-bezogenen Hints (Kapitel 3.3.7: Spezielle Hints für
Window-Objekte) sind hier von Bedeutung. Beachten Sie, dass insbesondere die
Größe eines Displayobjekts im Zusammenspiel mit der DisplayGroup geändert

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 416

werden kann. Es ist deshalb leicht möglich, dass Sie widersprüchliche Hints
setzen. So verhindert z.B. der Hint "NotMaximizable", dass sich das Display
bildschirmfüllend darstellt.

Displays können in drei Modi dargestellt werden:
• Bildschirmfüllend (maximiert): Das Displayobjekt nimmt den gesamten verfüg-

baren Platz in der DisplayGroup ein. Wenn ein Displayobjekt bildschirmfüllend
dargestellt wird so sind auch alle anderen Displays bildschirmfüllend.

• Überlappend: Jedes Displayobjekt hat seine eigene Größe. Der Nutzer kann die
Größe ändern, Displayobjekte können sich gegenseitig überlappen. Der
Zustand "aufgeteilt" ist ein Spezialfall von "überlappend", bei dem Größe und
Anordnung der Displays automatisch so gewählt wird, dass sie alle möglichst
gut zu sehen sind.

• Minimiert: Das Displayobjekt ist nicht mehr sichtbar, aber noch in der Liste des
DisplayControl Objekts verfügbar. Von dort aus kann es wieder sichtbar
gemacht werden.
Der Zustand "minimiert" ist nicht identisch mit "unsichtbar" (visible = FALSE).
Wird die Instancevariable "visible" auf FALSE gesetzt verschwindet das
Displayobjekt auch aus der Liste des DisplayControl Objekts.

Die Instancevariablen minimizedState und maximizedState bestimmen
gemeinsam mit den Hints MinimizedOnStartup und MaximizedOnStartup in
welchem der drei Modi sich das Displayobjekt befindet. Mit den Hints
NotMinimizable, NotMaximizable, NotResizable und NotRestorable kann man
bei Bedarf die Fähigkeiten des Displayobjekts einschränken. Die Instancevariable
userDismissable und die Methode Close wird nur benötigt, wenn man den
Mechanismus "Schließen von Displays" (siehe unten) implementieren will.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code

minimizedState minimizedState = TRUE | FALSE lesen, schreiben
MinimizedOnStartup MinimizedOnStartup ––
NotMinimizable NotMinimizable ––
maximizedState maximizedState = TRUE | FALSE lesen, schreiben
MaximizedOnStartup MaximizedOnStartup ––
NotMaximizable NotMaximizable ––
NotResizable NotResizable ––
NotRestorable NotRestorable ––
userDismissable userDismissable = TRUE | FALSE lesen, schreiben
OnClose OnClose = <Handler> lesen, schreiben

Methoden:
Methode Aufgabe
Close Ruft den OnClose Handler des Objekts auf

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 417

Action-Handler-Typen:
Handler-Typ Parameter
DialogAction (sender as object, command as integer)

Ein einfaches Displayobjekt, dass ein Memo als Child enthält, sieht so aus:
Display Disp1
Caption$ = "Erlkönig"’ , 0
Children = Memo1

End OBJECT

Memo Memo1
text$ = "Wer reitet so spät durch Nacht und Wind?"
ExpandWidth:ExpandHeight
backColor = WHITE

End Object

Minimized und Maximized State

Die folgenden Instancevariablen bestimmen ob das Displayobjekt minimiert
(versteckt), maximiert (bildschirmfüllend) oder überlappend dargestellt wird.
Hinweis: Da Primary-Objekte von Displays abstammen erben Sie die im
Folgenden aufgelisteten Fähigkeiten.

minimizedState

MinimizedState enthält die Information ob das Displayobjekt "minimiert" ist oder
nicht.
• Am Programmstart bestimmt das DisplayGroup-Objekt, wie die Displays

dargestellt werden. Das Setzen des Wertes im UI-Code ist möglicherweise
wirkungslos. Verwenden Sie in diesem Fall MinimizedOnStartup.

Syntax UI- Code: minimizedState = TRUE
Der Defaultwert ist FALSE.

Schreiben: <obj>.minimizedState = <Wert>
Lesen: <numVar> = <obj>.minimizedState

MinimizedOnStartup

MinimizedOnStartup bewirkt, dass das Displayobjekt am Programmstart minimiert
ist.

Syntax UI- Code: MinimizedOnStartup

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 418

NotMinimizable

NotMinimizable bewirkt, dass das Displayobjekt nicht minimiert werden kann. Der
entsprechende Button in der Titelbar des Displayobjekts wird entfernt und das
Setzen der Instancevariablen minimizedState bleibt wirkungslos.

Syntax UI- Code: NotMinimizable

maximizedState

MaximizedState enthält die Information, ob das Displayobjekt "bildschirmfüllend"
(maximizedState = TRUE) dargestellt wird oder nicht.
• Am Programmstart bestimmt das DisplayGroup-Objekt, wie die Displays

dargestellt werden. Das Setzen des Wertes im UI-Code ist möglicherweise
wirkungslos.

• Wenn Sie den Wert für ein Displayobjekt zur Laufzeit ändern, hat das
Auswirkungen auf alle anderen Displays in der DisplayGroup.

Syntax UI- Code: maximizedState = TRUE
Der Defaultwert ist FALSE.

Schreiben: <obj>.maximizedState = <Wert>
Lesen: <numVar> = <obj>.maximizedState

MaximizedOnStartup

MaximizedOnStartup bewirkt, dass das Displayobjekt am Programstart maximiert
dargestellt wird.
• Am Programmstart bestimmt das DisplayGroup-Objekt, wie die Displays

dargestellt werden. Das Setzen des Wertes ist möglicherweise wirkungslos.

Syntax UI- Code: MaximizedOnStartup

NotMaximizable

NotMaximizable bewirkt, dass der Nutzer das Displayobjekt nicht maximieren
kann. Das Display bleibt im "überlappenden" Modus, auch wenn die anderen
Displays bildschirmfüllend sind.

Syntax UI- Code: NotMaximizable

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 419

Weitere Hints

NotResizable

NotResizable bewirkt, dass der Nutzer die Größe des Displayobjekts nicht ändern
kann, wenn es im Modus "überlappend" dargestellt wird.

Syntax UI- Code: NotResizable

NotRestorable

NotRestorable bewirkt, dass ein Wechsel in den "minimiert" Modus nicht
zurückgenommen werden kann. Verwenden Sie diesen Hint mit Vorsicht.

Syntax UI- Code: NotRestorable

Schließen von Displays

Große Applikationen wie GeoWrite oder R-BASIC stellen Ihre Dokumente in
Fenstern dar, die Display-Objekte sind. Wird ein Dokument geschlossen so muss
auch das zugehörige Display-Objekt vom Schirm genommen werden. Falls das
Display beim Öffnen des Dokuments, also zur Laufzeit, mit der Routine
CreateObject erzeugt wurde muss es dann auch wieder mit der Routine
DestroyObject wieder vernichtet werden. Bitte lesen Sie die Dokumentation dieser
Routinen sorgfältig.
Werden die Fenster (Display-Objekte) überlappend dargestellt so findet sich im
Systemmenü des Displays der Eintrag "Schließen". Er ist per Default inaktiv. Um
ihn zu aktivieren müssen Sie die Instancevariable userDismissable des Display-
Objekts auf TRUE setzen. Klickt der Nutzer jetzt auf diesen Eintrag wird der
OnClose Handler des Displayobjekts aufgerufen. Dieser Handler muss alle
notwendigen Schritte auslösen um das Dokument zu schließen und das Display-
Objekt vom Schirm zu nehmen. Ist kein OnClose Handler gesetzt so passiert
nichts.

Hinweis: Primary-Objekte stammen von Displays ab. Sie implementieren jedoch
ihr eigenes Handling zum Schließen eines Programms. Die folgenden
Instancevariablen sind für Primaries daher nicht verfügbar.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 420

userDismissable

UserDismissable = TRUE aktiviert den Eintrag "Schließen" im Systemmenü des
Displayobjekts. Der Defaultwert ist FALSE. Das Systemmenü ist nur sichtbar,
wenn die Displays überlappend dargestellt sind.
Wenn der Nutzer auf "Schließen" im Systemmenü des Displayobjekts klickt wird
der OnClose Handler des Objekts aufgerufen.

Syntax UI- Code: userDismissable = TRUE
Der Defaultwert ist FALSE.

Schreiben: <obj>.userDismissable = <Wert>
Lesen: <numVar> = <obj>.userDismissable

OnClose

Der OnClose Handler wird gerufen, wenn der Nutzer auf den Eintrag "Schließen"
im Systemmenü des Displayobjekts klickt. Das Systemmenü ist nur sichtbar, wenn
die Displays überlappend dargestellt sind.
Um den Eintrag "Schließen" im Systemmenü des Displayobjekts zu aktivieren
müssen Sie die Instancevariable userDismissable des Displayobjekts auf TRUE
setzen.
Der OnClose Handler muss als DialogAction deklariert sein.

Syntax UI- Code: OnClose = <Handler>
Schreiben: <obj>.OnClose = <Handler>
Lesen: –

Close

Die Methode Close ruft den OnClose Handler des Objekts auf. Dieser Handler
muss dann alle weiteren Schritte auslösen. Ist kein OnClose Handler definiert so
passiert auch nichts.

Syntax BASIC Code: <obj>.Close

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 421

4.18.3 DisplayGroup

Eine DisplayGroup stellt den Bereich
bereit, in dem die Displayobjekte darge-
stellt werden. Im Bild sind drei Displays in
einer DisplayGroup zu sehen.
Das DisplayGroup Objekt interagiert mit
den Displays um sie anzuordnen, ihre
Größe festzulegen usw.

Außerdem arbeitet das DisplayGroup Objekt automatisch mit dem DisplayControl
Objekt zusammen. Damit dies alles funktioniert müssen Sie Folgendes tun:

• Die Displays müssen Children des DisplayGroup Objekts sein.
• Das DisplayGroup Objekt muss den Hint defaultTarget gesetzt haben.

Abstammung
GenericClass DisplayGroup

Per Default ist eine DisplayGroup so eingestellt, dass die Displays am
Programmstart im bildschirmfüllenden Modus angezeigt werden. Wenn Sie das
nicht möchten setzen Sie im UI-Code die Instancevariable fullSizeState auf
FALSE. Um die Displays am Programmstart "aufgeteilt" darzustellen müssen Sie
in Ihrem OnStartup Handler die Methode "TileDisplays" für das DisplayGroup
Objekt aufrufen.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code

fullSizeState fullSizeState = TRUE | FALSE lesen, schreiben
activeDisplay –– nur lesen
NoFullSizeMode NoFullSizeMode ––
NoOverlappingMode NoOverlappingMode ––
TileHorizontally TileHorizontally ––
TileVertically TileVertically ––
SizeIndependentlyOfDisplays

SizeIndependentlyOfDisplays ––

Methoden:
Methode Aufgabe
TileDisplays Ordnet die Displays "aufgeteilt" an
SelectDisplay (n) Wählt ein Display als aktives Display aus

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 422

Eine typische Konfiguration einer DisplayGroup sieht so aus:

DisplayGroup DGroup
children = Disp1, Disp2, Disp3
initialSize = 800, 400
defaultTarget
fullSizeState = FALSE
ExpandWidth
ExpandHeight
SizeIndependentlyOfDisplays

End OBJECT

FullSizeState

Die Instancevariable fullSizeState enthält die Information, ob die Displays in der
DisplayGroup überlappend (fullSizeState = FALSE) oder bildschirmfüllend
(fullSizeState = TRUE) dargestellt werden. Sie können den Wert zur Laufzeit
ändern um den entsprechenden Zustand einzustellen.
Um die Displays gleichmäßig in der DisplayGroup aufzuteilen verwenden Sie die
Methode "TileDisplays" (siehe unten).

Syntax UI- Code: fullSizeState = FALSE
Der Defaultwert ist TRUE

Schreiben: <obj>.fullSizeState = TRUE | FALSE
Lesen: <numVar> = <obj>.fullSizeState

activeDisplay

Die Instancevariable activeDisplay enthält das aktuell aktive Displayobjekt. Ist kein
Displayobjekt "aktiv" enthält activeDisplay das zuletzt aktive Displayobjekt. Sollte
die DisplayGroup keine Displays enthalten so liefert activeDisplay ein Null-Objekt.

Syntax Lesen: <objVar> = <obj>.activeDisplay

NoFullSizeMode

NoFullSizeMode verhindert, dass die Displays in der DisplayGroup bildschirm-
füllend angezeigt werden.
Am Programmstart werden die Displays per Default trotzdem immer bildschirm-
füllend angezeigt. Setzen Sie daher im UI-Code zusätzlich die Instancevariable
fullSizeState auf FALSE.

Syntax UI-Code: NoFullSizeMode

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 423

NoOverlappingMode

NoOverlappingMode verhindert, dass die Displays in der DisplayGroup
überlappend angezeigt werden.

Syntax UI-Code: NoOverlappingMode

TileDisplays

Die Methode TileDisplays ordnet die Displays "aufgeteilt" an. Der Aufruf dieser
Methode hat die gleiche Wirkung als ob der Nutzer im DisplayControl den Eintrag
"Aufteilen" anklickt.

Syntax BASIC Code: <obj>.TileDisplays

TileHorizontally

TileHorizontally bewirkt, dass die Displays in der DisplayGroup nebeneinander
angeordnet werden, wenn sie "aufgeteilt" werden.
Um die Displays aufzuteilen kann der Nutzer im DisplayControl den
entsprechenden Eintrag anklicken oder man ruft die Methode "TileDisplays" auf.

Syntax UI-Code: TileHorizontally

TileVertically

TileVertically bewirkt, dass die Displays in der DisplayGroup übereinander
angeordnet werden, wenn sie "aufgeteilt" werden.
Um die Displays aufzuteilen kann der Nutzer im DisplayControl den
entsprechenden Eintrag anklicken oder man ruft die Methode "TileDisplays" auf.

Syntax UI-Code: TileVertically

SizeIndependentlyOfDisplays

Sowohl die Anordnung der Displays als auch die Größe der DisplayGroup werden
zwischen Displays und DisplayGroup automatisch ausgehandelt. In einigen
Situationen kann das dazu führen, dass die DisplayGroup nicht so aussieht, wie
Sie sich das wünschen, z.B. dass sie zu klein ist, oder dass die Geometrie der
Displays nicht stimmt. Verwenden Sie in diesen Fällen den Hint

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 424

SizeIndependentlyOfDisplays um die Geometrie der DisplayGroup und die
Geometrie der Displays voneinander zu entkoppeln.
Tipp: Setzen Sie diesen Hint immer. Nur wenn Sie den Eindruck haben, dass die
Geometrie nicht stimmt versuchen Sie es ohne ihn.

Syntax UI-Code: SizeIndependentlyOfDisplays

SelectDisplay

SelectDisplay(n) wählt ein Display als aktives Display aus. Die Zählung beginnt
dabei bei Null.
Tipp: Um herauszubekommen wie viele Displays zu einem DisplayGroup Objekt
gehören fragen Sie die Instancevariable numChildren der DisplayGroup ab.

Syntax BASIC Code: <obj>.SelectDisplay (<Wert>)
<Wert> Nummer des auszuwählenden Displays

Die Zählung beginnt bei Null.

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 425

4.18.4 DisplayControl

Das DisplayControl stellt die UI bereit, mit der
der Nutzer die Displays in der DisplayGroup
anordnen kann. Außerdem enthält es eine Liste
mit den Namen (Caption$) der Displays in der
DisplayGroup. Wie im Bild zu sehen ist das
DisplayControl üblicher Weise ein Child des
"Fenster" Menüs.

Das DisplayControl arbeitet automatisch mit den Displays und der DisplayGroup
zusammen. Das funktioniert sogar, wenn Sie mehrere DisplayGroup Objekte
haben.
Der Programmierer muss dazu nichts weiter tun als die Objekte in seinen Tree
einbinden. Außerdem muss das DisplayGroup Objekt (falls Sie mehrere haben:
genau eines) den Hint defaultTarget gesetzt haben.

Abstammung
GenericClass DisplayControl

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code

dcFeatures dcFeatures = <Wert> lesen, schreiben
nameOnPrimaryIfMaximized

nameOnPrimaryIfMaximized = TRUE lesen, schreiben

dcFeatures

DcFeatures bestimmt, welche Elemente der Controller-UI angezeigt werden. Per
Default werden alle Elemente angezeigt.

Syntax UI- Code: dcFeatures = <Wert>
Schreiben: <obj>.dcFeatures = <Wert>
Lesen: <numVar> = <obj>.dcFeatures

Folgende Werte sind für dcFeatures verfügbar:

Konstante Wert Bedeutung
DCF_OVERLAPP_FULL 4 Auswahl "Überlappend" / "Bildschirm-

füllend" anzeigen
DCF_TILE 2 Schalter "Aufteilen" anzeigen
DCF_DISPLAY_LIST 1 Liste aller Displays anzeigen

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 426

NameOnPrimaryIfMaximized

Diese Instancevariable bestimmt, ob der Name des aktuell aktiven Displays in der
Titelzeile des Primary-Objekts angezeigt werden soll.
• Üblicher Weise wird die Instancevariable im UI-Code belegt.
• Ändern Sie den Wert zur Laufzeit von TRUE auf FALSE während die Displays

maximiert sind, so updated das DisplayControl die Titelzeile im Primary nicht
mehr. Die Anzeige ist dann möglicherweise fehlerhaft oder veraltet.

• Intern wird die Instancevariable Caption2$ des Primaryobjekts verwendet, um
diese Funktion zu realisieren.

Syntax UI- Code: nameOnPrimaryIfMaximized = TRUE
Der Defaultwert ist FALSE.

Schreiben: <obj>.nameOnPrimaryIfMaximized = <Wert>
Lesen: <numVar> = <obj>.nameOnPrimaryIfMaximized

Beispiel. Beachten Sie, dass das DisplayControl keinen Verweis auf die Display-
Group enthält. Das wird intern über die Target Hierarchie geregelt.
Menu WindowMenu
Caption$ = "Fenster" , 0
Children = DControl

End OBJECT

DisplayControl DControl
nameOnPrimaryIfMaximized = TRUE

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Display, DisplayGroup und DisplayControl - 427

(Leerseite)

