R-BASIC

Einfach unter PC/GEOS programmieren

\CO

ol
9’

Objekt-Handbuch

Volume 8
Canvas, Image, Display, DisplayGroup,
DisplayControl

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 8

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis
s T 7= Y 1 V- 1= 392
4.17 IMAQE ccceeemmmmmeeeiiiiititit s sttt e a s s s R s s AR R AR R R R R R R R R R nnnn 400
B 177 UDEIDHCK «veeeeeeeeee e et et e e e e e e e e e e e e e eee e e et e e eeeeeeeaeeeeeann 400
4.17.2 Anzeige von Bildern ... 402
4.17.3 Spezielle ARMDULEooovvviiiiiii e 407
W A N N Y0 g = L [0] 2 1= T 411
4.18 Display und zugehorige Objektecccviriiiiiiisnssssnnsisssssssssnnnnnees 416
A.A8.1 UDBIDICK ettt ettt et et eeee e et eeee e eaes 414
4.18.2 DISPIAY .evvveeeeeeeeieeeeee e 415
4.18.3 DisplayGroup -...cccceeeummiiiiiiiiiiiiiieee e 421

4.18.4 DisplayControlcceeicuiriiiiriiiic i 425

R-BASIC - Objekt-Handbuch - Vol. 8

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

4.16 Canvas
Uberblick

Ein Canvasobjekt (engl: Leinwand) dient dazu, eine Grafik anzuzeigen. Diese
Grafik liegt nicht als vorgefertigtes Bild vor, sondern wird zur Laufzeit gezeichnet.
Bei Bedarf kann sich die vom Canvasobjekt angezeigte Grafik also &ndern. Dazu
verflgt das Canvas Objekt tber folgende Fahigkeiten:

« OnDraw Handler: Dieser Handler wird gerufen, wenn sich das Objekt auf dem
Bildschirm darstellt. Der OnDraw Handler zeichnet die Grafik.

« Gepufferte Darstellung: Wenn gewtinscht kann das Objekt die Grafik, die der
OnDraw Handler gezeichnet hat, intern abspeichern. Sie kann dann abgerufen
werden ohne den OnDraw Handler erneut auszufihren. Das ist wesentlich
schneller und geht auch, wenn lhr Programm gerade mit anderen Operationen
beschéftigt ist.

Innerhalb des OnDraw Handlers wird das Canvasobjekt automatisch zu Screen,
so dass Grafik und Text einfach ausgegeben werden kénnen. Fir viele Zwecke ist
das nicht nur ausreichend, sondern auch die bessere Wahl. In Vergleich zu einem
BitmapContent-Objekt bendtigt das Canvasobjekt viel weniger Speicher, da es
keine Bitmap im Hintergrund verwaltet. Und es bendtigt kein Viewobjekt als
Partner, ist also einfacher zu handhaben.

Verwenden Sie ein Canvasobjekt, wenn Sie eine einfache Grafik, z.B. ein Logo,
ein Schema oder einen grafisch gestalteten Text, darstellen wollen, die sich im
Programmablauf nicht oder nur selten andern. Fir grafische Ausgaben, die
wahrend des Programmablaufs standig angepasst werden muissen, wie
Statusmeldungen (z.B. "Schritt 5 von 10") oder bewegte Grafiken ist das
Canvasobijekt nicht optimal. Beispiele zur Verwendung des Canvas-Objekts finden
Sie im Ordner "Beispie\Objekte\Grafik".

Abstammung:

GenericClass 9 Canvas

Das Canvasobijekt erbt alle Eigenschaften und Fahigkeiten der GenericClass. Von
besonderer Bedeutung sind dabei die Fahigkeiten zum Geometriemanagement
(siehe Kapitel 3.3). Insbesondere die Hints fixedSize, initialSize, ExpandWidth
und/oder ExpandHeight werden haufig genutzt, da das Canvas Objekt "von sich
aus" keine vorgegebene GroBe hat und sonst méglicherweise unsichtbar klein ist.

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
OnDraw OnDraw = <Handler> nur schreiben

defaultColor defaultColor = fg, bg lesen, schreiben
buffered buffered = TRUE lesen, schreiben
bufferedDataSize bufferedDataSize = <Wert> lesen, schreiben

Canvas - 392

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Methoden:
Methode Aufgabe
Dirty Weist das Objekt an, sich neu darzustellen

Action-Handler-Typen:

Handler-Typ Parameter
DrawAction (sender as object, width, height as word)
Mausunterstitzung

Das Canvasobjekt unterstitzt die Behandlung von Mausereignissen. Eine
detaillierte Beschreibung der Arbeit mit der Maus finden Sie im Handbuch
"Spezielle Themen", Kapitel 17.

Es ist mdglich, innerhalb eines Maushandlers Grafiken oder Text auf den Bild-
schirm auszugeben. Dazu mussen Sie das Objekt explizit zum Screen machen.
Haufig werden Sie auBerdem die Maus grabben. Ein entsprechendes Beispiel
("Canvas Maus Demo") finden Sie im Ordner "BeispieNObjekte\Grafik".

Beachten Sie aber, dass das Canvas-Objekt die Grafik- und Textausgaben nicht
abspeichert! Sie werden nicht wieder gezeichnet, wenn das Objekt sich selbst neu
darstellt.

Der gepufferte Modus

Im gepufferten Modus speichert das Objekt die darzustellende Grafik zwischen.
Dadurch muss nicht jedes Mal der OnDraw-Handler gerufen werden, wenn sich
das Objekt neu auf dem Bildschirm darstellen muss. Um den gepufferten Modus
zu aktivieren verwenden Sie die Instancevariable buffered. Sie missen dem
Objekt auch mitteilen, wie groB die zu speichernde Datenmenge ungeféhr (!) ist.
Dazu verwenden Sie die die Instancevariable bufferedDataSize.

Es wird empfohlen, den gepufferten Modus zu verwenden.

Normaler Modus (buffered = FALSE):
Jedes Mal, wenn sich das Objekt auf dem Bildschirm neu darstellen muss,
wird der BASIC OnDraw Handler gerufen. Das ist der Standardmodus. Fur
viele, insbesondere einfache Anwendungen ist er ausreichend.

Gepufferter Modus (buffered = TRUE)
Wenn sich das Objekt auf dem Bildschirm neu darstellen muss, wird die
zwischengespeicherte Grafik dargestellt. Der BASIC OnDraw Handler wird
nicht gerufen.

Vorteile des gepufferten Modus
- deutlich schnellere Darstellung

Canvas - 393

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

- Darstellung auch dann, wenn das BASIC-Programm "beschéftigt" ist. Wenn
Ihr Programm eine hohe "Hintergrundaktivitat" hat, z.B. bei einem Spiel,
sollten Sie unbedingt den gepufferten Modus verwenden.

Nachteile des gepufferten Modus
- Die Grafik kann sich GréBenanderungen des Objekts nicht anpassen.
Verkleinert sich das Objekt wird méglicherweise "lUber den Rand" gezeichnet.

Einschalten des gepufferten Modus
Setzen Sie die Instancevariable buffered auf TRUE.
Das Objekt fordert Speicher zum Zwischenspeichern der Grafikbefehle an.
Dann wird der OnDraw Handler gerufen. Die Grafikausgaben gehen aber
nicht nur auf den Schirm, sondern werden parallel dazu vom Objekt
"mitgeschnitten".

Sie kénnen die Variablen buffered und bufferedDataSize auch schon im Ul-
Code setzen. Dann wird die gepufferte Grafik gleich beim Programmstart
aufgebaut.

Ausschalten des gepufferten Modus
Setzen Sie die Instancevariable buffered auf FALSE.
Das Objekt gibt den angeforderten Speicher frei. AnschlieBend wird der
OnDraw Handler gerufen um das Objekt neu darzustellen.

Verwenden des OnDraw Handlers

Der OnDraw-Handler tGbernimmt die Darstellung der vom Objekt angezeigten
Grafik. Das gilt sowohl fir den normalen als auch fir den gepufferten Modus, im
gepufferten Modus wird der OnDraw-Handler genau einmal gerufen.

Waéhrend der OnDraw Handler lauft, wird das Canvas Objekt zum Screen, das
heiBt, alle Grafikausgaben gehen Uber dieses Objekt direkt auf den Bildschirm. Sie
kénnen alle Grafikbefehle verwenden, Farben andern, Texte ausgeben usw.,
selbst Manipulationen des Koordinatensystems (siehe Kapitel 2.3.3) sind méglich.

Falls ein globaler Screen gesetzt ist (siehe Kapitel 2.3) wird dessen Status vorher
gesichert und anschlieBend wieder hergestellt, so dass es keine gegenseitige
Beeinflussung geben kann. Mit einer Ausnahme: Alle Einstellungen rund um den
Block-Grafik-Modus (siehe Handbuch "Spezielle Themen", Kapitel 2.5) sind immer
global. Andern Sie hier innerhalb eines OnDraw Handlers etwas (z.B. durch
Laden eines anderen Zeichensatzes) wirkt sich das auf alle anderen Teile des
Programms aus.

Beispiel Ul Code:

Canvas DemoCanvas
fixedsize = 300, 200
OnDraw = DemoDraw

END OBJECT

Canvas - 394

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Beispiel Handler:

DRAWACTION DemoDraw
Paper 203
CLS
graphic.linewidth = 5
Circle 150, 100,50, LIGHT BLUE
Print atxy 110,100;"Hallo"
END ACTION

Das Canvasobjekt fuhrt ein automatisches Clipping aus, d.h. die Grafikteile, die

uber den Rand des Objekts ragen, werden nicht gezeichnet.
Sie koénnen die aktuelle GroBe des Zeichenbereichs ermitteln, indem Sie die

Systemvariablen MaxX und MaxY abfragen. Da ist insbesondere dann hilfreich,
wenn das Objekt seine GréBe verandern kann, z.B. wenn die Hints ExpandWidth
und ExpandHeight gesetzt sind.

Beispiel Ul:

Canvas DemoCanvas
initialSize = 150, 150
OnDraw = DrawCircleHandler
ExpandWidth
ExpandHeight

END OBJECT

Beispiel Code. Es entsteht ein Viertelkreis.

DRAWACTION DrawCircleHandler
FillEllipse 0, 0, 2*MaxX, 2*MaxY, LIGHT BLUE

END ACTION

Canvas - 395

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Beschreibung der Instancevariablen

OnDraw

Die Instance-Variable OnDraw enthélt den Namen des Handlers, der die Grafik
zeichnen soll. Dieser muss als DrawAction vereinbart sein. Der Wert wird
ublicherweise im Ul-Code gesetzt.

Syntax Ul- Code: OnDraw = <Handler>
Schreiben: <obj>.0nDraw = <Handler>

Bei Bedarf kann der OnDraw-Handler auch zur Laufzeit (im BASIC-Code) gesetzt
werden. In diesem Fall stellt sich das Objekt automatisch neu dar.

Hinweis: Der neue OnDraw Handler wird erst ausgefihrt nachdem der Handler,
der die Zuweisung ausgefuhrt hat beendet ist!

defaultColor

Die Instance-Variable defaultColor enthédlt die Farben, die beim Aufruf des
OnDraw Handlers eingestellt werden. Dabei setzt R-BASIC die Farben
folgendermaBen:

Hintergrundfarbe: bg

Text-, Linien- und Flachenfarbe: fg
Das ist prinzipiell so, als wirde automatisch die Anweisung "COLOR fg, bg"
ausgefuhrt, kostet aber deutlich weniger Zeit.

Syntax Ul-Code: defaultColor = fg, bg
fg: Vordergrund (foreground)
bg: Hintergrund (background)
fg und bg mussen Indexfarben sein. RGB-Farben
sind nicht zulassig.
Lesen: <numVar> = <obj>.defaultColor (0) "fg
<numVar> = <obj>.defaultColor (1) "bg
Schreiben: <obj>.defaultColor = fg, bg

Canvas Objekte ohne die Anweisung defaultColor verwenden die Farben
"schwarz auf weiB3".

buffered

Die Instancevariable buffered legt fest, ob das Canvasobjekt die anzuzeigende
Grafik zwischenspeichert (buffered = TRUE, "gepufferter" Modus) oder nicht
(buffered = FALSE, normaler Modus). FALSE ist der Defaultwert.

Wenn Sie den gepufferten Modus aktivieren sollten Sie ebenfalls die Instance-
variable bufferedDataSize (siehe unten) im Blick haben.

Canvas - 396

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Syntax Ul- Code: buffered = TRUE
Schreiben: <obj>.buffered = TRUE | FALSE
Lesen: <numVar> = <obj>.buffered

Andern Sie den Wert der Instancevariablen buffered von FALSE auf TRUE oder
von TRUE auf FALSE, so ruft das Objekt seinen OnDraw-Handler und stellt sich
neu auf dem Bildschirm dar.

bufferedDataSize

Im gepufferten Modus fordert das Objekt Speicher (in einer Datei) an, um die
darzustellende Grafik zu speichern. BufferedDataSize enthélt die Information, wie
groB der bendtigte Speicher ungefahr (!) ist. Der Wert ist nicht kritisch. Wenn Sie
hier einen falschen Wert angeben, passiert im Allgemeinen nichts.

Syntax Ul- Code: bufferedDataSize = <Wert>
Schreiben: <obj>.bufferedDataSize = <Wert>
Lesen: <numVar> = <obj>.bufferedDataSize
<Wert>: numerische Konstante, siehe aus der Tabelle unten

Der Defaultwert fir bufferedDataSize ist DS_TINY. Das ist ein sinnvoller Wert,
wenn Sie nur Grafikbefehle verwenden und keine Bitmapgrafiken ausgeben. Die
folgende Tabelle enthalt die zulassigen Werte:

Konstante Wert Zu erwartende Datenmenge
DS_TINY 0 nicht mehr als 10 .. 20 kByte
DS_SMALL nicht mehr als 50 .. 100 kByte

1
DS_MEDIUM 2 nicht mehr als 500 kByte ... 1 MB
DS_LARGE 3 nicht mehr als 5 MByte
DS_HUGE 4 maoglicherweise mehr als 5 MByte

Beispiele, in welchen Situationen welche Datenmengen zu erwarten sind, finden
Sie im Programmierhandbuch, Kapitel 2.8.5, bei der Beschreibung des Befehls
StartRecordGS.

Dirty

Die Methode Dirty (engl: schmutzig) bewirkt, dass sich das Objekt neu darstellt,
indem es seinen OnDraw Handler ruft. Verwenden Sie diese Methode wenn sich
Daten, die zur Darstellung des Objekts relevant sind, gedndert haben. Wenn das
Objekt z.B. eine Pyramide darstellt und die H6he der Pyramide hat sich geandert,
dann mussen Sie die Dirty-Methode rufen, damit das Objekt die Pyramide mit der
neuen Héhe zeichnet.

Syntax im BASIC Code: <obj>.Dirty

Canvas - 397

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Die Dirty Methode arbeitet auch im gepufferten Modus. Das Objekt gibt die alte
gepufferte Grafik automatisch frei und speichert die neue ab.

Tipps und Tricks

+ Per Default ist im OnDraw-Handler der LAYOUT Modus eingestellt. Das
bedeutet, dass Textausgaben, die Uber den Rand des Ausgabefensters
hinausgehen, keine neue Zeile erdffnen und beliebige, auch negative Cursor-
Koordinaten erlaubt sind. Alternativ kénnen Sie im OnDraw-Handler den PAGE
Modus aktivieren, bei dem die Textausgabe auf das aktuelle Textfenster
begrenzt wird.

PAGE und LAYOUT Modus werden durch Ausgeben eines speziellen
Steuerzeichens mit dem Print-Befehl aktiviert:
PAGE Modus Print "\17" oder Print Chr$(17)
LAYOUT Modus Print "\19" oder Print Chr$(19)
In der KeyCodes Library sind entsprechende Konstanten definiert.
Achtung! Der SCROLL-Modus (Print "\18") wird von Canvasobjekten nicht
unterstutzt und kann zu seltsamen Ergebnissen flhren.

+ Canvasobjekte unterstltzen die Zwischenablage nur im gepufferten Modus. Die
Methoden ClpTestCopy und ClpTestPaste fragen daher als erstes ab, ob der
gepufferte Modus aktiv ist. ClpCopy funktioniert im gepufferten Modus immer,
ClpPaste akzeptiert Bitmaps und GStrings in der Zwischenablage.

Beachten Sie, dass das Objekt seine GréBe nach einer "Paste" Operation nicht
an die neue Grafik anpasst. Unter Umsténden wird die eingefligte Grafik uber
den Rand des Objekts hinaus gezeichnet.

Im normalen Modus wird keine Clipboardarbeit unterstiitzt. ClpCopy und
ClpPaste setzen die globale Variable clipboardError auf TRUE.

+ Vermeiden Sie die Verwendung des Befehls CLS im OnDraw-Handler. CLS
ignoriert eventuelle Koordinatentransformationen und zeichnet ein Rechteck in
der aktuellen Hintergrundfarbe. Diese Farbe ist meist nicht identisch mit der
"Hintergrundfarbe" inres GEOS-Systems. Im gepufferten Modus werden zudem
vorher gezeichnete Objekte nicht entfernt, sondern nur tGberdeckt.

+ Ein Canvas-Objekt kann mit der Anweisung PrintObj gedruckt (also auf einen
Drucker ausgegeben) werden. Diese Anweisung ist im Objekthandbuch, Kapitel
4.14.7 (Drucken spezieller Objekte) beschrieben. Das Canvas-Objekt muss
dazu im gepufferten Modus arbeiten.

Canvas - 398

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

(Leerseite)

Canvas - 399

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

4.17 Image
4.17.1 Uberblick

Ein Imageobjekt dient dazu, eine Grafik anzuzeigen, die als fertiges Bild in einer
Datei oder in der PictureList vorliegt. Der Programmierer muss nichts weiter tun
als die anzuzeigende Grafik zu spezifizieren. Um den Rest kimmert sich das
Imageobjekt. Sie kdbnnen dem Objekt auch jederzeit eine andere Grafik zuweisen,
es gibt keinen speziellen Befehl um den von der aktuellen Grafik eventuell
belegten Speicher freizugeben. Darum kiimmert sich das Objekt automatisch.

Das Imageobjekt kann auch Animationen ohne weiteres Zutun des
Programmierers abspielen. Dabei koénnen Sie festlegen, ob die Animation
automatisch oder erst durch einen Programmbefehl gestartet werden soll.

Unterstltzte Grafik-Formate:
+ Bitmap Dateien: JPG, BMP, ICO, PCX, GIF, TGA, RLE, DIB, SCR (BreadBox
SplashScreen)
« Animationen: GIF, FLC, FLI, BreadBox QuickCam Format
+ Resource-Maker Dateien (Bitmaps und GStrings)
+ Sonstige: GEOS Hintergrund-Dateien

Abstammung:
GenericClass > Image

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
ImageFile ImageFile = stdPath, "file" nur schreiben
ImagePicture ImagePicture = "name" nur schreiben
ImageResource ImageResource = stdPath, "file", "name"

nur schreiben
numPicts — nur lesen
pictNum pictNum =n lesen, schreiben
imglnfo — nur lesen
imgState — nur lesen
scale scale = scaleX, scaleY lesen, schreiben
drawPos drawPos = x0, y0 lesen, schreiben
borderColor borderColor = ul, br lesen, schreiben
bgColor bgColor = col, drawMask lesen, schreiben
autoSize autoSize = TRUE | FALSE lesen, schreiben
autoStart autoStart = TRUE | FALSE lesen, schreiben
currentFrame — lesen, schreiben
numFrames — nur lesen
animationTics — lesen, schreiben

Image -400

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Methoden:
Methode Aufgabe
Redraw Weist das Objekt an, sich neu darzustellen
AnimationStart Startet die Animation
AnimationStop Stoppt die Animation
AnimationNext Ruft den nachsten Frame der Animation auf

Das Imageobijekt erbt alle Eigenschaften und Fahigkeiten der GenericClass. Von
besonderer Bedeutung sind dabei die Fahigkeiten zum Geometriemanagement
(siehe Kapitel 3.3). Insbesondere die Hints fixedSize, initialSize, ExpandWidth
und/oder ExpandHeight werden haufig genutzt, da das Image Objekt "von sich
aus" keine vorgegebene GroéBe hat und sonst méglicherweise unsichtbar klein ist.
Beachten Sie in diesem Zusammenhang auch die Instancevariable "autoSize".

Mausunterstiitzung

Das Imageobjekt unterstitzt die Behandlung von Mausereignissen. Eine
detaillierte Beschreibung der Arbeit mit der Maus finden Sie im Handbuch
"Spezielle Themen", Kapitel 17.

Es ist mdglich, innerhalb eines Maushandlers Grafiken oder Text auf den Bild-
schirm auszugeben. Dazu mussen Sie das Objekt explizit zum Screen machen.
Haufig werden Sie auBerdem die Maus grabben. Ein auf das Imageobjekt
Ubertragbares Beispiel finden Sie hier: "Beispie\Objekte\Grafik\Canvas Maus
Demo". Beachten Sie aber, dass das Imageobjekt die Grafik- und Textausgaben
nicht abspeichert! Sie werden nicht wieder gezeichnet, wenn das Objekt sich
selbst neu darstellt.

Clipboard

Das Imageobjekt kann die aktuell dargestellte Grafik mit der Methode ClpCopy in
die Zwischenablage kopieren. Diese Methode ist fur alle Objektklassen definiert.
Lesen aus der Zwischenablage wird nicht unterstutzt.

Um herauszufinden, ob das Objekt eine Grafik darstellt, die ins Clipboard kopiert
werden kann, kénnen Sie die Methode ClpTestCopy verwenden. Diese Methode
liefert TRUE wenn keine Grafik spezifiziert wurde, wenn die Grafikdatei nicht
gelesen werden konnte oder in jedem anderen Fehlerfall.

Kopieren oder Drucken der Grafik

Um die aktuell dargestellte Grafik auf einen Drucker auszugeben verwenden Sie
bitte die Routine PrintObj, die im Kapitel 4.14.7 (Drucken Spezieller Objekte) im
Objekthandbuch beschrieben ist. Diese Routine kénnen Sie auch verwenden, um
die aktuell angezeigte Grafik auf das aktuelle Screenobjekt zu "drucken". Der
Screen kann dabei eine Bitmap, ein GString oder was auch immer sein. Alternativ
kénnen Sie die Grafik zunachst ins Clipboard kopieren und vorn dort z.B. mit den
Befehlen ClipboardGetGS oder ClipboardGetBitmap holen.

Image - 401

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

4.17.2 Anzeige von Bildern

Grafiken fur das Image-Objekt kdnnen aus drei Quellen stammen: aus externen
Bilddateien (Instancevariable ImageFile), aus der PictureList (Instancevariable
ImagePicture) oder aus einer Resource-Datei (Instancevariable
ImageResource). AuBerdem haben Sie die Mdglichkeit, Informationen Uber die
angezeigte Grafik oder die Grafikdatei zu erhalten (Instancevariablen nhumPicts,
pictNum, imginfo und imgState).

Die Instancevariable ImageFile kann auch eine Animation spezifizieren. Die
Details dazu werden im néachsten Abschnitt besprochen.

Die Methode Redraw ermdglicht ein Neuzeichnen der angezeigten Grafik.

ImageFile

ImageFile enthalt den kompletten Pfad zur anzuzeigenden Datei. Wenn das
Programm startet 6ffnet das Imageobjekt die Datei, 1&adt (kopiert) die Grafik und
schlieBt die Datei wieder. Um zu prifen, ob das Objekt ein Bild geladen hat
kdnnen Sie die Instancevariable "numPicts" abfragen.

Wenn ImageFile eine Animation spezifiziert kann die Animation automatisch
gestartet werden (siehe unten, Instancevariable "autoStart"). Wahrend die
Animation lauft bleibt die Datei die ganze Zeit offen.

Syntax Ul- Code: imageFile = stdPath, "file"
Schreiben: <obj>.imageFile = stdPath, "file"
Lesen: —
stdPath: Standardpfad-Konstante oder Null, siehe Tabelle.
"file" Name der anzuzeigenden Datei. Pfadangaben sind

zuléssig. Siehe Tabelle.

Wird der Wert zur Laufzeit zugewiesen stellt sich das Objekt sofort neu dar.
AuBerdem wird die globale Variable fileError gesetzt.

Zulassige Kombinationen fur stdPath und "file"

stdPath "file" Anmerkung
Standardpfad relativer Pfad zu einer Datei
Konstante z.B. SP_USER_DATA, "Bild.PCX"
SP_DOCUMENT, "Bilder\\Bild.BMP"
Null Absoluter Pfad zu einer Datei
z.B. 0, "D:\Bilder\\Tools\\Circle.ICO"
Null relativer Pfad zu einer Datei Nicht im Ul Code
d.h. relativ zum aktuellen Verzeichnis zulassig

z.B. 0, "Baum.BMP"
0, "Pflanzen\\Baum.BMP"

Image -402

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Beispiele
Image DemoImage

imageFile = SP_DOCUMENT, "IMAGES\\SUNSET.JPG"
End Object

Image DemoImage
imageFile = SP USER DATA, "BACKGRND\\Froggy Bumps"
End Object

DemoImage.imageFile = 0, "D:\\Bilder\\TEST3.RLE"

ImagePicture

ImagePicture enthalt den Namen einer Grafik aus der PictureList. Die Grafik kann
eine Bitmap oder ein GString sein.

Die Verwendung der PictureList wird im Programmierhandbuch, Kapitel 2.8.6.2
(Verwendung der "PictureList") beschrieben.

Syntax Ul- Code: imagePicture = "name"
Schreiben: <obj>.imagePicture = "name"
Lesen: —

"name" Name der Grafik in der PictureList

Wird der Wert zur Laufzeit zugewiesen stellt sich das Objekt sofort neu dar. Um zu
prufen, ob das Objekt das Bild in der PictureList gefunden hat kénnen Sie die
Instancevariable "numPicts" abfragen.

Beispiele

Image DemoImage
imagePicture = "Segler"

End Object

DemoImage.imagePicture = "Diagram"

ImageResource

ImageResource ermdglicht dem Imageobjekt Grafiken (Bitmaps und GStrings) aus
einer Resource-Maker Datei ohne weitere Unterstitzung des Programmierers
anzuzeigen. Der Resource-Maker ist © by Rabe-Soft und kann von der Website
des Programmierers (www.rbettsteller.de) heruntergeladen werden.

Image -403

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Wenn das Programm startet 6ffnet das Imageobjekt die Datei, I&dt (kopiert) die
Grafik und schlieBt die Datei wieder. Um zu prifen, ob das Objekt ein Bild geladen
hat kbnnen Sie die Instancevariable "numPicts" abfragen.

Syntax Ul- Code: imageResource = stdPath, "file", "name"
Schreiben: <obj>.imageResource = stdPath, "file", "name"
Lesen: —
stdPath: Standardpfad-Konstante oder Null, siehe ImageFile.
"file" Name der Resource-Datei. Pfadangaben sind zulassig.

Siehe ImagefFile.
"name" Name des Grafik-Eintrags in der Resource-Datei.

Wird der Wert zur Laufzeit zugewiesen stellt sich das Objekt sofort neu dar.
AuBerdem wird die globale Variable fileError gesetzt.

Achtung! Falls die spezifizierte Datei keine gultige Resource-Datei ist crasht das
System! Sie k6nnen im Zweifelsfall das Token abfragen.

Beispiele

Image DemoImage
imageResource = SP_DOCUMENT, "IMAGES\\Test Resource", "Erde"

End Object

Image DemoImage
imageResource = SP_USER_DATA, \
"R-BASIC\\BIN\\Rainer\\SuperGame\\Super ImgResorce",\
"SiegerAnimation"
End Object

DemoImage.imageResource = 0, "D:\\TestResource", "Grafikl"

numPicts

Die Instancevariable numPicts enthalt die Anzahl der Bilder in der Bilddatei.
Kommt das Bild aus einer Resource oder aus der PictureList enthalt numPicts den
Wert 1. Im Fehlerfall oder wenn noch kein Bild zugewiesen wurde enthalt
numPicts den Wert Null. Sie kbnnen numPicts verwenden, um zu prifen ob das
Objekt ein Bild anzeigt oder nicht. AuBerdem kénnen Sie die globale Variable
fileError abfragen. Verwenden Sie die Routine ErrorText$() um den Fehlercode in
fileError in einen verstandlichen Text zu Ubersetzen.

Syntax Ul- Code: —

Schreiben: —
Lesen: <numVar> = <obj>.numPicts

Image -404

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

pictNum

Die Instancevariable pictNum enthalt die Nummer des gerade angezeigten Bildes
fir den Fall, dass die Datei mehr als ein Bild enthalt. Das kann z.B. bei ICO
Dateien zutreffen. Das erste Bild hat die Nummer Null. Es gilt also immer
pictNum < numPicts. Fur Bilder aus einer Resource oder aus der PicturelList ist der
Wert immer Null. Weisen Sie der Instancevariablen einen ungultigen Wert zu, so
wird sie automatisch auf Null gesetzt.

Syntax Ul- Code: pictNum = num
Schreiben: <obj>.pictNum = num
Lesen: <numVar> = <obj>.pictNum
Imglnfo

Die Instancevariable imginfo liefert eine Struktur des Typs Graphiclnfo. Diese
enthélt detaillierte Informationen Uber das aktuell vom Objekt angezeigte Bild. Die
Struktur GraphiclInfo ist im Anhang C beschrieben.

Syntax Lesen: <var> = <obj>.imginfo
var: Variable vom Typ Graphiclnfo

Die Struktur Graphiclnfo ist wie folgt definiert:

STRUCT GraphicInfo
sizeX as WORD
sizeY as WORD
bitsPerPixel as WORD
numImages as WORD
End STRUCT

Hinweis:

Die von der Instancevariablen imginfo gelieferten Daten kbnnen sich von denen,

die von der Routine Getlmagelnfo geliefert werden (siehe Programmierhandbuch,

Kapitel 2.8.6.3 Externe Bilddateien), unterscheiden. Das kann mehrere Grinde

haben:

« Bei Dateien, die mehrere Bilder enthalten kénnen (z.B. ICO oder GIF Dateien)
liefert Getlmagelnfo immer die Informationen fir das erste Bild, imglnfo jedoch
die Informationen fir das vom Image-Objekt gerade angezeigte Bild. Dadurch
kénnen sich sowohl die Farbtiefe (Graphicinfo Feld bitsPerPixel) als auch die
BildgréBe (Graphiclnfo Felder sizeX und sizeY) unterschieden.

+ Bilder die mit 4 Bit per Pixel oder mit 32 Bit per Pixel kodiert sind werden vom
Image-Objekt mit 8 bzw. 24 Bit per Pixel dargestellt. Die Instancevariable
imglnfo liefert deswegen niemals eine Farbtiefe von 4 oder 32 Bit, die Routine
Getlmagelnfo hingegen schon.

Image -405

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

ImgState

Die Instancevariable imgState enthalt die Information, welche Art von Bild das
Objekt gerade darstellt. Der Wert kann nur gelesen werden.

Syntax Lesen: <numVar> = <obj>.imgState

ImgState liefert einen der folgenden Werte zurick:

Konstante Wert | Bedeutung
IMGS_NO_IMAGE 0 Kein Bild oder Fehler
IMGS_BITMAP 1 Standbild, Bitmap
IMGS_GSTRING 2 Standbild, GString
IMGS_ANIMATION_RUNNING 3 Laufende Animation
IMGS_ANIMATION_PAUSE 4 Pausierte Animation

Redraw

Die Methode Redraw bewirkt, dass sich das Objekt neu auf dem Bildschirm
darstellt. Der Aufruf der Methode ist nur selten notwendig. Ein Beispiel wéare, wenn
Sie in einem Maushandler etwas auf den Screen gezeichnet haben und das

einfach wieder l6schen wollen.

Syntax: <obj>.Redraw [drawBackground]
drawBackground: TRUE | FALSE (Default: FALSE)

Beispiel:

DemoImage.Redraw
DemoImage.Redraw TRUE

DrawBackground = TRUE bewirkt, dass das Objekt seinen Hintergrund ebenfalls
neu zeichnet. Das kann erforderlich sein, wenn die Grafik transparente Anteile
enthalt oder Sie die Instancevariablen drawPos, borderColor und / oder bgColor
verwendet haben.

Image - 406

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

4.17.3 Spezielle Attribute

Neben dem "einfachen" Darstellen von Bildern und Animationen kénnen Sie die
Eigenschaften des Imageobjekts in gewissen Grenzen einstellen. Insbesondere
kénnen Sie festlegen, dass die Grafik vergréBert oder verkleinert dargestellt wird
(Instancevariable scale), an eine andere Position als die linke obere Ecke
gezeichnet wird (Instancevariable drawPos), Sie kénnen einen Rahmen um die
Grafik zeichnen (Instancevariable borderColor) und einen farbigen Hintergrund
festlegen (Instancevariable bgColor). AuBerdem kénnen Sie festlegen, dass das
Objekt seine GréBe an die GroBe der dargestellien Grafik anpassen soll
(Instancevariable autoSize).

Scale

Scale enthélt einen Faktor, um den die Grafik bei der Darstellung gestreckt oder
gestaucht wird. In den meisten Fallen brauchen Sie keinen Skalierungsfaktor zu
setzen, weil der Defaultwert in x- und in y-Richtung 1 ist.

Syntax Ul- Code: scale = scaleX, scaleY
Schreiben: <obj>.scale = scaleX, scaleY
Lesen: <numVar> = <obj>.scale(n)

n= 0: x-Skalierungsfaktor lesen
n=1: y-Skalierungsfaktor lesen
scaleX: Skalierungsfaktor in x-Richtung
scaleY: Skalierungsfaktor in y-Richtung

Beispiel: Grafik in doppelter GroBe darstellen:

Image DemoImage
imageFile = SP_DOCUMENT, "IMAGES\\SUNSET.JPG"
scale = 2, 2

End Object

DrawPos

Die Instancevariable drawPos enthélt die Koordinaten, auf die die linke obere
Ecke der Grafik gezeichnet werden soll. Der Defaultwert ist (0; 0). Negative
Koordinaten sind zulassig.

Syntax Ul- Code: drawPos = x0, y0
Schreiben: <obj>.drawPos = x0, y0
Lesen: <numVar> = <obj>.drawPos(n)
n= 0: x-Position lesen
n=1: y-Position lesen
x0, y0 Koordinaten

Image - 407

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

borderColor

Die Instancevariable borderColor enthélt Farbwerte um einen diinnen Rahmen um
das Objekt zu zeichnen. Die Defaultwerte sind jeweils —1, das heiBt per Default
wird kein Rahmen gezeichnet.

Der Rahmen wird immer um das ganze Objekt gezeichnet, auch wenn die Grafik
kleiner als Objekt ist und/oder nicht auf die Position (0; 0) gezeichnet wird.

Syntax Ul- Code: borderColor = [tCol, rbCol
Schreiben: <obj>.borderColor = ItCol, rbCol
Lesen: <numVar> = <obj>.borderColor(n)
n=0: ItCol lesen
n=1: brCol lesen
[tCol: Farbwert fiir die Linien links und oben (left, top)
-1: Links und oben keinen Rahmen zeichnen (Default)
rbCol: Farbwert fir die Linien rechts und unten (right, bottom)
-1: Rechts und unten keinen Rahmen zeichnen (Default)
Far ItCol und rbCol sind nur Indexfarben zulassig.

bgColor

Mit der Instancevariablen bgColor kann man eine Hintergrundfarbe fir die Grafik
festlegen. Das kann sinnvoll sein, wenn die Grafik transparente Anteile enthalt.
Der Defaultwert fur den Parameter col ist —1, das hei3t es wird die vom System
vorgegeben Hintergrundfarbe ohne Fullmuster verwendet.

Syntax Ul- Code: bgColor = col, pattern
Schreiben: <obj>.bgColor = col, pattern
Lesen: <numVar> = <obj>.bgColor(n)
n=0: Farbe col lesen
n=1: Fallmuster pattern lesen
col: Farbwert fur den Hintergrund (nur Indexfarben erlaubt)
-1: Systemhintergrund verwenden (Default)
pattern: Flllmuster (erlaubte Werte: siehe Tabelle unten)

BgColor ist fur alle GenericClass Objekte definiert und erwartet einen Farbwert fir
das unselektierte und einen fir das selektiert Objekt. Da dies bei Image-Objekten
nicht sinnvoll ist wird der zweite Parameter als Flllmuster-Wert interpretiert. Wenn
Sie kein Muster, sondern eine vollstandig geflllite Flache wunschen, missen Sie
die Konstante DM_100 (Wert: 25) als zweiten Parameter verwenden.

Fallmuster werden im Programmierhandbuch, Kapitel 2.8.4 (Die Systemvariable
"graphic": Mixmodes und mehr) beschrieben. Im Anhang C finden Sie
verschiedene Beispiele fur die von GEOS bereitgestellten Fullmuster.

Image -408

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Tabelle: Erlaubte Werte fur Fullmuster

Wert Konstante Bedeutung
0-24 - Von GEOS bereitgestellte Muster.
25 DM_100 "Normalzustand", 100% Deckung.
26-88 | — Unterschiedliche "Transparenzgrade". GroBere
Werte entsprechen hdherer Transparenz.
89 DM_O Null % Deckung, vollstandig transparent.
128 DM_INVERSE Wird zu einem der anderen Werte addiert. Das
Muster wird invertiert.

Beispiele:
Die folgenden Bilder setzen folgende Objektdeklaration voraus:
Image DemoImage

imageFile = 0, "D:\\Bilder\\TEST3.RLE"
fixedSize 80, 80

End OBJECT
1 . e ™ "
2 1 !
IH-'"' H e e
= !l ;- Al l-
3 ==l i1

Von links nach rechts wurden folgende Zeilen hinzugeflgt:
+ keine (Standardansicht, Grafik auf Position (0; 0))
+ drawPos =8, 8
borderColor= WHITE, BLACK
+ drawPos =8, 8
borderColor= WHITE, BLACK
bgColor = LIGHT_BLUE, DM_100

Die Umrandung und der Hintergrund (Instancevariablen borderColor und bgColor)
werden auch dann gezeichnet, wenn dem Objekt keine Grafik zugewiesen ist
(oder wenn die Grafik ungultig ist). Das Behandeln von Mausereignissen ist in
allen diesen Féllen trotzdem mdglich. Das kann man benutzen um sehr einfach
eine farbige Flache zu erzeugen. Bitte beachten Sie das Fullmuster im dritten
Beispiel.

Von links nach rechts wurden folgende Zeilen hinzugeflgt:
+ keine (Standarddarstellung im Fehlerfall)
» borderColor= WHITE, BLACK
bgColor = LIGHT_GREEN, DM_100
+ borderColor= WHITE, BLACK
bgColor = BLACK, 8 ’ Versuchen Sie auch bgColor = RED, 8 + 128

Image -409

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

autoSize

Die Instancevariable autoSize bestimmt, ob das Objekt seine GréBe an die
dargestellte Grafik anpassen soll. Der Defaultwert ist FALSE (GréBe nicht
automatisch berechnen).
Hat autoSize den Wert TRUE so berechnet das Objekt seine GréBe automatisch
neu, wenn das Programm startet oder wenn es eine neue Grafik darstellen soll.
Intern setzt das Objekt den Hint "fixedSize" um seine GréBe festzulegen. Dabei
kommen folgende Formeln zur Anwendung:

Breite = breite_der_grafik + 2 * drawPos_x

Hohe = hohe_der_grafik + 2 * drawPos_y
Durch dieses Vorgehen wird ein "Rahmen" um die eigentliche Grafik erzeugt,
wenn Sie die Instancevariable "drawPos" verwenden.

Syntax Ul- Code: autoSize = TRUE
Der Defaultwert ist FALSE.
Schreiben: <obj>.autoSize = TRUE | FALSE
Lesen: <numVar> = <obj>.autoSize

Sie kénnen die GréBe des Imageobjekts bei der automatischen Berechnung
begrenzen, indem Sie die Hints "minimumSize" und "maximumSize" verwenden.
Der Berechnungsalgorithmus pruft, ob einer oder beide dieser Hints gesetzt sind
und schrankt die Werte fir Breite und Hb6he des Objekts so ein, dass die
minimalen und maximalen Werte nicht tberschritten werden. Diese Werte werden
dann an den Hint "fixedSize" Ubergeben.

Wichtige Hinweise:

+ Bei der Berechnung der GréBe wird der Skalierungsfaktor (Instancevariable
"scale") nicht berlcksichtigt.

+ Wahlen Sie aus einer Datei mit mehreren Bildern (z.B. einer ICO Datei) ein
neues Bild aus, so berechnet das Imageobjekt seine GréBe jedes Mal neu.

+ Wenn Sie "autoSize" zu Laufzeit auf TRUE setzen berechnet das Objekt seine
GréBe umgehend neu und stellt sich neu dar. Das gilt auch, wenn sie bereits
TRUE ist.

+ Eine Neubelegung der Instancevariable "drawPos" bewirkt keine Neube-
rechnung der GréBe des Objekts.

Image -410

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

4.17.4 Animationen

Das Image-Objekt kann Animationen automatisch ohne weiteres Zutun des
Programmierers abspielen. Die Berechnung und Darstellung der Bilder erfolgt
dabei im Hintergrund, so dass Ihr BASIC Programm ganz normal weiterarbeiten
kann.

Um eine Animation mit einem Image-Objekt darzustellen missen Sie dem Objekt
nur eine Datei zuweisen, die eine Animation enthalt (Instancevariable ImageFile).
Mit den Methoden AnimationStart, AnimationStop und AnimationNext haben
Sie volle Kontrolle tber das Abspielen der Animation. Mit der Instancevariablen
autoStart konnen Sie festlegen, dass die Animation automatisch startet.
Informationen Uber den aktuellen Status der Animation bekommen Sie mit den
Instancevariablen currentFrame, numFrames, animationTics (kann auch
gesetzt werden um die Geschwindigkeit zu &ndern) sowie den weiter oben
beschriebenen Instancevariablen imgilnfo und imgState.

AnimationStart

Die Methode AnimationStart startet eine Animation. Sie kbénnen AnimationStart
auch zum Fortsetzen einer mit AnimationStop angehaltenen Animation
verwenden. Wenn Sie im Ul Code die Instancevariable autoStart auf TRUE
gesetzt haben startet die Animation beim Laden des Programms automatisch,
ohne den Aufruf von AnimationStart.

Syntax: <obj>.AnimationStart

AnimationStop

Die Methode AnimationStop hélt eine laufende Animation an. Falls Sie eine
Animation in einer Dialogbox haben sollten Sie nach dem SchlieBen der Dialogbox
AnimationStop rufen, damit die Animation nicht unnétig im Hintergrund weiterlauft.

Syntax: <obj>.AnimationStop

AnimationNext

Die Methode AnimationNext wahlt das n&chste Bild einer angehaltenen Animation
an. AnimationNext ist wirkungslos bei einer laufenden Animation.

Syntax: <obj>.AnimationNext

Image -411

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Beispiel. Die im Objekt Demolmage laufende Animation wird fir 3 Sekunden
gestoppt, dann wird das nachste Bild angezeigt und nach weiteren 3 Sekunden wir
die Animation mit normaler Geschwindigkeit fortgesetzt.

DemoImage.AnimationStop
Pause 30
DemoImage.AnimationNext

Pause 30
DemoImage.AnimationStart

autoStart

Die Instancevariable autoStart bestimmt, ob ein vom Imageobjekt angezeigte
Animation beim Starten des Programms oder bei der Zuweisung einer neuen
Datei automatisch abgespielt werden soll oder nicht. Der Defaultwert ist FALSE
(Animation nicht automatisch starten). Beachten Sie, dass eine gestartete
Animation "im Hintergrund" weiterlauft auch wenn das Imageobjekt gerade nicht
sichtbar ist. Setzen Sie "autoStart" nur dann auf TRUE, wenn es wirklich
notwendig ist.

Wenn Sie "autoStart" zu Laufzeit auf TRUE setzen wird die Animation sofort
gestartet.

Syntax Ul- Code: autoStart = TRUE
Der Defaultwert ist FALSE.
Schreiben: <obj>.autoStart = TRUE | FALSE
Lesen: <numVar> = <obj>.autoStart

currentFrame

Die Instancevariable currentFrame enthalt die Nummer des aktuell angezeigten
Bildes der Animation. Die Zahlung beginnt bei Null. Der Wert kann jederzeit
gelesen werden. Ein Setzen zur Laufzeit ist nur mdglich, wenn die Animation
gerade nicht lauft. Im Ul-Code kann der Wert nicht gesetzt werden.

Syntax Ul- Code: —
Schreiben: <obj>.currentFrame = wert
Lesen: <numVar> = <obj>.currentFrame

Hinweis: Das Aufrufen eines speziellen Frames kann manchmal etwas dauern,
weil das Aussehen eines Bildes vom Aussehen der vorhergehenden Bilder
abhéngen kann. Deshalb muss das Image Objekt mdglicherweise einen groBen
Teil der Animation erneut dekodieren um den gewlinschten Frame anzuzeigen.

Image -412

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

numFrames

Die Instancevariable numFrames enthalt die Anzahl der Bilder in einer Animation.
Im Fehlerfall enthdlt numFrames den Wert Null. AuBerdem kénnen Sie im
Fehlerfall die globale Variable fileError abfragen, um das Problem einzugrenzen.
Verwenden Sie die Routine ErrorText$() um den Fehlercode in fileError in einen
verstandlichen Text zu Ubersetzen.

Syntax Ul- Code: —
Schreiben: —
Lesen: <numVar> = <obj>.numFrames

animationTics

Die Instancevariable animationTics enthélt die Zeit zwischen zwei benachbarten
Frames einer Animation, gemessen in tics (1 tic = 1/60 s). Je kleiner der Wert ist,
desto schneller lauft die Animation. Der Wert kann zur Laufzeit gelesen und
geschrieben, aber nicht im Ul Code gesetzt werden.

Wird der Wert bei laufender Animation gesetzt so andert das Imageobjekt die
Abspielgeschwindigkeit sofort.

Syntax Ul- Code: —
Schreiben: <obj>.animationTics = <Wert>
Lesen: <numVar> = <obj>.animationTics

Image -413

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

4.18 Display und zugehoérige Objekte
4.18.1 Uberblick

Jede groBe Applikation (z.B. Write, R-BASIC) zeigt ihre Dokumente in eigenen
Fenstern an. Diese Fenster gehéren der Objektklasse Display an. Displayobjekte
enthalten &hnlich wie Dialoge weitere Ul-Objekte, z.B. Views, Memos, Buttons
oder Listen. Der Bereich, in dem die Displays dargestellt werden, ist ein Objekt der
Klasse DisplayGroup. Die DisplayGroup managet die Displays, organisiert z.B.
dass sie Uberlappend dargestellt werden oder sich den Platz aufteilen. Dabei hat
die DisplayGroup selbst keine Ul, mit der der Nutzer interagieren kann. Das
dbernimmt ein Objekt der Klasse DisplayControl, das sich Ublicher Weise im
"Fenster" Menu befindet. Der Vorteil von dieser Trennung ist, dass man mehrere
DisplayGroups haben kann, die alle Gber das Fenster-Menu gesteuert werden.

T _l

= Mandelbrot Fraktal
‘Datei Actions "Eenstei]
="

4 Uberlappend Strg F5

« Bildschirmfuallend Strg F10
Aufteilen Umsch F4 p—
.~ Das Apfelmannchen
4 Die Juliamenge

— Die Juliamenge D |

Eine typische Konfiguration: Eine DisplayGroup mit zwei Displays. Das
DisplayControl befindet sich im "Fenster" Men.

Displays, DisplayGroup und DisplayControl arbeiten im Hintergrund eng
zusammen. Im Kern ist es so, dass die DisplayGroup weiB3, welche Displays
(Fenster) es gibt, da sie die Children der DisplayGroup sind. Sie sendet eine
Message an das DisplayControl, das daraufhin eine Liste der vorhandenen
Fenster aufbaut. Wéahlt der Nutzer aus dieser Liste ein Display aus so sendet das
DisplayControl eine Message an die DisplayGroup. Diese wiederum wahlt das
geforderte Display aus. Genauso verhélt es sich, wenn der Nutzer den Eintrag
"Uberlappend”, "Bildschirmfiillend" oder "Aufteilen" auswéhlt. Die DisplayGroup
bekommt den Befehl vom DisplayControl und organisiert die Anzeige
entsprechend. Im Gegenzug bekommt das DisplayControl eine Message, wenn
der Nutzer z.B. auf ein bestimmtes Display klickt und es so zum aktiven Fenster
macht. All das passiert ohne weiteres Zutun des Programmierers.

Display, DisplayGroup und DisplayControl - 414

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Application

Y

Primary

4 N

DisplayGroup

PLEEE'TAN

Display 1 Display 2 | | Display 3

Fenster Menu

M,
eSSaQe
S

DisplayControl

Prinzipielle Organisation von Display, DisplayGroup und DisplayControl

Das System organisiert diese Zusammenarbeit intern Uber die Target-Hierarchie.
Das stellt auch sicher, dass die Zusammenarbeit mit mehreren DisplayGroups
funktioniert. Hintergrundinformationen zur Target-Hierarchie finden Sie im
Handbuch Spezielle Themen, Vol. 2, Kapitel 12. Fur die Verwendung von Display,
DisplayGroup und DisplayControl mussen Sie in diesem Zusammenhang
folgendes wissen:

+ Sie mussen der DisplayGroup (falls Sie mehrere haben: genau einer) den Hint
defaultTarget geben. Andernfalls weiB3 das DisplayControl nicht, mit wem es
zusammenarbeiten soll und baut die Fenster-Liste nicht automatisch auf.

+ Falls Sie verhindern wollen, dass eine DisplayGroup auf die Messages des

DisplayControl reagiert, so mussen Sie ihre Instancevariable targetable auf
FALSE setzen.

4.18.2 Display

=T 2| Objekte der Klasse Display sind die "Fenster" in

Hat der alte Hexenmeister denen alle groBen Applikationen ihre Daten
sich doeh einmal anzeigen. Displays miissen Children eines
wegbegeben. Und nun sollen

selns Gelsiar ouch nach DisplayGroup Objekts sein. Die Displays selbst
meinem MWillen leben!| enthalten weitere Ul-Objekte, die die eigentlichen

Informationen darstellen. Im Bild links ist das ein
Memo-Objekt.

Abstammung:
GenericClass =9 Display

Das Displayobjekt erbt alle Eigenschaften und Fahigkeiten der GenericClass. Von
besonderer Bedeutung sind dabei die Fahigkeiten zum Geometriemanagement,
insbesondere die Window-bezogenen Hints (Kapitel 3.3.7: Spezielle Hints flr
Window-Objekte) sind hier von Bedeutung. Beachten Sie, dass insbesondere die
GroBe eines Displayobjekts im Zusammenspiel mit der DisplayGroup geandert

Display, DisplayGroup und DisplayControl - 415

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

werden kann. Es ist deshalb leicht moglich, dass Sie widersprichliche Hints
setzen. So verhindert z.B. der Hint "NotMaximizable", dass sich das Display
bildschirmflllend darstellt.

Displays konnen in drei Modi dargestellt werden:

+ Bildschirmflllend (maximiert): Das Displayobjekt nimmt den gesamten verflg-
baren Platz in der DisplayGroup ein. Wenn ein Displayobjekt bildschirmfiillend
dargestellt wird so sind auch alle anderen Displays bildschirmfillend.

- Uberlappend: Jedes Displayobjekt hat seine eigene GréBe. Der Nutzer kann die
GroBe andern, Displayobjekte kdnnen sich gegenseitig Uberlappen. Der
Zustand "aufgeteilt" ist ein Spezialfall von "Uberlappend", bei dem GréBe und
Anordnung der Displays automatisch so gewéhlt wird, dass sie alle moglichst
gut zu sehen sind.

+ Minimiert: Das Displayobjekt ist nicht mehr sichtbar, aber noch in der Liste des
DisplayControl Objekts verfugbar. Von dort aus kann es wieder sichtbar
gemacht werden.

Der Zustand "minimiert" ist nicht identisch mit "unsichtbar" (visible = FALSE).
Wird die Instancevariable "visible" auf FALSE gesetzt verschwindet das
Displayobjekt auch aus der Liste des DisplayControl Objekts.

Die Instancevariablen minimizedState und maximizedState bestimmen
gemeinsam mit den Hints MinimizedOnStartup und MaximizedOnStartup in
welchem der drei Modi sich das Displayobjekt befindet. Mit den Hints
NotMinimizable, NotMaximizable, NotResizable und NotRestorable kann man
bei Bedarf die Féahigkeiten des Displayobjekts einschranken. Die Instancevariable
userDismissable und die Methode Close wird nur benétigt, wenn man den
Mechanismus "SchlieBen von Displays" (siehe unten) implementieren will.

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
minimizedState minimizedState = TRUE | FALSE lesen, schreiben
MinimizedOnStartup | MinimizedOnStartup —
NotMinimizable NotMinimizable —
maximizedState maximizedState = TRUE | FALSE lesen, schreiben
MaximizedOnStartup | MaximizedOnStartup —
NotMaximizable NotMaximizable —
NotResizable NotResizable —
NotRestorable NotRestorable —
userDismissable userDismissable = TRUE | FALSE | lesen, schreiben
OnClose OnClose = <Handler> lesen, schreiben

Methoden:

Methode Aufgabe
Close Ruft den OnClose Handler des Objekts auf

Display, DisplayGroup und DisplayControl - 416

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Action-Handler-Typen:
Handler-Typ Parameter
DialogAction (sender as object, command as integer)

Ein einfaches Displayobjekt, dass ein Memo als Child enthalt, sieht so aus:

Display Displ

Caption$ = "Erlkonig"’ , 0
Children = Memol
End OBJECT

Memo Memol
text$ = "Wer reitet so spat durch Nacht und Wind?"
ExpandWidth:ExpandHeight
backColor = WHITE

End Object

Minimized und Maximized State

Die folgenden Instancevariablen bestimmen ob das Displayobjekt minimiert
(versteckt), maximiert (bildschirmfillend) oder tUberlappend dargestellt wird.

Hinweis: Da Primary-Objekte von Displays abstammen erben Sie die im
Folgenden aufgelisteten Fahigkeiten.

minimizedState

MinimizedState enthélt die Information ob das Displayobjekt "minimiert" ist oder

nicht.

+ Am Programmstart bestimmt das DisplayGroup-Objekt, wie die Displays
dargestellt werden. Das Setzen des Wertes im Ul-Code ist moglicherweise
wirkungslos. Verwenden Sie in diesem Fall MinimizedOnStartup.

Syntax Ul- Code: minimizedState = TRUE
Der Defaultwert ist FALSE.
Schreiben: <obj>.minimizedState = <Wert>
Lesen: <numVar> = <obj>.minimizedState

MinimizedOnStartup

MinimizedOnStartup bewirkt, dass das Displayobjekt am Programmstart minimiert
ist.

Syntax Ul- Code: MinimizedOnStartup

Display, DisplayGroup und DisplayControl - 417

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

NotMinimizable

NotMinimizable bewirkt, dass das Displayobjekt nicht minimiert werden kann. Der
entsprechende Button in der Titelbar des Displayobjekts wird entfernt und das
Setzen der Instancevariablen minimizedState bleibt wirkungslos.

Syntax Ul- Code: NotMinimizable

maximizedState

MaximizedState enthélt die Information, ob das Displayobjekt "bildschirmfillend"

(maximizedState = TRUE) dargestellt wird oder nicht.

+ Am Programmstart bestimmt das DisplayGroup-Objekt, wie die Displays
dargestellt werden. Das Setzen des Wertes im Ul-Code ist moglicherweise
wirkungslos.

* Wenn Sie den Wert fir ein Displayobjekt zur Laufzeit &ndern, hat das
Auswirkungen auf alle anderen Displays in der DisplayGroup.

Syntax Ul- Code: maximizedState = TRUE
Der Defaultwert ist FALSE.
Schreiben: <obj>.maximizedState = <Wert>
Lesen: <numVar> = <obj>.maximizedState

MaximizedOnStartup

MaximizedOnStartup bewirkt, dass das Displayobjekt am Programstart maximiert

dargestellt wird.

+ Am Programmstart bestimmt das DisplayGroup-Objekt, wie die Displays
dargestellt werden. Das Setzen des Wertes ist méglicherweise wirkungslos.

Syntax Ul- Code: MaximizedOnStartup

NotMaximizable

NotMaximizable bewirkt, dass der Nutzer das Displayobjekt nicht maximieren
kann. Das Display bleibt im "Uberlappenden" Modus, auch wenn die anderen
Displays bildschirmfullend sind.

Syntax Ul- Code: NotMaximizable

Display, DisplayGroup und DisplayControl - 418

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Weitere Hints

NotResizable

NotResizable bewirkt, dass der Nutzer die GroBe des Displayobjekts nicht &ndern
kann, wenn es im Modus "Uberlappend" dargestellt wird.

Syntax Ul- Code: NotResizable

NotRestorable

NotRestorable bewirkt, dass ein Wechsel in den "minimiert" Modus nicht
zurickgenommen werden kann. Verwenden Sie diesen Hint mit Vorsicht.

Syntax Ul- Code: NotRestorable

SchlieBen von Displays

GroBe Applikationen wie GeoWrite oder R-BASIC stellen lhre Dokumente in
Fenstern dar, die Display-Objekte sind. Wird ein Dokument geschlossen so muss
auch das zugehorige Display-Objekt vom Schirm genommen werden. Falls das
Display beim Offnen des Dokuments, also zur Laufzeit, mit der Routine
CreateObject erzeugt wurde muss es dann auch wieder mit der Routine
DestroyObject wieder vernichtet werden. Bitte lesen Sie die Dokumentation dieser
Routinen sorgfaltig.

Werden die Fenster (Display-Objekte) Gberlappend dargestellt so findet sich im
Systemmeni des Displays der Eintrag "SchlieBen". Er ist per Default inaktiv. Um
ihn zu aktivieren mussen Sie die Instancevariable userDismissable des Display-
Objekts auf TRUE setzen. Klickt der Nutzer jetzt auf diesen Eintrag wird der
OnClose Handler des Displayobjekis aufgerufen. Dieser Handler muss alle
notwendigen Schritte auslésen um das Dokument zu schlieBen und das Display-
Objekt vom Schirm zu nehmen. Ist kein OnClose Handler gesetzt so passiert
nichts.

Hinweis: Primary-Objekte stammen von Displays ab. Sie implementieren jedoch
ihr eigenes Handling zum SchlieBen eines Programms. Die folgenden
Instancevariablen sind fur Primaries daher nicht verflgbar.

Display, DisplayGroup und DisplayControl - 419

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

userDismissable

UserDismissable = TRUE aktiviert den Eintrag "SchlieBen" im Systemmeni des
Displayobjekts. Der Defaultwert ist FALSE. Das Systemmen(ist nur sichtbar,
wenn die Displays Uberlappend dargestellt sind.

Wenn der Nutzer auf "SchlieBen" im Systemmeni des Displayobjekts klickt wird
der OnClose Handler des Objekts aufgerufen.

Syntax Ul- Code: userDismissable = TRUE
Der Defaultwert ist FALSE.
Schreiben: <obj>.userDismissable = <Wert>
Lesen: <numVar> = <obj>.userDismissable

OnClose

Der OnClose Handler wird gerufen, wenn der Nutzer auf den Eintrag "SchlieBen"
im Systemmenii des Displayobjekts klickt. Das Systemmenti ist nur sichtbar, wenn
die Displays Uberlappend dargestellt sind.

Um den Eintrag "SchlieBen" im Systemmeni des Displayobjekts zu aktivieren
mussen Sie die Instancevariable userDismissable des Displayobjekts auf TRUE
setzen.

Der OnClose Handler muss als DialogAction deklariert sein.

Syntax Ul- Code: OnClose = <Handler>
Schreiben: <obj>.0nClose = <Handler>
Lesen: -

Close

Die Methode Close ruft den OnClose Handler des Objekts auf. Dieser Handler
muss dann alle weiteren Schritte auslésen. Ist kein OnClose Handler definiert so
passiert auch nichts.

Syntax BASIC Code: <obj>.Close

Display, DisplayGroup und DisplayControl - 420

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

4.18.3 DisplayGroup

Eine DisplayGroup stellt den Bereich

bereit, in dem die Displayobjekte darge-

stellt werden. Im Bild sind drei Displays in
Zauberlehrling einer DisplayGroup zu sehen.

Hat der alte Hexenmeister si Das DisplayGroup Objekt interagiert mit

doch einmal wegbegeben. Uni gen Digplays um sie anzuordnen, ihre

sollen seine Geister auch nac: .
meinem Willen leben! GroBe festzulegen usw.

— | Erikenig | -+ |_J

Wer | _ | psterspaziergang | - |_||

l|d
b

AuBerdem arbeitet das DisplayGroup Objekt automatisch mit dem DisplayControl
Objekt zusammen. Damit dies alles funktioniert missen Sie Folgendes tun:

+ Die Displays missen Children des DisplayGroup Objekts sein.
+ Das DisplayGroup Objekt muss den Hint defaultTarget gesetzt haben.

Abstammung
GenericClass —# DisplayGroup

Per Default ist eine DisplayGroup so eingestellt, dass die Displays am
Programmstart im bildschirmfliillenden Modus angezeigt werden. Wenn Sie das
nicht méchten setzen Sie im Ul-Code die Instancevariable fullSizeState auf
FALSE. Um die Displays am Programmstart "aufgeteilt" darzustellen mussen Sie
in lhrem OnStartup Handler die Methode "TileDisplays" fir das DisplayGroup
Objekt aufrufen.

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
fullSizeState fullSizeState = TRUE | FALSE lesen, schreiben
activeDisplay — nur lesen
NoFullSizeMode NoFullSizeMode —
NoOverlappingMode NoOverlappingMode —
TileHorizontally TileHorizontally —

TileVertically TileVertically —
SizelndependentlyOfDisplays
SizelndependentlyOfDisplays —

Methoden:
Methode Aufgabe
TileDisplays Ordnet die Displays "aufgeteilt" an

SelectDisplay (n) Wahlt ein Display als aktives Display aus

Display, DisplayGroup und DisplayControl - 421

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

Eine typische Konfiguration einer DisplayGroup sieht so aus:

DisplayGroup DGroup
children = Displ, Disp2, Disp3
initialSize = 800, 400
defaultTarget
fullSizeState = FALSE
ExpandWidth
ExpandHeight
SizeIndependentlyOfDisplays
End OBJECT

FullSizeState

Die Instancevariable fullSizeState enthélt die Information, ob die Displays in der
DisplayGroup Uberlappend (fullSizeState = FALSE) oder bildschirmfillend
(fullSizeState = TRUE) dargestellt werden. Sie kdnnen den Wert zur Laufzeit
andern um den entsprechenden Zustand einzustellen.

Um die Displays gleichmaBig in der DisplayGroup aufzuteilen verwenden Sie die
Methode "TileDisplays" (siehe unten).

Syntax Ul- Code: fullSizeState = FALSE
Der Defaultwert ist TRUE

Schreiben: <obj>.fullSizeState = TRUE | FALSE
Lesen: <numVar> = <obj>.fullSizeState

activeDisplay

Die Instancevariable activeDisplay enthalt das aktuell aktive Displayobjekt. Ist kein
Displayobjekt "aktiv" enthélt activeDisplay das zuletzt aktive Displayobjekt. Sollte
die DisplayGroup keine Displays enthalten so liefert activeDisplay ein Null-Objekt.

Syntax Lesen: <objVar> = <obj>.activeDisplay

NoFullSizeMode

NoFullSizeMode verhindert, dass die Displays in der DisplayGroup bildschirm-
fullend angezeigt werden.
Am Programmstart werden die Displays per Default trotzdem immer bildschirm-
fillend angezeigt. Setzen Sie daher im Ul-Code zusétzlich die Instancevariable
fullSizeState auf FALSE.

Syntax Ul-Code: NoFullSizeMode

Display, DisplayGroup und DisplayControl - 422

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

NoOverlappingMode

NoOverlappingMode verhindert, dass die Displays in der DisplayGroup
uberlappend angezeigt werden.

Syntax Ul-Code: NoOverlappingMode

TileDisplays

Die Methode TileDisplays ordnet die Displays "aufgeteilt" an. Der Aufruf dieser
Methode hat die gleiche Wirkung als ob der Nutzer im DisplayControl den Eintrag
"Aufteilen" anklickt.

Syntax BASIC Code: <obj>.TileDisplays

TileHorizontally

TileHorizontally bewirkt, dass die Displays in der DisplayGroup nebeneinander
angeordnet werden, wenn sie "aufgeteilt" werden.

Um die Displays aufzuteilen kann der Nutzer im DisplayControl den
entsprechenden Eintrag anklicken oder man ruft die Methode "TileDisplays" auf.

Syntax Ul-Code: TileHorizontally

TileVertically

TileVertically bewirkt, dass die Displays in der DisplayGroup Ubereinander
angeordnet werden, wenn sie "aufgeteilt" werden.

Um die Displays aufzuteilen kann der Nutzer im DisplayControl den
entsprechenden Eintrag anklicken oder man ruft die Methode "TileDisplays" auf.

Syntax Ul-Code: TileVertically

SizelndependentlyOfDisplays

Sowohl die Anordnung der Displays als auch die GrdBe der DisplayGroup werden
zwischen Displays und DisplayGroup automatisch ausgehandelt. In einigen
Situationen kann das dazu fuhren, dass die DisplayGroup nicht so aussieht, wie
Sie sich das wilinschen, z.B. dass sie zu klein ist, oder dass die Geometrie der
Displays nicht stimmt. Verwenden Sie in diesen Féllen den Hint

Display, DisplayGroup und DisplayControl - 423

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

SizelndependentlyOfDisplays um die Geometrie der DisplayGroup und die
Geometrie der Displays voneinander zu entkoppeln.
Tipp: Setzen Sie diesen Hint immer. Nur wenn Sie den Eindruck haben, dass die
Geometrie nicht stimmt versuchen Sie es ohne ihn.

Syntax Ul-Code: SizelndependentlyOfDisplays

SelectDisplay

SelectDisplay(n) wéahlt ein Display als aktives Display aus. Die Z&hlung beginnt
dabei bei Null.

Tipp: Um herauszubekommen wie viele Displays zu einem DisplayGroup Objekt
gehdren fragen Sie die Instancevariable numChildren der DisplayGroup ab.

Syntax BASIC Code: <obj>.SelectDisplay (<Wert>)
<Wert> Nummer des auszuwéahlenden Displays
Die Zahlung beginnt bei Null.

Display, DisplayGroup und DisplayControl - 424

R-BASIC - Objekt-Handbuch - Vol. 8

Einfach unter PC/GEOS programmieren

4.18.4 DisplayControl

Fenster |
==

Das DisplayControl stellt die Ul bereit, mit der

4 Uberlappend

Aufteilen

Strg FS

+ Bildschirmfillend Strg F10

Umsch F4

der Nutzer die Displays in der DisplayGroup
anordnen kann. AuBerdem enthélt es eine Liste
mit den Namen (Caption$) der Displays in der

4 Erlkonig

« Zauberlehrling

+ Osterspaziergang

DisplayGroup. Wie im Bild zu sehen ist das
DisplayControl Ublicher Weise ein Child des
"Fenster" Mendus.

Das DisplayControl arbeitet automatisch mit den Displays und der DisplayGroup
zusammen. Das funktioniert sogar, wenn Sie mehrere DisplayGroup Objekte

haben.

Der Programmierer muss dazu nichts weiter tun als die Objekte in seinen Tree
einbinden. AuBerdem muss das DisplayGroup Objekt (falls Sie mehrere haben:
genau eines) den Hint defaultTarget gesetzt haben.

Abstammung

GenericClass

—> DisplayControl

Spezielle Instance-Variablen:

Variable

Syntax im Ul-Code Im BASIC-Code

dcFeatures

dcFeatures = <Wert> lesen, schreiben

nameOnPrimarylfMaximized
nameOnPrimarylfMaximized = TRUE lesen, schreiben

dcFeatures

DcFeatures bestimmt, welche Elemente der Controller-Ul angezeigt werden. Per
Default werden alle Elemente angezeigt.

Syntax Ul- Code:
Schreiben:
Lesen:

dcFeatures = <Wert>
<obj>.dcFeatures = <Wert>
<numVar> = <obj>.dcFeatures

Folgende Werte sind fur dcFeatures verfugbar:

Konstante

Wert Bedeutung

DCF_OVERLAPP_FULL

4 Auswahl "Uberlappend" / "Bildschirm-
fullend" anzeigen

DCF_TILE

2 Schalter "Aufteilen" anzeigen

DCF_DISPLAY_LIST

1 Liste aller Displays anzeigen

Display, DisplayGroup und DisplayControl - 425

R-BASIC - Objekt-Handbuch - Vol. 8

Einfach unter PC/GEOS programmieren

NameOnPrimarylfMaximized

Diese Instancevariable bestimmt, ob der Name des aktuell aktiven Displays in der

Titelzeile des Primary-Objekts angezeigt werden soll.

+ Ublicher Weise wird die Instancevariable im Ul-Code belegt.

« Andern Sie den Wert zur Laufzeit von TRUE auf FALSE wéhrend die Displays
maximiert sind, so updated das DisplayControl die Titelzeile im Primary nicht
mehr. Die Anzeige ist dann moglicherweise fehlerhaft oder veraltet.

+ Intern wird die Instancevariable Caption2$ des Primaryobjekts verwendet, um
diese Funktion zu realisieren.

Syntax Ul- Code:

Schreiben:
Lesen:

nameOnPrimarylfMaximized = TRUE

Der Defaultwert ist FALSE.

<obj>.nameOnPrimarylfMaximized = <Wert>
<numVar> = <obj>.nameOnPrimarylfMaximized

Beispiel. Beachten Sie, dass das DisplayControl keinen Verweis auf die Display-
Group enthalt. Das wird intern Uber die Target Hierarchie geregelt.

Caption$ =
Children
End OBJECT

End OBJECT

Menu WindowMenu

"Fenster"
DControl

DisplayControl DControl
nameOnPrimaryIfMaximized = TRUE

;0

Display, DisplayGroup und DisplayControl - 426

R-BASIC - Objekt-Handbuch - Vol. 8
Einfach unter PC/GEOS programmieren

(Leerseite)

Display, DisplayGroup und DisplayControl - 427

