

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 9
Visual Objekt Klassen

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

Volume 9

5 VisualClass Objekte .. 432
5.1 Die VisualClass ... 432
5.2 BitmapContent .. 435

5.2.1 Überblick .. 435
5.2.2 Grundlegende Funktionen ... 437
5.2.3 Erweitere Funktionen ... 441
5.2.4 Arbeit mit transparenten Bitmaps .. 444

5.2.4.1 Überblick .. 444
5.2.4.2 Beschreiben der Maske ... 445
5.2.4.3 Verwendung des MixMode MM_SET......................... 446
5.2.4.4 Zeichnen einer maskierten Bitmap in eine andere 448

5.2.5 Arbeit mit Paletten .. 450
5.2.5.1 Überblick... 450
5.2.5.2 Zugriff auf die Farbpalette ... 451
5.2.5.3 Beispiele .. 453

5.2.6 Direktzugriff auf die Bitmapdaten ... 456

5.3 VisGroup ... 561
5.3.1 Ausgabe von Grafik ... 461
5.3.2 Manuelle Anordnung der Children ... 467

5.3.2.1 Größe und Position ... 467
5.3.2.2 Wenn sich die Children überlappen 470

5.3.3 Automatische Anordnung der Children 472
5.3.3.1 Überblick .. 472
5.3.3.2 Festlegen der Größe ... 474
5.3.3.3 Ausrichtung und Abstand der Children 479
5.3.3.4 Children Wrapping ... 484

Volume 10

5.4 VisContent .. 492
5.4.1 Grundlegende Fähigkeiten .. 493
5.4.2 View-Content Konfiguration ... 495
5.4.3 Anlegen und Vernichten von Objekten 499

5.5 VisObj ... 502

5.5.1 Überblick .. 502
5.5.2 Grundlegende Fähigkeiten .. 504
5.5.3 Maus- und Tastatur-Input .. 506
5.5.4 Spezielle Fähigkeiten und Tools .. 511

5.6 Erweiterte Möglichkeiten für SDK-Programmierer 518

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Visual Class - 432

5 VisualClass Objekte

5.1 Die VisualClass

Die VisualClass ist die Superclass für alle Visual Objekt Klassen. Visual Objekte
werden innerhalb eines View-Objekts dargestellt. Sie dienen der komfortablen
Ausgabe von Grafik bzw. Text und können auf Maus- und Tastaturereignisse
reagieren. Dieser Abschnitt beschreibt die gemeinsamen Eigenschaften aller
VisualClass Objekte. Ausnahmen sind explizit erwähnt.

In R-BASIC gibt es die folgenden VisualClass Objekte:

VisText

BitmapContentVisContent VisObj

VisualClass

LargeText

VisGroup

• BitmapContent: Dieses Objekt verwaltet eine editierbare Bitmap und ist die
erste Wahl, wenn es darum geht möglichst einfach Grafik
auszugeben.

• VisGroup Die VisGroup Class ist die Superclass für VisContent und
VisObj. Sie können in R-BASIC keine Objekte dieser Klasse
anlegen.

• VisContent: Objekte dieser Klasse können selbst Grafik ausgeben und sie
können Children der Klassen VisObj und VisText haben, die
ihrerseits Grafik bzw. Texte anzeigen können.

• VisObj: Objekte dieser Klasse sind die Children eines VisContent
Objekts und können selbst Children der Klasse VisObj haben.
Sie ermöglichen es zum Beispiel, Grafiken so zu organisieren,
dass einzelnen Teile mit der Maus angeklickt und separat
bearbeitet werden können.

• VisText: VisText-Objekte erlauben die Anzeige und Bearbeitung von
Texten direkt in der Grafikebene. Sie müssen als Children eines
VisContent eingebunden werden. VisText-Objekte werden
ausführlich nicht hier, sondern im Kapitel 4.10 (Text-Objekte)
besprochen.

• LargeText LargeText-Objekte ermöglichen die Anzeige und Bearbeitung
von beliebig großen Textmengen (theoretisch bei zu 2 GByte).
Sie müssen ebenfalls als Children eines VisContent
eingebunden werden. LargeText-Objekte werden ausführlich
nicht hier, sondern im Kapitel 4.10 (Text-Objekte) besprochen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Visual Class - 433

Die VisualClass stellt in R-BASIC keine eigenen Instance-Variablen oder
Methoden bereit, erledigt im Hintergrund aber viele Dinge, die unverzichtbar und
allen VisualClass Objekten gemeinsam sind. Dazu gehören insbesondere die
folgenden Fähigkeiten:

Mausunterstützung

Alle VisualClass-Objekte unterstützten die Behandlung von Mausereignissen.
Dazu werden von VisContent, VisObj und BitmapContent die folgende Instance-
variablen und Methoden unterstützt. Die Text-Objekte behandeln die Maus-
ereignisse komplett selbständig.

Actionhandler Instancevariablen Methoden
OnMouseButton sendMouseEvents GrabMouse
OnMouseMove ReleaseMouse
OnMouseOver TestInside

TestInsideAC

Die Maus-Actionhandler müssen als MouseAction deklariert sein. Eine detaillierte
Beschreibung der Arbeit mit der Maus finden Sie im Handbuch "Spezielle
Themen", Kapitel 17.
Es ist sehr häufig, dass VisualClass-Objekte mit der Maus umgehen müssen. Sie
können auch Text und Grafik innerhalb des Maushandlers auf den Schirm
ausgeben. Allerdings speichert das VisContent und das VisObj Objekt diese
Ausgaben nicht. Nur das BitmapContent Objekt speichert die Grafikausgaben
gleichzeitig in der Bitmap.

Tastaturhandling

Sie können sich in das Tastaturhandling aller VisClass-Objekte, auch der Text-
Objekte, einklinken, indem Sie einen Tastaturhandler schreiben. Dazu werden die
folgenden Instancevariablen und Actionhandler unterstützt:

Actionhandler Instancevariablen Methoden
OnKeyPressed inputFlags ––

Eine ausführliche Beschreibung, wie man einen Tastaturhandler schreibt und was
es dabei zu beachten gilt, finden Sie im Handbuch "Spezielle Themen", Kapitel 14.

Focus und Target

Alle VisualClass Objekte interagieren mit der Focus- und Target-Hierarchie. Es ist
möglich zu überwachen, ob ein VisualClass-Objekt den Focus oder das Target
hat, indem man einen Focus- bzw. Target-Handler schreibt. Dazu werden die
folgenden Actionhandler und Systemvariablen unterstützt.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Visual Class - 434

Für VisObj-Objekte ist wichtig, dass die Tastatureingaben an das Focus-Objekt
gehen. Das Beispiel "VisObj Keyboard Demo" verwendet die Focus-Hierarchie um
dem Nutzer ein visuelles Feedback zu geben, welches Objekt als letztes
angeklickt wurde.

Actionhandler Instancevariablen Systemvariable
OnFocusChanged –– Focus
OnTargetChanged Target

Die Arbeit mit Focus und Target ist etwas für erfahrene Programmierer und nur in
wenigen Fällen notwendig. Die notwendigen Details dazu finden Sie in den
Kapiteln 12 (Focus und Target) und 13 (Implementieren von Menüs: Bearbeiten,
Textgröße und andere) des Handbuchs "Spezielle Themen".

Arbeit mit dem Clipboard

Alle VisualClass Objekte können mit der Zwischenablage (Clipboard) kommuni-
zieren. Die Methoden ClpTestCopy, ClpTestPaste, ClpCopy und ClpPaste
werden unterstützt. Eine detaillierte Beschreibung dieser Methoden finden Sie im
Kapitel "Arbeit mit der Zwischenablage" (Kapitel 5 im Handbuch "Spezielle
Themen"). Für BitmapContent-Objekte und die Text-Objekte gibt es dabei keine
Einschränkungen, bei VisContent und VisObj-Objekten muss der gepufferte
Modus aktiv sein (Instancevariable buffered = TRUE). Außerdem müssen Sie die
Methode MarkInvalid aufrufen, nachdem Sie eine Grafik mit ClpPaste eingefügt
haben, damit sich der visual Tree neu darstellt.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 435

5.2 Das BitmapContent

5.2.1 Überblick

Objekte der Klasse BitmapContent verwalten eine editierbare Bitmap. Bitmaps
sind digitalisierte Bilder. Sie bestehen aus einer rechteckigen Anordnung von
einzelnen Bildpunkten (Picture Element: Pixel). Jedem Pixel kann eine eigene
Farbe zugeordnet werden. In die Bitmaps der Klasse BitmapContent kann Text
oder Grafik geschrieben werden. Das BitmapContent-Objekt legt die zugehörige
Bitmap automatisch selbst an, so dass sie sofort benutzt werden kann.
Einen kompletten Überblick über die weitern Möglichkeiten von R-BASIC, Grafik
auszugeben, finden Sie im Kapitel 2.2.

Abstammung:
BitmapContentVisualClass

Da BitmapContent Objekte von der VisualClass abstammen, kommen Sie nicht in
den generic Tree des Programms. Stattdessen werden die über die Instance-
Variable "Content" eines Views mit dem View verbunden. Das View muss aber in
den generic Tree des Programms eingebunden werden.

Arbeit mit dem Clipboard

BitmapContent Objekte können mit der Zwischenablage (Clipboard) kommuni-
zieren. Die Methoden (Objektanweisungen) ClpTestCopy, ClpTestPaste,
ClpCopy und ClpPaste werden unterstützt. Eine detaillierte Beschreibung dieser
Methoden finden Sie im Handbuch "Spezielle Themen", Kapitel 5, "Arbeit mit der
Zwischenablage". Für BitmapContent Objekte gelten dabei folgende
Besonderheiten:

• Die Methode ClpCopy kopiert die Bitmap-Grafik sowohl als reine Bitmap als
auch als Graphic String in die Zwischenablage. Damit können sowohl andere
BitmapContent Objekte als auch andere GEOS Anwendungen wie GeoWrite
oder GeoDraw die Grafik aus der Zwischenablage lesen.

• Die Methode ClpPaste akzeptiert sowohl reine Bitmaps als auch als Graphic
Strings, wobei Bitmaps bevorzugt werden. Wird ein Graphic String aus der
Zwischenablage gelesen, so legt das Objekt eine transparente Bitmap an und
kopiert den Graphic String in diese Bitmap.

• Das Objekt passt seine Größe automatisch an das mit ClpPaste aus der
Zwischenablage gelesene Bild an.

• Die globale Variable clipboardError wird auf FALSE oder TRUE gesetzt, je
nachdem ob ClpCopy bzw. ClpPaste erfolgreich waren oder nicht.

Mausunterstützung

Es ist sehr häufig, dass ein BitmapContent-Objekt mit der Maus umgehen muss.
Da ein BitmapContent-Objekt in Normalfall keine Children hat muss es die
Mausereignisse selbst behandeln. BitmapContent-Objekte erben die Fähigkeiten

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 436

im Umgang mit der Maus vom der VisualClass. Eine detaillierte Beschreibung der
Arbeit mit der Maus finden Sie im Handbuch "Spezielle Themen", Kapitel 17.

Tastaturhandling

BitmapContent-Objekte erben die Fähigkeiten im Umgang mit der Tastatur vom
der VisualClass. Eine ausführliche Beschreibung, wie man einen Tastaturhandler
schreibt und was es dabei zu beachten gilt, finden Sie im Handbuch "Spezielle
Themen", Kapitel 14.

Focus und Target

BitmapContent Objekte erben die Fähigkeiten im Umgang mit der Focus- und der
Traget-Hierarchie von der VisualClass. In den Kapiteln 12 und 13 des Handbuchs
"Spezielle Themen" finden Sie eine detaillierte Darstellung des Umgangs mit
Focus und Target.

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
bitmapFormat bitmapFormat = x, y, n [, flags] lesen, schreiben
defaultColor defaultColor = fg, bg lesen, schreiben
DefaultScreen DefaultScreen ––
suspendDraw –– lesen, schreiben
editMask –– lesen, schreiben

Methoden:
Methode Aufgabe
Redraw Bitmap neu zeichnen
GetBitmapHandle Handle auf die Bitmap des Objekts holen
CopyBitmap Kopie der Bitmap des Objekts erstellen
NewBitmapFromHandle Bitmap aus Handle auslesen (ins Objekt kopieren)
GetPaletteEntry Einzelnen Paletteneintrag holen
SetPaletteEntry Einzelnen Paletteneintrag setzen
GetFullPalette Vollständige Palette holen
SetFullPalette Vollständige Palette setzen
PeekLine Einzelne Bitmapzeile aus dem RAM holen
PokeLine Einzelne Bitmapzeile in den RAM schreiben

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 437

5.2.2 Grundlegende Funktionen

Beispiel UI-Code:
Das View "MyView" enthält ein BitmapContent, das eine 320x256 Pixel große
True-Color Bitmap darstellt. Es kommuniziert automatisch mit dem BitmapContent
"MyBitmap" um seine Größe auf 320x256 Pixel zu setzen, so dass die ganze
Bitmap sichtbar ist. "DefaultScreen" stellt das BitmapContent als "Standard-
Ausgabe-Objekt" für Grafik- und Textausgaben ein.

View MyView
vControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT
hControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT
Content = MyBitmap
END Object

BitmapContent MyBitmap
bitmapFormat = 320, 256, 24
DefaultScreen
defaultColor = BLACK, LIGHT_CYAN
END Object

In vielen Fällen wird der im Code oben verwendete Fall (kein Scrolling der Bitmap,
kein Zoom) ausreichend sein. Ein BitmapContent ist jedoch ein vollwertiges
Content-Objekt und kann daher z.B. auch in einem scrollbaren View dargestellt
werden:

View MyView
hControl = HVC_SCROLLABLE
vControl = HVC_SCROLLABLE
fixedSize = 200, 150

! Kleiner als das Content
Content = MyBitmap
END Object

BitmapContent MyBitmap
bitmapFormat = 320, 256, 24
DefaultScreen
defaultColor = BLACK, LIGHT_CYAN
END Object

bitmapFormat

Die Instance-Variable bitmapFormat speichert die Größe, die Farbtiefe und
weitere Eigenschaften der Bitmap. R-BASIC unterstützt die Farbtiefen
1 (schwarz/weiß), 8 (256 Farben) und 24 (True Color, 16 Mio. Farben). Die
Farbtiefe 4 (16 Farben) wird von R-BASIC nicht unterstützt. Verwenden Sie
stattdessen 8 Bit Farbtiefe. Über den Parameter flags können Sie einstellen, ob

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 438

die Bitmap transparent sein soll ("maskierte" Bitmap) und/oder eine Palette
verwenden soll. Masken und Paletten in den nächsten Abschnitten beschrieben.

Syntax UI-Code: bitmapFormat = x, y, n [, flags]
x: Breite der Bitmap
y: Höhe der Bitmap
n: Farbtiefe (zulässige Werte: 1, 8, 24)
flags: Transparenz und Palette. Siehe Tabelle unten.

Lesen: <numVar> = <obj>.bitmapFormat (0) ’ Breite
<numVar> = <obj>.bitmapFormat (1) ’ Höhe
<numVar> = <obj>.bitmapFormat (2) ’ Farbtiefe
<numVar> = <obj>.bitmapFormat (3) ’ flags

Schreiben: <obj>.bitmapFormat = x, y, n [, flags]

Beispiel UI-Code: siehe oben

Für "flags" sind folgende Werte zugelassen:

Konstante Wert Bedeutung
BF_MASK 1 Transparente Bitmap
BF_PALETTE 2 Bitmap mit Palette
BF_MASK + BF_PALETTE Maske und Palette

Wenn Sie im BASIC-Code die Variable bitmapFormat belegen (schreiben), so wird
die Bitmap neu angelegt. Alle vorhandenen Informationen (Grafik, Text..) gehen
verloren. Die Bitmap darf dabei weiterhin als Content einen Views gesetzt sein,
muss es aber nicht.

Beispiele BASIC-Code:
Lesen der Werte:
DIM b, h, f as WORD
b = MyBitmap.bitmapFomat (0) ’ Breite
h = MyBitmap.bitmapFomat (1) ’ Höhe
f = MyBitmap.bitmapFomat (2) ’ Farbtiefe

Print "Bitmapgröße:" b; "x"; h; "Pixel, "; f; "Bit pro Pixel"
! z.B. 320 x 256 Pixel, 24 Bit pro Pixel

Neu anlegen der Bitmap: 800 x 600 Pixel, 256 Farben
MyBitmap.bitmapFormat = 800, 600, 8

Hinweis: Das Bitmapobjekt informiert sein View automatisch über seine neue
Größe, so dass das View ggf. seine eigene Größe anpassen kann.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 439

defaultColor

Die Instance-Variable defaultColor enthält die Farben, die beim Initialisieren der
Bitmap (erstmaliges bzw. Neuanlegen der Bitmap) verwendet werden. Außerdem
werden sie verwendet, wenn das Objekt zum "Screen" wird. Das tritt auf, wenn
das Objekt die Anweisung DefaultScreen im UI-Code enthält oder wenn es der
Systemvariablen Screen direkt zugewiesen wird (vergleiche Kapitel 2.3.1 "Die
Screen-Variable").

BitmapContent-Objekte ohne die Anweisung defaultColor verwenden die Farben
"schwarz auf weiß".

Syntax UI-Code: defaultColor = fg, bg
fg: Vordergrund (foreground)
bg: Hintergrund (background)

fg und bg müssen Indexfarben sein. RGB-Farben
sind nicht zulässig.

Lesen: <numVar> = <obj>.defaultColor (0) ’ fg
<numVar> = <obj>.defaultColor (1) ’ bg

Schreiben: <obj>.defaultColor = fg, bg

Beim Anlegen der Bitmap löscht R-BASIC die Bitmap in der Hintergrundfarbe bg.
Wird das zugehörige BitmapContent-Objekt zum Screen setzt R-BASIC die
Farben folgendermaßen:

Hintergrundfarbe: bg
Text-, Linien- und Flächenfarbe: fg

Das ist prinzipiell so, als würde automatisch die Anweisung "COLOR fg, bg"
ausgeführt.

DefaultScreen

Diese Anweisung im UI-Code bewirkt, dass das entsprechende BitmapContent als
"Standard-Ausgabe-Objekt" festgelegt wird. Es wird dazu automatisch in der
Systemvariablen Screen gespeichert (vergleiche Kapitel 2.3.1 "Die Screen-
Variable"). Alle Grafik- oder Textausgaben gehen damit automatisch auf dieses
Objekt.

Syntax UI-Code: DefaultScreen

Beispiel UI-Code:
BitmapContent MyBitmap
bitmapFormat = 320, 256, 24
DefaultScreen
END Object

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 440

Hinweis für Profis

BitmapContent-Objekte sind auch dann voll nutzbar, wenn sie nicht mit einem
View verbunden sind, d.h. sie können zum "Screen" gemacht oder als
"DefaultScreen" gesetzt werden. Natürlich werden sie dann nicht auf dem
Bildschirm erscheinen. Grafik- und Textausgaben gehen dann "im Hintergrund" in
die Bitmap und werden sichtbar, sobald das Objekt an ein View gekoppelt wird
(z.B. mit der Zuweisung MyView.Content = MyBitmapContent). Insbesondere ist
es möglich zwischen zwei BitmapContent Objekten hin- und herzuschalten. Sie
können die eine Bitmap im Hintergrund ändern, während die andere sichtbar ist -
und dann die Veränderungen mit der Zuweisung MyView.Content = .. auf "einen
Schlag" sichtbar machen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 441

5.2.3 Erweitere Funktionen

suspendDraw

Parallel zur Bitmap gehen die Grafikausgaben gleichzeitig auf den Bildschirm. Dort
wird aber weder das Vorhandensein einer Maske noch die Information, dass
eventuell "nur" die Maske bearbeitet wird, berücksichtigt. Auch eine eventuell
geänderte Farbpalette (siehe Kapitel 5.2.5) wird nicht berücksichtigt. Das führt zu
einem zeitweisen Widerspruch zwischen Darstellung auf dem Bildschirm und der
Grafik in der Bitmap. Deswegen sollten Sie, während Sie in eine maskierte Bitmap
schreiben (egal ob Maske oder Bitmapdaten), die parallel dazu verlaufende
Ausgabe auf den Monitor deaktivieren. Das Gleiche gilt für das Schreiben in eine
Bitmap mit geänderter Farbpalette. Für diesen Zweck gibt es die Instancevariable
suspendDraw.

Syntax UI-Code: nicht zulässig
Lesen: <numVar> = <Bitmapobj>.suspendDraw
Schreiben: <Bitmapobj>.suspendDraw = TRUE | FALSE

SuspendDraw = TRUE deaktiviert die die gleichzeitige Ausgabe der Grafikbefehle
auf den Bildschirm. Sobald suspendDraw wieder auf FALSE gesetzt wird zeichnet
sich die Bitmap neu auf den Schirm, so dass die vorgenommenen Änderungen
"auf einen Schlag" sichtbar werden.

SuspendDraw ist - unabhängig von der Existenz einer Maske oder einer Palette -
ebenfalls nützlich, wenn Sie eine große Anzahl von Grafikbefehlen haben, die
entweder zu "komischen" Zwischenresultaten führen oder sehr lange dauern. Das
zeitweise Abschalten der Ausgabe auf den Schirm beschleunigt natürlich die
Zeichenoperationen.
Verliert ein Objekt den "Screen" Status (d.h. belegen Sie die Systemvariable
Screen neu), so wird die Suspendierung automatisch aufgehoben.

Redraw

Die Methode Redraw bewirkt, dass das Objekt die Bitmap neu auf den Bildschirm
zeichnet. Der Aufruf der Methode ist notwendig, wenn Sie einen einzelnen
Paletteneintrag geändert haben (Methode SetPaletteEntry, siehe Kapitel 5.2.5.2)
oder eine Bitmapzeile manuell verändert haben (Methode PeekLine, siehe Kapitel
5.2.6).

Syntax: <obj>.Redraw [drawBackground]
drawBackground: TRUE | FALSE (Default: FALSE)

Beispiel:
DemoBitmap.Redraw
DemoBitmap.Redraw TRUE

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 442

DrawBackground = TRUE bewirkt, dass sich das zum Objekt gehörende View neu
zeichnet bevor das Objekt die Bitmap neu darstellt. Damit wird der Hintergrund
gelöscht. DrawBackground = TRUE ist nur erforderlich, wenn die Bitmap eine
Maske (Transparenzebene) hat und Sie mit der Methode PeekLine den von der
Maske als durchsichtig markierten Bereich geändert haben.

GetBitmapHandle

Die Methode GetBitmapHandle liefert das Handle auf die vom BitmapContent
verwaltete Bitmap. Das Handle kann zum Beispiel verwendet werden, um die
Bitmap in ein anderes Objekt oder einen GString zu zeichnen. Im Kapitel 2.8.6.4
(Bitmaps und Bitmap Handles) des R-BASIC Programmierhandbuchs finden Sie
eine Übersicht über die Möglichkeiten der Arbeit mit Bitmaphandles.

Syntax BASIC Code: <han> = <obj>.GetBitmapHandle
<han>: Variable vom Typ Handle

Alle Änderungen, die an der Bitmap im BitmapContent-Objekt gemacht werden
wirken sich auf das Handle aus. Insbesondere wird das Handle ungültig, wenn das
Objekt seine Bitmap neu anlegt (z.B. die Größe oder die Farbtiefe ändert oder
wenn einer der Methoden NewBitmapFromHandle oder ClpPaste aufgerufen
werden).

Das folgende Codebeispiel zeigt wie man eine Bitmap in eine BMP-Datei schreibt.

SUB WritToBMPFile(fileName$ as String)
DIM han as HANDLE
han = MyBitmap.GetBitmapHandle
WriteBitmapToFile(han, fileName$)

End SUB

CopyBitmap

Die Methode CopyBitmap fertigt eine Kopie des vom BitmapContent verwalteten
Bitmap an und liefert das Handle der Kopie. Das Handle kann verwendet werden,
um die kopierte Bitmap mit DrawBitmap() zu zeichnen. Im Kapitel 2.8.6.4 (Bitmaps
und Bitmap Handles) des R-BASIC Programmierhandbuchs finden Sie eine
Übersicht über die Möglichkeiten der Arbeit mit Bitmaphandles.
Die mit CopyBitmap erstellte Kopie muss mit FreeBitmap wieder freigegeben
werden.

Syntax BASIC Code: <han> = <obj>.CopyBitmap
<han>: Variable vom Typ Handle

Im Gegensatz zu GetBitmapHandle wirken sich Änderungen der Bitmap des
Objekts nicht mehr auf die kopierte Bitmap und deren Handle aus.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 443

NewBitmapFromHandle

Die Methode NewBitmapFromHandle kopiert eine durch ein Handle referenzierte
Bitmap in das Objekt. Die alte vom Objekt gespeicherte Bitmap geht verloren. Das
Objekt stellt sich anschließend neu dar. Es informiert auch sein View über die
neue Größe der Bitmap.

Syntax BASIC Code: <obj>.NewBitmapFromHandle <han>
<han>: Referenz auf die zu kopierende Bitmap

Das folgende Codebeispiel kopiert eine Bitmap von einem Objekt in ein anderes.

SUB CloneBitmap()
DIM han as HANDLE
han = MyBitmap.GetBitmapHandle
MyOtherBitmap.NewBitmapFromHandle han

End SUB

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 444

5.2.4 Arbeit mit transparenten Bitmaps

5.2.4.1 Überblick

Der Begriff "transparente Bitmap" oder auch "maskierte Bitmap" beschreibt, dass
Teile der Bitmap durchsichtig sind, also den Hintergrund nicht verdecken. Man
muss sich das so vorstellen, dass die Bitmap außer der eigentlichen Grafik noch
eine schwarz-weiß Bitmap gleicher Größe enthält. Diese heißt "Maske" und
bestimmt die Transparenz. Weiße Pixel sind durchsichtig, schwarze nicht.

Bitmapgrafik Maske maskierte Bitmap

Um eine transparente Bitmap anzulegen muss das Bit 0 (zugehöriger Wert: 1,
Konstante BF_MASK) im Parameter "flags" der Instancevariable bitmapFormat
gesetzt sein. Der folgende UI-Code definiert eine transparente 8-Bit Bitmap:

BitmapContent DemoBitmap
 bitmapFormat = 300, 100, 8, BF_MASK
 DefaultScreen
 defaultColor = YELLOW, LIGHT_BLUE
END Object

Beim Anlegen einer transparenten Bitmap wird die Maske vollständig gefüllt, d.h.
die Bitmap ist zunächst nicht durchsichtig.

editMask

Normalerweise gehen Grafik- und Textausgaben direkt in die Bitmap und parallel
dazu auf den Bildschirm. Die Maske wird dabei nicht verändert. Um die Maske zu
beschreiben müssen Sie die Instancevariable editMask auf TRUE setzen.

Syntax UI-Code: nicht zulässig
Lesen: <numVar> = <Bitmapobj>.editMask
Schreiben: <Bitmapobj>.editMask = TRUE | FALSE

Danach gehen alle Zeichenoperationen in die Maske und die "normalen" Bilddaten
bleiben unberührt.

suspendDraw

Parallel zur Bitmap gehen die Grafikausgaben gleichzeitig auf den Bildschirm. Dort
wird aber das Vorhandensein einer Maske nicht berücksichtigt. Deswegen sollten

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 445

Sie, während Sie in eine maskierte Bitmap schreiben (egal ob Maske oder
Bitmapdaten) die parallel dazu verlaufende Ausgabe auf den Monitor deaktivieren.
Für diesen Zweck gibt es die Instancevariable suspendDraw. SuspendDraw =
TRUE deaktiviert die die gleichzeitige Ausgabe der Grafikbefehle auf den
Bildschirm. Sobald suspendDraw wieder auf FALSE gesetzt wird zeichnet sich die
Bitmap neu auf den Schirm, so dass die vorgenommenen Änderungen "auf einen
Schlag" sichtbar werden.

Wichtige Hinweise

• Masken werden nicht gescrollt. Werden die Bitmapdaten nach einer Print-
Anweisung automatisch nach oben verschoben (Scrolling), so bleibt die Maske
davon unberührt. Unter Umständen kann es sinnvoll sein, in diesem
Zusammenhang suspendDraw zu verwenden.

• Bei der Ausgabe von Texten (Print-Befehl) wird der Hintergrund im Normalfall
mit der Hintergrundfarbe gelöscht. Wenn dies stört setzen Sie die Hinter-
grundfarbe auf "transparent":

Paper BG_TRANSPARENT

• Wichtig! Das GEOS-System unterstützt transparente Bitmaps auch für 24-Bit
Bitmaps, der Versuch, etwas in die Maske zu zeichnen führt jedoch zu einem
Crash. Sie können die Methoden PeekLine und PokeLine verwenden, um die
Maske von 24-Bit-Bitmap zu bearbeiten.

5.2.4.2 Beschreiben der Maske

Da es sich bei der Maske aus Sicht des Systems um eine schwarz-weiß-Bitmap
handelt sollten Sie beim Zeichnen in die Maske (editMask = TRUE) nur die Farben
Schwarz (macht den Bereich undurchsichtig) oder Weiß (macht den Bereich
durchsichtig) verwenden. Flächen in anderer Farbe (nicht aber Linien und Texte)
werden entsprechend der Helligkeit der Farbe gerastet.
Alternativ zu den Farben kann man das Feld "mixMode" der globalen Variablen
"graphic" mit einem passenden Wert belegen. Mehr dazu im 2. Beispiel.

Die folgenden Beispiele verwenden die Kommandos ScreenSaveState (speichern
aller Grafikdaten wie Farben, Font, mixMode usw.) und ScreenRestoreState
(wiederherstellen der gespeicherten Werte). Außerdem wird die fertige Bitmap ins
Clipboard kopiert (DemoBitmap.ClpCopy), von wo aus sie in z.B. GeoWrite für
dieses Handbuch verwendet werden kann.

Der Befehl CLS wirkt - wie alle anderen Grafikbefehle - entweder auf die
Bitmapdaten (editMask = FALSE) oder auf die Maske (editMask = TRUE). Ist
editMask = TRUE löscht er die Maske immer (alles durchsichtig), egal welche
Farbe Sie eingestellt haben.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 446

Beispiel: Zeichenoperationen in die Maske
Sub InkDemo()

ScreenSaveState ’ Grafikdaten sichern
DemoBitmap.suspendDraw = TRUE ’ Bildschirm tot legen

DemoBitmap.editMask = TRUE ’ Maske editieren
Cls
Ink BLACK
FillEllipse 0, 0, 150, 100
Ink WHITE
FillRect 50, 25, 100, 75
DemoBitmap.editMask = FALSE ’ Maske ist fertig

ScreenRestoreState ’ Grafikeinstellungen
’ wiederherstellen

FillRect 0, 0, 75, 50, GREEN
FillRect 75, 0, 150, 50, RED
FillRect 0, 50, 150, 100, BLUE
FillRect 75, 50, 150, 100, CYAN

DemoBitmap.suspendDraw = FALSE ’ alles neu zeichnen
DemoBitmap.ClpCopy

END Sub

Die vom Code oben erzeugte Bitmap vor einem Text:

Anmerkung: Da einige Druckertreiber (z.B. Postscript Color) transparente Bitmaps nicht korrekt
drucken wurden alle transparenten Bitmaps in diesem Handbuch zuvor in GeoDraw vor einen Text
gelegt und diese Kombination in eine (druckbare) unmaskierte Bitmap konvertiert.

5.2.4.3 Verwendung des MixMode MM_SET

Nicht immer kann man sicherstellen, dass nur die Farben Schwarz und Weiß
verwendet werden, z.B. wenn man einen GString (siehe R-BASIC Programmier-
handbuch, Kapitel 2.8.5) in eine maskierte Bitmap schreiben will oder wenn die
auszugebende Grafik in einer SUB steckt, die selbst Farben einstellt:

Sub PaintHouse()

ScreenSaveState
graphic.linewidth = 5
Ink LIGHT_BLUE
FillRect 10, 50, 100, 80 ’ das Haus
Ink WHITE
FillRect 15, 55, 25, 65 ’ ein Fenster
FillRect 35, 55, 45, 78 ’ die Tür

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 447

FillRect 55, 55, 65, 65 ’ ein Fenster
FillRect 75, 55, 85, 65 ’ ein Fenster
Ink LIGHT_GREEN
Line 10, 50, 55, 10 ’ das Dach
Line 55, 10, 100, 50
Ink LIGHT_RED
FillEllipse 90, 5, 110, 25 ’ die Sonne
ScreenRestoreState

END Sub

Um das Haus transparent in eine Bitmap zu zeichnen muss diese Sub sowohl für
die Bitmapdaten als auch für die Maske gerufen werden. Dabei würden jedoch die
farbigen Flächen gerastert (siehe Bild). Hier hilft das Einstellen des passenden
"mixMode".
Dazu belegt man das Feld "mixMode" der
globalen Variablen "graphic" mit dem
passenden Wert. Für uns sind an dieser
Stelle die Modes MM_SET, MM_CLEAR
und MM_COPY interessant.

 • graphic.mixMode = MM_COPY ist der Normalfall.

 • graphic.mixMode = MM_SET bewirkt, dass die aktuelle Farbe ignoriert wird
und alle Ausgaben in schwarz erfolgen. Bereiche der Maske, die in diesem
Modus beschrieben werden, werden undurchsichtig.

 • graphic.mixMode = MM_CLEAR bewirkt, dass die aktuelle Farbe ignoriert
wird und alle Ausgaben in weiß erfolgen. Bereiche der Maske, die in diesem
Modus beschrieben werden, werden transparent. Der Befehl CLS nutzt
diesen Modus automatisch um die Maske zu löschen (wenn editMask =
TRUE ist).
Achtung! MM_CLEAR wirkt nicht auf Textausgaben! Für transparente
Buchstaben müssen Sie den "normalen" MixMode MM_COPY und die Farbe
Weiß verwenden.

Beispiel: Verwendung des MixMode MM_SET. Beachten Sie, dass es egal ist, ob
man erst die Maske oder erst die Bitmapdaten zeichnet.

Sub MixModeExample()
DIM mmSaved

DemoBitmap.suspendDraw = TRUE ’ Schirmausgabe abschalten
Cls ’ Bitmapdaten löschen
PaintHouse ’ Farbige Grafik zeichnen

DemoBitmap.editMask = TRUE ’ Maske editieren
mmSaved = graphic.mixMode
graphic.mixMode = MM_SET
Cls ’ Maske löschen
PaintHouse
graphic.mixMode = mmSaved ’ MixMode restaurieren

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 448

DemoBitmap.editMask = FALSE ’ Maske fertig
DemoBitmap.suspendDraw = FALSE ’ Alles neu zeichnen

DemoBitmap.ClpCopy
END Sub

Der Code erzeugt nun wie gewünscht das
rechts dargestellte Bild.

Beispiel: Das Resultat vom vorherigen
Beispiel soll vollständig einfarbig gefärbt
werden. Das ist sehr einfach. Wir löschen
die Bitmapdaten ohne die Maske zu
verändern.

DemoBitmap.suspendDraw = TRUE
Paper GREEN
CLS
DemoBitmap.suspendDraw = FALSE

5.2.4.4 Zeichnen einer maskierten Bitmap in eine andere

Wird eine maskierte Bitmap in eine andere Bitmap gezeichnet so werden die
Masken natürlich berücksichtigt. Der folgende Code zeichnet eine Bitmap (aus
dem Objekt DemoBitmap2) in den Screen DemoBitmap. Weil das Zielobjekt
(DemoBitmap) ebenfalls eine maskierte Bitmap enthält setzen wir während der
eigentlichen Zeichenanweisung die Instancevariable suspendDraw auf TRUE.

SUB DoDrawBitmap()
DIM h as Handle

DemoBitmap.suspendDraw = TRUE
h = DemoBitmap2.GetBitmapHandle
DrawBitmap h, 0, 0
DemoBitmap.suspendDraw = FALSE

End SUB

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 449

Das Ergebnis sieht so aus. Die Maske der Zielbitmap wurde nicht verändert.

DemoBitmap (Screen) DemoBitmap2 Nach DoDrawBitmap

Wenn wir die Maske der Zielbitmap anpassen wollen
(siehe Bild rechts) müssen wir explizit in die Maske der
Zielbitmap schreiben. Dazu setzen wir editMask auf
TRUE und stellen den MixMode MM_SET ein, sonst
werden die roten Kreise gerastert. MixMode =
MM_COPY stellt anschließend den Ausgangszustand
wieder her.

Tipp: Wir brauchen in diesem speziellen Fall suspendDraw nicht auf TRUE zu
setzen, weil wir den undurchsichtigen Teil der Maske ergänzen und genau diesen
Bereich mit Grafik füllen, so dass der Bildschirm automatisch auf dem korrekten
Stand ist.

SUB DoDrawBitmap()
DIM h as Handle

’ hier nicht erforderlich: DemoBitmap.suspendDraw = TRUE
h = DemoBitmap2.GetBitmapHandle
Drawbitmap h, 0, 0

DemoBitmap.editMask = TRUE
graphic.mixMode = MM_SET
DrawBitmap h, 0, 0
graphic.mixMode = MM_COPY
DemoBitmap.editMask = FALSE

’ hier nicht erforderlich: DemoBitmap.suspendDraw = FALSE

End SUB

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 450

5.2.5 Arbeit mit Paletten

5.2.5.1 Überblick

Unter GEOS bzw. R-BASIC werden Bitmaps mit folgenden Farbtiefen unterstützt:

Bits pro Pixel Farben Anmerkung
1 2 Immer Schwarz/Weiß
4 16 Von R-BASIC nicht unterstützt
8 256 Palette möglich
24 True Color

Eine Bitmap mit 24 Bit pro Pixel enthält für jedes Pixel 3 Byte, je eines für die
Farben Rot, Grün und Blau. Da jedes Byte die Werte 0 bis 255 annehmen kann
ergeben sich etwa 16,8 Millionen mögliche Farben.
Wenn eine Bitmap weniger als 3 Byte pro Pixel speichert muss das System
entscheiden, welche der über 16 Millionen möglichen Farben dargestellt werden
sollen. Das wird über eine sogenannte Farbpalette realisiert. Die Palette ist eine
Liste von bis zu 256 Einträgen zu je drei Byte - jeweils eins für Rot, Grün und Blau.
Der "Farbwert" des Pixels entspricht dann der Nummer (dem sogenannten Index)
des Eintrags in der Liste. Die Zählung beginnt dabei immer mit Null.

Zur Verwaltung der Palette sind in R-BASIC die folgenden Strukturen definiert:
STRUCT PaletteEntry
rt, gn, bl as BYTE
End Struct

STRUCT FullPalette
item[255] as PaletteEntry
END Struct

PaletteEntry enthält einen einzelnen Paletteneintrag, FullPalette enthält die
vollständige Palette einer 256-Farb-Bitmap. Erlaubte Werte für den Index sind 0
bis 255. Die Palettendaten werden in der GEOS-Bitmap selbst gespeichert. R-
BASIC erlaubt den Zugriff auf die Palette und deren Änderung. Wenn die Bitmap
keine eigene Palette hat nutzt das System die GEOS-Standard-Palette. Dann
kann R-BASIC die Farben nicht ändern.

Um eine Bitmap mit Palette anzulegen muss im vierten Parameter (flags) der
Instancevariablen bitmapFormat das Bit 1 (zugehöriger Wert: 2, Konstante
BF_PALETTE) gesetzt sein. Das System belegt dann die Palettendaten der
Bitmap mit der Standardpalette. Diese Daten können später von R-BASIC aus
geändert werden. Das passiert individuell für jede Bitmap, so dass Sie in einem
Programm mehrere Bitmaps mit verschiedenen Paletten gleichzeitig anzeigen
können.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 451

’ Parameter flags: Transparenz und Palette
bitmapFormat = 640, 480, 8 ’ keine eigene Palette

’ nutzt Standardpalette
bitmapFormat = 640, 480, 8, BF_PALETTE ’ Palette
bitmapFormat = 640, 480, 8, BF_PALETTE + BF_MASK

’ Palette + Transparenz

Die Verwendung einer Palette ist nur bei 8-Bit-Bitmaps sinnvoll. R-BASIC
unterstützt zwar den Zugriff auf die Palette einer schwarz/weiß Bitmap, das
System ignoriert die Palettendaten aber. Es zeichnet monochrome Bitmaps immer
in schwarz/weiß.

5.2.5.2 Zugriff auf die Farbpalette

GetFullPalette

Die Methode GetFullPalette liest die Palette einer Bitmap aus. Enthält die Palette
der Bitmap weniger als 256 Einträge werden die restlichen Einträge mit Null
belegt. Enthält die Bitmap keine Palette kommt es zu einem Laufzeitfehler.

Syntax: <pal> = <obj>.GetFullPalette
<pal>: Variable vom Typ FullPalette

SetFullPalette

Die Methode SetFullPalette belegt die Palette einer Bitmap. Das Objekt stellt sich
automatisch neu dar. Enthält die Palette der Bitmap weniger als 256 Einträge
werden die restlichen Einträge ignoriert. Enthält die Bitmap keine Palette kommt
es zu einem Laufzeitfehler.

Syntax: <obj>.SetFullPalette <pal>
<pal>: Variable oder Ausdruck vom Typ FullPalette

GetPaletteEntry

Die Methode GetPaletteEntry liest einen einzelnen Paletteneintrag einer Bitmap
aus. Enthält die Bitmap keine Palette kommt es zu einem Laufzeitfehler.

Syntax: <entry> = <obj>.GetPaletteEntry (index)
<entry>: Variable vom Typ PaletteEntry
index: Index des auszulesenden Paletteneintrags. Es muss gelten

0 <= index < Anzahl der Paletteneinträge der Bitmap,
ansonsten kommt es zu einem Laufzeitfehler.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 452

SetPaletteEntry

Die Methode GetPaletteEntry setzt einen einzelnen Paletteneintrag einer Bitmap
aus. Das Objekt stellt sich aber nicht automatisch neu dar. Sie müssen dazu die
Methode Redraw aufrufen. Enthält die Bitmap keine Palette kommt es zu einem
Laufzeitfehler.

Syntax: <obj>.SetPaletteEntry <entry>, index
<entry>: Variable oder Ausdruck vom Typ PaletteEntry
index: Index des auszulesenden Paletteneintrags. Es muss gelten

0 <= index < Anzahl der Paletteneinträge der Bitmap,
ansonsten kommt es zu einem Laufzeitfehler.

Tipp: GetPaletteEntry und SetPaletteEntry laufen nur geringfügig schneller als
SetFullPalette und GetFullPalette. Wenn Sie mehrere Paletteneinträge ändern
wollen ist deshalb häufig effektiver, die komplette Palette zu holen, die zu ändern
und sie dann komplett neu zu setzen.

Redraw

Die Methode Redraw (ausführliche Beschreibung siehe vorne) bewirkt, dass das
Objekt die Bitmap neu auf den Bildschirm zeichnet. Der Aufruf der Methode ist
notwendig, wenn Sie einen einzelnen Paletteneintrag geändert haben (Methode
SetPaletteEntry).

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 453

5.2.5.3 Beispiele

Die Farbkonstanten von R-BASIC basieren auf der GEOS Standardpalette. Zum
Beispiel hat BLACK den Wert Null, BLUE den Wert 1 und WHITE den Wert 15.
Wenn Sie beispielsweise dem Palettenwert mit dem Index 1 die RGB-Werte der
Farbe Weiß zuweisen, werden alle Pixel, die den Index 1 haben, nicht mehr blau,
sondern weiß dargestellt. Auf diese Weise kann man die Farben einer Bitmap sehr
schnell ändern.

Der folgende Code ersetzt den Paletteneintrag für die Farbe Schwarz (Index Null)
durch einen Grauwert. Die erste Variante liest und setzt die vollständige Palette.
Die Methode SetFullPalette zeichnet die Bitmap automatisch neu. In der zweiten
Variante lesen und schreiben wir genau einen Paletteneintrag. Weil
SetPaletteEntry die Bitmap nicht neu zeichnet müssen wir die Methode Redraw
aufrufen.

SUB ModifyBlack()
DIM pal as FullPalette
pal = DemoBitmap.GetFullPalette
pal.item(0).rt = 120
pal.item(0).gn = 120
pal.item(0).bl = 120
DemoBitmap.SetFullPalette pal

End SUB

SUB ModifyBlack2()
DIM pe as PaletteEntry
pe = DemoBitmap.GetPaletteEntry (0)
pe.rt = 120
pe.gn = 120
pe.bl = 120
DemoBitmap.SetPaletteEntry pe, 0
DemoBitmap.Redraw

End SUB

Der folgende Code senkt alle Farbwerte der Palette auf 80% ab. Dadurch wird das
Bild deutlich dunkler.

SUB MakeDarker()
DIM pal AS FullPalette
DIM n
pal = DemoBitmap.GetFullPalette
FOR n = 0 TO 255
’ Rot, Grün und Blauwert verringern
pal.item(n).rt = 0.8 * pal.item(n).rt
pal.item(n).gn = 0.8 * pal.item(n).gn
pal.item(n).bl = 0.8 * pal.item(n).bl

NEXT n
DemoBitmap.SetFullPalette pal

End Sub

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 454

Das folgende Beispiel tauscht die Palettenwerte für die Farben Blau und Weiß.
Alles was bisher weiß war erscheint dann blau und umgekehrt. Die erste Variante
verwendet die Methoden GetPaletteEntry und SetPaletteEntry. Deswegen ist der
Aufruf der Methode Redraw erforderlich. Variante Zwei liest und schreibt die
vollständige Palette. Der Aufruf von SetFullPalette stellt die Bitmap automatisch
mit den geänderten Farben dar.

SUB SwitchColors()
DIM pe1, pe2 AS PaletteEntry

’ originale Palettenwerte holen
pe1 = DemoBitmap.GetPaletteEntry(WHITE)
pe2 = DemoBitmap.GetPaletteEntry(LIGHT_BLUE)

’ Jeweils dem anderen Farbwert zuweisen
DemoBitmap.SetPaletteEntry(pe1, LIGHT_BLUE)
DemoBitmap.SetPaletteEntry(pe2, WHITE)

’ Objekt neu zeichnen. Das passiert nicht automatisch!
DemoBitmap.Redraw

End SUB

SUB SwitchColors2()
DIM pal as FullPalette
DIM pe AS PaletteEntry

pal = DemoBitmap.GetFullPalette
pe = pal.item(WHITE)
pal.item(WHITE) = pal.item(LIGHT_BLUE)
pal.item(LIGHT_BLUE) = pe
DemoBitmap.SetFullPalette pal

End SUB

Betrachten wir nun den folgenden Code. Wenn wir ihn ausführen nachdem wir die
SUB SwitchColors aufgerufen haben, sollte eine weiße Line erscheinen, weil dem
Index der Farbe Blau (LIGHT_BLUE) jetzt die RGB-Werte der Farbe Weiß
zugeordnet sind.

Line 10, 10, 200, 200, LIGHT_BLUE

Wir sehen jedoch eine blaue Linie. Erst wenn wir das Fenster mit der Bitmap auf
dem Schirm verschieben (und sich die Bitmap deswegen neu zeichnen muss) wird
die Linie weiß. Warum? Jeder Grafikbefehl (auch Textausgaben) gehen nicht nur
in die Bitmap, sondern parallel dazu auch direkt auf den Schirm. Bei der Ausgabe
auf den Schirm wird die geänderte Palette aber nicht berücksichtigt, sie ist nur der
Bitmap bekannt. Deswegen sollten sie während der Ausgabe von Grafik und Text
in eine Bitmap mit geänderter Palette die parallele Ausgabe auf den Bildschirm
abschalten. Für diesen Zweck gibt es die Instancevariable suspendDraw. Der
folgende Code erzeugt sofort gewünschte weiße Linie:

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 455

DemoBitmap.suspendDraw = TRUE
Line 10, 10, 200, 200, LIGHT_BLUE
’ <hier weitere Grafik- und Textausgaben>
DemoBitmap.suspendDraw = FALSE

DemoBitmap.suspendDraw = TRUE schaltet die parallele Ausgabe der Grafik auf
den Schirm ab. Die Bitmap wird unsichtbar im Hintergrund beschrieben. Demo-
Bitmap.suspendDraw = FALSE hebt die Suspendierung auf und zeichnet die
Bitmap neu auf den Schirm, so dass alle Änderungen sichtbar werden.

Eine ähnliche Situation tritt auf, wenn wir eine Bitmap in eine andere Bitmap
zeichnen, falls die Paletten nicht übereinstimmen. Oder wir zeichnen eine RGB-
Grafik (Bitmap oder Grafikbefehl) in die 8-Bit Bitmap. Das System ersetzt dann die
nicht in der Palette befindlichen Farben durch "ähnliche" Farben, die in der Palette
der Zielbitmap vorhanden sind. Auf dem Schirm erscheinen jedoch die originalen
Farben. Auch hier sollten wir suspendDraw einsetzen. Der folgende Code geht
davon aus, dass DemoBitmap1 der Screen ist.

SUB CopyBitmap2ToScreen
DIM h as Handle
DemoBitmap1.suspendDraw = TRUE
h = DemoBitmap2.GetBitmapHandle
DrawBitmap h, 10, 20 ’ Handle, Koordinaten
DemoBitmap1.suspendDraw = FALSE

End SUB

Bitmap mit geänderter Palette Farben, nachdem die Bitmap links in
(DemoBitmap2) die Bitmap DemoBitmap1 mit

Standardpalette gezeichnet wurde.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 456

5.2.6 Direktzugriff auf die Bitmapdaten

Es ist möglich, auf die einzelnen Pixelzeilen einer Bitmapgrafik direkt zuzugreifen.
Dazu kann man mit der Methode PokeLine eine komplette Grafikzeile in den
virtuelle RAM schreiben, dort die einzelnen Pixel modifizieren und die Zeile dann
mit der Methode PeekLine zurück in die Bitmap kopieren. Insbesondere ist es auf
diese Weise möglich, die Maskendaten einer 24-bit Bitmap zu ändern.
Man sollte sich jedoch der Tatsache bewusst sein, dass die Manipulation von
einigen Tausend Pixeln sehr lange dauern kann.

PokeLine

Die Methode PokeLine kopiert eine komplette Pixelzeile aus der Bitmap in den
virtuellen R-BASIC RAM. Falls die Bitmap eine Maske enthält werden die zur Zeile
gehörenden Maskendaten ebenfalls kopiert.

Syntax: <obj>.PokeLine adr, line
adr: Adresse im virtuellen RAM (0 ... 65535)

Es werden so viele Bytes geschrieben wie die Zeile enthält
line: Zeilennummer der in den RAM zu schreibenden Zeile

Erlaubte Werte: 0 .. Höhe - 1

PeekLine

Die Methode PeekLine kopiert eine komplette Pixelzeile aus dem virtuellen R-
BASIC-RAM in die Bitmap des Objekts. Falls die Bitmap eine Maske enthält
werden die zur Zeile gehörenden Maskendaten ebenfalls überschrieben. Die
Bitmap stellt sich nicht neu dar, Sie müssen dazu die Methode Redraw aufrufen.

Syntax: <obj>.PeekLine adr, line
adr: Adresse im virtuellen RAM (0 ... 65535)

Es werden so viele Bytes aus dem RAM gelesen, wie die
Zeile fasst.

line: Zeilennummer der zu beschreibenden Bitmap-Zeile
Erlaubte Werte: 0 .. Höhe - 1

Beispiel: Der folgende Code kopiert die die ersten 50 Zeilen einer Bitmap in die
Zeilen 100 bis 149. Die Adresse im virtuellen RAM ist egal, deswegen wählen wir
Adresse 0.

DIM n
FOR n = 0 TO 49
DemoBitmap.PokeLine 0, n
DemoBitmap.PeekLine 0, 100+n

NEXT n
DemoBitmap.Redraw

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 457

Redraw

Die Methode Redraw (ausführliche Beschreibung siehe vorne) bewirkt, dass das
Objekt die Bitmap neu auf den Bildschirm zeichnet. Der Aufruf der Methode ist
notwendig, wenn Sie eine Bitmapzeile manuell verändert haben (Methode
PeekLine). Falls die Bitmap eine Maske (Transparenzebene) hat und Sie mit der
Methode PeekLine den von der Maske als durchsichtig markierten Bereich
geändert haben müssen Sie Redraw mit dem Parameter TRUE aufrufen, damit
der Hintergrund der Bitmap neu dargestellt wird und die geänderte Maske
erkennbar wird.

Aufbau der Bitmapdaten

Bitmap

Zeile 0

Zeile 1

Pixel 0 Pixel 1 Pixel 2

Um die Pixelzeilen bearbeiten zu können müssen Sie die Struktur der Bitmap-
daten kennen. Wir nehmen zunächst an, dass die Bitmap keine Maske hat. Je
nach Farbtiefe wird eine unterschiedliche Anzahl von Bits für ein Pixel benötigt.
Daraus ergibt sich die Anzahl der Bytes für eine Pixelzeile.

Farbtiefe Bits pro Pixel Bytes pro Zeile
Monochrom 1 8 Pixel werden zu einem Byte zusammen-

gefasst. Es wird auf ganze Bytes gerundet.
anzahl = INT ((breite+7) / 8)

256 Farben 8 anzahl = breite
True Color 24 anzahl = 3 * breite

Grundsätzlich liegen die in der Zeile links liegenden Pixel auf den niedrigen
Adressen im virtuellen RAM. Bei monochromen Bitmaps liegt das ganz linke Pixel
auf dem höchstwertigen Bit des Bytes. True-Color Bitmaps speichern die Farb-
werte in der Reihenfolge Rot-Grün-Blau. Daraus ergeben sich die folgenden
Zusammenhänge. In den Bildern bezeichnet "adr" Adresse "adr", die an die
Methoden PeekLine bzw. PokeLine übergeben wurde.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 458

Monochrome Bitmap:
Bit 7 ist das höherwertigste Bit, Bit 0 ist das niederwertigste Bit.

Pixel 0 Pixel 1 Pixel 2

Bit 7 Bit 0
Byte auf adr + 0 Byte auf adr + 1 Byte auf adr + 2

256 Farben Bitmap:
Pixel 0 Pixel 1 Pixel 2

Byte auf adr + 0
Byte auf adr + 1

Byte auf adr + 2

True Color Bitmap:

Byte auf adr + 0

rt gn bl rt gn bl rt gn bl

Pixel 0 Pixel 1 Pixel 2

Byte auf adr + 1
Byte auf adr + 2

Aufbau der Bitmapdaten mit Maske

Wenn die Bitmap eine Maske hat sind die Maskendaten für jede Zeile direkt vor
den Grafikdaten der Zeile angeordnet. Der Aufbau der Maskendaten entspricht
dem einer monochromen Bitmap. Ein gesetztes Bit bedeutet, dass die Grafikdaten
des Pixels dargestellt werden sollen. Ist das Bit nicht gesetzt (also Null) ist das
Pixel transparent. Die Größe der Maskendaten (Anzahl der Bytes) berechnet sich
zu:

maskLen = INT ((breite+7) / 8)

Die Methoden PokeLine und PeekLine kopieren jeweils sowohl die Maskendaten
als auch die Grafikdaten.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 459

....

Maskendaten Grafikdaten

Byte auf adr + 0
Maskendaten
für Pixel 0 bis 7

Byte auf adr + 1
Maskendaten
für Pixel 8 bis 15

Byte auf adr + 2
Maskendaten
für Pixel 16 bis 23

Byte auf adr + maskLen
Erstes Byte der Grafikdaten
Bedeutung ist Abhänging
von der Farbtiefe

Das folgende Codefragment belegt die Maskendaten einer Bitmap mit dem Bit-
muster 00001111 (= 15 dezimal). Dadurch erscheint die Grafik gestreift. Die
Farbtiefe der Grafik spielt dabei keine Rolle, da sie die Größe der Maskendaten
nicht beeinflusst.

Hinweis: Je nachdem, welche Grafikdaten die Maske vorher verdeckt hat kann
das linke oder das rechte Bild entstehen.

DIM width, height, x, y, masklen

width = DemoBitmap.bitmapformat(0)
height = DemoBitmap.bitmapformat(1)
maskLen = INT ((width+7)/8)

FOR y = 0 TO height-1
DemoBitmap.PokeLine 0, y
FOR x = 0 TO maskLen - 1

Poke x, 15 ’ &B00001111
NEXT x
DemoBitmap.PeekLine 0, y

NEXT y
DemoBitmap.Redraw

Ein etwas komplexeres Beispiel

Die Tatsache, dass das Format der Maskendaten identisch mit dem einer
monochromen Bitmap ist ermöglich es, auf relativ einfache Weise die Maske einer
24 Bit Bitmap zu bearbeiten. Das System unterstützt das leider nicht.

Nehmen wir an, wir haben eine 24 Bit Bitmap der Größe 256 x 192 Pixel, die eine
Maske enthält (Objekt DemoBitmap). Die Idee hinter dem folgenden Code ist, eine
ebenso große monochrome Bitmap ohne (!) Maske (DemoBitmap2) zu ver-
wenden, diese mit Grafikbefehlen zu bearbeiten und dann die Daten der
monochromen Bitmap in die Maske der 24 Bit Bitmap zu kopieren. Dieses

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

BitmapContent - 460

Vorgehen setzt voraus, dass beide Bitmaps exakt die gleichen Abmessungen
haben.

Der folgende Code bearbeitet zunächst die monochromen Bitmap. Weiße Pixel
werden später transparent, schwarze Pixel werden undurchsichtig.

Screen = DemoBitmap2
Paper WHITE
Cls ’ komplett transparent
FillEllipse 64, 32, 192, 160, Black
FillRect 32, 64, 224, 128, Black

Nun holen wir uns jede einzelne Pixelzeile der 24 Bit Bitmap in den virtuellen RAM
und kopieren die Daten der monochromen Bitmap an die gleiche Stelle. Weil beide
Bitmaps die gleiche Größe haben werden damit nur die Maskendaten der 24 Bit
Bitmap überschrieben. Dann kopieren wir die geänderte Pixelzeile zurück in die 24
Bit Bitmap. Abschießend rufen wir die Redraw-Methode mit dem Parameter TRUE
auf um die Änderungen sichtbar zu machen.

DIM x, y, maskLen

maskLen = INT ((256+7)/8)

FOR y = 0 TO 191
DemoBitmap.PokeLine 0, y
DemoBitmap2.PokeLine 0, y
DemoBitmap.PeekLine 0, y

NEXT y

DemoBitmap.Redraw TRUE

Dieser Code erzeugt aus dem linken das rechte Bild.

Hinweis: Um Speicherplatz zu sparen wurden die Grafiken für dieses Handbuch auf 8 Bit herunter-
gerechnet und etwas verkleinert.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 461

5.3 VisGroup

Die VisGroup Class ist die Superclass für die VisContent und VisObj Class. Sie
implementiert alle gemeinsamen Fähigkeiten dieser beiden Klassen. Dazu
gehören im Wesentlichen die Ausgabe von Grafik und die Verwaltung von
Children. Sie können in R-BASIC keine Objekte dieser Klasse anlegen.

Abstammung

VisGroup

VisContent VisObj

VisualClass

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnDraw OnDraw = <Handler> nur schreiben
defaultColor defaultColor = fg, bg lesen, schreiben
clipDrawing clipDrawing = TRUE lesen, schreiben
buffered buffered = TRUE lesen, schreiben
bufferedDataSize bufferedDataSize = <Wert> lesen, schreiben
customManageChildren lesen, schreiben

customManageChildren = TRUE | FALSE
visPosition visPosition = xPos, yPos lesen, schreiben
visSize visSize = width, height lesen, schreiben
xPosition, yPosition –– nur lesen
xSize, ySize –– nur lesen
visSizeOptions visSizeOptions = <Wert> lesen, schreiben
visSizeFlags visSizeFlags = <Wert> lesen, schreiben
visMinimumSize visMinimumSize = minX, minY lesen, schreiben
visOrientVertically visOrientVertically = TRUE | FALSE lesen, schreiben
visChildJustification visChildJustification = jHor, jVert lesen, schreiben
visChildSpacing visChildSpacing = childSp , wrapSp lesen, schreiben
visSpacingIncludeEnds lesen, schreiben

 visSpacingIncludeEnds = TRUE | FALSE
visMargins visMargins = left ,top ,right ,bottom lesen, schreiben
allowChildrenToWrap lesen, schreiben

allowChildrenToWrap = TRUE | FALSE
visWrapCount visWrapCount = numWert lesen, schreiben

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 462

Methoden:
Methode Aufgabe
Dirty Weist das Objekt an, sich neu darzustellen, indem der

OnDraw-Handler aufgerufen wird.
Redraw [TRUE] Weist das Objekt an, sich neu darzustellen.
MarkInvalid Berechnet die Geometrie neu und löst ein Neuzeichnen

aus

Action-Handler-Typen:
Handler-Typ Parameter
DrawAction (sender as object, width, height as word)

Instance-Variablen und Methoden für SDK-Programmierer:
Variable/Methode Syntax im UI-Code Im BASIC-Code
visClassAttrs visClassAttrs = toSet, toClear lesen, schreiben
visCompGeoAttrs visCompGeoAttrs = toSet, toClear lesen, schreiben
visCompDimensionAttrs lesen, schreiben

 visCompDimensionAttrs = toSet, toClear
MarkInvalid2 –– (Methode) nur schreiben

5.3.1 Ausgabe von Grafik

Die primäre Aufgabe von VisualClass-Objekten ist die Ausgabe von Grafik auf den
Bildschirm. VisContent-Objekte und VisObj-Objekte haben dazu einen OnDraw-
Handler, der automatisch gerufen wird, wenn sich das Objekt auf dem Bildschirm
neu darstellen muss. Alternativ können Sie in einem "gepufferten" Modus arbeiten.
Dabei wird der OnDraw-Handler nur einmalig gerufen und die Grafik intern in
einem GString gespeichert. Bei Bedarf wird diese dann ausgegeben. Das ist
effizienter als der ständige Aufruf des in BASIC geschrieben OnDraw-Handlers,
allerdings ist es weniger flexibel.
Eine ausführliche Beschreibung der dahinter stehenden Konzepte finden Sie beim
Canvas-Objekt, im Kapitel 4.16 des Objekthandbuchs. Der einzige Unterschied
zum Canvas ist, dass man bei VisContent und bei VisObj-Objekte einstellen kann,
ob die Grafik an den eigenen Grenzen abgeschnitten wird (Clipping,
Instancevariable clipDrawing), beim Canvas-Objekt jedoch nicht. Außerdem steht
die Methode Redraw für Canvas-Objekte nicht zur Verfügung.

Beim Aufruf des OnDraw-Handlers wird das Objekt automatisch zum Screen, das
heißt alle Grafikausgaben gehen an die Stelle, an der das Objekt dargestellt wird.
Der Koordinatenursprung ist dabei immer die linke obere Ecke des Objekts.
Die dem OnDraw-Handler übergebenen Parameter width und height enthalten
die Breite und die Höhe des Objekts. Da die Koordinaten bei Null anfangen, ist die

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 463

Maximale Koordinate, die noch innerhalb des Objekts liegt, jeweils um 1 kleiner.
Die globalen Variablen MaxX und MaxY enthalten diese Werte.

Verfügbare Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnDraw OnDraw = <Handler> nur schreiben
defaultColor defaultColor = fg, bg lesen, schreiben
clipDrawing clipDrawing = TRUE lesen, schreiben
buffered buffered = TRUE lesen, schreiben
bufferedDataSize bufferedDataSize = <Wert> lesen, schreiben

Methoden:
Methode Aufgabe
Dirty Weist das Objekt an, sich neu darzustellen, indem der

OnDraw-Handler aufgerufen wird.
Redraw [TRUE] Weist das Objekt an, sich neu darzustellen.

Action-Handler-Typen:
Handler-Typ Parameter
DrawAction (sender as object, width, height as word)

Kurzbeschreibung der Instancevariablen

Eine ausführliche Beschreibung finden Sie beim Canvas-Objekt, im Kapitel 4.16
des Objekthandbuchs.

OnDraw

Die Instance-Variable OnDraw enthält den Namen des Handlers, der die Grafik
zeichnen soll. Dieser muss als DrawAction vereinbart sein.

Syntax UI- Code: OnDraw = <Handler>
Schreiben: <obj>.OnDraw = <Handler>

Die Parameter width und height enthalten die Breite und die Höhe des Objekts.
Die globalen Variablen MaxX und MaxY enthalten die maximale Koordinate, die
noch innerhalb des Objekts liegt. Sie ist jeweils um 1 kleiner als width bzw. height.

Weisen Sie zur Laufzeit einen neuen OnDraw-Handler zu, so stellt sich das Objekt
automatisch neu dar. Beachten Sie, dass dabei der Hintergrund nicht gelöscht
bzw. die bereits vorhandene Grafik nicht vom Schirm genommen wird.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 464

defaultColor

Die Instance-Variable defaultColor enthält die Farben, die beim Aufruf des
OnDraw Handlers eingestellt werden.

Syntax UI-Code: defaultColor = fg, bg
fg: Vordergrund (foreground)
bg: Hintergrund (background)

fg und bg müssen Indexfarben sein. RGB-Farben
sind nicht zulässig.

Lesen: <numVar> = <obj>.defaultColor (0) ’ fg
<numVar> = <obj>.defaultColor (1) ’ bg

Schreiben: <obj>.defaultColor = fg, bg

buffered

Die Instancevariable buffered legt fest, ob das Objekt die anzuzeigende Grafik
zwischenspeichert (buffered = TRUE, "gepufferter" Modus) oder nicht (buffered =
FALSE, normaler Modus). FALSE ist der Defaultwert.

Syntax UI- Code: buffered = TRUE
Schreiben: <obj>.buffered = TRUE | FALSE
Lesen: <numVar> = <obj>.buffered

Achtung! Im gepufferten Modus zeichnet das Objekt seine Grafik sofort, ohne
Umweg über den BASIC-Handler. Das geht deutlich schneller, hat aber
Konsequenzen, wenn sich Objekte überlappen.

Solange alle Objekte, die sich überlappen, im gleichen Modus arbeiten, gibt es
keine Probleme, die Objekte werden in der richtigen Reihenfolge gezeichnet.
Überlappen sich aber Objekte, von denen einige im gepufferten Modus und
andere im normalen Modus arbeiten, so werden immer zuerst alle Objekte
gezeichnet, die sich im gepufferten Modus befinden. Objekte im normalen Modus
werden danach, also über den anderen Objekten gezeichnet, unabhängig davon,
in welcher Reihenfolge sie als Children im UI-Code vereinbart sind. Das liegt
daran, dass die BASIC-Handler der Objekte im normalen Modus erst ausgeführt
werden, wenn die Objekte im gepufferten Modus fertig sind.

VisText-Objekte haben keine BASIC-OnDraw-Handler. Sie arbeiten intern quasi
wie im gepufferten Modus. Wenn Sie also ein VisText-Objekt über ein VisObj-
Objekt legen wollen, muss das VisObj im gepufferten Modus arbeiten, sonst wird
es über dem VisText gezeichnet. Folglich muss auch ein VisContent, wenn es
einen OnDraw-Handler hat, im gepufferten Modus arbeiten, falls es VisText-
Objekte als Children hat.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 465

bufferedDataSize

Im gepufferten Modus fordert das Objekt Speicher (in einer Datei) an, um die
darzustellende Grafik zu speichern. BufferedDataSize enthält die Information, wie
groß der benötigte Speicher ungefähr (!) ist. Der Wert ist nicht kritisch, der
Defaultwert ist DS_TINY.

Syntax UI- Code: bufferedDataSize = <Wert>
Schreiben: <obj>.bufferedDataSize = <Wert>
Lesen: <numVar> = <obj>.bufferedDataSize

<Wert>: numerische Konstante, siehe aus der Tabelle unten

Die folgende Tabelle enthält die zulässigen Werte:

Konstante Wert Zu erwartende Datenmenge
DS_TINY 0 nicht mehr als 10 .. 20 kByte
DS_SMALL 1 nicht mehr als 50 .. 100 kByte
DS_MEDIUM 2 nicht mehr als 500 kByte ... 1 MB
DS_LARGE 3 nicht mehr als 5 MByte
DS_HUGE 4 möglicherweise mehr als 5 MByte

clipDrawing

Die Instance-Variable clipDrawing enthält die Information ob das Objekt über seine
eigenen Grenzen (Bounds) hinausschreiben darf, oder nicht. Der Defaultwert ist
FALSE, das heißt, das Objekt kann an beliebige Stellen auf den Schirm schreiben.

Syntax UI-Code: clipDrawing = TRUE | FALSE
Lesen: <numVar> = <obj>.clipDrawing
Schreiben: <obj>.clipDrawing = TRUE | FALSE

Hinweise:
• Wenn Sie clipDrawing zur Laufzeit ändern, löst das kein Neuzeichnen des

Objekts aus. Rufen Sie dazu eine der Methoden Redraw, Dirty oder MarkInvalid
für das Objekt oder eines seiner Parents auf.

• Weisen Sie clipDrawing= TRUE zur Laufzeit zu, so löscht das nicht die
Grafiken, die über den Rand hinausgehen.

• Sollten beim Verschieben des Objekts "Artefakte" zurückbleiben, haben sie
über den Rand des Objekts geschrieben. Sie können das vermeiden, indem Sie
clipDrawing im UI-Code auf TRUE setzen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 466

Dirty

Die Methode Dirty (engl: schmutzig) bewirkt, dass sich das Objekt neu darstellt,
indem es seinen OnDraw Handler ruft. Die Dirty Methode arbeitet auch im
gepufferten Modus. Das Objekt gibt die alte gepufferte Grafik automatisch frei und
speichert die neue ab.

Syntax im BASIC Code: <obj>.Dirty

Redraw

Die Methode Redraw bewirkt, dass das Objekt sich neu auf den Bildschirm
zeichnet. Im gepufferten Modus wird der gespeicherte GString neu ausgegeben,
im ungepufferten Modus wird der OnDraw-Handler aufgerufen.

Syntax: <obj>.Redraw [drawBackground]
drawBackground: TRUE | FALSE (Default: FALSE)

Beispiel:
MyVisObj1.Redraw
MyVisObj1.Redraw TRUE

DrawBackground = TRUE bewirkt, dass der Redraw-Befehl an das zugehörige
View weitergeleitet wird. Damit wird zuerst der Hintergrund gelöscht und dann alle
im View dargestellten Objekte neu gezeichnet. Je nach Komplexität der
Darstellung und der Anzahl der Objekte kann das einen Moment dauern.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 467

5.3.2 Manuelle Anordnung der Children

5.3.2.1 Größe und Position

Per Default verwaltet das GEOS-System die Anordnung und Größe der Objekte in
einem visual Tree automatisch. Um die Children manuell zu positionieren, müssen
Sie im VisContent-Objekt die Instancevariable customManageChildren auf
TRUE setzen. Außerdem müssen Sie die Instancevariablen visPosition und
visSize der VisObj-Objekte im visual Tree belegen.
Um die Größe des VisContent-Objekts festzulegen haben Sie neben dem Belegen
der Instancevariablen visSize weitere Möglichkeiten, die im Kapitel 5.4.2 (View-
Content Konfiguration) beschrieben sind.

Tipp:
Es ist meist komfortabler, zum Lesen der Werte von visPosition und visSize die für
alle Objekte verfügbaren read-only Instancevariablen xPosition, yPosition, xSize
bzw. ySize zu benutzen.

Im Ordner "Visual Class" finden Sie mehrere Beispiele zur Verwendung von
customManageChildren, z.B. "VisObj privData Demo", "VisObj Keyboard Demo"
und "Create Custom Managed VisObj".

Zugehörige Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code

customManageChildren lesen, schreiben
customManageChildren = TRUE | FALSE

visPosition visPosition = xPos, yPos lesen, schreiben
visSize visSize = width, height lesen, schreiben
xPosition, yPosition –– nur lesen
xSize, ySize –– nur lesen

customManageChildren

Die Instance-Variable customManageChildren legt fest, ob der Programmierer
oder der Geometriemanager des GEOS-Systems die Anordnung der Children des
Objekts steuert. Der Defaultwert für customManageChildren ist FALSE, d.h. der
Geometriemanager des GEOS-Systems übernimmt die Anordnung der Children.
Sie müssen customManageChildren auf TRUE setzen, um die Anordnung der
Children selbst zu kontrollieren.

Syntax UI-Code: customManageChildren = TRUE | FALSE
Lesen: <numVar> = <obj>.customManageChildren
Schreiben: <obj>.customManageChildren = TRUE | FALSE

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 468

Es ist möglich und zulässig, den Wert für customManageChildren in einem VisObj
des visual Trees auf FALSE zu setzen, wenn im VisContent der Wert auf TRUE
gesetzt ist - und umgekehrt. Das GEOS System versucht dann, Ihre Wünsche "so
gut wie möglich" zu erfüllen. Ob die Ergebnisse dann Ihren Wünschen
entsprechen, müssen Sie ausprobieren.

visPosition

Die Instance-Variable visPosition enthält die aktuelle Position des Objekts, relativ
zu seinem VisContent.

Syntax UI-Code: visPosition = xPos, yPos
xPos: x-Position
yPos: y-Position

Lesen: <numVar> = <obj>.visPosition(0) ’ xPos
<numVar> = <obj>.visPosition(1) ’ yPos

Schreiben: <obj>.visPosition = xPos, yPos [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung (Move-To-Funktion)

Per Default führt ein manuelles Verändern der visPosition nicht automatisch zum
Neuzeichnen des Objekts an der neuen Position. Dazu müssen Sie die Methode
MarkInvalid aufrufen.
Geben Sie als zusätzlichen Parameter TRUE an, so stellt sich das Objekt sofort
neu dar, wobei Bereiche, die jetzt nicht mehr vor Objekt überdeckt sind, ebenfalls
geupdatet werden. Sie verschieben das Objekt also sofort an seine neue Position.

Hinweise:
• Im Allgemeinen werden auch andere Objekte neu gezeichnet, wenn Sie

autoRedraw = TRUE angeben. Häufig flackert es jedoch weniger, als wenn Sie
MarkInvalid für das zugehörige VisContent aufrufen. Im Zweifel hilft hier nur
Probieren.

• Sie sollten die visPosition-Werte für VisContent-Objekte nicht ändern. Das kann
zu unerwarteten Ergebnissen, insbesondere einer Verschiebung der Position
aller beteiligten Objekte führen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 469

visSize

Die Instance-Variable visSize enthält die aktuelle Größe des Objekts.

Syntax UI-Code: visSize = width, height
width: Breite
height: Höhe

Lesen: <numVar> = <obj>.visSize(0) ’ Breite
<numVar> = <obj>.visSize(1) ’ Höhe

Schreiben: <obj>.visSize = width, height [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung

Per Default führt ein manuelles Verändern von visSize nicht automatisch zum
Neuzeichnen des Objekts in der neuen Größe. Dazu müssen Sie die Methode
MarkInvalid aufrufen.
Geben Sie als zusätzlichen Parameter TRUE an, so stellt sich das Objekt sofort
neu dar, wobei Bereiche, die jetzt nicht mehr vor Objekt überdeckt sind, ebenfalls
geupdatet werden. Beachten Sie, dass dabei im Allgemeinen auch andere Objekte
neu gezeichnet werden.

xPosition, yPosition

Diese Werte liefern die aktuelle Position des Objekts.

Syntax Lesen: <numVar> = <obj>.xPosition
<numVar> = <obj>.yPosition

xSize, ySize

Diese Werte liefern die aktuelle Größe des Objekts in Pixeln.

Syntax Lesen: <numVar> = <obj>.xSize
<numVar> = <obj>.ySize

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 470

5.3.2.2 Wenn sich die Children überlappen

Im customManageChildren-Modus kommt es häufig vor, dass sich Objekte
gegenseitig überlappen. Natürlich sollen in diesen Fällen die "oben" liegenden
Objekt auch die Maus-Ereignisse erhalten. Deshalb zeichnet R-BASIC die Objekte
in der entgegengesetzten Reihenfolge zu der, in der sie im UI-Code definiert
wurden. GEOS gibt nämlich die Mausereignisse von Objekt zu Objekt weitergibt,
und zwar in der Reihenfolge, in der sie im UI-Code vereinbart sind. Das zuerst
vereinbarte Objekt bekommt das Mausereignis zuerst zu sehen. Damit es "oben"
liegt, muss es also zuletzt gezeichnet werden.

Achtung! Wenn sich Objekte überlappen, von denen einige im gepufferten Modus
und andere im normalen (ungepufferten) Modus arbeiten, ändert sich die Zeichen-
reihenfolge, nicht aber die Reihenfolge, in der sie Mausereignisse erhalten. Eine
genauere Erläuterung dazu finden Sie weiter oben im Kapitel 5.3.1 (Ausgabe von
Grafik) bei der Beschreibung der Instancevariablen buffered. Wir setzen daher im
Folgenden voraus, dass alle Objekte im gleichen Modus arbeiten.
VisText-Objekte zählen dabei als Objekte, die im gepufferten Modus arbeiten!

Nehmen wir an, wir haben ein VisContent mit 3 Children.

VisContent DemoContent
Children = VisObj1, VisObj2, VisObj3
customManageChildren = TRUE
...

End OBJECT

Größe und Position der Children seien so, dass sie sich überlappen. Da sie von R-
BASIC in der "umgekehrten" Reihenfolge gezeichnet werden, kann sich z.B.
folgendes Bild ergeben.

DemoContent

VisObj1

VisObj2 VisObj3

Damit bekommt jedes Objekt genau dann die Mausklicks zu sehen, wenn der
Nutzer in den sichtbaren Bereich des Objekts klickt.

Natürlich können Sie auch hier Objekt-Trees verwenden. Allerdings müssen Sie
wissen, dass Mausklicks immer vom den Parents an die Children weitergeleitet
werden. Children, die ganz oder teilweise außerhalb ihrer Parents gezeichnet
werden, erhalten in den außerhalb liegenden Bereichen keine Mausklicks. Sie
müssen selbst dafür sorgen, das jedes Objekt vollständig innerhalb der

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 471

Grenzen seines Parents dargestellt wird, sonst erhält es möglicherweise
Mausklicks nicht oder nur teilweise.

Im folgenden Beispiel ist VisObj3 Child von VisObj 2. Im rot markierten Bereich
leitet das Content die Mausklicks nicht an VisObj2 weiter. Deswegen erhält
VisObj3 diesem Bereich auch keine Mausklicks.

DemoContent

VisObj1
VisObj2

VisObj3

DemoContent

VisObj1

VisObj3

VisObj2

Ein schlechtes Beispiel. VisObj3 erhält als Child von VisObj2 im roten Bereich
keine Mausklicks.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 472

5.3.3 Automatische Anordnung der Children

5.3.3.1 Überblick

Per Default verwaltet das GEOS-System die Anordnung und Größe der Objekte in
einem visual Tree automatisch. Dabei werden die Children nebeneinander (oder
untereinander) mit einem vorgegebenen Abstand angeordnet. Sie kennen das von
den Dateien im GeoManager oder von den Vorschaubildern im GrafikViewer
Gonzo.

Solange der Geometriemanager die Größe und Position der Objekte im visual
Tree verwaltet, müssen Sie keine Werte für die im letzten Kapitel besprochenen
Instancevariablen visPosition und visSize angeben. Tun Sie es doch, wird der
Geometriemanager die Werte überschreiben. Objekte, die keine Children haben,
müssen allerdings ihre Größe kennen, so dass Sie hier visSize belegen müssen.

Ansonsten steuern Sie das Verhalten des Geometriemanagers, indem Sie die
folgenden Instancevariablen belegen.

Mit Hilfe der Instancevariablen visSizeOptions und visSizeFlags können Sie,
getrennt nach x- und y-Richtung, festlegen, ob das Objekt eine feste Größe hat,
seine Größe dem Platzbedarf seiner Children anpasst oder sich an der Größe des
parent-Objekts orientiert. Mit visMinimumSize können Sie für Objekte variabler
Größe festlegen, dass das Objekt nicht beliebig klein werden kann, auch wenn die
Children weniger Platz erfordern.

Mit den Instancevariablen visChildJustification und visOrientVertically können
Sie die Ausrichtung der Children-Objekte festlegen. Sie können z.B. festlegen ob
Sie nebeneinander oder übereinander angeordnet werden sollen, ob sie zentriert,
linksbündig oder über die verfügbare Breite verteilt werden sollen, oder ob sie sich
den Platz gleichberechtigt aufteilen sollen.

Die Instancevariablen visChildSpacing, visSpacingIncludeEnds und
visMargins bestimmen den Platz zwischen benachbarten Objekten.

Schließlich erlauben AllowChildrenToWrap und visWrapCount, dass die
Children einer neuen Reihe (oder Spalte) angeordnet werden, wenn der
verfügbare Platz in die entsprechende Richtung nicht ausreicht.

Ändern Sie die in diesem Kapitel besprochenen Instancevariablen zur Laufzeit, so
werden die Objekte und ihre Children nicht sofort an ihrer neuen Position bzw. in
der neuen Größe gezeichnet. Dazu müssen Sie erst die Methode MarkInvalid
aufrufen. Der Vorteil dieser Vorgehensweise ist, dass Sie mehrere Änderungen an
der Geometrie Ihres visual Trees vornehmen können, ohne dass der Bildschirm
mehrfach aktualisiert wird und so unnötig flackert.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 473

Hinweis zur Fehlersuche
Prinzipiell sind die durch die genannten Instancevariablen gebotenen
Möglichkeiten beliebig miteinander kombinierbar. Dabei kann es aber schnell
passieren, dass Sie Forderungen stellen, die nicht gleichzeitig erfüllbar sind.
Typische Probleme sind z.B., dass ein Children-Wrapping erfordert, dass das
Objekt seine Größe selbst bestimmen kann oder dass eine horizontale Zentrierung
der Children erfordert, dass das Objekt größer ist, als der von den Children selbst
eingenommene Platz. Children-Wrapping und gleichzeitige Zentrierung der
Objekte ist folglich zunächst auch nicht möglich.
Der Geometriemanager muss in diesen Fällen eine Entscheidung treffen - oftmals
wird das Ergebnis nicht Ihren Vorstellungen entsprechen. Es übersteigt die
Möglichkeiten dieses Handbuchs bei Weitem, alle denkbaren Fälle zu besprechen.
Auf typische Fallen oder Besonderheiten wird an den entsprechenden Stellen
eingegangen. Lassen Sie sich dadurch bitte nicht abschrecken, sondern
versuchen Sie es einfach.

In vielen Fällen können Sie das Problem lösen, indem Sie ein oder mehrere
weitere VisObj-Objekte zum Gruppieren der eigentlichen Objekte einsetzen. Im
Kapitel Children Wrapping finden Sie ein Beispiel, wie das oben angesprochene
Problem (Children-Wrapping + zentrieren) auf diese Weise gelöst werden kann.
Ansonsten hilft nur systematisches Probieren. Und sehen Sie sich die Beispiele
an.

Zugehörige Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
visSizeOptions visSizeOptions = <Wert> lesen, schreiben
visSizeFlags visSizeFlags = <Wert> lesen, schreiben
visMinimumSize visMinimumSize = minX, minY lesen, schreiben
visOrientVertically visOrientVertically = TRUE | FALSE lesen, schreiben
visChildJustification visChildJustification = jHor, jVert lesen, schreiben
visChildSpacing visChildSpacing = childSp , wrapSp lesen, schreiben
visSpacingIncludeEnds lesen, schreiben

 visSpacingIncludeEnds = TRUE | FALSE
visMargins visMargins = left ,top ,right ,bottom lesen, schreiben
allowChildrenToWrap lesen, schreiben

allowChildrenToWrap = TRUE | FALSE
visWrapCount visWrapCount = numWert lesen, schreiben

MarkInvalid

Die Methode MarkInvalid bewirkt ein Neuzeichnen des Objekts, wobei - im
Gegensatz zu Redraw und Dirty - die Geometrie des visual Trees neu berechnet
wird. Dadurch werden unter Umständen auch andere Objekte neu (z.B. an
anderer Position) gezeichnet.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 474

Syntax: <obj>.MarkInvalid

Sie müssen MarkInvalid aufrufen, wenn Sie die Geometrie des visual Tree
geändert haben, z.B. nach dem Ändern der Instancevariablen visChildJustification
oder visMargins. Wenn Sie die Geometrie von mehreren Objekten geändert haben
ist es im Allgemeinen ausreichend, MarkInvalid für eins der betroffenen Objekte zu
rufen.

Eine Neuberechnung der Geometrie des visual Tree erfolgt auch, wenn der Nutzer
das zugehörige View zoomt oder scrollt. Falls Sie vergessen haben, MarkInvalid
zu rufen, kann das zu scheinbar seltsamen Effekten führen.

5.3.3.2 Festlegen der Größe

Die Bestimmung der Größe eines Objekts ist ein elementares Problem bei der
Berechnung des visual Trees. Mittels der Instancevariablen visSizeOptions und
visSizeFlags steuern Sie, wie ein Objekt seine Größe berechnen soll. Außerdem
können Sie mit visMinimumSize eine Mindestgröße für Objekte mit nicht fest
vorgegebener Größe festlegen.
Um die Größe des VisContent-Objekts festzulegen haben Sie weitere
Möglichkeiten, die im Kapitel zum VisContent-Objekt beschrieben sind.

Zugehörige Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
visSizeOptions visSizeOptions = <Wert> lesen, schreiben
visSizeFlags visSizeFlags = <Wert> lesen, schreiben
visMinimumSize visMinimumSize = minX, minY lesen, schreiben

visSizeOptions

Die Instancevariable visSizeOptions bestimmt, wie das Objekt seine Größe
berechnet. Dieser Wert wird benötigt, wenn sich das Objekt auf dem Schirm
darstellt oder wenn das Parent-Objekt seine Größe anhand der Größe seiner
Children berechnet.

Syntax UI-Code: visSizeOptions = numWert
Lesen: <numVar> = <obj>.visSizeOptions
Schreiben: <obj>.visSizeOptions = numWert

Für visSizeOptions stehen die folgenden Werte zur Verfügung. Der Defaultwert ist
VSO_AUTO_SIZE.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 475

Konstante Wert Kurzbeschreibung
VSO_AUTO_SIZE 0 Berechnungsmethode der Größe hängt von

den Umständen ab
VSO_VARIABLE_SIZE 1 Objekt passt seine Größe selbständig an
VSO_FIXED_SIZE 2 Objekt hat eine feste Größe
VSO_FIXED_WIDTH 3 Objekt hat eine feste Breite
VSO_FIXED_HEIGHT 4 Objekt hat eine feste Höhe

Im Detail haben die Werte die folgende Wirkung:

VSO_AUTO_SIZE
Das Objekt berechnet seine Größe in Abhängigkeit davon, ob es Children hat,
oder nicht. Dieses Verhalten ist für die meisten Situationen sinnvoll und
deswegen der Defaultwert.
1. Fall: Es existieren Children

Das Objekt berechnet seine Größe so, dass alle Children umfasst werden.
Außerdem werden eventuelle Randbedingungen berücksichtigt wie z.B.

* Ein VisContent soll seine Größe an die Größe des View-Objekts
anpassen (siehe Instancevariable contentAttrs)

* Ein Objekt soll sich den Platz mit seinen Geschwistern gleichmäßig
aufteilen oder seine Breite bzw. Höhe maximieren (siehe
Instancevariable visSizeFlags)

* Eventuell gesetzte visMargins
* ...

Sie müssen keinen Wert für visSize festlegen, das macht der
Geometriemanager.

2. Fall: Das Objekt hat keine Children
In diesem Fall wird der in visSize festgelegte Wert benutzt. Sie müssen
diesen Wert selbst festlegen.

VSO_VARIABLE_SIZE
Diesen Wert sollten Sie nutzen, wenn ein Objekt keine Children hat, seine
Größe aber trotzdem entsprechend den bei VSO_AUTO_SIZE erwähnten
Randbedingungen anpassen soll. Ein eventuell in visSize festgelegter Wert wird
nicht benutzt.

VSO_FIXED_SIZE
Das Objekt hat eine feste Größe, die durch den in visSize eingestellten Wert
bestimmt wird. Dieser Wert kann größer oder kleiner sein, als der von den
Children des Objekts benötigte Platz. Die Children werden dann
möglicherweise über den Rand des Objekts hinaus gezeichnet.
Sie müssen einen Wert für visSize festlegen.

Hinweis: Wenn Sie diesen Wert verwenden, funktioniert die automatische
Anordnung der Children des Objekts in einigen Fällen nur eingeschränkt, da Sie
dem Geometriemanager die Kontrolle entziehen. Versuchen Sie im Problemfall
einen anderen Wert für visSizeOptions oder verwenden Sie den Modus mit
customManageChildren = TRUE.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 476

VSO_FIXED_WIDTH
Das Objekt hat eine feste Breite. Die Höhe wird entsprechend den bei
VSO_AUTO_SIZE beschriebenen Bedingungen berechnet. Sie müssen einen
Wert für visSize festlegen.

VSO_FIXED_HEIGHT
Das Objekt hat eine feste Höhe. Die Breite wird entsprechend den bei
VSO_AUTO_SIZE beschriebenen Bedingungen berechnet. Sie müssen einen
Wert für visSize festlegen.

Hinweis:
Ein Ändern des Wertes für visSizeOptions führt nicht automatisch zur
Neudarstellung der Objekte. Dazu müssen Sie die Methode MarkInvalid
aufrufen.

visSizeFlags

Die Instancevariable visSizeFlags enthält einzelne Bits, welche die Berechnung
der Größe des Objekts beeinflussen.

Syntax UI- Code: visSizeFlags = Wert
Lesen: <numVar> = <Obj>.visSizeFlags
Schreiben: <Obj>.visSizeFlags = Wert

Für visSizeFlags stehen die folgenden Bits zur Verfügung. Bits, die nicht in der
Tabelle aufgeführt sind, werden ignoriert.

Konstante Wert (hex) Dezimalwert
VSF_EXPAND_WIDTH &H20 32
VSF_DIVIDE_WIDTH_EQUALLY &H10 16
VSF_EXPAND_HEIGHT &H02 2
VSF_DIVIDE_HEIGHT_EQUALLY &H01 1

Per Default ist keins dieser Bits gesetzt.
Ein Ändern des Wertes zur Laufzeit löst noch kein Neuzeichnen der Objekte an
ihrer neuen Position aus. Dazu müssen Sie die Methode MarkInvalid aufrufen.

Bedeutung der einzelnen Bits:

VSF_EXPAND_WIDTH
Bewirkt, dass sich das Objekt selbst so breit wie möglich macht. Damit kann
es breiter werden, als es die Children erfordern, womit z.B. eine horizontale
Zentrierung der Children (siehe Instancevariable visChildJustification)
möglich wird.

VSF_DIVIDE_WIDTH_EQUALLY
Bewirkt, dass sich die Children des Objekts den verfügbaren Platz in der
Breite gleichmäßig untereinander aufteilen. Dazu müssen alle Children

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 477

dieses Bit ebenfalls gesetzt haben. Das Objekt selbst hat oftmals zusätzlich
das Bit VSF_EXPAND_WIDTH gesetzt.

VSF_EXPAND_HEIGHT
Bewirkt, dass sich das Objekt selbst so hoch wie möglich macht. Damit kann
es höher werden, als es die Children erfordern, womit z.B. eine vertikale
Zentrierung der Children (siehe Instancevariable visChildJustification)
möglich wird.

VSF_DIVIDE_HEIGHT_EQUALLY
Bewirkt, dass sich die Children des Objekts den verfügbaren Platz in der
Höhe gleichmäßig unterinander aufteilen. Dazu müssen alle Children dieses
Bit ebenfalls gesetzt haben. Das Objekt selbst hat oftmals zusätzlich das Bit
VSF_EXPAND_HEIGHT gesetzt.

Hinweis:
Die visSizeFlags-Bits sind wirkungslos, wenn das Objekt eine feste Größe hat,
z.B. wenn das Objekt keine Children hat.
Setzen Sie dann visSizeOptions auf VSO_VARIABLE_SIZE, um eine variable
Größe zu erzwingen

Beispiel
Drei Vis-Objekte sollen sich die Breite in einem View bzw. VisContent gleichmäßig
aufteilen. Damit das funktioniert, müssen sowohl das VisContent als auch die
VisObj-Objekte die Bits VSF_EXPAND_WIDTH und VSF_DIVIDE_
WIDTH_EQUALLY gesetzt haben.
Die VisObj-Objekte haben keine Children und würden deshalb eine feste Größe
haben. Das muss in x-Richtung, aber nicht in y-Richtung geändert werden.
Deswegen bekommen Sie einen Wert für visSize und visSizeOptions wird auf den
Wert VSO_FIXED_HEIGHT gesetzt, wodurch die Breite variabel wird.

Den kompletten Code finden Sie im Beispiel "ExpandWidth Demo".

VisContent DemoContent
Children = VisObj1, VisObj2, VisObj3

visSizeFlags = \
VSF_EXPAND_WIDTH +VSF_EXPAND_HEIGHT + VSF_DIVIDE_WIDTH_EQUALLY
...

End OBJECT

VisObj VisObj1
visSize = 60, 40
OnDraw = VisObjDraw
visSizeFlags = VSF_EXPAND_WIDTH + VSF_DIVIDE_WIDTH_EQUALLY
visSizeOptions = VSO_FIXED_HEIGHT

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 478

visMinimumSize

Die Instancevariable visMinimumSize enthält die minimale Größe des Objekts,
getrennt nach x- und y-Richtung. Objekte, die ihre Größe verändern können,
können nicht kleiner werden, als in visMinimumSize angegeben. Für Objekte mit
einer festen Größe wird visMinimumSize ignoriert. Die Default-Werte für beide
Werte sind 0, d.h. das Objekt hat keine minimale Größe. Beide Werte werden in
Pixeln angegeben.

Syntax UI-Code: visMinimumSize = minWidth , minHeight
mindWidth: minimale Breite
minHeight: minimale Höhe

Lesen: <numVar> = <obj>.visMinimumSize (0) ’ minWidth
<numVar> = <obj>.visMinimumSize (1) ’ minHeight

Schreiben: <obj>.visMinimumSize = minWidth , minHeight

Ändern Sie visMinimumSize zur Laufzeit, so wird das Objekt und seine Children
nicht sofort an ihrer neuen Position bzw. in der neuen Größe gezeichnet. Dazu
müssen Sie erst die Methode MarkInvalid aufrufen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 479

5.3.3.3 Ausrichtung und Abstand der Children

Per Default werden die Children eines VisObj oder VisContent-Objekts
linksbündig, oben und mit 3 Pixeln Abstand voneinander angeordnet. Mit den in
diesem Kapitel besprochenen Instancevariablen können Sie dieses Verhalten in
weiten Grenzen ändern.

Zugehörige Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
visOrientVertically visOrientVertically = TRUE | FALSE lesen, schreiben
visChildJustification visChildJustification = jHor, jVert lesen, schreiben
visChildSpacing visChildSpacing = childSp , wrapSp lesen, schreiben
visSpacingIncludeEnds lesen, schreiben

 visSpacingIncludeEnds = TRUE | FALSE
visMargins visMargins = left ,top ,right ,bottom lesen, schreiben

visOrientVertically

Per Default werden die Children eines VisObj bzw. VisContent nebeneinander
angeordnet. Setzen Sie die Instancevariable visOrientVertically auf TRUE, wenn
Sie die Children untereinander anordnen möchten.

Syntax UI- Code: visOrientVertically = TRUE | FALSE
Lesen: <numVar> = <Obj>.visOrientVertically
Schreiben: <Obj>.visOrientVertically = TRUE | FALSE

visChildJustification

Die Instancevariable visChildJustification enthält die Information, wie die Children
des Objekts in horizontaler und vertikaler Richtung ausgerichtet sind.

Syntax UI- Code: visChildJustification = jHor, jVert
Lesen: <numVar> = <Obj>.visChildJustification (0) ’ jHor

<numVar> = <Obj>.visChildJustification (1) ’ jVert
Schreiben: <Obj>.visChildJustification = jHor, jVert

jHor: horizontale Ausrichtung, siehe Tabelle
jVert: vertikale Ausrichtung, siehe Tabelle

Prinzipiell können Sie die Werte für die horizontale Ausrichtung jHor und die
vertikale Ausrichtung jVert beliebig kombinieren. Beachten Sie aber, dass die
Randbedingungen für die gewählte Ausrichtung auch stimmen müssen. So muss

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 480

z.B. für eine horizontale Zentrierung der Children das Objekt selbst breiter sein,
als der Platz, den die Children sowieso benötigen. Es ergibt auch keinen Sinn
jVert auf J_FULL zu setzen (gleichmäßig über die ganze Höhe verteilt), wenn alle
Children nebeneinander angeordnet sind.

Für die horizontale Ausrichtung jHor stehen die folgenden Werte zur Verfügung.
Andere Werte führen zu einem Fehler. Der Defaultwert für jHor ist J_LEFT.

Konstante Wert Anordnung der Children
J_LEFT 2 linksbündig
J_RIGHT 4 rechtsbündig
J_CENTER 1 horizontal zentriert
J_FULL 32 horizontal über die ganze Breite verteilt

Für die vertikale Ausrichtung jVert stehen die folgenden Werte zur Verfügung.
Andere Werte führen zu einem Fehler. Der Defaultwert für jVert ist J_TOP.

Konstante Wert Anordnung der Children
J_TOP 8 oben bündig
J_BOTTOM 16 unten bündig
J_CENTER 1 vertikal zentriert
J_FULL 32 vertikal über die ganze Höhe verteilt

Beispiele für visChildJustification. Beachten Sie, dass vorausgesetzt ist, dass das
grau gezeichnete Parent-Objekt größer ist, als die Children erfordern.

Child 1 Child 2 Child 3

Child 1 Child 2 Child 3

visChildJustification = J_JEFT, J_TOP visChildJustification = J_FULL, J_TOP
(Defaultwert)

Child 1 Child 2 Child 3

visChildJustification = J_CENTER, J_CENTER

Hinweise:
• Um den Abstand zwischen den Children zu verändern, verwenden Sie bitte

visChildSpacing.
• Um Platz zwischen den Children und dem Rand zu lassen, verwenden Sie bitte

visMargins.
• Um die Children untereinander anzuordnen, setzen Sie die Instancevariable

visOrientVertically auf den Wert TRUE.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 481

• Wenn Sie den Wert von visChildJustification zur Laufzeit ändern, führt das nicht
zum sofortigen neu Ausrichten der Objekte. Rufen Sie dazu die Methode
MarkInvalid auf.

Beispiele mit visOrientVertically = TRUE:

Child 1

Child 2

Child 3

Child 1

Child 2

Child 3

Child 2

Child 1

Child 3

Bild 1 Bild 2 Bild 3

Bild 1: visChildJustification = J_LEFT, J_BOTTOM

Bild 2: visChildJustification = J_RIGHT, J_FULL
visSpacingIncludeEnds = TRUE

Bild 3: visChildJustification = J_RIGHT, J_FULL
visMargins = 5, 5, 5, 5

Child 2 hat zusätzlich folgende Instancevariablen gesetzt:
visSizeFlags = VSF_EXPAND_WIDTH + VSF_EXPAND_HEIGHT
visSizeOptions = VSO_VARIABLE_SIZE

visChildSpacing

Die Instancevariable visChildSpacing bestimmt den Abstand zwischen
benachbarten Children des Objekts. Der erste Wert (childSpacing) enthält den
Abstand zwischen aufeinanderfolgenden (i.a. nebeneinander liegenden) Children,
der zweite Wert (wrapSpacing) enthält den vertikalen Abstand zwischen
aufeinanderfolgenden "Zeilen" von Children. Dazu muss die automatische
Anordnung in mehreren Zeilen (Wrapping, Instancevariable allowChildrenToWrap,
Siehe Kapitel 5.3.3.4) aktiv sein.
Die Default-Werte für childSpacing und wrapSpacing sind 3. Beide Werte werden
in Pixeln angegeben.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 482

Syntax UI-Code: visChildSpacing = childSpacing , wrapSpacing
childSpacing: Abstand "benachbarter" Children
wrapSpacing: Abstand "umgebrochener" Children

Lesen: <numVar> = <obj>.visChildSpacing (0)
<numVar> = <obj>.visChildSpacing (1)

Schreiben: <obj>.visChildSpacing = childSpacing , wrapSpacing

Ändern Sie visChildSpacing zur Laufzeit, so werden die Children-Objekte nicht
sofort an ihrer neuen Position gezeichnet. Dazu müssen Sie erst die Methode
MarkInvalid aufrufen.

Achtung! Sind die Children untereinander angeordnet (siehe Instancevariable
visOrientVertically), so enthält childSpacing immer noch den Abstand aufeinander
folgender Children, also den vertikalen Abstand. WrapSpacing beschreibt
wiederum den Wrapping-Abstand, jetzt also den horizontalen Abstand.

w
ra

pS
pa

ci
ng

visMargins

childSpacing

Child 1 Child 2 Child 3

Child 4

visMargins

wrapSpacing

ch
ild

Sp
ac

in
g

Child 1

Child 2

Child 3

Child 4

Child 5

Unterschied zwischen childSpacing und wrapSpacing bei horizontaler (links) und
bei vertikaler Anordnung der Children (rechts).

visSpacingIncludeEnds

Diese Instancevariable bewirkt, wenn sie auf TRUE gesetzt ist, dass bei der
Berechnung der Geometrie zusätzlicher Platz neben (bzw. bei vertikaler
Anordnung über oder unter) den Children berücksichtigt wird.
Der Defaultwert für visSpacingIncludeEnds ist FALSE.

Syntax UI-Code: visSpacingIncludeEnds = TRUE | FALSE
Lesen: <numVar> = <obj>.visSpacingIncludeEnds
Schreiben: <obj>.visSpacingIncludeEnds = TRUE | FALSE

Ändern Sie visSpacingIncludeEnds zur Laufzeit, so werden die Objekte nicht
sofort neu angeordnet. Dazu müssen Sie erst die Methode MarkInvalid aufrufen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 483

Beispiel: Wirkung von visSpacingIncludeEnds bei horizontaler Anordnung
Child 1 Child 2 Child 3

Child 1 Child 2 Child 3

visChildJustification = J_FULL, J_TOP visChildJustification = J_FULL, J_TOP
visSpacingIncludeEnds = FALSE visSpacingIncludeEnds = TRUE

visMargins

Mit visMargins können Sie einen zusätzlichen Rand um die Children des Objekts
reservieren.

Parent-Objekt
Child 1 Child 2 Child 3

Child 4 Child 5

left

top

bottom

right

Die Default-Werte für alle visMargins-Werte sind 0. Alle Werte werden in Pixeln
angegeben.

Syntax UI-Code: visMargins = left , top , right , bottom
left: linker Rand
top: oberer Rand
right: rechter Rand
bottom: unterer Rand

Lesen: <numVar> = <obj>.visMargins (0) ’ left
<numVar> = <obj>.visMargins (1) ’ top
<numVar> = <obj>.visMargins (2) ’ right
<numVar> = <obj>.visMargins (3) ’ bottom

Schreiben: <obj>.visMargins = left , top , right , bottom

Ändern Sie visMargins zur Laufzeit, so werden die Children-Objekte nicht sofort an
ihrer neuen Position gezeichnet. Dazu müssen Sie erst die Methode MarkInvalid
aufrufen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 484

5.3.3.4 Children Wrapping

Unter Wrapping versteht man, dass Objekte automatisch ein einer neuen Zeile
oder Spalte angeordnet werden, wenn der Platz nicht mehr ausreicht.
Ist ein Wrapping nicht möglich bzw. nicht erlaubt, so werden die Child-Objekte
über die Grenzen ihres Parent-Objekts hinaus angeordnet.

Zugehörige Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
allowChildrenToWrap lesen, schreiben

allowChildrenToWrap = TRUE | FALSE
visWrapCount visWrapCount = numWert lesen, schreiben

Im Zusammenhang mit dem Children Wrapping kann es allerdings schnell zu
widersprüchlichen Geometrie-Anweisungen kommen. Einige Beispiele:

• Children-Wrapping erfordert, dass das Parent-Objekt in seiner Größe begrenzt
ist. Für VisContent-Objekte ist es deswegen meist erforderlich, die folgenden
Instancevariablen zu setzen:

contentAttrs = \
CA_SAME_WIDTH_AS_VIEW + CA_SAME_HEIGHT_AS_VIEW , 0

visSizeFlags = VSF_EXPAND_WIDTH + VSF_EXPAND_HEIGHT

• Wenn das Wrapping erlaubt ist (allowChildrenToWrap = TRUE) werden
horizontal angeordnete Children immer am oberen Rand ausgerichtet - sonst ist
unten kein Platz für die nächste Zeile. Anderslautende Einstellungen in der
Instancevariablen visChildJustification werden ignoriert. Analog werden vertikal
ausgerichtete Children immer links ausgerichtet. Das bedeutet zum Beispiel,
dass mit

visChildJustification = J_CENTER, J_CENTER
die Children nur in eine Richtung zentriert werden.
Unten finden Sie ein Beispiel, wie man dieses Problem umgehen kann.

• Hat das Objekt (VisContent oder VisObj) in eine Richtung eine feste Größe
(Instancevariable visSizeOptions = VSO_FIXED_WIDTH bzw. ..._HEIGHT), so
wird die Größe in die andere Richtung oft nicht korrekt berechnet. Das muss
kein Problem sein, da es erlaubt ist, dass sich Children außerhalb der Grenzen
ihres Parent-Objekts befinden.

• Hat das Objekt (VisContent oder VisObj) in beiden Richtungen eine feste Größe
(Instancevariable visSizeOptions = VSO_FIXED_SIZE), so wird der Parameter
wrapSpacing der Instancevariablen visChildSpacing anders interpretiert. Er
beschreibt nicht mehr den Platz zwischen den Objekten sondern bezieht die
Größe des darüber bzw. links liegende Objekts mit ein.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 485

Es übersteigt die Möglichkeiten dieses Handbuchs bei Weitem, alle denkbaren
Fälle zu besprechen. Für den Fall, dass die Children nicht so angeordnet werden,
wie Sie sich das vorstellen, hilft meist nur systematisches Probieren.
Bitte beachten Sie die Beispiele. Dort finden Sie auch Tipps, wie man das Children
Wrapping in verschiedenen Fällen konfiguriert.

allowChildrenToWrap

Diese Instancevariable erlaubt, wenn sie auf TRUE gesetzt ist, dass die Children
des Objekts "umgebrochen", d.h. in einer neuen Zeile bzw. Spalte dargestellt
werden, wenn das Objekt zu klein ist, um alle Children in einer Reihe darzustellen.
Wenn die Children horizontal dargestellt werden wird eine neue Zeile eröffnet,
werden sie vertikal dargestellt, so wird eine neue Spalte eröffnet.
Der Defaultwert für allowChildrenToWrap ist FALSE.

Syntax UI-Code: allowChildrenToWrap = TRUE | FALSE
Lesen: <numVar> = <obj>.allowChildrenToWrap
Schreiben: <obj>.allowChildrenToWrap = TRUE | FALSE

Ändern Sie allowChildrenToWrap zur Laufzeit, so werden die Objekte nicht sofort
neu angeordnet. Dazu müssen Sie erst die Methode MarkInvalid aufrufen.

visWrapCount

Mit der Instancevariablen visWrapCount legen Sie fest, dass der Children-
Umbruch (Wrapping) nach einer bestimmten Anzahl von Children erzwungen wird.
Der Defaultwert für visWrapCount ist Null, d.h. es erfolgt kein erzwungenes
Wrapping.

Syntax UI-Code: visWrapCount = value
value: Anzahl Children, nach denen

umgebrochen wird
Lesen: <numVar> = <obj>.visWrapCount
Schreiben: <obj>.visWrapCount = value

Es gibt zwei Voraussetzungen, dass visWrapCount funktioniert.
1. Das Wrapping muss erlaubt sein, d.h. die Instancevariable allow-

ChildrenToWrap muss auf TRUE gesetzt sein. Das ist per Default nicht der
Fall!

2. Das Objekt muss in die entsprechende Richtung eine variable Größe haben.
Das ist per Default der Fall.
Setzen Sie jedoch bei horizontal angeordneten Children z.B. visSizeOptions =
VSO_FIXED_WIDTH, so hat das Objekt eine vorgegebene Größe und
visWrapCount kann nicht funktionieren.

Ändern Sie visWrapCount zur Laufzeit, so werden die Objekte nicht sofort neu
angeordnet. Dazu müssen Sie erst die Methode MarkInvalid aufrufen.

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 486

Beispiel: Sie möchten 4 Vis-Objekte im Quadrat zentriert in einem View darstellen.
VisWrapCount und visChildJustification = J_CENTER funktionieren jedoch nicht
gemeinsam, so dass Sie ein weiteres Objekt als Grouping-Objekt für die VisObj-
Objekte verwenden müssen. Den kompletten Code finden Sie im Beispiel "Wrap
und Center"

VisContent DemoContent
Children = VisGroupObj
visChildJustification = J_CENTER, J_CENTER
...

End OBJECT

VisObj VisGroupObj
Children = VisObj1, VisObj2, VisObj3, VisObj4
allowChildrenToWrap = TRUE
visWrapCount = 2
...

End OBJECT

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VisGroup - 487

(Leerseite)

