R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Objekt-Handbuch

Volume 9
Visual Objekt Klassen

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis
Volume 9

5 VisualClass Objektecccooommmiiiiiismmr e 432
5.1 Die VIiSUaICIassccccccmmmmmmmmmmmmmmnnnsssnsnssssssssssssssssssssssssssssssssssssssses 432
5.2 BitmapContent ... ————— 435
5.2.1 UDEIDICK ..vveeiiiiieieieiciee ettt 435
5.2.2 Grundlegende Funktionencccoccuiiiiiiii 437
5.2.3 Erweitere FUNKLIONEN - veeoeeeeeee e 441
5.2.4 Arbeit mit transparenten Bitmapsccceeviiieniiiinn, 444
5.2.4.1 UDEIDICK v.vvvveeiieieisisieiseeee et 444
5.2.4.2 Beschreiben der Maskecccceeevieiiieiiiiiiie e, 445
5.2.4.3 Verwendung des MixMode MM_SET............cccceeennn 446
5.2.4.4 Zeichnen einer maskierten Bitmap in eine andere 448
B.2.5 Arbeit Mit Paletten ccoe vt 450
5.2.5.1 UDEIDICK: v vrveererenererereieieieteseessseserese e 450
5.2.5.2 Zugriff auf die Farbpalettecccccooeieiin. 451
5.2.5.3 Beispi€lecoooiiiiie 453
5.2.6 Direktzugriff auf die Bitmapdatencccccvviiiiiiieeeciiiiinnnne. 456
5.3 ViSGroup cccccemmmmmmmmmiiiiiiiiiiissssssssssinsssssssssssssssssssssmssssssssssssssssnnssnnns 561
5.3.1 Ausgabe von Grafikcccoceeeieniiniii 461
5.3.2 Manuelle Anordnung der Children ..., 467
5.3.2.1 GroBe und PoOSition «ceeeeiveiieiiieiecc e, 467
5.3.2.2 Wenn sich die Children Gberlappencccoeeunneee 470
5.3.3 Automatische Anordnung der Childrencccooeciveeeennnnnn. 472
5.3.3.1 UDEIDICKoveeeeveeeeeeeeteeeeteeee e, 472
5.3.3.2 Festlegen der GroBeccceeeviiiiiiiiiieii e 474
5.8.3.3 Ausrichtung und Abstand der Children 479

5.3.3.4 Children Wrapping .-..cccceeeemeeeeiiiiieciiicieec e, 484

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

5 VisualClass Objekte

5.1 Die VisualClass

Die VisualClass ist die Superclass fir alle Visual Objekt Klassen. Visual Objekte
werden innerhalb eines View-Objekts dargestellt. Sie dienen der komfortablen
Ausgabe von Grafik bzw. Text und kénnen auf Maus- und Tastaturereignisse
reagieren. Dieser Abschnitt beschreibt die gemeinsamen Eigenschaften aller
VisualClass Objekte. Ausnahmen sind explizit erwéhnt.

In R-BASIC gibt es die folgenden VisualClass Objekte:

VisGroup

VisContent

VisualClass

VisText

(VisObj) (BitmapContent) CLargeText)

+ BitmapContent: Dieses Objekt verwaltet eine editierbare Bitmap und ist die

* VisGroup

« VisContent:

- VisObj:

* VisText:

* LargeText

erste Wahl, wenn es darum geht mdglichst einfach Grafik
auszugeben.

Die VisGroup Class ist die Superclass fur VisContent und
VisObj. Sie kénnen in R-BASIC keine Objekte dieser Klasse
anlegen.

Objekte dieser Klasse kénnen selbst Grafik ausgeben und sie
kénnen Children der Klassen VisObj und VisText haben, die
ihrerseits Grafik bzw. Texte anzeigen kénnen.

Objekte dieser Klasse sind die Children eines VisContent
Objekts und kénnen selbst Children der Klasse VisObj haben.
Sie ermdglichen es zum Beispiel, Grafiken so zu organisieren,
dass einzelnen Teile mit der Maus angeklickt und separat
bearbeitet werden kdnnen.

VisText-Objekte erlauben die Anzeige und Bearbeitung von
Texten direkt in der Grafikebene. Sie missen als Children eines
VisContent eingebunden werden. VisText-Objekte werden
ausfihrlich nicht hier, sondern im Kapitel 4.10 (Text-Objekte)
besprochen.

LargeText-Objekte ermdglichen die Anzeige und Bearbeitung
von beliebig groBen Textmengen (theoretisch bei zu 2 GByte).
Sie mussen ebenfalls als Children eines VisContent
eingebunden werden. LargeText-Objekte werden ausflhrlich
nicht hier, sondern im Kapitel 4.10 (Text-Objekte) besprochen.

Visual Class - 432

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Die VisualClass stellt in R-BASIC keine eigenen Instance-Variablen oder
Methoden bereit, erledigt im Hintergrund aber viele Dinge, die unverzichtbar und
allen VisualClass Objekten gemeinsam sind. Dazu gehdéren insbesondere die
folgenden Fahigkeiten:

Mausunterstitzung

Alle VisualClass-Objekte unterstiitzten die Behandlung von Mausereignissen.
Dazu werden von VisContent, VisObj und BitmapContent die folgende Instance-
variablen und Methoden unterstiitzt. Die Text-Objekte behandeln die Maus-
ereignisse komplett selbstandig.

Actionhandler Instancevariablen Methoden
OnMouseButton sendMouseEvents GrabMouse
OnMouseMove ReleaseMouse
OnMouseOver TestInside
TestinsideAC

Die Maus-Actionhandler missen als MouseAction deklariert sein. Eine detaillierte
Beschreibung der Arbeit mit der Maus finden Sie im Handbuch "Spezielle
Themen", Kapitel 17.

Es ist sehr haufig, dass VisualClass-Objekte mit der Maus umgehen mussen. Sie
kénnen auch Text und Grafik innerhalb des Maushandlers auf den Schirm
ausgeben. Allerdings speichert das VisContent und das VisObj Objekt diese
Ausgaben nicht. Nur das BitmapContent Objekt speichert die Grafikausgaben
gleichzeitig in der Bitmap.

Tastaturhandling

Sie kbénnen sich in das Tastaturhandling aller VisClass-Objekte, auch der Text-
Objekte, einklinken, indem Sie einen Tastaturhandler schreiben. Dazu werden die
folgenden Instancevariablen und Actionhandler unterstitzt:

Actionhandler Instancevariablen Methoden
OnKeyPressed inputFlags —

Eine ausfiihrliche Beschreibung, wie man einen Tastaturhandler schreibt und was
es dabei zu beachten gilt, finden Sie im Handbuch "Spezielle Themen", Kapitel 14.

Focus und Target

Alle VisualClass Objekte interagieren mit der Focus- und Target-Hierarchie. Es ist
moglich zu Uberwachen, ob ein VisualClass-Objekt den Focus oder das Target
hat, indem man einen Focus- bzw. Target-Handler schreibt. Dazu werden die
folgenden Actionhandler und Systemvariablen unterstitzt.

Visual Class - 433

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Fur VisObj-Objekte ist wichtig, dass die Tastatureingaben an das Focus-Objekt
gehen. Das Beispiel "VisObj Keyboard Demo" verwendet die Focus-Hierarchie um
dem Nutzer ein visuelles Feedback zu geben, welches Objekt als letztes
angeklickt wurde.

Actionhandler Instancevariablen Systemvariable
OnFocusChanged — Focus
OnTargetChanged Target

Die Arbeit mit Focus und Target ist etwas fur erfahrene Programmierer und nur in
wenigen Faéllen notwendig. Die notwendigen Details dazu finden Sie in den
Kapiteln 12 (Focus und Target) und 13 (Implementieren von Menus: Bearbeiten,
TextgréBe und andere) des Handbuchs "Spezielle Themen".

Arbeit mit dem Clipboard

Alle VisualClass Objekte kénnen mit der Zwischenablage (Clipboard) kommuni-
zieren. Die Methoden ClpTestCopy, ClpTestPaste, ClpCopy und ClpPaste
werden unterstitzt. Eine detaillierte Beschreibung dieser Methoden finden Sie im
Kapitel "Arbeit mit der Zwischenablage" (Kapitel 5 im Handbuch "Spezielle
Themen"). Fur BitmapContent-Objekte und die Text-Objekte gibt es dabei keine
Einschrankungen, bei VisContent und VisObj-Objekten muss der gepufferte
Modus aktiv sein (Instancevariable buffered = TRUE). AuBerdem muissen Sie die
Methode Markinvalid aufrufen, nachdem Sie eine Grafik mit ClpPaste eingefligt
haben, damit sich der visual Tree neu darstellt.

Visual Class - 434

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.2 Das BitmapContent
5.2.1 Uberblick

Objekte der Klasse BitmapContent verwalten eine editierbare Bitmap. Bitmaps
sind digitalisierte Bilder. Sie bestehen aus einer rechteckigen Anordnung von
einzelnen Bildpunkten (Picture Element: Pixel). Jedem Pixel kann eine eigene
Farbe zugeordnet werden. In die Bitmaps der Klasse BitmapContent kann Text
oder Grafik geschrieben werden. Das BitmapContent-Objekt legt die zugehdrige
Bitmap automatisch selbst an, so dass sie sofort benutzt werden kann.

Einen kompletten Uberblick tUber die weitern Mdglichkeiten von R-BASIC, Grafik
auszugeben, finden Sie im Kapitel 2.2.

Abstammung:
VisualClass = BitmapContent

Da BitmapContent Objekte von der VisualClass abstammen, kommen Sie nicht in
den generic Tree des Programms. Stattdessen werden die Uber die Instance-
Variable "Content" eines Views mit dem View verbunden. Das View muss aber in
den generic Tree des Programms eingebunden werden.

Arbeit mit dem Clipboard

BitmapContent Objekte kénnen mit der Zwischenablage (Clipboard) kommuni-
zieren. Die Methoden (Objektanweisungen) ClpTestCopy, ClpTestPaste,
ClpCopy und ClpPaste werden unterstitzt. Eine detaillierte Beschreibung dieser
Methoden finden Sie im Handbuch "Spezielle Themen", Kapitel 5, "Arbeit mit der
Zwischenablage". Fir BitmapContent Objekte gelten dabei folgende
Besonderheiten:

+ Die Methode ClpCopy kopiert die Bitmap-Grafik sowohl als reine Bitmap als
auch als Graphic String in die Zwischenablage. Damit kénnen sowohl andere
BitmapContent Objekte als auch andere GEOS Anwendungen wie GeoWrite
oder GeoDraw die Grafik aus der Zwischenablage lesen.

+ Die Methode ClpPaste akzeptiert sowohl reine Bitmaps als auch als Graphic
Strings, wobei Bitmaps bevorzugt werden. Wird ein Graphic String aus der
Zwischenablage gelesen, so legt das Objekt eine transparente Bitmap an und
kopiert den Graphic String in diese Bitmap.

« Das Objekt passt seine GréBe automatisch an das mit ClpPaste aus der
Zwischenablage gelesene Bild an.

* Die globale Variable clipboardError wird auf FALSE oder TRUE gesetzt, je
nachdem ob ClpCopy bzw. ClpPaste erfolgreich waren oder nicht.

Mausunterstitzung

Es ist sehr haufig, dass ein BitmapContent-Objekt mit der Maus umgehen muss.
Da ein BitmapContent-Objekt in Normalfall keine Children hat muss es die
Mausereignisse selbst behandeln. BitmapContent-Objekte erben die Fahigkeiten

BitmapContent -435

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

im Umgang mit der Maus vom der VisualClass. Eine detaillierte Beschreibung der
Arbeit mit der Maus finden Sie im Handbuch "Spezielle Themen", Kapitel 17.

Tastaturhandling

BitmapContent-Objekte erben die Fahigkeiten im Umgang mit der Tastatur vom
der VisualClass. Eine ausflhrliche Beschreibung, wie man einen Tastaturhandler
schreibt und was es dabei zu beachten gilt, finden Sie im Handbuch "Spezielle
Themen", Kapitel 14.

Focus und Target

BitmapContent Objekte erben die Fahigkeiten im Umgang mit der Focus- und der
Traget-Hierarchie von der VisualClass. In den Kapiteln 12 und 13 des Handbuchs
"Spezielle Themen" finden Sie eine detaillierte Darstellung des Umgangs mit
Focus und Target.

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code

bitmapFormat bitmapFormat = x, y, n [, flags] lesen, schreiben

defaultColor defaultColor = fg, bg lesen, schreiben

DefaultScreen DefaultScreen —

suspendDraw — lesen, schreiben

editMask — lesen, schreiben
Methoden:

Methode Aufgabe

Redraw Bitmap neu zeichnen

GetBitmapHandle Handle auf die Bitmap des Objekts holen

CopyBitmap Kopie der Bitmap des Objekts erstellen

NewBitmapFromHandle | Bitmap aus Handle auslesen (ins Objekt kopieren)

GetPaletteEntry Einzelnen Paletteneintrag holen

SetPaletteEntry Einzelnen Paletteneintrag setzen

GetFullPalette Vollstandige Palette holen

SetFullPalette Vollstandige Palette setzen

PeekLine Einzelne Bitmapzeile aus dem RAM holen

PokeLine Einzelne Bitmapzeile in den RAM schreiben

BitmapContent -436

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.2.2 Grundlegende Funktionen

Beispiel Ul-Code:

Das View "MyView" enthalt ein BitmapContent, das eine 320x256 Pixel groBe
True-Color Bitmap darstellt. Es kommuniziert automatisch mit dem BitmapContent
"MyBitmap" um seine GroBe auf 320x256 Pixel zu setzen, so dass die ganze
Bitmap sichtbar ist. "DefaultScreen" stellt das BitmapContent als "Standard-
Ausgabe-Objekt" fur Grafik- und Textausgaben ein.

View MyView
vControl = HVC NO LARGER THAN CONTENT + \
HVC NO SMALLER THAN CONTENT
hControl = HVC NO LARGER THAN CONTENT + \
HVC NO SMALLER THAN CONTENT
Content = MyBitmap
END Object

BitmapContent MyBitmap
bitmapFormat = 320, 256, 24
DefaultScreen
defaultColor = BLACK, LIGHT_ CYAN
END Object

In vielen Fallen wird der im Code oben verwendete Fall (kein Scrolling der Bitmap,
kein Zoom) ausreichend sein. Ein BitmapContent ist jedoch ein vollwertiges
Content-Objekt und kann daher z.B. auch in einem scrollbaren View dargestellt
werden:

View MyView
hControl = HVC_ SCROLLABLE
vControl = HVC_SCROLLABLE
fixedSize = 200, 150
! Kleiner als das Content
Content = MyBitmap
END Object

BitmapContent MyBitmap
bitmapFormat = 320, 256, 24
DefaultScreen
defaultColor = BLACK, LIGHT CYAN
END Object

bitmapFormat

Die Instance-Variable bitmapFormat speichert die GrdBe, die Farbtiefe und
weitere Eigenschaften der Bitmap. R-BASIC unterstitzt die Farbtiefen
1 (schwarz/weiB3), 8 (256 Farben) und 24 (True Color, 16 Mio. Farben). Die
Farbtiefe 4 (16 Farben) wird von R-BASIC nicht unterstiitzt. Verwenden Sie
stattdessen 8 Bit Farbtiefe. Uber den Parameter flags kénnen Sie einstellen, ob

BitmapContent -437

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

die Bitmap transparent sein soll ("maskierte" Bitmap) und/oder eine Palette
verwenden soll. Masken und Paletten in den nachsten Abschnitten beschrieben.

Syntax Ul-Code: bitmapFormat = x, y, n [, flags]
x: Breite der Bitmap
y: Hohe der Bitmap
n: Farbtiefe (zulédssige Werte: 1, 8, 24)
flags: Transparenz und Palette. Siehe Tabelle unten.

Lesen: <numVar> = <obj>.bitmapFormat (0) " Breite
<numVar> = <obj>.bitmapFormat (1) "Hbhe
<numVar> = <obj>.bitmapFormat (2) ’ Farbtiefe
<numVar> = <obj>.bitmapFormat (3) ' flags

Schreiben: <obj>.bitmapFormat = x, y, n [, flags]

Beispiel Ul-Code: siehe oben

Far "flags" sind folgende Werte zugelassen:

Konstante Wert Bedeutung
BF_MASK 1 Transparente Bitmap
BF_PALETTE 2 Bitmap mit Palette
BF_MASK + BF_PALETTE Maske und Palette

Wenn Sie im BASIC-Code die Variable bitmapFormat belegen (schreiben), so wird
die Bitmap neu angelegt. Alle vorhandenen Informationen (Grafik, Text..) gehen
verloren. Die Bitmap darf dabei weiterhin als Content einen Views gesetzt sein,
muss es aber nicht.

Beispiele BASIC-Code:
Lesen der Werte:

DIM b, h, f as WORD

b = MyBitmap.bitmapFomat (0) ' Breite
h = MyBitmap.bitmapFomat (1) ' Hohe
f = MyBitmap.bitmapFomat (2) ' Farbtiefe

n n (1]

Print "BitmapgréBe:" b; "x"; h; "Pixel, "; f; "Bit pro Pixel"
! z.B. 320 x 256 Pixel, 24 Bit pro Pixel

Neu anlegen der Bitmap: 800 x 600 Pixel, 256 Farben
MyBitmap.bitmapFormat = 800, 600, 8

Hinweis: Das Bitmapobjekt informiert sein View automatisch Uber seine neue
GrbBe, so dass das View ggf. seine eigene GréBe anpassen kann.

BitmapContent -438

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

defaultColor

Die Instance-Variable defaultColor enthalt die Farben, die beim Initialisieren der
Bitmap (erstmaliges bzw. Neuanlegen der Bitmap) verwendet werden. AuBerdem
werden sie verwendet, wenn das Objekt zum "Screen" wird. Das tritt auf, wenn
das Objekt die Anweisung DefaultScreen im Ul-Code enthélt oder wenn es der
Systemvariablen Screen direkt zugewiesen wird (vergleiche Kapitel 2.3.1 "Die
Screen-Variable").

BitmapContent-Objekte ohne die Anweisung defaultColor verwenden die Farben
"schwarz auf weiB".

Syntax Ul-Code: defaultColor = fg, bg
fg: Vordergrund (foreground)
bg: Hintergrund (background)
fg und bg mussen Indexfarben sein. RGB-Farben
sind nicht zulassig.
Lesen: <numVar> = <obj>.defaultColor (0) 'fg
<numVar> = <obj>.defaultColor (1) "bg
Schreiben: <obj>.defaultColor = fg, bg

Beim Anlegen der Bitmap l6scht R-BASIC die Bitmap in der Hintergrundfarbe bg.
Wird das zugehdrige BitmapContent-Objekt zum Screen setzt R-BASIC die
Farben folgendermaBen:

Hintergrundfarbe: bg

Text-, Linien- und Flachenfarbe: fg
Das ist prinzipiell so, als wurde automatisch die Anweisung "COLOR fg, bg"
ausgefuhrt.

DefaultScreen

Diese Anweisung im Ul-Code bewirkt, dass das entsprechende BitmapContent als
"Standard-Ausgabe-Objekt" festgelegt wird. Es wird dazu automatisch in der
Systemvariablen Screen gespeichert (vergleiche Kapitel 2.3.1 "Die Screen-
Variable"). Alle Grafik- oder Textausgaben gehen damit automatisch auf dieses
Objekt.

Syntax Ul-Code: DefaultScreen

Beispiel Ul-Code:

BitmapContent MyBitmap
bitmapFormat = 320, 256, 24
DefaultScreen
END Object

BitmapContent -439

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Hinweis fir Profis

BitmapContent-Objekte sind auch dann voll nutzbar, wenn sie nicht mit einem
View verbunden sind, d.h. sie kénnen zum "Screen" gemacht oder als
"DefaultScreen" gesetzt werden. Natlrlich werden sie dann nicht auf dem
Bildschirm erscheinen. Grafik- und Textausgaben gehen dann "im Hintergrund" in
die Bitmap und werden sichtbar, sobald das Objekt an ein View gekoppelt wird
(z.B. mit der Zuweisung MyView.Content = MyBitmapContent). Insbesondere ist
es mdglich zwischen zwei BitmapContent Objekten hin- und herzuschalten. Sie
kénnen die eine Bitmap im Hintergrund andern, wahrend die andere sichtbar ist -
und dann die Veradnderungen mit der Zuweisung MyView.Content = .. auf "einen
Schlag" sichtbar machen.

BitmapContent - 440

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.2.3 Erweitere Funktionen

suspendDraw

Parallel zur Bitmap gehen die Grafikausgaben gleichzeitig auf den Bildschirm. Dort
wird aber weder das Vorhandensein einer Maske noch die Information, dass
eventuell "nur" die Maske bearbeitet wird, berlcksichtigt. Auch eine eventuell
geanderte Farbpalette (siehe Kapitel 5.2.5) wird nicht bertcksichtigt. Das flhrt zu
einem zeitweisen Widerspruch zwischen Darstellung auf dem Bildschirm und der
Grafik in der Bitmap. Deswegen sollten Sie, wahrend Sie in eine maskierte Bitmap
schreiben (egal ob Maske oder Bitmapdaten), die parallel dazu verlaufende
Ausgabe auf den Monitor deaktivieren. Das Gleiche gilt fur das Schreiben in eine
Bitmap mit gednderter Farbpalette. Fir diesen Zweck gibt es die Instancevariable
suspendDraw.

Syntax Ul-Code: nicht zulassig
Lesen: <numVar> = <Bitmapobj>.suspendDraw
Schreiben: <Bitmapobj>.suspendDraw = TRUE | FALSE

SuspendDraw = TRUE deaktiviert die die gleichzeitige Ausgabe der Grafikbefehle
auf den Bildschirm. Sobald suspendDraw wieder auf FALSE gesetzt wird zeichnet
sich die Bitmap neu auf den Schirm, so dass die vorgenommenen Anderungen
"auf einen Schlag" sichtbar werden.

SuspendDraw ist - unabhangig von der Existenz einer Maske oder einer Palette -
ebenfalls nitzlich, wenn Sie eine groBe Anzahl von Grafikbefehlen haben, die
entweder zu "komischen" Zwischenresultaten fihren oder sehr lange dauern. Das
zeitweise Abschalten der Ausgabe auf den Schirm beschleunigt natdrlich die
Zeichenoperationen.

Verliert ein Objekt den "Screen" Status (d.h. belegen Sie die Systemvariable
Screen neu), so wird die Suspendierung automatisch aufgehoben.

Redraw

Die Methode Redraw bewirkt, dass das Objekt die Bitmap neu auf den Bildschirm
zeichnet. Der Aufruf der Methode ist notwendig, wenn Sie einen einzelnen
Paletteneintrag geéndert haben (Methode SetPaletteEntry, siehe Kapitel 5.2.5.2)
oder eine Bitmapzeile manuell veréandert haben (Methode PeekLine, siehe Kapitel
5.2.6).

Syntax: <obj>.Redraw [drawBackground]
drawBackground: TRUE | FALSE (Default: FALSE)

Beispiel:

DemoBitmap.Redraw
DemoBitmap.Redraw TRUE

BitmapContent - 441

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

DrawBackground = TRUE bewirkt, dass sich das zum Objekt gehérende View neu
zeichnet bevor das Objekt die Bitmap neu darstellt. Damit wird der Hintergrund
geléscht. DrawBackground = TRUE ist nur erforderlich, wenn die Bitmap eine
Maske (Transparenzebene) hat und Sie mit der Methode PeekLine den von der
Maske als durchsichtig markierten Bereich geandert haben.

GetBitmapHandle

Die Methode GetBitmapHandle liefert das Handle auf die vom BitmapContent
verwaltete Bitmap. Das Handle kann zum Beispiel verwendet werden, um die
Bitmap in ein anderes Objekt oder einen GString zu zeichnen. Im Kapitel 2.8.6.4
(Bitmaps und Bitmap Handles) des R-BASIC Programmierhandbuchs finden Sie
eine Ubersicht (iber die Mdglichkeiten der Arbeit mit Bitmaphandles.

Syntax BASIC Code: <han> = <obj>.GetBitmapHandle
<han>: Variable vom Typ Handle

Alle Anderungen, die an der Bitmap im BitmapContent-Objekt gemacht werden
wirken sich auf das Handle aus. Insbesondere wird das Handle ungltig, wenn das
Objekt seine Bitmap neu anlegt (z.B. die GréBe oder die Farbtiefe &ndert oder
wenn einer der Methoden NewBitmapFromHandle oder ClpPaste aufgerufen
werden).

Das folgende Codebeispiel zeigt wie man eine Bitmap in eine BMP-Datei schreibt.

SUB WritToBMPFile(fileName$ as String)
DIM han as HANDLE
han = MyBitmap.GetBitmapHandle
WriteBitmapToFile(han, fileName$)
End SUB

CopyBitmap

Die Methode CopyBitmap fertigt eine Kopie des vom BitmapContent verwalteten
Bitmap an und liefert das Handle der Kopie. Das Handle kann verwendet werden,
um die kopierte Bitmap mit DrawBitmap() zu zeichnen. Im Kapitel 2.8.6.4 (Bitmaps
und Bitmap Handles) des R-BASIC Programmierhandbuchs finden Sie eine
Ubersicht iber die Méglichkeiten der Arbeit mit Bitmaphandles.

Die mit CopyBitmap erstellte Kopie muss mit FreeBitmap wieder freigegeben
werden.

Syntax BASIC Code: <han> = <obj>.CopyBitmap
<han>: Variable vom Typ Handle

Im Gegensatz zu GetBitmapHandle wirken sich Anderungen der Bitmap des
Objekts nicht mehr auf die kopierte Bitmap und deren Handle aus.

BitmapContent - 442

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

NewBitmapFromHandle

Die Methode NewBitmapFromHandle kopiert eine durch ein Handle referenzierte
Bitmap in das Objekt. Die alte vom Objekt gespeicherte Bitmap geht verloren. Das
Objekt stellt sich anschlieBend neu dar. Es informiert auch sein View Uber die
neue GréBe der Bitmap.

Syntax BASIC Code: <obj>.NewBitmapFromHandle <han>
<han>: Referenz auf die zu kopierende Bitmap

Das folgende Codebeispiel kopiert eine Bitmap von einem Objekt in ein anderes.

SUB CloneBitmap()
DIM han as HANDLE
han = MyBitmap.GetBitmapHandle
MyOtherBitmap.NewBitmapFromHandle han
End SUB

BitmapContent - 443

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.2.4 Arbeit mit transparenten Bitmaps

5.2.4.1 Uberblick

Der Begriff "transparente Bitmap" oder auch "maskierte Bitmap" beschreibt, dass
Teile der Bitmap durchsichtig sind, also den Hintergrund nicht verdecken. Man
muss sich das so vorstellen, dass die Bitmap auBer der eigentlichen Grafik noch
eine schwarz-weiB Bitmap gleicher GroBe enthélt. Diese heiB3t "Maske" und
bestimmt die Transparenz. Wei3e Pixel sind durchsichtig, schwarze nicht.

Bitmapgrafik Maske maskierte Bitmap

Um eine transparente Bitmap anzulegen muss das Bit 0 (zugehoriger Wert: 1,
Konstante BF_MASK) im Parameter "flags" der Instancevariable bitmapFormat
gesetzt sein. Der folgende Ul-Code definiert eine transparente 8-Bit Bitmap:

BitmapContent DemoBitmap
bitmapFormat = 300, 100, 8, BF MASK
DefaultScreen
defaultColor = YELLOW, LIGHT BLUE
END Object

Beim Anlegen einer transparenten Bitmap wird die Maske vollstandig gefullt, d.h.
die Bitmap ist zunachst nicht durchsichtig.

editMask
Normalerweise gehen Grafik- und Textausgaben direkt in die Bitmap und parallel

dazu auf den Bildschirm. Die Maske wird dabei nicht verandert. Um die Maske zu
beschreiben mussen Sie die Instancevariable editMask auf TRUE setzen.

Syntax Ul-Code: nicht zulassig
Lesen: <numVar> = <Bitmapobj>.editMask
Schreiben: <Bitmapobj>.editMask = TRUE | FALSE

Danach gehen alle Zeichenoperationen in die Maske und die "normalen" Bilddaten
bleiben unberlhrt.

suspendDraw

Parallel zur Bitmap gehen die Grafikausgaben gleichzeitig auf den Bildschirm. Dort
wird aber das Vorhandensein einer Maske nicht bericksichtigt. Deswegen sollten

BitmapContent -444

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Sie, wahrend Sie in eine maskierte Bitmap schreiben (egal ob Maske oder
Bitmapdaten) die parallel dazu verlaufende Ausgabe auf den Monitor deaktivieren.
Fiar diesen Zweck gibt es die Instancevariable suspendDraw. SuspendDraw =
TRUE deaktiviert die die gleichzeitige Ausgabe der Grafikbefehle auf den
Bildschirm. Sobald suspendDraw wieder auf FALSE gesetzt wird zeichnet sich die
Bitmap neu auf den Schirm, so dass die vorgenommenen Anderungen "auf einen
Schlag" sichtbar werden.

Wichtige Hinweise

+ Masken werden nicht gescrollt. Werden die Bitmapdaten nach einer Print-
Anweisung automatisch nach oben verschoben (Scrolling), so bleibt die Maske
davon unberthrt. Unter Umstanden kann es sinnvoll sein, in diesem
Zusammenhang suspendDraw zu verwenden.

+ Bei der Ausgabe von Texten (Print-Befehl) wird der Hintergrund im Normalfall
mit der Hintergrundfarbe geléscht. Wenn dies stort setzen Sie die Hinter-
grundfarbe auf "transparent":

Paper BG TRANSPARENT

+ Wichtig! Das GEOS-System unterstutzt transparente Bitmaps auch fir 24-Bit
Bitmaps, der Versuch, etwas in die Maske zu zeichnen flhrt jedoch zu einem
Crash. Sie kdnnen die Methoden PeekLine und PokeLine verwenden, um die
Maske von 24-Bit-Bitmap zu bearbeiten.

5.2.4.2 Beschreiben der Maske

Da es sich bei der Maske aus Sicht des Systems um eine schwarz-wei3-Bitmap
handelt sollten Sie beim Zeichnen in die Maske (editMask = TRUE) nur die Farben
Schwarz (macht den Bereich undurchsichtig) oder Wei3 (macht den Bereich
durchsichtig) verwenden. Flachen in anderer Farbe (nicht aber Linien und Texte)
werden entsprechend der Helligkeit der Farbe gerastet.

Alternativ zu den Farben kann man das Feld "mixMode" der globalen Variablen
"graphic" mit einem passenden Wert belegen. Mehr dazu im 2. Beispiel.

Die folgenden Beispiele verwenden die Kommandos ScreenSaveState (speichern
aller Grafikdaten wie Farben, Font, mixMode usw.) und ScreenRestoreState
(wiederherstellen der gespeicherten Werte). AuBerdem wird die fertige Bitmap ins
Clipboard kopiert (DemoBitmap.ClpCopy), von wo aus sie in z.B. GeoWrite flr
dieses Handbuch verwendet werden kann.

Der Befehl CLS wirkt - wie alle anderen Grafikbefehle - entweder auf die
Bitmapdaten (editMask = FALSE) oder auf die Maske (editMask = TRUE). Ist
editMask = TRUE l6scht er die Maske immer (alles durchsichtig), egal welche
Farbe Sie eingestellt haben.

BitmapContent - 445

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

Beispiel: Zeichenoperationen in die Maske

Sub InkDemo ()

ScreenSaveState !
DemoBitmap.suspendDraw = TRUE '’
DemoBitmap.editMask = TRUE ’
Cls

Ink BLACK

FillEllipse 0, 0, 150, 100

Ink WHITE

FillRect 50, 25, 100, 75

DemoBitmap.editMask = FALSE !
ScreenRestoreState !

FillRect
FillRect
FillRect
FillRect

0,
75,
0,
75,

0,
0,

50,
50,

75, 50, GREEN
150, 50, RED
150, 100, BLUE
150, 100, CYAN

DemoBitmap.suspendDraw FALSE

DemoBitmap.ClpCopy

END Sub

Grafikdaten sichern
Bildschirm tot legen

Maske editieren

Maske ist fertig

Grafikeinstellungen
wiederherstellen

" alles neu zeichnen

text text text.t

ext text
text
ttex text

text tex’
text t

al L

text tm

Die vom Code oben erzeugte Bitmap vor einem Text; texttext

¥ text

o LeXt text

Anmerkung: Da einige Druckertreiber (z.B. Postscript Color) transparente Bitmaps nicht korrekt
drucken wurden alle transparenten Bitmaps in diesem Handbuch zuvor in GeoDraw vor einen Text
gelegt und diese Kombination in eine (druckbare) unmaskierte Bitmap konvertiert.

5.2.4.3 Verwendung des MixMode MM_SET

Nicht immer kann man sicherstellen, dass nur die Farben Schwarz und Weil3
verwendet werden, z.B. wenn man einen GString (siehe R-BASIC Programmier-
handbuch, Kapitel 2.8.5) in eine maskierte Bitmap schreiben will oder wenn die
auszugebende Grafik in einer SUB steckt, die selbst Farben einstellt:

Sub PaintHouse()

ScreenSaveState
graphic.linewidth
Ink LIGHT BLUE
FillRect 10, 50,
Ink WHITE
FillRect 15,
FillRect 35,

5
100, 80 !

65 !
78 !

55,
55,

25,
45,

das Haus

ein Fenster
die Tir

BitmapContent - 446

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

FillRect 55, 55, 65, 65 " ein
FillRect 75, 55, 85, 65 " ein
Ink LIGHT GREEN

Line 10, 50, 55, 10 " das

Line 55, 10, 100, 50

Ink LIGHT RED

FillEllipse 90, 5, 110, 25 " die
ScreenRestoreState

END Sub

Fenster
Fenster

Dach

Sonne

Um das Haus transparent in eine Bitmap zu zeichnen muss diese Sub sowohl far
die Bitmapdaten als auch fur die Maske gerufen werden. Dabei wiirden jedoch die
farbigen Flachen gerastert (siehe Bild). Hier hilft das Einstellen des passenden

"mixMode".

Dazu belegt man das Feld "mixMode" der
globalen Variablen "graphic" mit dem
passenden Wert. Fur uns sind an dieser
Stelle die Modes MM_SET, MM_CLEAR
und MM_COPY interessant.

text text text text text text
text text.iexitext text text
text text text text text text
text texi text text text text
text text text text text text

+ graphic.mixMode = MM_COPY ist der Normalfall.

+ graphic.mixMode = MM_SET bewirkt, dass die aktuelle Farbe ignoriert wird
und alle Ausgaben in schwarz erfolgen. Bereiche der Maske, die in diesem
Modus beschrieben werden, werden undurchsichtig.

» graphic.mixMode = MM_CLEAR bewirkt, dass die aktuelle Farbe ignoriert
wird und alle Ausgaben in weiB3 erfolgen. Bereiche der Maske, die in diesem
Modus beschrieben werden, werden transparent. Der Befehl CLS nutzt
diesen Modus automatisch um die Maske zu l6éschen (wenn editMask =

TRUE ist).

Achtung! MM_CLEAR wirkt nicht auf Textausgaben! Fur transparente
Buchstaben missen Sie den "normalen" MixMode MM_COPY und die Farbe

Weil3 verwenden.

Beispiel: Verwendung des MixMode MM_SET. Beachten Sie, dass es egal ist, ob
man erst die Maske oder erst die Bitmapdaten zeichnet.

Sub MixModeExample()
DIM mmSaved

mmSaved = graphic.mixMode
graphic.mixMode = MM SET

DemoBitmap.suspendDraw = TRUE ' Schirmausgabe abschalten

Cls ' Bitmapdaten loschen
PaintHouse ' Farbige Grafik zeichnen
DemoBitmap.editMask = TRUE ' Maske editieren

Cls ' Maske loschen
PaintHouse
graphic.mixMode = mmSaved ' MixMode restaurieren

BitmapContent - 447

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

DemoBitmap.editMask = FALSE
DemoBitmap.suspendDraw = FALSE

DemoBitmap.ClpCopy
END Sub

' Maske fertig
" Alles neu zeichnen

Der Code erzeugt nun wie gewlnscht das
rechts dargestellte Bild.

Beispiel: Das Resultat vom vorherigen
Beispiel soll vollstandig einfarbig gefarbt
werden. Das ist sehr einfach. Wir I6schen
die Bitmapdaten ohne die Maske zu
verandern.

text text text text text text
text text. texovtext text text
text tevt tavt tact fext text
text te {t text text
text text text text text text
text text text text text text
text text texitex. text text
text text'rext test text text
text tex . text text
text text text text text text

DemoBitmap.suspendDraw = TRUE
Paper GREEN

CLS

DemoBitmap.suspendDraw = FALSE

5.2.4.4 Zeichnen einer maskierten Bitmap in eine andere

Wird eine maskierte Bitmap in eine andere Bitmap gezeichnet so werden die
Masken natirlich bericksichtigt. Der folgende Code zeichnet eine Bitmap (aus
dem Objekt DemoBitmap2) in den Screen DemoBitmap. Weil das Zielobjekt
(DemoBitmap) ebenfalls eine maskierte Bitmap enthalt setzen wir wahrend der
eigentlichen Zeichenanweisung die Instancevariable suspendDraw auf TRUE.

SUB DoDrawBitmap/()
DIM h as Handle

DemoBitmap.suspendDraw = TRUE

h = DemoBitmap2.GetBitmapHandle
DrawBitmap h, 0, 0
DemoBitmap.suspendDraw = FALSE

End SUB

BitmapContent - 448

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

Das Ergebnis sieht so aus. Die Maske der Zielbitmap wurde nicht verandert.

DemoBitmap (Screen) DemoBitmap2

Wenn wir die Maske der Zielbitmap anpassen wollen
(siehe Bild rechts) missen wir explizit in die Maske der
Zielbitmap schreiben. Dazu setzen wir editMask auf
TRUE und stellen den MixMode MM_SET ein, sonst
werden die roten Kreise gerastert. MixMode =
MM_COPY stellt anschlieBend den Ausgangszustand
wieder her.

Nach DoDrawBitmap

Tipp: Wir brauchen in diesem speziellen Fall suspendDraw nicht auf TRUE zu
setzen, weil wir den undurchsichtigen Teil der Maske ergédnzen und genau diesen
Bereich mit Grafik flllen, so dass der Bildschirm automatisch auf dem korrekten

Stand ist.

SUB DoDrawBitmap()
DIM h as Handle

h = DemoBitmap2.GetBitmapHandle
Drawbitmap h, 0, O

DemoBitmap.editMask = TRUE
graphic.mixMode = MM SET
DrawBitmap h, 0, O
graphic.mixMode = MM COPY
DemoBitmap.editMask = FALSE

End SUB

' hier nicht erforderlich: DemoBitmap.suspendDraw =

' hier nicht erforderlich: DemoBitmap.suspendDraw =

TRUE

FALSE

BitmapContent - 449

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.2.5 Arbeit mit Paletten

5.2.5.1 Uberblick

Unter GEOS bzw. R-BASIC werden Bitmaps mit folgenden Farbtiefen unterstutzt:

Bits pro Pixel Farben Anmerkung
1 2 Immer Schwarz/Weil3
4 16 Von R-BASIC nicht unterstitzt
8 256 Palette mdglich
24 True Color

Eine Bitmap mit 24 Bit pro Pixel enthalt fir jedes Pixel 3 Byte, je eines fur die
Farben Rot, Grin und Blau. Da jedes Byte die Werte 0 bis 255 annehmen kann
ergeben sich etwa 16,8 Millionen mogliche Farben.

Wenn eine Bitmap weniger als 3 Byte pro Pixel speichert muss das System
entscheiden, welche der tber 16 Millionen mdglichen Farben dargestellt werden
sollen. Das wird Uber eine sogenannte Farbpalette realisiert. Die Palette ist eine
Liste von bis zu 256 Eintréagen zu je drei Byte - jeweils eins fir Rot, Griin und Blau.
Der "Farbwert" des Pixels entspricht dann der Nummer (dem sogenannten Index)
des Eintrags in der Liste. Die Z&hlung beginnt dabei immer mit Null.

Zur Verwaltung der Palette sind in R-BASIC die folgenden Strukturen definiert:

STRUCT PaletteEntry
rt, gn, bl as BYTE
End Struct

STRUCT FullPalette
item[255] as PaletteEntry
END Struct

PaletteEntry enthalt einen einzelnen Paletteneintrag, FullPalette enthalt die
vollstandige Palette einer 256-Farb-Bitmap. Erlaubte Werte far den Index sind O
bis 255. Die Palettendaten werden in der GEOS-Bitmap selbst gespeichert. R-
BASIC erlaubt den Zugriff auf die Palette und deren Anderung. Wenn die Bitmap
keine eigene Palette hat nutzt das System die GEOS-Standard-Palette. Dann
kann R-BASIC die Farben nicht andern.

Um eine Bitmap mit Palette anzulegen muss im vierten Parameter (flags) der
Instancevariablen bitmapFormat das Bit 1 (zugehoériger Wert: 2, Konstante
BF_PALETTE) gesetzt sein. Das System belegt dann die Palettendaten der
Bitmap mit der Standardpalette. Diese Daten kénnen spéater von R-BASIC aus
geandert werden. Das passiert individuell fir jede Bitmap, so dass Sie in einem
Programm mehrere Bitmaps mit verschiedenen Paletten gleichzeitig anzeigen
kdnnen.

BitmapContent -450

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

' Parameter flags: Transparenz und Palette

bitmapFormat = 640, 480, 8 ' keine eigene Palette
'’ nutzt Standardpalette
bitmapFormat = 640, 480, 8, BF PALETTE ' Palette

bitmapFormat = 640, 480, 8, BF_PALETTE + BF_ MASK
' Palette + Transparenz

Die Verwendung einer Palette ist nur bei 8-Bit-Bitmaps sinnvoll. R-BASIC
unterstutzt zwar den Zugriff auf die Palette einer schwarz/wei83 Bitmap, das
System ignoriert die Palettendaten aber. Es zeichnet monochrome Bitmaps immer
in schwarz/weif.

5.2.5.2 Zugriff auf die Farbpalette

GetFullPalette

Die Methode GetFullPalette liest die Palette einer Bitmap aus. Enthalt die Palette
der Bitmap weniger als 256 Eintrdge werden die restlichen Eintrage mit Null
belegt. Enthalt die Bitmap keine Palette kommt es zu einem Laufzeitfehler.

Syntax: <pal> = <obj>.GetFullPalette
<pal>: Variable vom Typ FullPalette

SetFullPalette

Die Methode SetFullPalette belegt die Palette einer Bitmap. Das Objekt stellt sich
automatisch neu dar. Enthéalt die Palette der Bitmap weniger als 256 Eintrage
werden die restlichen Eintrage ignoriert. Enthalt die Bitmap keine Palette kommt
es zu einem Laufzeitfehler.

Syntax: <obj>.SetFullPalette <pal>
<pal>: Variable oder Ausdruck vom Typ FullPalette

GetPaletteEntry

Die Methode GetPaletteEntry liest einen einzelnen Paletteneintrag einer Bitmap
aus. Enthélt die Bitmap keine Palette kommt es zu einem Laufzeitfehler.

Syntax: <entry> = <obj>.GetPaletteEntry (index)
<entry>: Variable vom Typ PaletteEntry
index: Index des auszulesenden Paletteneintrags. Es muss gelten
0 <= index < Anzahl der Paletteneintrage der Bitmap,
ansonsten kommt es zu einem Laufzeitfehler.

BitmapContent - 451

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

SetPaletteEntry

Die Methode GetPaletteEntry setzt einen einzelnen Paletteneintrag einer Bitmap
aus. Das Obijekt stellt sich aber nicht automatisch neu dar. Sie missen dazu die
Methode Redraw aufrufen. Enthalt die Bitmap keine Palette kommt es zu einem
Laufzeitfehler.

Syntax: <obj>.SetPaletteEntry <entry>, index
<entry>: Variable oder Ausdruck vom Typ PaletteEntry
index: Index des auszulesenden Paletteneintrags. Es muss gelten
0 <= index < Anzahl der Paletteneintrage der Bitmap,
ansonsten kommt es zu einem Laufzeitfehler.

Tipp: GetPaletteEntry und SetPaletteEntry laufen nur geringfligig schneller als
SetFullPalette und GetFullPalette. Wenn Sie mehrere Paletteneintrdge andern
wollen ist deshalb haufig effektiver, die komplette Palette zu holen, die zu andern
und sie dann komplett neu zu setzen.

Redraw

Die Methode Redraw (ausfiihrliche Beschreibung siehe vorne) bewirkt, dass das
Objekt die Bitmap neu auf den Bildschirm zeichnet. Der Aufruf der Methode ist
notwendig, wenn Sie einen einzelnen Paletteneintrag geandert haben (Methode
SetPaletteEntry).

BitmapContent - 452

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.2.5.3 Beispiele

Die Farbkonstanten von R-BASIC basieren auf der GEOS Standardpalette. Zum
Beispiel hat BLACK den Wert Null, BLUE den Wert 1 und WHITE den Wert 15.
Wenn Sie beispielsweise dem Palettenwert mit dem Index 1 die RGB-Werte der
Farbe WeiB3 zuweisen, werden alle Pixel, die den Index 1 haben, nicht mehr blau,
sondern weifl3 dargestellt. Auf diese Weise kann man die Farben einer Bitmap sehr
schnell andern.

Der folgende Code ersetzt den Paletteneintrag fur die Farbe Schwarz (Index Null)
durch einen Grauwert. Die erste Variante liest und setzt die vollstidndige Palette.
Die Methode SetFullPalette zeichnet die Bitmap automatisch neu. In der zweiten
Variante lesen und schreiben wir genau einen Paletteneintrag. Well
SetPaletteEntry die Bitmap nicht neu zeichnet mussen wir die Methode Redraw
aufrufen.

SUB ModifyBlack()

DIM pal as FullPalette
pal = DemoBitmap.GetFullPalette
pal.item(0).rt = 120
pal.item(0).gn = 120
pal.item(0).bl = 120
DemoBitmap.SetFullPalette pal

End SUB

SUB ModifyBlack2()
DIM pe as PaletteEntry
pe = DemoBitmap.GetPaletteEntry (0)

pe.rt = 120
pe.gn = 120
pe.bl = 120

DemoBitmap.SetPaletteEntry pe, 0
DemoBitmap.Redraw
End SUB

Der folgende Code senkt alle Farbwerte der Palette auf 80% ab. Dadurch wird das
Bild deutlich dunkler.

SUB MakeDarker()
DIM pal AS FullPalette
DIM n
pal = DemoBitmap.GetFullPalette
FOR n = 0 TO 255
'’ Rot, Griin und Blauwert verringern
pal.item(n).rt 0.8 * pal.item(n).rt
pal.item(n).gn 0.8 * pal.item(n).gn
pal.item(n).bl 0.8 * pal.item(n).bl
NEXT n
DemoBitmap.SetFullPalette pal

End Sub

BitmapContent -453

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Das folgende Beispiel tauscht die Palettenwerte fur die Farben Blau und WeiB.
Alles was bisher weil3 war erscheint dann blau und umgekehrt. Die erste Variante
verwendet die Methoden GetPaletteEntry und SetPaletteEntry. Deswegen ist der
Aufruf der Methode Redraw erforderlich. Variante Zwei liest und schreibt die
vollstdndige Palette. Der Aufruf von SetFullPalette stellt die Bitmap automatisch
mit den ge&nderten Farben dar.

SUB SwitchColors()
DIM pel, pe2 AS PaletteEntry

' originale Palettenwerte holen
pel = DemoBitmap.GetPaletteEntry(WHITE)
pe2 = DemoBitmap.GetPaletteEntry(LIGHT BLUE)

' Jeweils dem anderen Farbwert zuweisen
DemoBitmap.SetPaletteEntry(pel, LIGHT BLUE)
DemoBitmap.SetPaletteEntry(pe2, WHITE)

' Objekt neu zeichnen. Das passiert nicht automatisch!
DemoBitmap.Redraw
End SUB

SUB SwitchColors2 ()
DIM pal as FullPalette
DIM pe AS PaletteEntry

pal = DemoBitmap.GetFullPalette

pe = pal.item(WHITE)

pal.item(WHITE) = pal.item(LIGHT BLUE)
pal.item(LIGHT BLUE) = pe
DemoBitmap.SetFullPalette pal

End SUB

Betrachten wir nun den folgenden Code. Wenn wir ihn ausfihren nachdem wir die
SUB SwitchColors aufgerufen haben, sollte eine weiBe Line erscheinen, weil dem
Index der Farbe Blau (LIGHT_BLUE) jetzt die RGB-Werte der Farbe WeiB

zugeordnet sind.

Line 10, 10, 200, 200, LIGHT BLUE

Wir sehen jedoch eine blaue Linie. Erst wenn wir das Fenster mit der Bitmap auf
dem Schirm verschieben (und sich die Bitmap deswegen neu zeichnen muss) wird
die Linie weil3. Warum? Jeder Grafikbefehl (auch Textausgaben) gehen nicht nur
in die Bitmap, sondern parallel dazu auch direkt auf den Schirm. Bei der Ausgabe
auf den Schirm wird die gednderte Palette aber nicht berucksichtigt, sie ist nur der
Bitmap bekannt. Deswegen sollten sie wahrend der Ausgabe von Grafik und Text
in eine Bitmap mit ge&nderter Palette die parallele Ausgabe auf den Bildschirm
abschalten. Fur diesen Zweck gibt es die Instancevariable suspendDraw. Der
folgende Code erzeugt sofort gewlinschte weiBe Linie:

BitmapContent - 454

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

DemoBitmap.suspendDraw = TRUE

Line 10, 10, 200, 200, LIGHT BLUE

' <hier weitere Grafik- und Textausgaben>
DemoBitmap.suspendDraw = FALSE

DemoBitmap.suspendDraw = TRUE schaltet die parallele Ausgabe der Grafik auf
den Schirm ab. Die Bitmap wird unsichtbar im Hintergrund beschrieben. Demo-
Bitmap.suspendDraw = FALSE hebt die Suspendierung auf und zeichnet die
Bitmap neu auf den Schirm, so dass alle Anderungen sichtbar werden.

Eine &hnliche Situation tritt auf, wenn wir eine Bitmap in eine andere Bitmap
zeichnen, falls die Paletten nicht Ubereinstimmen. Oder wir zeichnen eine RGB-
Grafik (Bitmap oder Grafikbefehl) in die 8-Bit Bitmap. Das System ersetzt dann die
nicht in der Palette befindlichen Farben durch "ahnliche" Farben, die in der Palette
der Zielbitmap vorhanden sind. Auf dem Schirm erscheinen jedoch die originalen
Farben. Auch hier sollten wir suspendDraw einsetzen. Der folgende Code geht
davon aus, dass DemoBitmap1 der Screen ist.

SUB CopyBitmap2ToScreen

DIM h as Handle
DemoBitmapl.suspendDraw = TRUE
h = DemoBitmap2.GetBitmapHandle

DrawBitmap h, 10, 20 ' Handle, Koordinaten
DemoBitmapl.suspendDraw = FALSE
End SUB

Bitmap mit geé&nderter Palette Farben, nachdem die Bitmap links in
(DemoBitmap?2) die Bitmap DemoBitmap1 mit
Standardpalette gezeichnet wurde.

BitmapContent -455

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.2.6 Direktzugriff auf die Bitmapdaten

Es ist moglich, auf die einzelnen Pixelzeilen einer Bitmapgrafik direkt zuzugreifen.
Dazu kann man mit der Methode PokeLine eine komplette Grafikzeile in den
virtuelle RAM schreiben, dort die einzelnen Pixel modifizieren und die Zeile dann
mit der Methode PeekLine zurlick in die Bitmap kopieren. Insbesondere ist es auf
diese Weise moglich, die Maskendaten einer 24-bit Bitmap zu andern.

Man sollte sich jedoch der Tatsache bewusst sein, dass die Manipulation von
einigen Tausend Pixeln sehr lange dauern kann.

PokelLine
Die Methode PokelLine kopiert eine komplette Pixelzeile aus der Bitmap in den

virtuellen R-BASIC RAM. Falls die Bitmap eine Maske enthalt werden die zur Zeile
gehdrenden Maskendaten ebenfalls kopiert.

Syntax: <obj>.PokeLine adr, line
adr: Adresse im virtuellen RAM (0 ... 65535)
Es werden so viele Bytes geschrieben wie die Zeile enthalt
line: Zeilennummer der in den RAM zu schreibenden Zeile
Erlaubte Werte: 0 .. H6he - 1

PeekLine

Die Methode PeekLine kopiert eine komplette Pixelzeile aus dem virtuellen R-
BASIC-RAM in die Bitmap des Objekts. Falls die Bitmap eine Maske enthalt
werden die zur Zeile gehérenden Maskendaten ebenfalls Uberschrieben. Die
Bitmap stellt sich nicht neu dar, Sie missen dazu die Methode Redraw aufrufen.

Syntax: <obj>.PeekLine adr, line
adr: Adresse im virtuellen RAM (0 ... 65535)
Es werden so viele Bytes aus dem RAM gelesen, wie die
Zeile fasst.
line: Zeilennummer der zu beschreibenden Bitmap-Zeile
Erlaubte Werte: 0 .. HOhe - 1

Beispiel: Der folgende Code kopiert die die ersten 50 Zeilen einer Bitmap in die
Zeilen 100 bis 149. Die Adresse im virtuellen RAM ist egal, deswegen wéahlen wir
Adresse 0.

DIM n

FOR n = 0 TO 49
DemoBitmap.PokeLine 0, n
DemoBitmap.PeekLine 0, 100+n

NEXT n

DemoBitmap.Redraw

BitmapContent - 456

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Redraw

Die Methode Redraw (ausflihrliche Beschreibung siehe vorne) bewirkt, dass das
Objekt die Bitmap neu auf den Bildschirm zeichnet. Der Aufruf der Methode ist
notwendig, wenn Sie eine Bitmapzeile manuell veradndert haben (Methode
PeekLine). Falls die Bitmap eine Maske (Transparenzebene) hat und Sie mit der
Methode PeekLine den von der Maske als durchsichtig markierten Bereich
geandert haben muissen Sie Redraw mit dem Parameter TRUE aufrufen, damit
der Hintergrund der Bitmap neu dargestellt wird und die geéanderte Maske
erkennbar wird.

Aufbau der Bitmapdaten

Bitmap Pixel0 Pixel 1 Pixel 2

Zeile 0 __/7

Zeile 1 —»

Um die Pixelzeilen bearbeiten zu kénnen missen Sie die Struktur der Bitmap-
daten kennen. Wir nehmen zunéchst an, dass die Bitmap keine Maske hat. Je
nach Farbtiefe wird eine unterschiedliche Anzahl von Bits fir ein Pixel bendtigt.
Daraus ergibt sich die Anzahl der Bytes fir eine Pixelzeile.

Farbtiefe Bits pro Pixel Bytes pro Zeile

Monochrom 1 8 Pixel werden zu einem Byte zusammen-
gefasst. Es wird auf ganze Bytes gerundet.
anzahl = INT ((breite+7)/ 8)

256 Farben 8 anzahl = breite
True Color 24 anzahl = 3 * breite

Grundséatzlich liegen die in der Zeile links liegenden Pixel auf den niedrigen
Adressen im virtuellen RAM. Bei monochromen Bitmaps liegt das ganz linke Pixel
auf dem hdéchstwertigen Bit des Bytes. True-Color Bitmaps speichern die Farb-
werte in der Reihenfolge Rot-Grin-Blau. Daraus ergeben sich die folgenden
Zusammenhange. In den Bildern bezeichnet "adr" Adresse "adr", die an die
Methoden PeekLine bzw. PokeLine Ubergeben wurde.

BitmapContent -457

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Monochrome Bitmap:
Bit 7 ist das héherwertigste Bit, Bit O ist das niederwertigste Bit.

Pixel O Pixel 1 Pixel 2

Bit 0 A

Bit 7 ™\ v \ v
Byte auf adr + 0 Byte auf adr + 1 Byte auf adr + 2

256 Farben Bitmap:

Pixel 0 Pixel 1 Pixel 2

[

Byte auf adr + 0 T Byte auf adr + 2
Byte auf adr + 1

True Color Bitmap:

Pixel 0 Pixel 1 Pixel 2
A\ \ \
/
gn | bl gn | bl gn | bl
Byte auf adr + 0 Byte auf adr + 2

Byte auf adr + 1

Aufbau der Bitmapdaten mit Maske

Wenn die Bitmap eine Maske hat sind die Maskendaten flr jede Zeile direkt vor
den Grafikdaten der Zeile angeordnet. Der Aufbau der Maskendaten entspricht
dem einer monochromen Bitmap. Ein gesetztes Bit bedeutet, dass die Grafikdaten
des Pixels dargestellt werden sollen. Ist das Bit nicht gesetzt (also Null) ist das
Pixel transparent. Die Gr6Be der Maskendaten (Anzahl der Bytes) berechnet sich
Zu:

maskLen = INT ((breite+7) /8)

Die Methoden PokeLine und PeekLine kopieren jeweils sowohl die Maskendaten
als auch die Grafikdaten.

BitmapContent -458

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Maskendaten Grafikdaten
/\ /\
/ "% AN
Byte auf adr + 0 |
Maskendaten \
fur Pixel O bis 7 \

Byte auf adr + maskLen
Erstes Byte der Grafikdaten
Bedeutung ist Abh&nging
von der Farbtiefe

Byte auf adr + 2
Byte auf adr + 1
Maskendaten Maskendaten

fir Pixel 8 bis 15 fur Pixel 16 bis 23

Das folgende Codefragment belegt die Maskendaten einer Bitmap mit dem Bit-
muster 00001111 (= 15 dezimal). Dadurch erscheint die Grafik gestreift. Die
Farbtiefe der Grafik spielt dabei keine Rolle, da sie die GréBe der Maskendaten
nicht beeinflusst.

@ (I [

Hinweis: Je nachdem, welche Grafikdaten die Maske vorher verdeckt hat kann
das linke oder das rechte Bild entstehen.

DIM width, height, x, y, masklen

width = DemoBitmap.bitmapformat(0)
height = DemoBitmap.bitmapformat(1l)
maskLen = INT ((width+7)/8)

FOR y = 0 TO height-1
DemoBitmap.PokeLine 0, y
FOR x = 0 TO maskLen - 1

Poke x, 15 ’ &B00001111
NEXT x
DemoBitmap.PeekLine 0, y
NEXT y

DemoBitmap.Redraw

Ein etwas komplexeres Beispiel

Die Tatsache, dass das Format der Maskendaten identisch mit dem einer
monochromen Bitmap ist ermdglich es, auf relativ einfache Weise die Maske einer
24 Bit Bitmap zu bearbeiten. Das System unterstltzt das leider nicht.

Nehmen wir an, wir haben eine 24 Bit Bitmap der GréBe 256 x 192 Pixel, die eine
Maske enthalt (Objekt DemoBitmap). Die Idee hinter dem folgenden Code ist, eine
ebenso groBe monochrome Bitmap ohne (!) Maske (DemoBitmap2) zu ver-
wenden, diese mit Grafikbefehlen zu bearbeiten und dann die Daten der
monochromen Bitmap in die Maske der 24 Bit Bitmap zu kopieren. Dieses

BitmapContent -459

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Vorgehen setzt voraus, dass beide Bitmaps exakt die gleichen Abmessungen
haben.

Der folgende Code bearbeitet zunachst die monochromen Bitmap. WeiBe Pixel
werden spater transparent, schwarze Pixel werden undurchsichtig.

Screen = DemoBitmap2

Paper WHITE

Cls ' komplett transparent
FillEllipse 64, 32, 192, 160, Black

FillRect 32, 64, 224, 128, Black

Nun holen wir uns jede einzelne Pixelzeile der 24 Bit Bitmap in den virtuellen RAM
und kopieren die Daten der monochromen Bitmap an die gleiche Stelle. Weil beide
Bitmaps die gleiche Gr6Be haben werden damit nur die Maskendaten der 24 Bit
Bitmap Uberschrieben. Dann kopieren wir die geanderte Pixelzeile zurlck in die 24
Bit Bitmap. AbschieBend rufen wir die Redraw-Methode mit dem Parameter TRUE
auf um die Anderungen sichtbar zu machen.

DIM x, y, maskLen
maskLen = INT ((256+7)/8)

FOR y = 0 TO 191
DemoBitmap.PokeLine 0, y
DemoBitmap2.PokeLine 0, y
DemoBitmap.PeekLine 0, y

NEXT y

DemoBitmap.Redraw TRUE

Dieser Code erzeugt aus dem linken das rechte Bild.

Hinweis: Um Speicherplatz zu sparen wurden die Grafiken fir dieses Handbuch auf 8 Bit herunter-
gerechnet und etwas verkleinert.

BitmapContent - 460

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.3 VisGroup

Die VisGroup Class ist die Superclass fiir die VisContent und VisObj Class. Sie
implementiert alle gemeinsamen F&ahigkeiten dieser beiden Klassen. Dazu
gehdren im Wesentlichen die Ausgabe von Grafik und die Verwaltung von
Children. Sie kénnen in R-BASIC keine Objekte dieser Klasse anlegen.

Abstammung
VisualClass

VisGroup

(VisContent) (VisObj)

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
OnDraw OnDraw = <Handler> nur schreiben
defaultColor defaultColor = fg, bg lesen, schreiben
clipDrawing clipDrawing = TRUE lesen, schreiben
buffered buffered = TRUE lesen, schreiben
bufferedDataSize bufferedDataSize = <Wert> lesen, schreiben
customManageChildren lesen, schreiben
customManageChildren = TRUE | FALSE

visPosition visPosition = xPos, yPos lesen, schreiben
visSize visSize = width, height lesen, schreiben
xPosition, yPosition | — nur lesen

xSize, ySize — nur lesen
visSizeOptions visSizeOptions = <Wert> lesen, schreiben
visSizeFlags visSizeFlags = <Wert> lesen, schreiben
visMinimumSize visMinimumSize = minX, minY lesen, schreiben
visOrientVertically visOrientVertically = TRUE | FALSE lesen, schreiben
visChildJustification | visChildJustification = jHor, jVert lesen, schreiben
visChildSpacing visChildSpacing = childSp , wrapSp | lesen, schreiben
visSpacingIncludeEnds lesen, schreiben

visSpacingIncludeEnds = TRUE | FALSE
visMargins visMargins = left ,top ,right ,bottom | lesen, schreiben
allowChildrenToWrap lesen, schreiben
allowChildrenToWrap = TRUE | FALSE
visWrapCount visWrapCount = numWert lesen, schreiben

VisGroup - 461

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Methoden:
Methode Aufgabe
Dirty Weist das Objekt an, sich neu darzustellen, indem der
OnDraw-Handler aufgerufen wird.
Redraw [TRUE] Weist das Objekt an, sich neu darzustellen.
MarkInvalid Berechnet die Geometrie neu und I6st ein Neuzeichnen
aus
Action-Handler-Typen:
Handler-Typ Parameter
DrawAction (sender as object, width, height as word)

Instance-Variablen und Methoden fir SDK-Programmierer:

Variable/Methode Syntax im Ul-Code Im BASIC-Code
visClassAttrs visClassAttrs = toSet, toClear lesen, schreiben
visCompGeoAttrs visCompGeoAtirs = toSet, toClear lesen, schreiben
visCompDimensionAttrs lesen, schreiben

visCompDimensionAttrs = toSet, toClear

Marklnvalid2 — (Methode) nur schreiben

5.3.1 Ausgabe von Grafik

Die priméare Aufgabe von VisualClass-Objekten ist die Ausgabe von Grafik auf den
Bildschirm. VisContent-Objekte und VisObj-Objekte haben dazu einen OnDraw-
Handler, der automatisch gerufen wird, wenn sich das Objekt auf dem Bildschirm
neu darstellen muss. Alternativ kbnnen Sie in einem "gepufferten" Modus arbeiten.
Dabei wird der OnDraw-Handler nur einmalig gerufen und die Grafik intern in
einem GString gespeichert. Bei Bedarf wird diese dann ausgegeben. Das ist
effizienter als der stédndige Aufruf des in BASIC geschrieben OnDraw-Handlers,
allerdings ist es weniger flexibel.

Eine ausfuhrliche Beschreibung der dahinter stehenden Konzepte finden Sie beim
Canvas-Objekt, im Kapitel 4.16 des Objekthandbuchs. Der einzige Unterschied
zum Canvas ist, dass man bei VisContent und bei VisObj-Objekte einstellen kann,
ob die Grafik an den eigenen Grenzen abgeschnitten wird (Clipping,
Instancevariable clipDrawing), beim Canvas-Objekt jedoch nicht. AuBerdem steht
die Methode Redraw flur Canvas-Objekte nicht zur Verfligung.

Beim Aufruf des OnDraw-Handlers wird das Objekt automatisch zum Screen, das
heiBt alle Grafikausgaben gehen an die Stelle, an der das Objekt dargestellt wird.
Der Koordinatenursprung ist dabei immer die linke obere Ecke des Objekts.

Die dem OnDraw-Handler tbergebenen Parameter width und height enthalten
die Breite und die HOhe des Objekts. Da die Koordinaten bei Null anfangen, ist die

VisGroup - 462

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Maximale Koordinate, die noch innerhalb des Obijekts liegt, jeweils um 1 kleiner.
Die globalen Variablen MaxX und MaxY enthalten diese Werte.

Verfugbare Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code

OnDraw OnDraw = <Handler> nur schreiben

defaultColor defaultColor = fg, bg lesen, schreiben

clipDrawing clipDrawing = TRUE lesen, schreiben

buffered buffered = TRUE lesen, schreiben

bufferedDataSize bufferedDataSize = <Wert> lesen, schreiben

Methoden:

Methode Aufgabe

Dirty Weist das Objekt an, sich neu darzustellen, indem der
OnDraw-Handler aufgerufen wird.

Redraw [TRUE] Weist das Objekt an, sich neu darzustellen.

Action-Handler-Typen:
Handler-Typ Parameter
DrawAction (sender as object, width, height as word)

Kurzbeschreibung der Instancevariablen

Eine ausfuhrliche Beschreibung finden Sie beim Canvas-Objekt, im Kapitel 4.16
des Objekthandbuchs.

OnDraw

Die Instance-Variable OnDraw enthalt den Namen des Handlers, der die Grafik
zeichnen soll. Dieser muss als DrawAction vereinbart sein.

Syntax Ul- Code: OnDraw = <Handler>
Schreiben: <obj>.0nDraw = <Handler>

Die Parameter width und height enthalten die Breite und die H6he des Objekts.
Die globalen Variablen MaxX und MaxY enthalten die maximale Koordinate, die
noch innerhalb des Objekts liegt. Sie ist jeweils um 1 kleiner als width bzw. height.

Weisen Sie zur Laufzeit einen neuen OnDraw-Handler zu, so stellt sich das Objekt

automatisch neu dar. Beachten Sie, dass dabei der Hintergrund nicht geldscht
bzw. die bereits vorhandene Grafik nicht vom Schirm genommen wird.

VisGroup - 463

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

defaultColor

Die Instance-Variable defaultColor enthalt die Farben, die beim Aufruf des
OnDraw Handlers eingestellt werden.

Syntax Ul-Code: defaultColor = fg, bg
fg: Vordergrund (foreground)
bg: Hintergrund (background)
fg und bg mussen Indexfarben sein. RGB-Farben
sind nicht zulassig.
Lesen: <numVar> = <obj>.defaultColor (0) "fg
<numVar> = <obj>.defaultColor (1) "bg
Schreiben: <obj>.defaultColor = fg, bg

buffered

Die Instancevariable buffered legt fest, ob das Objekt die anzuzeigende Grafik
zwischenspeichert (buffered = TRUE, "gepufferter" Modus) oder nicht (buffered =
FALSE, normaler Modus). FALSE ist der Defaultwert.

Syntax Ul- Code: buffered = TRUE
Schreiben: <obj>.buffered = TRUE | FALSE
Lesen: <numVar> = <obj>.buffered

Achtung! Im gepufferten Modus zeichnet das Objekt seine Grafik sofort, ohne
Umweg dber den BASIC-Handler. Das geht deutlich schneller, hat aber
Konsequenzen, wenn sich Objekte tberlappen.

Solange alle Objekte, die sich Uberlappen, im gleichen Modus arbeiten, gibt es
keine Probleme, die Objekte werden in der richtigen Reihenfolge gezeichnet.
Uberlappen sich aber Objekte, von denen einige im gepufferten Modus und
andere im normalen Modus arbeiten, so werden immer zuerst alle Objekte
gezeichnet, die sich im gepufferten Modus befinden. Objekte im normalen Modus
werden danach, also Uber den anderen Objekten gezeichnet, unabhéngig davon,
in welcher Reihenfolge sie als Children im Ul-Code vereinbart sind. Das liegt
daran, dass die BASIC-Handler der Objekte im normalen Modus erst ausgefuhrt
werden, wenn die Objekte im gepufferten Modus fertig sind.

VisText-Objekte haben keine BASIC-OnDraw-Handler. Sie arbeiten intern quasi
wie im gepufferten Modus. Wenn Sie also ein VisText-Objekt Uber ein VisObj-
Objekt legen wollen, muss das VisObj im gepufferten Modus arbeiten, sonst wird
es Uber dem VisText gezeichnet. Folglich muss auch ein VisContent, wenn es
einen OnDraw-Handler hat, im gepufferten Modus arbeiten, falls es VisText-
Objekte als Children hat.

VisGroup - 464

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

bufferedDataSize

Im gepufferten Modus fordert das Objekt Speicher (in einer Datei) an, um die
darzustellende Grafik zu speichern. BufferedDataSize enthélt die Information, wie
groB der bendétigte Speicher ungeféhr (1) ist. Der Wert ist nicht kritisch, der
Defaultwert ist DS_TINY.

Syntax Ul- Code: bufferedDataSize = <Wert>
Schreiben: <obj>.bufferedDataSize = <Wert>
Lesen: <numVar> = <obj>.bufferedDataSize
<Wert>: numerische Konstante, siehe aus der Tabelle unten

Die folgende Tabelle enthalt die zuldssigen Werte:

Konstante Wert Zu erwartende Datenmenge
DS_TINY 0 nicht mehr als 10 .. 20 kByte
DS_SMALL nicht mehr als 50 .. 100 kByte

]
DS_MEDIUM 2 nicht mehr als 500 kByte ... 1 MB
DS_LARGE 3 nicht mehr als 5 MByte

DS_HUGE 4 mdglicherweise mehr als 5 MByte

clipDrawing

Die Instance-Variable clipDrawing enthélt die Information ob das Objekt Uber seine
eigenen Grenzen (Bounds) hinausschreiben darf, oder nicht. Der Defaultwert ist
FALSE, das heiBt, das Objekt kann an beliebige Stellen auf den Schirm schreiben.

Syntax Ul-Code: clipDrawing = TRUE | FALSE
Lesen: <numVar> = <obj>.clipDrawing
Schreiben: <obj>.clipDrawing = TRUE | FALSE

Hinweise:

+ Wenn Sie clipDrawing zur Laufzeit andern, 16st das kein Neuzeichnen des
Objekts aus. Rufen Sie dazu eine der Methoden Redraw, Dirty oder MarkInvalid
fur das Objekt oder eines seiner Parents auf.

+ Weisen Sie clipDrawing= TRUE zur Laufzeit zu, so l6scht das nicht die
Grafiken, die tber den Rand hinausgehen.

« Sollten beim Verschieben des Objekts "Artefakte" zurlickbleiben, haben sie

Uber den Rand des Objekts geschrieben. Sie kbénnen das vermeiden, indem Sie
clipDrawing im Ul-Code auf TRUE setzen.

VisGroup - 465

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Dirty

Die Methode Dirty (engl: schmutzig) bewirkt, dass sich das Objekt neu darstellt,
indem es seinen OnDraw Handler ruft. Die Dirty Methode arbeitet auch im
gepufferten Modus. Das Objekt gibt die alte gepufferte Grafik automatisch frei und
speichert die neue ab.

Syntax im BASIC Code: <obj>.Dirty

Redraw

Die Methode Redraw bewirkt, dass das Objekt sich neu auf den Bildschirm
zeichnet. Im gepufferten Modus wird der gespeicherte GString neu ausgegeben,
im ungepufferten Modus wird der OnDraw-Handler aufgerufen.

Syntax: <obj>.Redraw [drawBackground]
drawBackground: TRUE | FALSE (Default: FALSE)

Beispiel:

MyVisObjl.Redraw
MyVisObjl.Redraw TRUE

DrawBackground = TRUE bewirkt, dass der Redraw-Befehl an das zugehdrige
View weitergeleitet wird. Damit wird zuerst der Hintergrund geléscht und dann alle
im View dargestellten Objekte neu gezeichnet. Je nach Komplexitat der
Darstellung und der Anzahl der Objekte kann das einen Moment dauern.

VisGroup - 466

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.3.2 Manuelle Anordnung der Children
5.3.2.1 GroBe und Position

Per Default verwaltet das GEOS-System die Anordnung und GrdéBe der Objekte in
einem visual Tree automatisch. Um die Children manuell zu positionieren, miissen
Sie im VisContent-Objekt die Instancevariable customManageChildren auf
TRUE setzen. AuBerdem miussen Sie die Instancevariablen visPosition und
visSize der VisObj-Objekte im visual Tree belegen.

Um die GréBe des VisContent-Objekts festzulegen haben Sie neben dem Belegen
der Instancevariablen visSize weitere Mdglichkeiten, die im Kapitel 5.4.2 (View-
Content Konfiguration) beschrieben sind.

Tipp:

Es ist meist komfortabler, zum Lesen der Werte von visPosition und visSize die fur
alle Objekte verfugbaren read-only Instancevariablen xPosition, yPosition, xSize
bzw. ySize zu benutzen.

Im Ordner "Visual Class" finden Sie mehrere Beispiele zur Verwendung von
customManageChildren, z.B. "VisObj privData Demo", "VisObj Keyboard Demo"
und "Create Custom Managed VisOb;j".

Zugehdrige Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
customManageChildren lesen, schreiben
customManageChildren = TRUE | FALSE
visPosition visPosition = xPos, yPos lesen, schreiben
visSize visSize = width, height lesen, schreiben
xPosition, yPosition | — nur lesen
xSize, ySize — nur lesen

customManageChildren

Die Instance-Variable customManageChildren legt fest, ob der Programmierer
oder der Geometriemanager des GEOS-Systems die Anordnung der Children des
Objekts steuert. Der Defaultwert fur customManageChildren ist FALSE, d.h. der
Geometriemanager des GEOS-Systems Gbernimmt die Anordnung der Children.
Sie mussen customManageChildren auf TRUE setzen, um die Anordnung der
Children selbst zu kontrollieren.

Syntax Ul-Code: customManageChildren = TRUE | FALSE
Lesen: <numVar> = <obj>.customManageChildren
Schreiben: <obj>.customManageChildren = TRUE | FALSE

VisGroup - 467

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Es ist méglich und zuléssig, den Wert fir customManageChildren in einem VisObj
des visual Trees auf FALSE zu setzen, wenn im VisContent der Wert auf TRUE
gesetzt ist - und umgekehrt. Das GEOS System versucht dann, lhre Wiinsche "so
gut wie moglich" zu erfillen. Ob die Ergebnisse dann lhren Winschen
entsprechen, missen Sie ausprobieren.

visPosition

Die Instance-Variable visPosition enthélt die aktuelle Position des Objekts, relativ
zu seinem VisContent.

Syntax Ul-Code: visPosition = xPos, yPos
xPos: x-Position
yPos: y-Position

Lesen: <numVar> = <obj>.visPosition(0) " xPos
<numVar> = <obj>.visPosition(1) "yPos

Schreiben: <obj>.visPosition = xPos, yPos [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung (Move-To-Funktion)

Per Default fihrt ein manuelles Verandern der visPosition nicht automatisch zum
Neuzeichnen des Objekts an der neuen Position. Dazu missen Sie die Methode
MarklInvalid aufrufen.

Geben Sie als zusatzlichen Parameter TRUE an, so stellt sich das Objekt sofort
neu dar, wobei Bereiche, die jetzt nicht mehr vor Objekt berdeckt sind, ebenfalls
geupdatet werden. Sie verschieben das Objekt also sofort an seine neue Position.

Hinweise:

« Im Allgemeinen werden auch andere Objekte neu gezeichnet, wenn Sie
autoRedraw = TRUE angeben. Haufig flackert es jedoch weniger, als wenn Sie
Marklnvalid fur das zugehdrige VisContent aufrufen. Im Zweifel hilft hier nur
Probieren.

+ Sie sollten die visPosition-Werte fur VisContent-Objekte nicht &ndern. Das kann
zu unerwarteten Ergebnissen, insbesondere einer Verschiebung der Position
aller beteiligten Objekte fuhren.

VisGroup - 468

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

visSize

Die Instance-Variable visSize enthalt die aktuelle Gr6Be des Objekts.

Syntax Ul-Code: visSize = width, height

width: Breite
height: Ho6he
Lesen: <numVar> = <obj>.visSize(0) " Breite
<numVar> = <obj>.visSize(1) "Hbhe
Schreiben: <obj>.visSize = width, height [, autoRedraw]
autoRedraw:

FALSE (Default): keine sofortige Neudarstellung
TRUE: sofortige Neudarstellung

Per Default fuhrt ein manuelles Veréandern von visSize nicht automatisch zum
Neuzeichnen des Objekts in der neuen GréBe. Dazu mussen Sie die Methode
MarklInvalid aufrufen.

Geben Sie als zusatzlichen Parameter TRUE an, so stellt sich das Objekt sofort
neu dar, wobei Bereiche, die jetzt nicht mehr vor Objekt Uberdeckt sind, ebenfalls
geupdatet werden. Beachten Sie, dass dabei im Allgemeinen auch andere Objekte
neu gezeichnet werden.

xPosition, yPosition

Diese Werte liefern die aktuelle Position des Objekts.

Syntax Lesen: <numVar> = <obj>.xPosition
<numVar> = <obj>.yPosition

xSize, ySize

Diese Werte liefern die aktuelle Gr6Be des Objekts in Pixeln.

Syntax Lesen: <numVar> = <obj>.xSize
<numVar> = <obj>.ySize

VisGroup - 469

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.3.2.2 Wenn sich die Children uberlappen

Im customManageChildren-Modus kommt es haufig vor, dass sich Objekte
gegenseitig Uberlappen. Naturlich sollen in diesen Fallen die "oben" liegenden
Objekt auch die Maus-Ereignisse erhalten. Deshalb zeichnet R-BASIC die Objekte
in der entgegengesetzten Reihenfolge zu der, in der sie im Ul-Code definiert
wurden. GEOS gibt ndmlich die Mausereignisse von Objekt zu Objekt weitergibt,
und zwar in der Reihenfolge, in der sie im Ul-Code vereinbart sind. Das zuerst
vereinbarte Objekt bekommt das Mausereignis zuerst zu sehen. Damit es "oben"
liegt, muss es also zuletzt gezeichnet werden.

Achtung! Wenn sich Objekte Uberlappen, von denen einige im gepufferten Modus
und andere im normalen (ungepufferten) Modus arbeiten, &ndert sich die Zeichen-
reihenfolge, nicht aber die Reihenfolge, in der sie Mausereignisse erhalten. Eine
genauere Erlauterung dazu finden Sie weiter oben im Kapitel 5.3.1 (Ausgabe von
Grafik) bei der Beschreibung der Instancevariablen buffered. Wir setzen daher im
Folgenden voraus, dass alle Objekte im gleichen Modus arbeiten.

VisText-Objekte zahlen dabei als Objekte, die im gepufferten Modus arbeiten!

Nehmen wir an, wir haben ein VisContent mit 3 Children.

VisContent DemoContent
Children = VisObjl, VisObj2, VisObij3
customManageChildren = TRUE

End OBJECT

GréBe und Position der Children seien so, dass sie sich Uberlappen. Da sie von R-
BASIC in der "umgekehrten" Reihenfolge gezeichnet werden, kann sich z.B.
folgendes Bild ergeben.

DemoContent
|

v

VisObj1 >

< VisObj3

VisObj2

Damit bekommt jedes Objekt genau dann die Mausklicks zu sehen, wenn der
Nutzer in den sichtbaren Bereich des Objekts klickt.

Natdrlich kénnen Sie auch hier Objekt-Trees verwenden. Allerdings missen Sie
wissen, dass Mausklicks immer vom den Parents an die Children weitergeleitet
werden. Children, die ganz oder teilweise auBerhalb ihrer Parents gezeichnet
werden, erhalten in den auBerhalb liegenden Bereichen keine Mausklicks. Sie
missen selbst dafiir sorgen, das jedes Objekt vollstdandig innerhalb der

VisGroup - 470

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Grenzen seines Parents dargestellt wird, sonst erhalt es mdglicherweise
Mausklicks nicht oder nur teilweise.

Im folgenden Beispiel ist VisObj3 Child von VisObj 2. Im rot markierten Bereich
leitet das Content die Mausklicks nicht an VisObj2 weiter. Deswegen erhalt
VisObj3 diesem Bereich auch keine Mausklicks.

DemoContent
C DemoContent)

VisObj2
VisObj1
VisObj1 .
Vis

Ein schlechtes Beispiel. VisObj3 erhélt als Child von VisObj2 im roten Bereich
keine Mausklicks.

VisObj2

VisObj3

VisGroup - 471

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.3.3 Automatische Anordnung der Children
5.3.3.1 Uberblick

Per Default verwaltet das GEOS-System die Anordnung und GrdéBe der Objekte in
einem visual Tree automatisch. Dabei werden die Children nebeneinander (oder
untereinander) mit einem vorgegebenen Abstand angeordnet. Sie kennen das von
den Dateien im GeoManager oder von den Vorschaubildern im GrafikViewer
Gonzo.

Solange der Geometriemanager die GroBe und Position der Objekte im visual
Tree verwaltet, mussen Sie keine Werte fur die im letzten Kapitel besprochenen
Instancevariablen visPosition und visSize angeben. Tun Sie es doch, wird der
Geometriemanager die Werte lberschreiben. Objekte, die keine Children haben,
mussen allerdings ihre GréBe kennen, so dass Sie hier visSize belegen mussen.

Ansonsten steuern Sie das Verhalten des Geometriemanagers, indem Sie die
folgenden Instancevariablen belegen.

Mit Hilfe der Instancevariablen visSizeOptions und visSizeFlags kdénnen Sie,
getrennt nach x- und y-Richtung, festlegen, ob das Objekt eine feste GrdBe hat,
seine GréBe dem Platzbedarf seiner Children anpasst oder sich an der GréBe des
parent-Objekts orientiert. Mit visMinimumSize kdénnen Sie fiir Objekte variabler
GroBe festlegen, dass das Objekt nicht beliebig klein werden kann, auch wenn die
Children weniger Platz erfordern.

Mit den Instancevariablen visChildJustification und visOrientVertically kénnen
Sie die Ausrichtung der Children-Objekte festlegen. Sie kénnen z.B. festlegen ob
Sie nebeneinander oder Ubereinander angeordnet werden sollen, ob sie zentriert,
linksblindig oder Uber die verfligbare Breite verteilt werden sollen, oder ob sie sich
den Platz gleichberechtigt aufteilen sollen.

Die Instancevariablen visChildSpacing, visSpacingincludeEnds und
visMargins bestimmen den Platz zwischen benachbarten Objekten.

SchlieBlich erlauben AllowChildrenToWrap und visWrapCount, dass die
Children einer neuen Reihe (oder Spalte) angeordnet werden, wenn der
verfugbare Platz in die entsprechende Richtung nicht ausreicht.

Andern Sie die in diesem Kapitel besprochenen Instancevariablen zur Laufzeit, so
werden die Objekte und ihre Children nicht sofort an ihrer neuen Position bzw. in
der neuen GroBe gezeichnet. Dazu missen Sie erst die Methode MarklInvalid
aufrufen. Der Vorteil dieser Vorgehensweise ist, dass Sie mehrere Anderungen an
der Geometrie lhres visual Trees vornehmen kénnen, ohne dass der Bildschirm
mehrfach aktualisiert wird und so unnétig flackert.

VisGroup - 472

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Hinweis zur Fehlersuche

Prinzipiell sind die durch die genannten Instancevariablen gebotenen
Méglichkeiten beliebig miteinander kombinierbar. Dabei kann es aber schnell
passieren, dass Sie Forderungen stellen, die nicht gleichzeitig erflllbar sind.
Typische Probleme sind z.B., dass ein Children-Wrapping erfordert, dass das
Objekt seine GroBe selbst bestimmen kann oder dass eine horizontale Zentrierung
der Children erfordert, dass das Objekt groBer ist, als der von den Children selbst
eingenommene Platz. Children-Wrapping und gleichzeitige Zentrierung der
Objekte ist folglich zunachst auch nicht moglich.

Der Geometriemanager muss in diesen Fallen eine Entscheidung treffen - oftmals
wird das Ergebnis nicht Ihren Vorstellungen entsprechen. Es Ubersteigt die
Méglichkeiten dieses Handbuchs bei Weitem, alle denkbaren Falle zu besprechen.
Auf typische Fallen oder Besonderheiten wird an den entsprechenden Stellen
eingegangen. Lassen Sie sich dadurch bitte nicht abschrecken, sondern
versuchen Sie es einfach.

In vielen Fallen kbnnen Sie das Problem l6sen, indem Sie ein oder mehrere
weitere VisObj-Objekte zum Gruppieren der eigentlichen Objekte einsetzen. Im
Kapitel Children Wrapping finden Sie ein Beispiel, wie das oben angesprochene
Problem (Children-Wrapping + zentrieren) auf diese Weise geldst werden kann.
Ansonsten hilft nur systematisches Probieren. Und sehen Sie sich die Beispiele
an.

Zugehdrige Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
visSizeOptions visSizeOptions = <Wert> lesen, schreiben
visSizeFlags visSizeFlags = <Wert> lesen, schreiben
visMinimumSize visMinimumSize = minX, minY lesen, schreiben
visOrientVertically visOrientVertically = TRUE | FALSE lesen, schreiben
visChildJustification | visChildJustification = jHor, jVert lesen, schreiben
visChildSpacing visChildSpacing = childSp , wrapSp | lesen, schreiben
visSpacingIncludeEnds lesen, schreiben
visSpacingIncludeEnds = TRUE | FALSE
visMargins visMargins = left ,top ,right ,bottom | lesen, schreiben
allowChildrenToWrap lesen, schreiben
allowChildrenToWrap = TRUE | FALSE
visWrapCount visWrapCount = numWert lesen, schreiben
MarkInvalid

Die Methode Markinvalid bewirkt ein Neuzeichnen des Objekts, wobei - im
Gegensatz zu Redraw und Dirty - die Geometrie des visual Trees neu berechnet
wird. Dadurch werden unter Umstanden auch andere Objekte neu (z.B. an
anderer Position) gezeichnet.

VisGroup - 473

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Syntax: <obj>.MarkInvalid

Sie mussen Markinvalid aufrufen, wenn Sie die Geometrie des visual Tree
geandert haben, z.B. nach dem Andern der Instancevariablen visChildJustification
oder visMargins. Wenn Sie die Geometrie von mehreren Objekten geandert haben
ist es im Allgemeinen ausreichend, Marklnvalid fir eins der betroffenen Objekte zu
rufen.

Eine Neuberechnung der Geometrie des visual Tree erfolgt auch, wenn der Nutzer
das zugehdrige View zoomt oder scrollt. Falls Sie vergessen haben, Markinvalid
zu rufen, kann das zu scheinbar seltsamen Effekten flihren.

5.3.3.2 Festlegen der GroBe

Die Bestimmung der GréBe eines Objekts ist ein elementares Problem bei der
Berechnung des visual Trees. Mittels der Instancevariablen visSizeOptions und
visSizeFlags steuern Sie, wie ein Objekt seine GréBe berechnen soll. AuBerdem
kébnnen Sie mit visMinimumSize eine MindestgréBe fir Objekte mit nicht fest
vorgegebener GroBe festlegen.

Um die GréBe des VisContent-Objekis festzulegen haben Sie weitere
Méglichkeiten, die im Kapitel zum VisContent-Objekt beschrieben sind.

Zugehdrige Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code

visSizeOptions visSizeOptions = <Wert> lesen, schreiben

visSizeFlags visSizeFlags = <Wert> lesen, schreiben

visMinimumSize visMinimumSize = minX, minY lesen, schreiben
visSizeOptions

Die Instancevariable visSizeOptions bestimmt, wie das Objekt seine GroBe
berechnet. Dieser Wert wird bendtigt, wenn sich das Objekt auf dem Schirm
darstellt oder wenn das Parent-Objekt seine GréBe anhand der GrdBe seiner
Children berechnet.

Syntax Ul-Code: visSizeOptions = numWert
Lesen: <numVar> = <obj>.visSizeOptions
Schreiben: <obj>.visSizeOptions = numWert

Far visSizeOptions stehen die folgenden Werte zur Verfigung. Der Defaultwert ist
VSO_AUTO_SIZE.

VisGroup - 474

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Konstante Wert Kurzbeschreibung

VSO_AUTO_SIZE 0 Berechnungsmethode der GréBe hangt von
den Umstanden ab

Objekt passt seine GroBe selbstéandig an
Objekt hat eine feste GroBe

Objekt hat eine feste Breite

Objekt hat eine feste H6he

VSO_VARIABLE_SIZE
VSO_FIXED_SIZE
VSO_FIXED_WIDTH
VSO_FIXED_HEIGHT

AN =

Im Detail haben die Werte die folgende Wirkung:

VSO_AUTO_SIZE
Das Objekt berechnet seine GroBe in Abhangigkeit davon, ob es Children hat,

oder nicht. Dieses Verhalten ist fir die meisten Situationen sinnvoll und
deswegen der Defaultwert.

1. Fall: Es existieren Children
Das Objekt berechnet seine GréBe so, dass alle Children umfasst werden.
AuBerdem werden eventuelle Randbedingungen berucksichtigt wie z.B.

* Ein VisContent soll seine GréBe an die GroBe des View-Objekts
anpassen (siehe Instancevariable contentAttrs)

* Ein Objekt soll sich den Platz mit seinen Geschwistern gleichmaBig
aufteilen oder seine Breite bzw. HOhe maximieren (siehe
Instancevariable visSizeFlags)

* Eventuell gesetzte visMargins

Sie mussen keinen Wert flr visSize festlegen, das macht der
Geometriemanager.

2. Fall: Das Objekt hat keine Children
In diesem Fall wird der in visSize festgelegte Wert benutzt. Sie missen
diesen Wert selbst festlegen.

VSO_VARIABLE SIZE
Diesen Wert sollten Sie nutzen, wenn ein Objekt keine Children hat, seine
GroéBe aber trotzdem entsprechend den bei VSO_AUTO_SIZE erwéhnten
Randbedingungen anpassen soll. Ein eventuell in visSize festgelegter Wert wird
nicht benutzt.

VSO_FIXED SIZE
Das Objekt hat eine feste GroBe, die durch den in visSize eingestellten Wert
bestimmt wird. Dieser Wert kann gréBer oder kleiner sein, als der von den
Children des Objekis benétigte Platz. Die Children werden dann
moglicherweise tiber den Rand des Objekts hinaus gezeichnet.
Sie mussen einen Wert fur visSize festlegen.

Hinweis: Wenn Sie diesen Wert verwenden, funktioniert die automatische
Anordnung der Children des Objekts in einigen Fallen nur eingeschrankt, da Sie
dem Geometriemanager die Kontrolle entziehen. Versuchen Sie im Problemfall
einen anderen Wert fur visSizeOptions oder verwenden Sie den Modus mit
customManageChildren = TRUE.

VisGroup - 475

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

VSO_FIXED WIDTH
Das Objekt hat eine feste Breite. Die Hbhe wird entsprechend den bei
VSO_AUTO_SIZE beschriebenen Bedingungen berechnet. Sie missen einen
Wert fir visSize festlegen.

VSO_FIXED HEIGHT
Das Objekt hat eine feste Hbéhe. Die Breite wird entsprechend den bei
VSO_AUTO_SIZE beschriebenen Bedingungen berechnet. Sie missen einen
Wert fur visSize festlegen.

Hinweis:
Ein Andern des Wertes fiir visSizeOptions fiihrt nicht automatisch zur

Neudarstellung der Objekte. Dazu missen Sie die Methode Markinvalid
aufrufen.

visSizeFlags

Die Instancevariable visSizeFlags enthalt einzelne Bits, welche die Berechnung
der GroBe des Objekts beeinflussen.

Syntax Ul- Code: visSizeFlags = Wert
Lesen: <numVar> = <Obj>.visSizeFlags
Schreiben: <Obj>.visSizeFlags = Wert

Fur visSizeFlags stehen die folgenden Bits zur Verfugung. Bits, die nicht in der
Tabelle aufgefiihrt sind, werden ignoriert.

Konstante Wert (hex) Dezimalwert
VSF_EXPAND_WIDTH &H20 32
VSF_DIVIDE_WIDTH_EQUALLY &H10 16
VSF_EXPAND_HEIGHT &HO02 2
VSF_DIVIDE_HEIGHT_EQUALLY &HO1 1

Per Default ist keins dieser Bits gesetzt.

Ein Andern des Wertes zur Laufzeit [6st noch kein Neuzeichnen der Objekte an
ihrer neuen Position aus. Dazu missen Sie die Methode Marklnvalid aufrufen.

Bedeutung der einzelnen Bits:

VSF_EXPAND WIDTH
Bewirkt, dass sich das Objekt selbst so breit wie mdglich macht. Damit kann
es breiter werden, als es die Children erfordern, womit z.B. eine horizontale
Zentrierung der Children (siehe Instancevariable visChildJustification)
moglich wird.

VSF_DIVIDE WIDTH EQUALLY
Bewirkt, dass sich die Children des Objekts den verfigbaren Platz in der
Breite gleichmaBig untereinander aufteilen. Dazu missen alle Children

VisGroup - 476

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

dieses Bit ebenfalls gesetzt haben. Das Objekt selbst hat oftmals zuséatzlich
das Bit VSF_EXPAND WIDTH gesetzt.

VSF_EXPAND HEIGHT
Bewirkt, dass sich das Objekt selbst so hoch wie méglich macht. Damit kann
es hdéher werden, als es die Children erfordern, womit z.B. eine vertikale
Zentrierung der Children (siehe Instancevariable visChildJustification)
mdglich wird.

VSF_DIVIDE HEIGHT EQUALLY
Bewirkt, dass sich die Children des Objekts den verfligbaren Platz in der
Hoéhe gleichmaBig unterinander aufteilen. Dazu mussen alle Children dieses
Bit ebenfalls gesetzt haben. Das Objekt selbst hat oftmals zuséatzlich das Bit
VSF_EXPAND HEIGHT gesetzt.

Hinweis:
Die visSizeFlags-Bits sind wirkungslos, wenn das Objekt eine feste GroBe hat,
z.B. wenn das Objekt keine Children hat.

Setzen Sie dann visSizeOptions auf VSO_VARIABLE_SIZE, um eine variable
GroBe zu erzwingen

Beispiel

Drei Vis-Objekte sollen sich die Breite in einem View bzw. VisContent gleichm&Big
aufteilen. Damit das funktioniert, missen sowohl das VisContent als auch die
VisObj-Objekte die Bits VSF_EXPAND_WIDTH und VSF_DIVIDE_
WIDTH_EQUALLY gesetzt haben.

Die VisObj-Objekte haben keine Children und wirden deshalb eine feste GréBe
haben. Das muss in x-Richtung, aber nicht in y-Richtung geandert werden.
Deswegen bekommen Sie einen Wert fir visSize und visSizeOptions wird auf den
Wert VSO_FIXED_HEIGHT gesetzt, wodurch die Breite variabel wird.

Den kompletten Code finden Sie im Beispiel "ExpandWidth Demo".

VisContent DemoContent
Children = VisObjl, VisObj2, VisObj3

visSizeFlags = \
VSF_EXPAND WIDTH +VSF_EXPAND HEIGHT + VSF_DIVIDE WIDTH EQUALLY

End OBJECT

VisObj VisObjl
visSize = 60, 40
OnDraw = VisObjDraw
visSizeFlags = VSF EXPAND WIDTH + VSF DIVIDE WIDTH EQUALLY
visSizeOptions = VSO FIXED HEIGHT
End OBJECT

VisGroup - 477

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

visMinimumSize

Die Instancevariable visMinimumSize enthélt die minimale GroBe des Obijekts,
getrennt nach x- und y-Richtung. Objekte, die ihre GréBe verédndern kdnnen,
kdnnen nicht kleiner werden, als in visMinimumSize angegeben. Fur Objekte mit
einer festen GrdéBe wird visMinimumSize ignoriert. Die Default-Werte flr beide
Werte sind 0, d.h. das Objekt hat keine minimale GréBe. Beide Werte werden in
Pixeln angegeben.

Syntax Ul-Code: visMinimumSize = minWidth , minHeight
mindWidth: minimale Breite
minHeight: minimale Héhe
Lesen: <numVar> = <obj>.visMinimumSize (0) ’ minWidth

<numVar> = <obj>.visMinimumSize (1) ’ minHeight
Schreiben: <obj>.visMinimumSize = minWidth , minHeight

Andern Sie visMinimumSize zur Laufzeit, so wird das Objekt und seine Children
nicht sofort an ihrer neuen Position bzw. in der neuen GréBe gezeichnet. Dazu
mussen Sie erst die Methode MarkInvalid aufrufen.

VisGroup - 478

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.3.3.3 Ausrichtung und Abstand der Children

Per Default werden die Children eines VisObj oder VisContent-Objekts
linksbliindig, oben und mit 3 Pixeln Abstand voneinander angeordnet. Mit den in
diesem Kapitel besprochenen Instancevariablen kénnen Sie dieses Verhalten in
weiten Grenzen andern.

Zugehdrige Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code

visOrientVertically visOrientVertically = TRUE | FALSE lesen, schreiben

visChildJustification | visChildJustification = jHor, jVert lesen, schreiben

visChildSpacing visChildSpacing = childSp , wrapSp | lesen, schreiben

visSpacingIncludeEnds lesen, schreiben
visSpacingIncludeEnds = TRUE | FALSE

visMargins visMargins = left ,top ,right ,bottom | lesen, schreiben

visOrientVertically

Per Default werden die Children eines VisObj bzw. VisContent nebeneinander
angeordnet. Setzen Sie die Instancevariable visOrientVertically auf TRUE, wenn
Sie die Children untereinander anordnen méchten.

Syntax Ul- Code: visOrientVertically = TRUE | FALSE
Lesen: <numVar> = <Obj>.visOrientVertically
Schreiben: <Obj>.visOrientVertically = TRUE | FALSE

visChildJustification

Die Instancevariable visChildJustification enthalt die Information, wie die Children
des Objekts in horizontaler und vertikaler Richtung ausgerichtet sind.

Syntax Ul- Code: visChildJustification = jHor, jVert
Lesen: <numVar> = <Obj>.visChildJustification (0) ’jHor
<numVar> = <Obj>.visChildJustification (1) ’jVert
Schreiben: <Obj>.visChildJustification = jHor, jVert
jHor: horizontale Ausrichtung, siehe Tabelle
jVert: vertikale Ausrichtung, siehe Tabelle

Prinzipiell kénnen Sie die Werte flir die horizontale Ausrichtung jHor und die
vertikale Ausrichtung jVert beliebig kombinieren. Beachten Sie aber, dass die
Randbedingungen fur die gewéahlte Ausrichtung auch stimmen missen. So muss

VisGroup - 479

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

z.B. fUr eine horizontale Zentrierung der Children das Objekt selbst breiter sein,
als der Platz, den die Children sowieso bendtigen. Es ergibt auch keinen Sinn
jVert auf J_FULL zu setzen (gleichmaBig Uber die ganze Hbhe verteilt), wenn alle
Children nebeneinander angeordnet sind.

Far die horizontale Ausrichtung jHor stehen die folgenden Werte zur Verfigung.
Andere Werte fuhren zu einem Fehler. Der Defaultwert fur jHor ist J_LEFT.

Konstante Wert Anordnung der Children

J_LEFT 2 linksbiindig

J_RIGHT 4 rechtsbindig

J_CENTER 1 horizontal zentriert

J_FULL 32 horizontal Uber die ganze Breite verteilt

Far die vertikale Ausrichtung jVert stehen die folgenden Werte zur Verflgung.
Andere Werte fuhren zu einem Fehler. Der Defaultwert far jVert ist J_TOP.

Konstante Wert Anordnung der Children

J_TOP 8 oben blndig

J_BOTTOM 16 unten bundig

J_CENTER 1 vertikal zentriert

J_FULL 32 vertikal Uber die ganze Hbhe verteilt

Beispiele fur visChildJustification. Beachten Sie, dass vorausgesetzt ist, dass das
grau gezeichnete Parent-Objekt gréBer ist, als die Children erfordern.

Child 1 [| Child 2| | Child 3 Child 1 Child 2 Child 3

visChilddJustification = J_JEFT, J_TOP visChildJustification =J_FULL, J TOP
(Defaultwert)

Child 1| | Child 2| | Child 3

visChildJustification = J_CENTER, J_CENTER

Hinweise:

« Um den Abstand zwischen den Children zu verandern, verwenden Sie bitte
visChildSpacing.

« Um Platz zwischen den Children und dem Rand zu lassen, verwenden Sie bitte
visMargins.

« Um die Children untereinander anzuordnen, setzen Sie die Instancevariable
visOrientVertically auf den Wert TRUE.

VisGroup - 480

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

« Wenn Sie den Wert von visChildJustification zur Laufzeit &ndern, fihrt das nicht
zum sofortigen neu Ausrichten der Objekte. Rufen Sie dazu die Methode
MarklInvalid auf.

Beispiele mit visOrientVertically = TRUE:

Child 1 Child 1
Child 1
Child 2 Child 2
Child 2
Child 3 .
Child 3 Child 3
Bild 1 Bild 2 Bild 3
Bild 1: visChildJustification = J LEFT, J BOTTOM

Bild 2: visChildJustification = J RIGHT, J_FULL
visSpacingIncludeEnds = TRUE

Bild 3: visChildJustification
visMargins = 5, 5, 5, 5

J_RIGHT, J FULL

Child 2 hat zusétzlich folgende Instancevariablen gesetzt:
visSizeFlags = VSF_EXPAND WIDTH + VSF_EXPAND HEIGHT

visSizeOptions = VSO_VARIABLE SIZE

visChildSpacing

Die Instancevariable visChildSpacing bestimmt den Abstand zwischen
benachbarten Children des Objekts. Der erste Wert (childSpacing) enthalt den
Abstand zwischen aufeinanderfolgenden (i.a. nebeneinander liegenden) Children,
der zweite Wert (wrapSpacing) enthdlt den vertikalen Abstand zwischen
aufeinanderfolgenden "Zeilen" von Children. Dazu muss die automatische
Anordnung in mehreren Zeilen (Wrapping, Instancevariable allowChildrenToWrap,
Siehe Kapitel 5.3.3.4) aktiv sein.

Die Default-Werte fir childSpacing und wrapSpacing sind 3. Beide Werte werden
in Pixeln angegeben.

VisGroup - 481

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: visChildSpacing = childSpacing , wrapSpacing
childSpacing: Abstand "benachbarter" Children
wrapSpacing: Abstand "umgebrochener" Children

Lesen: <numVar> = <obj>.visChildSpacing (0)
<numVar> = <obj>.visChildSpacing (1)
Schreiben: <obj>.visChildSpacing = childSpacing , wrapSpacing

Andern Sie visChildSpacing zur Laufzeit, so werden die Children-Objekte nicht
sofort an ihrer neuen Position gezeichnet. Dazu missen Sie erst die Methode
Marklnvalid aufrufen.

Achtung! Sind die Children untereinander angeordnet (siehe Instancevariable
visOrientVertically), so enthélt childSpacing immer noch den Abstand aufeinander
folgender Children, also den vertikalen Abstand. WrapSpacing beschreibt
wiederum den Wrapping-Abstand, jetzt also den horizontalen Abstand.

—-»=childSpacing 2 cra1l lerasl
: :
oy | |Child 1| [Child 2| |Child 3 | B 4 | |chid2 oo
% . : = wrapSpacing |
(&) > 1
S | | Child 3 .
Q Child 4 ! |
g __________________ ! Child 4 :
L Lo visMargins _,

visMargins $

Unterschied zwischen childSpacing und wrapSpacing bei horizontaler (links) und
bei vertikaler Anordnung der Children (rechts).

visSpacingIncludeEnds

Diese Instancevariable bewirkt, wenn sie auf TRUE gesetzt ist, dass bei der
Berechnung der Geometrie zuséatzlicher Platz neben (bzw. bei vertikaler
Anordnung uber oder unter) den Children bertcksichtigt wird.

Der Defaultwert fur visSpacingIncludeEnds ist FALSE.

Syntax Ul-Code: visSpacingincludeEnds = TRUE | FALSE
Lesen: <numVar> = <obj>.visSpacingincludeEnds
Schreiben: <obj>.visSpacingincludeEnds = TRUE | FALSE

Andern Sie visSpacingincludeEnds zur Laufzeit, so werden die Objekte nicht
sofort neu angeordnet. Dazu mussen Sie erst die Methode Markinvalid aufrufen.

VisGroup - 482

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

Beispiel: Wirkung von visSpacinglncludeEnds bei horizontaler Anordnung

Child 1

Child 2 Child 3 Child 1 Child 2

Child 3

visChildJustification = J_FULL, J_TOP
visSpacingIncludeEnds = FALSE

visMargins

visChildJustification = J_FULL, J_TOP
visSpacingIncludeEnds = TRUE

Mit visMargins kénnen Sie einen zuséatzlichen Rand um die Children des Objekts

reservieren.

t top Parent-Objekt
left | Child 1 || Child 2| | Child 3
—P>
Child 4| | Child 5 ¥ right
i bottom

Die Default-Werte fir alle visMargins-Werte sind 0. Alle Werte werden in Pixeln

angegeben.

Syntax Ul-Code:

visMargins = left , top , right , bottom

left: linker Rand
top: oberer Rand
right: rechter Rand
bottom: unterer Rand
Lesen: <numVar> = <obj>.visMargins (0) ’ left
<numVar> = <obj>.visMargins (1) "top
<numVar> = <obj>.visMargins (2) " right
<numVar> = <obj>.visMargins (3) " bottom
Schreiben: <obj>.visMargins = left , top , right , bottom

Andern Sie visMargins zur Laufzeit, so werden die Children-Objekte nicht sofort an
ihrer neuen Position gezeichnet. Dazu mussen Sie erst die Methode Markinvalid

aufrufen.

VisGroup - 483

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

5.3.3.4 Children Wrapping

Unter Wrapping versteht man, dass Objekte automatisch ein einer neuen Zeile
oder Spalte angeordnet werden, wenn der Platz nicht mehr ausreicht.

Ist ein Wrapping nicht mdglich bzw. nicht erlaubt, so werden die Child-Objekte
uber die Grenzen ihres Parent-Objekts hinaus angeordnet.

Zugehdrige Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code

allowChildrenToWrap lesen, schreiben
allowChildrenToWrap = TRUE | FALSE

visWrapCount visWrapCount = numWert lesen, schreiben

Im Zusammenhang mit dem Children Wrapping kann es allerdings schnell zu
widersprichlichen Geometrie-Anweisungen kommen. Einige Beispiele:

+ Children-Wrapping erfordert, dass das Parent-Objekt in seiner GréBe begrenzt
ist. FUr VisContent-Objekte ist es deswegen meist erforderlich, die folgenden
Instancevariablen zu setzen:

contentAttrs = \
CA_SAME WIDTH AS VIEW + CA SAME HEIGHT AS VIEW , 0
visSizeFlags = VSF_EXPAND WIDTH + VSF_EXPAND HEIGHT

+ Wenn das Wrapping erlaubt ist (allowChildrenToWrap = TRUE) werden
horizontal angeordnete Children immer am oberen Rand ausgerichtet - sonst ist
unten kein Platz fir die néchste Zeile. Anderslautende Einstellungen in der
Instancevariablen visChildJustification werden ignoriert. Analog werden vertikal
ausgerichtete Children immer links ausgerichtet. Das bedeutet zum Beispiel,
dass mit

visChildJustification = J_CENTER, J_CENTER
die Children nur in eine Richtung zentriert werden.
Unten finden Sie ein Beispiel, wie man dieses Problem umgehen kann.

+ Hat das Objekt (VisContent oder VisObj) in eine Richtung eine feste GroBe
(Instancevariable visSizeOptions = VSO_FIXED_WIDTH bzw. ..._HEIGHT), so
wird die GréBe in die andere Richtung oft nicht korrekt berechnet. Das muss
kein Problem sein, da es erlaubt ist, dass sich Children auBerhalb der Grenzen
ihres Parent-Objekts befinden.

+ Hat das Objekt (VisContent oder VisObj) in beiden Richtungen eine feste GréBe
(Instancevariable visSizeOptions = VSO_FIXED_SIZE), so wird der Parameter
wrapSpacing der Instancevariablen visChildSpacing anders interpretiert. Er
beschreibt nicht mehr den Platz zwischen den Objekten sondern bezieht die
GroBe des daruber bzw. links liegende Objekts mit ein.

VisGroup - 484

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Es Ubersteigt die Moglichkeiten dieses Handbuchs bei Weitem, alle denkbaren
Féalle zu besprechen. Fur den Fall, dass die Children nicht so angeordnet werden,
wie Sie sich das vorstellen, hilft meist nur systematisches Probieren.

Bitte beachten Sie die Beispiele. Dort finden Sie auch Tipps, wie man das Children
Wrapping in verschiedenen Fallen konfiguriert.

allowChildrenToWrap

Diese Instancevariable erlaubt, wenn sie auf TRUE gesetzt ist, dass die Children
des Objekts "umgebrochen", d.h. in einer neuen Zeile bzw. Spalte dargestellt
werden, wenn das Objekt zu klein ist, um alle Children in einer Reihe darzustellen.
Wenn die Children horizontal dargestellt werden wird eine neue Zeile eréffnet,
werden sie vertikal dargestellt, so wird eine neue Spalte er6ffnet.

Der Defaultwert fir allowChildrenToWrap ist FALSE.

Syntax Ul-Code: allowChildrenToWrap = TRUE | FALSE
Lesen: <numVar> = <obj>.allowChildrenToWrap
Schreiben: <obj>.allowChildrenToWrap = TRUE | FALSE

Andern Sie allowChildrenToWrap zur Laufzeit, so werden die Objekte nicht sofort
neu angeordnet. Dazu mussen Sie erst die Methode MarkInvalid aufrufen.

visWrapCount

Mit der Instancevariablen visWrapCount legen Sie fest, dass der Children-
Umbruch (Wrapping) nach einer bestimmten Anzahl von Children erzwungen wird.
Der Defaultwert fur visWrapCount ist Null, d.h. es erfolgt kein erzwungenes
Wrapping.

Syntax Ul-Code: visWrapCount = value
value: Anzahl Children, nach denen
umgebrochen wird
Lesen: <numVar> = <obj>.visWrapCount

Schreiben: <obj>.visWrapCount = value

Es gibt zwei Voraussetzungen, dass visWrapCount funktioniert.

1. Das Wrapping muss erlaubt sein, d.h. die Instancevariable allow-
ChildrenToWrap muss auf TRUE gesetzt sein. Das ist per Default nicht der
Fall!

2. Das Objekt muss in die entsprechende Richtung eine variable GréBe haben.
Das ist per Default der Fall.

Setzen Sie jedoch bei horizontal angeordneten Children z.B. visSizeOptions =
VSO_FIXED_WIDTH, so hat das Objekt eine vorgegebene GrdéBe und

visWrapCount kann nicht funktionieren.

Andern Sie visWrapCount zur Laufzeit, so werden die Objekte nicht sofort neu
angeordnet. Dazu mussen Sie erst die Methode MarkInvalid aufrufen.

VisGroup - 485

R-BASIC - Objekt-Handbuch - Vol. 9
Einfach unter PC/GEOS programmieren

Beispiel: Sie méchten 4 Vis-Objekte im Quadrat zentriert in einem View darstellen.
VisWrapCount und visChildJustification = J_CENTER funktionieren jedoch nicht
gemeinsam, so dass Sie ein weiteres Objekt als Grouping-Objekt fur die VisObj-

Objekte verwenden mussen. Den kompletten Code finden Sie im Beispiel "Wrap
und Center"

VisContent DemoContent
Children = VisGroupObj
visChildJustification = J CENTER, J CENTER

End OBJECT
VisObj VisGroupObj
Children = VisObjl, VisObj2, VisObj3, VisObj4

allowChildrenToWrap = TRUE
visWrapCount = 2

End OBJECT

VisGroup - 486

R-BASIC - Objekt-Handbuch - Vol. 9

Einfach unter PC/GEOS programmieren

(Leerseite)

VisGroup - 487

