
  

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Objekt-HandbuchObjekt-Handbuch

Volume 10
Visual Objekt Klassen

Version 1.0 



(Leerseite)



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

Volume 9

5 VisualClass Objekte ............................................................................  432
5.1 Die VisualClass .............................................................................  432
5.2 BitmapContent ..............................................................................  435

5.2.1 Überblick ................................................................................  435
5.2.2 Grundlegende Funktionen .....................................................  437
5.2.3 Erweitere Funktionen ............................................................. 441
5.2.4 Arbeit mit transparenten Bitmaps ..........................................  444
5.2.5 Arbeit mit Paletten .................................................................. 450
5.2.6 Direktzugriff auf die Bitmapdaten ........................................... 456

5.3 VisGroup ......................................................................................... 561
5.3.1 Ausgabe von Grafik ...............................................................  461
5.3.2 Manuelle Anordnung der Children .........................................  467
5.3.3 Automatische Anordnung der Children .................................. 472

Volume 10

5.4 VisContent ...................................................................................... 492
5.4.1 Grundlegende Fähigkeiten ....................................................  492
5.4.2 View-Content Konfiguration ...................................................  494

5.4.2.1 Wenn das Content eine feste Größe hat ...................  494
5.4.2.2 Wenn das Content eine variable Größe hat ..............  497

5.4.3 Anlegen und Vernichten von Objekten ..................................  498

5.5 VisObj .............................................................................................  502
5.5.1 Überblick ................................................................................  502
5.5.2 Grundlegende Fähigkeiten ....................................................  504
5.5.3 Maus- und Tastatur-Input ......................................................  506

5.5.3.1 Arbeit mit der Maus ...................................................  506
5.5.3.2 Der Weg der Nutzer-Eingaben ..................................  507
5.5.3.3 Focus und Target ......................................................  509

5.5.4 Spezielle Fähigkeiten und Tools ............................................ 501
5.5.4.1 Rahmen und Anfasser ............................................... 511
5.5.4.2 Dragging ....................................................................  513

5.6 Erweiterte Möglichkeiten für SDK-Programmierer .....................  518



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

(Leerseite)



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 492

5.4 VisContent

Objekte der Klasse VisContent dienen primär 
dazu, Grafiken in einem skalierbaren und 
scrollbaren View auszugeben. Sie können 
außerdem auf Tastatur- und Mauseingaben 
reagieren. Das VisContent-Objekt muss nur 
die Grafik bereitstellen, das View-Objekt 
kümmert sich um den darzustellenden 
Bereich, Scrolling und Zoom. 

Dazu kann das VisContent-Objekt selbst Grafik ausgeben, oder es verwendet 
Children (der Klasse VisObj), die ihrerseits Grafik ausgeben und auf Tastatur und 
Maus reagieren können. Es ist die Entscheidung des Programmierers, welcher 
Weg benutzt wird. Es ist auch möglich, dass das VisContent, wie im Bild gezeigt, 
eine Hintergrundgrafik ausgibt, auf die dann die VisObj-Objekte gezeichnet 
werden.

Abstammung:
VisualClass VisGroup VisContent

Da VisContent Objekte von der VisualClass abstammen, kommen Sie nicht in den 
generic Tree des Programms. Stattdessen werden sie über die Instance-Variable 
"Content" eines Views mit dem View verbunden. Das View muss aber in den 
generic Tree des Programms eingebunden werden.

Spezielle Instancevariablen:
Variable Syntax im UI-Code Im BASIC-Code
contentAttrs contentAttrs = toSet , toClear lesen, schreiben
holdsLargeText holdsLargeText =  TRUE lesen, schreiben

Methoden:
Methode Aufgabe
CreateVisObject Neues VisObj-Objekt anlegen
DestroyVisObject Mit CreateVisObject VisObj-Objekt vernichten

5.4.1 Grundlegende Fähigkeiten

VisContent-Objekte erben viele Fähigkeiten von der VisualClass. Dazu gehören 
die Arbeit mit der Maus, der Tastatur, dem Clipboard sowie die Arbeit mit der 
Focus- und der Target-Hierarchie. Im Kapitel 5.1 dieses Handbuchs (Die Visual-



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 493

Class) finden Sie dazu eine Kurzbeschreibung sowie Verweise auf die 
zugehörigen Kapitel im Handbuch.

Weitere Fähigkeiten erben VisContent-Objekte von der VisGroup Class. Das sind 
insbesondere die Darstellung auf dem Bildschirm (Ausgabe von Text und Grafik), 
die Anordnung der eigenen Children sowie die Bestimmung der eigenen Größe. 
Die zugehörigen Instancevariablen, Methode und Actionhandler sind ausführlich 
im Kapitel 5.3 (VisGroup) des Objekthandbuchs beschrieben.

Besondere Hinweise für VisContent-Objekte
• Das VisContent-Objekt gibt (wie alle R-BASIC Objekte) die Tastaturereignisse 

zuerst an seine Children weiter, bevor es den BASIC Tastaturhandler aufruft. 
Sollten beide Objekte (Content und Children) einen Tastaturhandler haben wird 
daher zuerst der Tastaturhandler der Children-Objekte aufgerufen und erst 
danach der Tastaturhandler des Content-Objekts. Im Kapitel 14.4 des 
Handbuchs "Spezielle Themen" ist am Beispiel eines Textobjekts beschrieben, 
wie man vorgehen muss, um den BASIC-Tastaturhandler aufzurufen, bevor das 
Objekt das Tastaturereignis an seine Children weitergibt.

• Auch Mausereignisse werden zuerst an die Children weitergegeben, bevor der 
eigene BASIC Handler aufgerufen wird. Sollten beide Objekte (Content und 
Children) einen Maushandler haben wird daher zuerst der Maushandler der 
Children-Objekte aufgerufen und erst danach der Maushandler des Content-
Objekts.

• Um mit der Zwischenablage arbeiten zu können muss das VisContent-Objekt im 
gepufferten Modus arbeiten (Instancevariable buffered = TRUE). 

• Sie sollten die visPosition-Werte für VisContent-Objekte nicht ändern. Das kann 
zu unerwarteten Ergebnissen, insbesondere einer Verschiebung der Position 
aller beteiligten Objekte, führen.

contentAttrs

Die Instancevariable contentAttrs enthält drei Konfigurationsbits. Bits, die in der 
Tabelle unten nicht aufgeführt sind sollten Sie nicht setzen. Das kann zu 
unerwarteten Ergebnissen führen, da sie intern verwendet werden.

Syntax UI-Code: contentAttrs = attrsToSet , attrsToClear 
Lesen: <numVar> = <obj>.contentAttrs (0)

Die BASIC-Syntax erfordert beim Lesen von 
contentAttrs einen Parameter. Der Wert wird hier 
ignoriert.

Schreiben: <obj>.contentAttrs = attrsToSet , attrsToClear 
attrsToSet: zu setzende Attribute, Bitflags, siehe Tabelle
attrsToClear: zu setzende Attribute, Bitflags, siehe Tabelle

Konstante Wert (hex)



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 494

CA_SAME_WIDTH_AS_VIEW 128   (&h80)
CA_SAME_HEIGHT_AS_VIEW 64    (&h40)
CA_VIEW_DOC_BOUNDS_SET_MANUALLY 4     (&h04)

Bedeutung der einzelnen Bits:

• CA_SAME_WIDTH_AS_VIEW
• CA_SAME_HEIGHT_AS_VIEW

Das Contentobjekt passt seine Breite bzw. Höhe an die Größe des View-
Objekts an, wenn das möglich ist. Häufig stellt man das View in die ent-
sprechende Richtung dann so ein, dass es nicht scrollbar ist.

Hinweis:
Im Allgemeinen müssen Sie zusätzlich die Bits VSF_EXPAND_WIDTH bzw. 
VSF_EXPAND_HEIGHT in der Instancevariablen visSizeFlags setzen, um 
die gewünschte Wirkung zu erreichen. Bitte beachten Sie die Konfigurationen 
in den Beispieldateien.

• CA_VIEW_DOC_BOUNDS_SET_MANUALLY
Dieses Bit wird selten benutzt und verhindert, dass das VisContent dem View 
automatisch seine Größe mitteilt. Sie müssen dann die Instancevariable 
contentSize des View verwenden, um dem View-Objekt die Content-Größe 
mitzuteilen. Das View benötigt diese Information, um seine Rollbalken 
anzupassen.

holdsLargeText

Die Instancevariable holdsLargeText muss für das VisContent und das zugehörige 
View auf TRUE gesetzt werden, damit die View/VisContent Kombination mit einem 
LargeText Objekt zusammenarbeiten kann. Details dazu finden Sie im Kapitel 
4.10.9 (VisText und LargeText) des Objekthandbuchs.

Syntax UI-Code: holdsLargeText = TRUE 
Schreiben: <obj>.holdsLargeText = TRUE | FALSE



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 495

5.4.2 View-Content Konfiguration

Auf welche Weise ein VisContent mit seinem View interagiert, ob es seine Größe 
dem View anpasst oder umgekehrt, ob das gesamte Content oder nur ein Teil 
davon zu sehen ist, hängt sowohl von den Einstellungen des VisContent als auch 
ganz entscheidend von der Einstellung des View-Objekts ab. 
Eine ausführliche Beschreibung alle Instancevariablen eines View finden Sie im 
Kapitel 4.9 des Objekthandbuchs. Die folgenden Abschnitte beschreiben typische 
Konfigurationen und decken einen großen Teil der Möglichkeiten ab.

5.4.2.1 Wenn das Content eine feste Größe hat

Typische Situationen, in der ein VisContent-Objekt eine feste Größe hat, sind z.B. 
eine Seite in einen Schreibprogramm oder ein Gameboard.
Um einem VisContent eine feste Größe zu geben, gibt es zwei Möglichkeiten. 
Entweder, Sie haben eine Objekt-Tree, dessen Objekte eine feste Position und 
Größe haben, oder Sie geben dem Content explizit eine feste Größe, indem sie 
folgende Instancevariablen im VisContent setzen:

visSizeOptions = VSO_FIXED_SIZE
visSize = 400, 330 ’ Als Beispiel

Im letzten Fall kann das VisContent ebenfalls Children haben, muss es aber nicht. 

Jeweils ein Beispiel für beide Varianten finden Sie in den Beispieldateien 
"VisContent Fixed Size" und "VisContent Fixed Children", im Beispiel-Ordner 
"Visual Class".

Wenn das Content eine feste Größe hat wird das View sich entweder der Größe 
des Content anpassen, oder in eine oder beide Richtungen scrollbar sein. Im 
Folgenden werden ein paar typische Konfigurationen dargestellt.

Um das Content in einem in beide Richtungen scrollbaren View darzustellen, 
muss das View folgendermaßen konfiguriert werden. Ändert der Nutzer jetzt die 
Größe des View, z.B. indem er die Größe des zugehörigen Hauptfensters ändert, 
so wird mehr oder weniger vom Content-Objekt zu sehen sein und die Rollbalken 
passen sich an.

View DemoView
Content = DemoContent
hControl = HVC_SCROLLABLE + HVC_NO_LARGER_THAN_CONTENT 
vControl = HVC_SCROLLABLE + HVC_NO_LARGER_THAN_CONTENT 
initialSize = 200, 200 ’ zum Beispiel

End OBJECT

Um nur in eine Richtung scrollable zu sein, passen wir die Größe des Views in die 
andere Richtung an die des Content an.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 496

View DemoView
Content = DemoVisContent
hControl = HVC_SCROLLABLE + HVC_NO_LARGER_THAN_CONTENT 
vControl = HVC_NO_LARGER_THAN_CONTENT +\

HVC_NO_SMALLER_THAN_CONTENT
End OBJECT

Eine weitere Möglichkeit ist, dass das View in beide Richtungen stets exakt so 
groß ist, wie das Content. Um das zu erreichen gibt es zwei Möglichkeiten:

View DemoView
Content = DemoContent
hControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT
vControl = HVC_NO_LARGER_THAN_CONTENT + \

HVC_NO_SMALLER_THAN_CONTENT
End OBJECT

oder 

View DemoView
Content = DemoContent
viewAttrs = VA_VIEW_FOLLOWS_CONTENT_GEOMETRY , 0

End OBJECT

Eine besondere Situation ist, dass der Nutzer die Größe des View-Objekts 
verändern kann, aber stets das gesamte Content-Objekt sichtbar sein soll. Das ist 
z.B. für ein Gameboard interessant. Wenn der Nutzer die Größe des 
Spielprogramms verändert, wird stets das gesamte Spielfeld sichtbar bleiben.
Dazu muss das View seinen Zoomfaktor automatisch so ändern, dass das 
gesamte Content innerhalb des verfügbaren Platzes dargestellt wird. Das erreicht 
man, indem das Bit VA_SCALE_TO_FIT in der Instancevariablen viewAttrs 
gesetzt wird. 
Damit das View seine Anfangsgröße kennt und anfangs einen Skalierungsfaktor 
von 1 einstellt, geben wir sowohl einen Wert für initialSize als auch (den gleichen 
Wert) für contentSize vor. 

Im Folgenden werden mehrere Varianten vorgestellt, die sich in ihrem Verhalten 
jeweils etwas unterscheiden. Den kompletten Code finden Sie in der Beispieldatei 
"VisContent ScaleToFit" im Ordner "Visual Class".



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 497

Variante 1: 
Die Höhe des Views soll sich der vom Nutzer eingestellten Breite anpassen.

View DemoView
Content = DemoContent
viewAttrs = VA_SCALE_TO_FIT, 0
initialSize = 490,210 ’ Das passt in unserem Beispiel
contentSize = 490,210

hControl = HVC_NO_LARGER_THAN_CONTENT
vControl = HVC_KEEP_ASPECT_RATIO

End OBJECT

Variante 2: 
Analog zur Variante 1 soll sich die Breite des Views der vom Nutzer eingestellten 
Höhe anpassen.

View DemoView
Content = DemoContent
viewAttrs = VA_SCALE_TO_FIT, 0
initialSize = 490,210 ’ Das passt in unserem Beispiel
contentSize = 490,210

hControl = HVC_KEEP_ASPECT_RATIO
vControl = HVC_NO_LARGER_THAN_CONTENT

End OBJECT

Variante 3: 
Der Skalierungsfaktor orientiert sich sowohl an der Breite als auch an der Höhe 
des View. ’ Dabei kann das View höher als das Content werden.

View DemoView
Content = DemoContent
viewAttrs = VA_SCALE_TO_FIT, 0
initialSize = 490,210 ’ Das passt in unserem Beispiel
contentSize = 490,210

hControl = HVC_NO_LARGER_THAN_CONTENT
vControl = HVC_NO_LARGER_THAN_CONTENT

End OBJECT

Variante 4: 
SFO_BOTH_DIMENSIONS in der Instancevariablen scaleToFitOptions bewirkt, 
dass der Zoomfaktor in beide Richtungen unabhängig voneinander berechnet 
wird.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 498

View DemoView
Content = DemoContent
viewAttrs = VA_SCALE_TO_FIT, 0
initialSize = 490,210 ’ Das passt in unserem Beispiel
contentSize = 490,210

scaleToFitOptions = SFO_BOTH_DIMENSIONS
hControl = HVC_NO_LARGER_THAN_CONTENT
vControl = HVC_NO_LARGER_THAN_CONTENT

End OBJECT

5.4.2.2 Wenn das Content eine variable Größe hat

Typische Situationen, in den ein VisContent-Objekt eine veränderliche Größe hat 
sind z.B. ein Dateimanager oder der Grafikviewer Gonzo. Hier kann sich die 
Anzahl der dargestellten Objekte (Children des VisContent) ändern und wenn Sie 
die Größe des Hauptfensters verändern, ordnen sich die Children neu an.

Im Allgemeinen ist das View in diesem Fall in eine Richtung scrollbar, während 
sich das VisContent in der anderen Richtung an die Größe des Views anpasst. 
Das folgende Codefragment zeigt eine typische Konfiguration für diesen Fall. Das 
View passt sich der Größe seines Parent-Objekts an und ist in vertikaler Richtung 
scrollbar. Das Content passt sich in der Breite der Größe des View an, seine Höhe 
berechnet es aus der Geometrie seiner Children. Diese oder eine ähnliche 
Konfiguration wird in mehreren Beispielen im Ordner "Visual Class" verwendet.

View DemoView
Content = DemoContent

 vControl = HVC_SCROLLABLE
initialSize = 400, 250
ExpandWidth
ExpandHeight
...

End OBJECT

VisContent DemoContent
allowChildrenToWrap = TRUE
’ Das Content-Objekt soll immer so breit sein, wie das
’ zugehörige View.
’ Dazu müssen die folgenden Instancevariablen gesetzt sein.
contentAttrs = CA_SAME_WIDTH_AS_VIEW , 0
visSizeFlags = VSF_EXPAND_WIDTH
...

End OBJECT



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 499

5.4.3 Anlegen und Vernichten von Objekten

Methoden:
Methode Aufgabe
CreateVisObject Neues VisObj-Objekt anlegen
DestroyVisObject Mit CreateVisObject VisObj-Objekt vernichten

Im Zusammenhang mit VisObj-Objekten ist es sehr häufig, dass Sie VisObj-
Objekte zur Laufzeit anlegen und wieder vernichten müssen. Ein Beispiel ist der 
GeoMananger, der für jede Datei im Verzeichnis ein eigenes VisObj-Objekt 
verwendet. Auch der Grafikviewer Gonzo legt für jede gefundene Grafikdatei ein 
VisObj-Objekt an und vernichtet es wieder, wenn das Verzeichnis gewechselt 
wird. 
Natürlich können Sie die im Kapitel 2.1.5 des Objekthandbuchs beschriebenen 
Routinen CreateObject und DestroyObject auch für VisObj-Objekte benutzen. Sie 
müssen sich dann aber auch um das Anlegen und die Verwaltung der 
zugehörigen Objektblöcke kümmern. Insbesondere, wenn Sie viele Objekte 
anlegen wollen bzw. deren Anzahl vorher nicht kennen, kann das sehr aufwändig 
sein.

Aus diesem Grund bietet das VisContent Objekt zwei Methoden, mit denen Sie 
VisObj-Objekte zur Laufzeit ganz einfach anlegen und wieder vernichten können. 
Das VisContent managed die erforderlichen Objektblöcke dabei selbständig. 
CreateVisObject legt ein neues VisObj-Objekt an und bindet es bei Bedarf als 
Child des VisContent in den visual Tree ein. DestroyVisObject vernichtet ein mit 
CreateVisObject angelegtes VisObj-Objekt wieder. 

CreateVisObject

Die Methode CreateVisObject legt ein neues VisObj-Objekt an und bindet es bei 
Bedarf als Child des VisContent in den visual Tree ein. Falls erforderlich wird ein 
neuer Objektblock angelegt. 

Syntax: <objVar> = <obj>.CreateVisObject xSize, ySize [,addAsChild]
xSize: Anfängliche Breites des neu angelegten Objektes
ySize: Anfängliche Höhe des neu angelegten Objekts
addAsChild: Objekt als Child des VisContent in den visual Tree 

einbinden (TRUE) oder nicht (FALSE). Der Defaultwert 
ist TRUE, d.h. das Objekt wird als letztes Child des 
VisContent eingebunden.

Um Objekte, die mit der Methode CreateVisObject angelegt wurden, zu 
vernichten, müssen Sie die Methode DestroyVisObject verwenden. Verwenden 
Sie niemals die Routine DestroyObject dafür. Allerdings ist es zulässig ein 
Programm zu beenden, ohne die angelegten VisObj-Objekte zu vernichten. 



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 500

Nachdem das Objekt angelegt wurde, muss es noch weiter initialisiert werden. Im 
Allgemeinen benötigt es einen OnDraw-Handler sowie häufig einen 
OnMouseButton-Handler.
Nachdem alle gewünschten VisObj-Objekte angelegt wurden, müssen Sie den 
visual Tree aktualisieren, indem Sie die Methode MarkInvalid für das VisObj-
Objekt oder das VisContent aufrufen. Erst dann erscheinen die neu angelegten 
Objekte auf dem Schirm.

Beispiel. Den vollständigen Code finden Sie in der Beispieldatei "Create VisObj 
Demo".
BUTTONACTION DemoCreateChild
DIM obj AS OBJECT

obj = DemoContent.CreateVisObject 160, 100

’ Initialisieren: Drawhandler, Maushandler usw.
obj.OnDraw = VisObjDraw
<mehr ...ausgelassen>

’ Das neue Objekt auf dem Schirm sichtbar machen
obj.MarkInvalid

End ACTION ’ DemoCreateChild

Im Modus customManageChildren ist es häufig sinnvoll, das neue VisObj nicht 
als letztes, sondern als erstes Child des VisContent einzubinden, damit es über 
allen schon vorhandenen Objekten gezeichnet wird. Dazu ist es sinnvoll (aber 
nicht erforderlich), die Methode CreateVisObject mit dem Parameter addAsChild = 
FALSE aufzurufen. Abschließend weisen wir das VisContent als Parent zu, wobei 
als Child-Position der Wert Null verwendet wird. Außerdem müssen wir dem 
Objekt eine visPosition zuweisen. Im Beispiel berechnen wir sie aus der Anzahl 
der Children, die das DemoContent schon hat. Um das Objekt sichtbar zu 
machen, müssen wir abschließend die Methode MarkInvalid aufrufen.

Beispiel. Den kompletten Code finden Sie in Beispieldatei "Create Custom 
Managed VisObj".
DIM obj AS OBJECT
DIM n

obj = DemoContent.CreateVisObject 80, 60, FALSE
obj.Parent = DemoContent, 0

n = DemoContent.numChildren - 1
obj.visPosition = 20*n + 10, 20*n+ 10

’ Initialisieren: DrawHandler, Maushandler
< .. siehe Beispiel-Datei ..>

obj.MarkInvalid

End ACTION ’ DemoCreateChild



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisContent  - 501

Dynamisch mit CreateVisObject angelegten Objekte lassen sich ohne 
Einschränkungen genauso verwenden, wie statisch im UI-Code deklarierte 
Objekte. Es ist also möglich, aus den neu angelegten VisObj-Objekten einen 
komplexen Tree aufzubauen. Dazu müssen Sie einfach die Instancevariable 
parent des VisObj-Objekts entsprechend setzen. Außerdem ist es zulässig, 
dynamisch mit CreateVisObject angelegte Objekte mit statisch im UI-Code 
deklarierten Objekten in einem Tree zu vermischen. 

DestroyVisObject

Die Methode DestroyVisObject vernichtet ein mit der Methode CreateVisObject 
angelegtes Objekt. Enthält der zugehörige Objektblock danach keine Objekte 
mehr, so wird er automatisch freigegeben. 

Syntax: <obj>.DestroyVisObject <objVar>
<objVar>: Referenz auf ein mit CreateVisObject angelegtes 

VisObj-Objekt

Sie können DestroyVisObject nur mit Objekten verwenden, die von 
CreateVisObject angelegt wurden. Andernfalls kommt es zu einem Laufzeitfehler.
Sie können ein VisObj-Objekt vernichten, wenn es noch mit seinem Parent verlinkt 
ist. Allerdings darf es keine Children haben, sonst kommt es zu einem 
Laufzeitfehler.
Wenn Sie ein Objekt mit DestroyVisObject vernichten, müssen Sie im Modus 
"customManageChildren" die Methode MarkInvalid aufrufen, damit das Objekt 
vom Bildschirm verschwindet. Im normalen Modus ist dies nicht nötig, der visual 
Tree stellt sich automatisch neu dar.

Beispiel: Das letzte Child eines VisContent-Objekts soll vernichtet werden.
SUB DestroyLastChild
DIM ob as OBJECT
DIM count

count = DemoContent.numChildren
IF count = 0 THEN RETURN ’ Keine Children mehr

’ Die Zählung der Children beginnt bei Null
’ -> Das letzte Child hat die Nummer count-1
ob = DemoContent.children(count-1)
DemoContent.DestroyVisObject ob

End SUB

Beispiele für die Verwendung von DestroyVisObject finden Sie in den 
Beispieldateien "Create VisObj Demo" und "Create Custom Managed VisObj". 



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 502

5.5 VisObj

5.5.1 Überblick 

Objekte der Klasse VisObj dienen primär dazu, 
Grafiken auszugeben. 
Sie können außerdem auf Tastatur- und Mauseingaben reagieren. Die VisObj-
Objekte (bzw. das VisContent-Objekt) müssen nur die Grafik bereitstellen, das 
zugehörige View-Objekt kümmert sich um den darzustellenden Bereich, Scrolling 
und Zoom. 

VisObj-Objekte können direkte Children eines VisContent-Objekts sein und sie 
können Children der Klasse VisObj haben, die ihrerseits Grafik ausgeben und auf 
Tastatur und Maus reagieren können. Es ist eine Frage des Programm-Konzepts, 
ob man die grafische Ausgabe über ein BitmapContent, ein VisContent ohne 
Children oder eine Reihe von VisObj-Objekten realisiert. VisObj-Objekte bieten 
sich immer an, wenn einzelne Objekte mit der Maus angeklickt oder über den 
Bildschirm bewegt werden sollen. 

Abstammung:
VisualClass VisGroup VisObj

VisObj-Objekte erben viele Fähigkeiten von der VisualClass. Dazu gehören die 
Arbeit mit der Maus, der Tastatur, dem Clipboard sowie die Arbeit mit der Focus- 
und der Target-Hierarchie. Im Kapitel 5.1 dieses Handbuchs (Die VisualClass) 
finden Sie dazu eine Kurzbeschreibung sowie Verweise auf die zugehörigen 
Kapitel im Handbuch.

Weitere Fähigkeiten erben VisObj-Objekte von der VisGroup Class. Das sind 
insbesondere die Darstellung auf dem Bildschirm (Ausgabe von Text und Grafik), 
die Anordnung der eigenen Children sowie die Bestimmung der eigenen Größe. 
Die zugehörigen Instancevariablen, Methode und Actionhandler sind ausführlich 
im Kapitel 5.3 (VisGroup) des Objekthandbuchs beschrieben.

Besondere Hinweise für VisObj-Objekte

• Um mit der Zwischenablage arbeiten zu können muss das VisObj-Objekt im 
gepufferten Modus arbeite (Instancevariable buffered = TRUE). 
Verwenden Sie ClpPaste nicht, wenn das Objekt aktuell der Screen ist. Es 
kommt dann zu einer Verschiebung der eingefügten Grafik.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 503

Spezielle Instancevariablen:
Variable Syntax im UI-Code Im BASIC-Code
visDataValue visDataValue = numWert lesen, schreiben
drawable drawable = TRUE  | FALSE lesen, schreiben
detectable detectable = TRUE | FALSE lesen, schreiben
managed managed = TRUE  | FALSE lesen, schreiben
isDragging –– nur lesen
dragGString –– lesen, schreiben
dragPosition –– nur Lesen
dragOffset –– nur Lesen
grabFocusOnMouseEvents lesen, schreiben

grabFocusOnMouseEvents  = numWert
grabTargetOnMouseEvents lesen, schreiben

grabTargetOnMouseEvents  = numWert

Methoden:
Methode Aufgabe
DragStart Drag-Modus initialisieren
DragMoveTo Umriss im Drag-Modus bewegen
DragEnd Drag-Modus beenden, Objekt neu positionieren
DragAbort Drag-Modus abbrechen
DrawHandles Anfasser zeichnen
TestHandles Prüfen, ob Position innerhalb eines Anfassers liegt
DrawFrame Rahmen um das Objekt zeichnen
DrawInverse Bereich des Objekts invertiert zeichnen



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 504

5.5.2 Grundlegende Fähigkeiten

Spezielle Instancevariablen:
Variable Syntax im UI-Code Im BASIC-Code
visDataValue visDataValue = numWert lesen, schreiben
drawable drawable = TRUE  | FALSE lesen, schreiben
detectable detectable = TRUE | FALSE lesen, schreiben
managed managed = TRUE  | FALSE lesen, schreiben

visDataValue

Die Instancevariable visDataValue enthält einen numerischen Wert (LongInt-
Bereich), mit dem Sie bei Bedarf verschiedene VisObj-Objekte auseinanderhalten 
können, ohne auf die relativ umständliche Verwendung der Instancevariablen 
privData zurückzugreifen. Außerdem können Sie visDataValue bereits im UI-Code 
zuweisen.

Syntax UI-Code: visDataValue = value
value: numerischer Wert, LongInt

Lesen: <numVar> = <obj>.visDataValue 
Schreiben: <obj>.visDataValue  = value

Natürlich steht Ihnen die Instancevariable privData auch für VisObj-Objekte zur 
Verfügung, wenn Sie für jedes individuelle VisObj-Objekt mehr als einen einzelnen 
Zahlenwert abspeichern wollen. Eine Beschreibung der Instancevariablen privData 
finden Sie im Handbuch Spezielle Themen, Kapitel 19.

Beispiel: Sie haben mehrere VisObj-Objekte, die den gleichen OnDraw-Handler 
haben sollen, sich aber in der Farbe unterscheiden müssen.

VisObj Obj1
OnDraw = VDraw
visDataValue = RED

  ...
END OBJECT

VisObj Obj1
OnDraw = VDraw
visDataValue = BLUE

  ...
END OBJECT

DRAWCATION VDraw
Color sender.visDataValue, 0
...

END ACTION



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 505

drawable

Die Instancevariable drawable bestimmt, ob sich das Objekt und seine Children 
auf dem Schirm darstellen können (TRUE), oder nicht (FALSE). Der Defaultwert 
ist TRUE. Setzen Sie den Wert zur Laufzeit auf FALSE, so werden das Objekt und 
seine Children vom Schirm genommen und der Hintergrund im Bereich des 
Objekts wird neu gezeichnet.
Beachten Sie, dass das Objekt auch weiterhin bei der Berechnung der Geometrie 
berücksichtigt wird.

Syntax UI-Code: drawable =  TRUE | FALSE
Lesen: <numVar> = <obj>.drawable 
Schreiben: <obj>.drawable = TRUE | FALSE 

Hinweis für einen seltenen Fall: In Bereichen, in denen die Children über den 
Rand des Objekts hinausragen sollten, wird der Hintergrund nicht neu gezeichnet, 
wenn Sie drawable zur Laufzeit auf FALSE setzen. Rufen Sie in diesem Fall die 
Methode MarkInvalid für das zugehörige VisContent auf.

detectable

Die Instancevariable detectable bestimmt, ob das Objekt Mausereignisse erhalten 
kann (TRUE), oder nicht (FALSE). Der Defaultwert ist TRUE.

Syntax UI-Code: detectable =  TRUE | FALSE
Lesen: <numVar> = <obj>.detectable
Schreiben: <obj>.detectable = TRUE | FALSE 

managed

Die Instancevariable managed bestimmt, ob das Objekt mit dem Geometrie-
manager zusammenarbeiten kann (TRUE) oder nicht (FALSE). Der Defaultwert ist 
TRUE. Setzen Sie den Wert auf FALSE, so wird der Geometriemanager das 
Objekt ignorieren. Sie müssen dann einen Wert für visPosition setzen.
Sie können den Wert auch im Modus customManageChildren auf TRUE lassen. 

Syntax UI-Code: managed =  TRUE | FALSE
Lesen: <numVar> = <obj>.managed 
Schreiben: <obj>.managed = TRUE | FALSE 

Hinweis für einen seltenen Fall: Sollten Sie managed zur Laufzeit auf FLASE 
setzen, so müssen Sie anschließend (!) einen Wert für visPosition zuweisen und 
die Methode MarkInvalid aufrufen. Je nach Situation wird dabei möglicherweise 
der Hintergrund nicht korrekt neu gezeichnet. Rufen Sie in diesem Fall die 
Methode MarkInvalid für das zugehörige VisContent auf.
Das gilt entsprechend auch, wenn Sie managed zur Laufzeit auf TRUE setzen.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 506

5.5.3 Maus- und Tastatur-Input

5.5.3.1 Arbeit mit der Maus

Sie können innerhalb eines Maushandlers Grafik auf den Schirm ausgeben, z.B. 
um einen Umriss zu zeichnen, während Sie das Objekt über den Schirm bewegen. 
Dazu müssen Sie das Objekt temporär zum Screen machen. Eine ausführliche 
Beschreibung, wie man mit der Maus arbeitet, finden Sie im Handbuch "Spezielle 
Themen", Kapitel 17. 

Es ist dabei von essentieller Bedeutung, dass wir der Zuweisung der globalen 
Screen-Variablen große Aufmerksamkeit widmen. Sie sollten am Beginn jeder 
Zeichenaktion den aktuell aktiven Screen in einer Variablen sichern und ihn am 
Ende wieder zurücksetzen. Vergessen Sie das Zurücksetzen des Screens, kann 
GEOS crashen - entweder gleich oder beim Beenden des Programms. Nur 
BitmapContent-Objekte dürfen beim Beenden des Programms der Screen sein.

Ähnliches gilt für das Grabben der Maus. GEOS wird crashen, wenn beim 
Beenden des Programms noch ein Objekt die Maus gegrabbt hat.

Das folgende Codefragment stammt aus dem Beispiel "Create VisObj Demo" und 
zeigt, wie man korrekt auf einen Mausklick reagiert. Die Sub DrawFigure sichert 
den Screen in einer (lokalen) Variablen und zeichnet eine inverse Ellipse.

MOUSEACTION VisObjButtonPressed

ON event SWITCH
CASE ME_LEFT_DOWN
’ Linke Maustaste gedrückt: Inversen Kreis zeichnen
DrawFigure(sender)
’ Maus grabben, damit das Loslassen der
’ Maustaste erkannt wird, selbst wenn der Mauszeiger
’ das Objekt verlassen hat
sender.GrabMouse
End CASE

CASE ME_LEFT_UP
’ Inversen Kreis löschen und Maus releasen
DrawFigure(sender)
sender.ReleaseMouse
End CASE

End SWITCH

End ACTION ’ VisObjButtonPressed

SUB DrawFigure (obj AS OBJECT)
DIM scr AS OBJECT

’ Zunächst müssen wir den aktuellen Screen sichern
scr = Screen
Screen = obj



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 507

’ Jetzt können wir etwas zeichnen
graphic.mixmode = MM_INVERT
FillEllipse 20, 20, MaxX - 20, MaxY - 20

’ Ganz wichtig: den originalen Screen wieder herstellen
’ auch wenn es, wie hier, ein Null-Objekt ist.
Screen = scr

End SUB ’DrawFigure

5.5.3.2 Der Weg der Nutzer-Eingaben

In der täglichen Programmierarbeit ist es nicht nötig, genau zu wissen, wie die 
Maus- bzw. Tastatur-Ereignisse von Objekt zu Objekt weitergeleitet werden. 
Reagiert Ihr Programm jedoch nicht so, wie Sie es erwartet haben, ist es hilfreich, 
die hier besprochenen Informationen zu kennen.

Nehmen wir an, Sie haben einen visual Tree, wie er im nächsten Bild dargestellt 
ist. Jedes der dargestellten Objekte habe sowohl einen Handler für Mausklicks 
(OnMouseButton) als auch einen Handler für Tastatureingaben (OnKeyPressed). 
Für den Weg, den die Eingabe-Ereignisse gehen, ist es allerdings egal, ob die 
Objekte einen passenden Handler haben, oder nicht. 

VisContent: MyVisContent

VisObj: GroupObj2

VisObj: VisObj1 VisObj: VisObj2

VisObj: GroupObj1

VisObj: VisObj3

GroupObj1

VisObj1 VisObj2 VisObj3

GroupObj2 MyVisContent

Die VisObjekte VisObj1 und VisObj2 werden innerhalb der Grenzen ihrer Parents 
(VisGroupObj1 und VisGroup2) dargestellt, liegen also "über" ihren Parents.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 508

Klickt der Nutzer jetzt mit der linken Maustaste auf das Objekt VisObj1, so wird 
zunächst erkannt, dass das Ereignis innerhalb von MyVisContent stattfand. 
Danach geht es jeweils an dasjenige Child, in dessen Grenzen es stattfand. Also 
zunächst an GroupObj1, von dort an GroupObj2 (und nicht an VisObj3!) und 
schließlich an VisObj1. Folglich werden die folgenden Maushandler (falls 
vorhanden) in der angegebenen Reihenfolge ausgeführt:

1. MyVisContent
2. GroupObj1
3. GroupObj2
4. VisObj1

Das Objekt VisObj1 hat anschließend den Focus und das Target - vereinfacht 
gesagt, es wird zum "aktiven" Objekt. Das bedeutet, es erhält Tastaturereignisse 
direkt vom VisContent.
Betätigt der Nutzer anschließend eine Taste auf der Tastatur, so werden die 
folgenden Tastaturhandler in der angegebenen Reihenfolge ausgeführt:

1. VisObj1
2. MyVisContent

Diese Reihenfolge resultiert daraus, dass das VisContent - wie alle Objekte - 
Tastaturereignisse zuerst an seine Children weiterleitet, bevor es sie selbst 
behandelt. 
Der Tastatur-Handler der dazwischen liegenden Objekte GroupObj1 und 
GroupObj2 werden nicht aktiviert, da VisObj1 die Ereignisse direkt vom 
VisContent erhält.

Solange nur eines der Objekte einen Tastatur- bzw. Maushandler hat, sind die 
Verhältnisse einfach. Es wird einfach der entsprechende Handler ausgeführt. In 
den meisten Fällen wird man also eine Baumstruktur wählen, in der nur die am 
Ende der Zweige befindlichen Objekte einen Maus- bzw. (falls erforderlich) einen 
Tastaturhandler haben. 

Wenn CustomManageChildren aktiv ist

Im Modus customManageChildren hat der Programmierer volle Kontrolle darüber, 
welches Objekt sich wo befindet. Die Objekte können sich beliebig überlappen. R-
BASIC stellt überlappende Objekte so dar, dass die "oben" liegenden Objekte 
auch die Mausereignisse erhalten. Es wird daher dringend empfohlen in diesem 
Modus alle VisObj-Objekte als direktes Child des VisContent einzubinden.

Natürlich können Sie auch hier Objekt-Trees verwenden, wenn es sinnvoll ist. 
Dabei gelten die oben genannten Regeln weiter, d.h. die Maus-Events werden 
vom Parent an die Children weitergereicht, bis sie das oben liegende Objekt 
erreichen. Sie müssen hier aber selbst dafür sorgen, dass jedes Objekt 
vollständig innerhalb der Grenzen seines Parents dargestellt wird, sonst 
erhält es möglicherweise Mausklicks nicht oder nur teilweise. Im Kapitel 5.3.2.2 
(Wenn sich die Children überlappen) finden Sie ein Beispiel, das diese Situation 
erläutert.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 509

5.5.3.3 Focus und Target

Im Allgemeinen ist die Arbeit mit Focus und Target etwas für fortgeschrittene 
Programmierer. Sie können allerdings die Focus-Hierarchie einfach benutzen, um 
festzustellen, welches Objekt als letztes angeklickt wurde, also das "aktive" Objekt 
ist. Das Beispiel "VisObj Keyboard Demo" zeigt, wie man das macht.

Dieser Abschnitt richtet sich an erfahrene Programmierer und zeigt, wie man in die 
Zuweisung von Focus und Target eingreifen kann. In den meisten Fällen sind die 
Default-Einstellungen aber völlig ausreichend und angemessen. Eine ausführliche 
Beschreibung zu den Themen Focus und Target finden Sie in den Kapiteln 12 
(Focus und Target) und 13 (Spezielle Menüs) im Handbuch "Spezielle Themen".

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
grabFocusOnMouseEvents lesen, schreiben

grabFocusOnMouseEvents  = numWert
grabTargetOnMouseEvents lesen, schreiben

grabTargetOnMouseEvents  = numWert

Per Default bekommt ein VisObj-Objekt bei einem Klick mit der linken Maustaste 
das Target und den Focus (d.h. alle Tastatureingaben gehen an dieses Objekt, 
siehe Handbuch Spezielle Themen, Kapitel 12). Beim Loslassen der Maustaste 
behält es Focus und Target. Ein Rechtsklick auf ein anderes Objekt ändert Focus 
und Target auch nicht. Es sind nun Situationen denkbar, in denen dieses 
Verhalten nicht adäquat ist. Z.B. könnte es erwünscht sein, dass ein Linksklick auf 
ein bestimmtes Objekt Focus und/oder Target nicht ändert. Oder ein Objekt soll 
auch bei einem Rechtsklick den Focus und/oder oder das Target bekommen. Für 
diese Fälle bietet R-BASIC die Instancevariablen grabFocusOnMouseEvents 
und grabTargetOnMouseEvents. Per Default haben beide den gleichen Wert, 
nämlich ME_LEFT_DOWN. d.h. Focus und Target gehen an das Objekt, wenn der 
Nutzer mit der linken Maustaste darauf klickt. Das ist unabhängig davon, ob das 
Objekt einen OnMouseButton-Handler hat, oder nicht. Sie können diese 
Instancevariablen mit einer anderen ME_-Konstante oder eine Kombination von 
ME_-Konstanten belegen, z.B. mit ME_RIGHT_DOWN + ME_LEFT_DOWN. 
Dann bekommt das Objekt auch dann den Focus bzw. das Target, wenn der 
Nutzer mit der rechten Maustaste auf das Objekt klickt. Belegen Sie diese 
Instancevariablen mit Null, bekommt das Objekt bei einem Linksklick den Focus 
bzw. das Target nicht mehr. 



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 510

grabFocusOnMouseEvents, grabTargetOnMouseEvents.

Syntax UI-Code: grabFocusOnMouseEvents = value
value: Kombination von ME_-Konstanten

Lesen: <numVar> = <obj>.grabFocusOnMouseEvents 
Schreiben: <obj>.grabFocusOnMouseEvents  = value

Syntax UI-Code: grabTargetOnMouseEvents = value
value: Kombination von ME_-Konstanten

Lesen: <numVar> = <obj>.grabTargetOnMouseEvents 
Schreiben: <obj>.grabTargetOnMouseEvents  = value

Einschränkungen:
Die Verwendung anderer Mausereignisse als den Linksklick, um Focus und Target 
zu ändern, ist mit bestimmten Einschränkungen verbunden. Insbesondere muss 
das Top-Objekt des visual Tree, das VisContent, bereits den Focus und/oder das 
Target haben. Das ist automatisch der Fall, wenn der Nutzer bereits mit der linken 
Maustaste auf das VisContent oder eins seiner Children geklickt hat. Als 
Programmierer kann man stattdessen die globalen Variablen Focus und Traget 
mit fraglichen VisContent Objekt belegen, z.B. im OnStartup-Handler.
Das Belegen der globalen Variablen Focus und Traget funktioniert in bestimmten 
Situationen auch innerhalb eines Maushandlers. 
Unter Umständen müssen Sie auch den gesamten Focus- bzw. Target-Pfad 
anpassen.
Die Instancevariablen defaultFocus und defaultTarget sind leider nicht 
verwendbar, da sie nur für GenericClass Objekte definiert sind.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 511

5.5.4 Spezielle Fähigkeiten und Tools

5.5.4.1 Rahmen und Anfasser

In bestimmten Situationen ist es sinnvoll, den Umriss des VisObj-Objekts oder 
kleine Vierecke an den Ecken des Objekts zu zeichnen, die der Nutzer direkt 
anklicken kann. Meist ist es so, dass diese Dinge wieder vom Schirm gelöscht 
werden müssen, ohne dass der Hintergrund verändert wurde. R-BASIC unterstützt 
beides und verwendet dabei dem MixMode MM_INVERT. In diesem Modus 
invertiert jede Zeichenoperation Farbpixel auf dem Schirm, unabhängig von der 
verwendeten Zeichenfarbe. Dadurch ist zum einen die gezeichnete Figur immer zu 
sehen, egal welche Hintergrundfarbe vorhanden ist und zum anderen stellt eine 
zweite Zeichenoperation den Hintergrund exakt wieder her.

Methoden:
Methode Aufgabe
DrawHandles Anfasser zeichnen
TestHandles Prüfen, ob Position innerhalb eines Anfassers liegt
DrawFrame Rahmen um das Objekt zeichnen
DrawInverse Bereich des Objekts invertiert zeichnen

DrawHandles

Diese Methode zeichnet kleine Quadrate ("Anfasser") an den Ecken oder Kanten 
des Objekts im MixMode MM_INVERT. Dadurch löscht eine zweite Zeichen-
operation die Quadrate wieder.
Die Anfasser werden immer vom Rand in das Innere des Objekts gezeichnet, 
niemals über die Grenzen des Objekts hinaus. Das ist erforderlich, weil Objekte 
Mausklicks anfangs nur innerhalb der Grenzen des Objekts erkennen.

Syntax: <obj>.DrawHandles  hanBits [, hanSize]
hanBits: Bitflags, welche Anfasser zu zeichnen sind.

Siehe Grafik unten.
hanSize: Größe der Anfasser. Der Defaultwert ist 9.

Der Parameter hanBits ist eine Summe aus den Werten, die in der folgenden 
Grafik angegeben sind. Dabei ist für jeden Anfasser genau ein Bit gesetzt, so dass 
Sie die Werte beliebig kombinieren können.

1 (&H01) 16 (&H10) 2 (&H02)

32 (&H20)

4 (&H04)64 (&H40)8 (&H08)

128 (&H80)
256 (&H100)



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 512

Per Default sind die Anfasser 9 Pixel groß. Geben Sie einen Wert für hanSize an, 
wenn Sie eine andere Größe wünschen.

Beispiel: Zeichnen der 4 Anfasser an den Ecken sowie den in der Mitte
myObj.DrawHandles 15 + 256 ’ = &H10F

TestHandles

Die Methode TestHandles prüft, ob die übergebene Position einem der Anfasser 
entspricht oder nicht. Es wird nicht geprüft, ob die Anfasser gezeichnet sind, 
sondern es erfolgt nur ein Positionsvergleich.
TestHandles gibt die Nummer des Anfassers entsprechend dem Bild oben zurück, 
oder Null, wenn die Position keinem der Anfasser entspricht.

Syntax: <numVar> = <obj>.TestHandles  xPos , yPos [, hanSize]
xPos, yPos: zu prüfende Position, i.A. Mauskoordinaten
hanSize: Größe der Handles

Wenn Sie bei DrawHandles einen Parameter hanSize übergeben haben, müssen 
Sie den gleichen Wert auch an Testhandles übergeben.

DrawFrame

Die Methode DrawFrame zeichnet einen (gestrichelten) Rahmen um das Objekt 
im MixMode MM_INVERT. Dadurch löscht eine zweite Zeichenoperation den 
Rahmen wieder.

Syntax: <obj>.DrawFrame  [ border   [, lineStyle] ]
border: Abstand zum Objektrand
lineStyle: Linienstil. Der Defaultwert ist LS_DASHED

Wenn Sie einen Wert für den Parameter border angeben wird der Rahmen um die 
entsprechende Anzahl an Pixeln im Inneren des Objekts gezeichnet. Um einen 
Wert für lineStyle anzugeben (z.B. LS_DOTTED), müssen Sie ebenfalls einen 
Wert für border angeben, z.B. Null.

Beispiel: Zeichnen von 4 Anfassern und einem Rahmen, der sich 4 Pixel innerhalb 
der Grenzen des Objekts befindet. Dadurch sieht es so aus, als würden die 
Anfasser über das Objekt hinausragen.

MyObj.DrawHandles 1 + 2 + 3 + 4
MyObj.DrawFrame 4



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 513

Es ergibt sich das folgende Bild. 

DrawInverse

Die Methode DrawInverse zeichnet ein Rechteck im Bereich des Objekts im 
MixMode MM_INVERT. Dadurch werden die Farben auf dem Schirm invertiert und 
eine zweite Zeichenoperation löscht das Rechteck wieder.

Syntax: <obj>.DrawInverse  [ border ]
border: Abstand zum Objektrand

Wenn Sie einen Wert für den Parameter border angeben, wird an den Seiten des 
Objekts ein entsprechend breiter Bereich nicht invertiert.

5.5.4.2 Dragging

Ein Objekt mit der Maus auf dem Bildschirm zu platzieren ist ein häufiger 
Einsatzfall von VisObj-Objekten. Dazu muss im zugehörigen VisContent die 
Instancevariable customManageChildren auf TRUE gesetzt sein.

R-BASIC unterstützt das "Dragging" genannte Ziehen eines Objekts über den 
Bildschirm sehr komfortabel. Dabei wird bei Bedarf der Umriss des Objekts an der 
aktuellen Mausposition gezeichnet. Das ist per Default ein Rechteck, Sie können 
aber auch einen eigenen Umriss definieren.

Spezielle Instancevariablen:
Variable Syntax im UI-Code Im BASIC-Code
isDragging –– nur lesen
dragGString –– lesen, schreiben
dragPosition –– nur Lesen
dragOffset –– nur Lesen

Methoden:
Methode Aufgabe
DragStart Drag-Modus initialisieren
DragMoveTo Umriss im Drag-Modus bewegen
DragEnd Drag-Modus beenden, Objekt neu positionieren
DragAbort Drag-Modus abbrechen



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 514

isDragging

Diese Instancevariable enthält die Information, ob sich das Objekt gerade im Drag-
Modus befindet (TRUE) oder nicht (FALSE). Sie kann nur gelesen werden.

Syntax: <numVar> = <obj>.isDragging 

dragGString

Per Default wird als Umriss beim Bewegen des Objekts über den Bildschirm ein 
gestricheltes Rechteck in der Größe des Objekts verwendet. Wenn Sie einen 
anderen Umriss verwenden wollen, müssen Sie die Instancevariable dragGString 
mit einer entsprechenden Grafik belegen. Sie sollten den GString im MixMode 
MM_INVERT zeichnen, weil die Dragging-Methoden des VisObj voraussetzen, 
dass ein zweimaliges Zeichnen des Umrisses ihn wieder vollständig vom 
Bildschirm entfernt.
Um zu verhindern, dass überhaupt ein Umriss gezeichnet wird, müssen Sie 
dragGString mit einem "leeren" GString, also einem GString ohne 
Zeichenoperationen, belegen.
DragGString kann nicht im UI-Code verwendet werden.

Syntax Schreiben: <obj>.dragGString = <gs>
<gs>: Variable oder Ausdruck vom Typ Handle

Lesen <gsVar> = <obj>.dragGString 
<gsVar>: Variable vom Typ Handle

Das folgende Codefragment stammt aus dem OnMouseButton-Handler des 
Beispiels "VisObj Dragging Demo". Wesentliche Elemente sind zur Erhöhung der 
Übersichtlichkeit farblich hervorgehoben. Wichtig ist, dass die globalen Variablen 
MaxX und MaxY nach dem Aufruf von StartRecordGS() geändert sind, dass man 
den Mixmode MM_INVERT einstellt und dass man den GString am Schluss 
wieder freigibt. Das Belegen von dragGString mit NullHandle() stellt sicher, dass 
dragGString nicht auf nicht mehr existierende Daten verweist.

ON event SWITCH
CASE ME_LEFT_DOWN:
sender.GrabMouse

’ MaxX und MaxY sind nach StartRecordGS() immer 1920 x 1024
’ Wir sichern sie in lokalen Variablen
mx = MaxX
my = MaxY

’ GString aufzeichnen. Der MixMode MM_INVERT ist zwingend,
’ damit der Umriss gezeichnet werden kann
gs = StartRecordGS()
graphic.mixmode = MM_INVERT



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 515

graphic.linestyle = LS_DOTTED
Rectangle 0, 0, mx, my
Line 0, 0, mx, my
Line mx, 0, 0, my

’ Aufzeichnung beenden
EndRecordGS(gs)

’ GString zuweisen und Dragging starten
sender.dragGString = gs
sender.DragStart xPos, yPos

End CASE

CASE ME_LEFT_UP:
’ Dragging beenden und GString freigeben
sender.DragEnd xPos, yPos
FreeGS( sender.dragGString)
sender.dragGString = NullHandle()

sender.ReleaseMouse
End CASE

End SWITCH

dragPosition

Diese Instancevariable enthält die absoluten Koordinaten (d.h. relativ zum 
VisContent) der linken oberen Ecke des Drag-Umrisses. Das ist im nächsten Bild 
dargestellt. DragPosition kann nur gelesen werden und auch nur, solange der 
Drag-Modus aktiv ist. Ansonsten kommt es zu einem Laufzeitfehler.

Syntax: <numVar> = <obj>.dragPosition (n)
n = 0: x-Koordinate lesen
n = 1: y-Koordinate lesen

dragOffset

Diese Instancevariable enthält die Position der Maus, relativ zur linken oberen 
Ecke des Drag-Umrisses. Dieser Wert ist konstant und wird beim Aufruf von 
DragStart festgelegt. Das ist im nächsten Bild dargestellt. DragOffset kann nur 
gelesen werden und auch nur, solange der Drag-Modus aktiv ist. Ansonsten 
kommt es zu einem Laufzeitfehler.

Syntax: <numVar> = <obj>.dragOffset (n)
n = 0: x-Offset lesen
n = 1: y-Offset lesen



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 516

VisObj

VisContent

Drag-Umriss

dragPosition(0)
dragPosition(1)

dragOffset(0)
dragOffset(1)

DragStart

Die Methode DragStart initialisiert den Dragging-Modus für das Objekt. Dabei wird 
eine interne Datenstruktur initialisiert und der Umriss wird erstmalig gezeichnet. 
Wenn Sie also einen eigenen Umriss verwenden wollen muss die Instancevariable 
dragGString vorher belegt worden sein.
DragStart wird üblicher Weise im OnMouseButton-Handler als Reaktion auf das 
Ereignis ME_LEFT_HOLD oder ME_LEFT_DOWN gerufen.

Syntax: <obj>.DragStart xPos, yPos
xPos, yPos: aktuelle Position der Maus

DragMoveTo

Die Methode DragMoveTo bewegt dem Umriss zu einer neuen Position. Dazu wird 
der Umriss zunächst an der alten Position gezeichnet - womit er vom Bildschirm 
verschwinden sollte - und dann an der neuen Position.
DragMoveTo wird üblicher Weise im OnMouseMove-Handler gerufen. Die 
Methode prüft selbständig, ob sich das Objekt gerade im Drag-Modus befindet, so 
dass auf die Abfrage der Instancevariable isDragging verzichtet werden kann.

Syntax: <obj>.DragMoveTo xPos, yPos
xPos, yPos: neue Position der Maus

DragEnd

Die Methode DragEnd beendet den Drag-Modus und verschiebt das Objekt an die 
neue Position. Dazu wird zunächst der Umriss gezeichnet (also gelöscht), das 
Objekt neu positioniert und abschließend der visual Tree upgedatet. 
DragStart wird üblicher Weise im OnMouseButton-Handler als Reaktion auf das 
Ereignis ME_LEFT_UP gerufen. Die Methode prüft selbständig, ob sich das 



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

VisObj  - 517

Objekt gerade im Drag-Modus befindet, so dass auf die Abfrage der 
Instancevariable isDragging verzichtet werden kann.
Falls Sie einen eigenen Umriss verwenden (Instancevariable dragGString), sollten 
Sie den zugehörigen GString jetzt vernichten (falls Sie ihn nicht mehr anderweitig 
brauchen).

Syntax: <obj>.DragEnd xPos, yPos
xPos, yPos: aktuelle Position der Maus

DragAbort

Die Methode DragAbort bricht den Drag-Modus ab, ohne das Objekt zu 
verschieben und ohne den visual Tree upzudaten. Es wird nur der Umriss 
gezeichnet (also gelöscht).
Ansonsten gelten die Hinweise, die bei DragEnd gegeben wurden.

Syntax: <obj>.DragAbort

Ein Code-Beispiel für die Verwendung von DragAbort finden Sie in der Beispiel-
Datei "VisObj Level Editor Demo".



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

SDK-Möglichkeiten  - 518

5.6 Erweiterte Möglichkeiten für SDK-Programmierer 

Die Fähigkeiten der VisualClass-Objekte sind sehr komplex. R-BASIC führt die 
wichtigsten Fähigkeiten und Eigenschaften heraus. Erfahrene SDK-Programmierer 
kennen vielleicht weitere Varianten oder es fehlen ihnen bestimmte 
Einstellmöglichkeiten. Deswegen gibt es einige R-BASIC-Instancevariablen bzw. 
Methoden, die den direkten Zugriff auf die SDK-Ebene erlauben. 

Instance-Variablen und Methoden für SDK-Programmierer:
Variable/Methode Syntax im UI-Code Im BASIC-Code
visClassAttrs visClassAttrs = toSet, toClear lesen, schreiben
visCompGeoAttrs visCompGeoAttrs = toSet, toClear lesen, schreiben
visCompDimensionAttrs lesen, schreiben

 visCompDimensionAttrs = toSet, toClear
contentAttrs contentAttrs = toSet , toClear lesen, schreiben
MarkInvalid2 ––  (Methode) nur schreiben

Nicht alle hier besprochenen Instancevariablen und Methoden funktionieren mit 
allen VisualClass Objekten. Die Zuordnung finden Sie in der folgenden Tabelle

Instance-Variablen und Methoden für SDK-Programmierer:
Variable/Methode Zugehöige Klassen
visClassAttrs VisContent, VisObj, BitmapContent, VisText, 

LargeText
visCompGeoAttrs VisContent, VisObj, BitmapContent
visCompDimensionAttrs VisContent, VisObj, BitmapContent
contentAttrs VisContent, BitmapContent, GenContent
MarkInvalid2 VisContent, VisObj, BitmapContent, VisText, 

LargeText

visClassAttrs

Die Instancevariable visClassAttrs spricht direkt die SDK-Instancevariable VI_attrs 
der VisClass an. Sie haben damit Zugriff auf die Bits, die von R-BASIC nicht 
herausgeführt werden. Der beim Schreiben benötigte Parameter updateMode 
sollte einer der Werte 0 (VUM_MANUAL), 1 (VUM_NOW), 2 (VUM_DELAYED 
_VIA_UI_QUEUE) oder 3 (VUM_DELAYED_VIA_APP_QUEUE) sein. 



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

SDK-Möglichkeiten  - 519

Syntax UI-Code: visClassAttrs = attrsToSet , attrsToClear 
Lesen: <numVar> = <obj>.visClassAttrs (0)
Schreiben:

<obj>.visClassAttrs = attrsToSet , attrsToClear , updateMode 
attrsToSet: zu setzende Attribute
attrsToClear: zu setzende Attribute

visCompGeoAttrs

Die Instancevariable visCompGeoAttrs spricht direkt die SDK-Instancevariable 
VCI_geoAttrs der VisCompClass an. Sie können alle dort definierten Bits lesen 
und schreiben.

Syntax UI-Code: visCompGeoAttrs = attrsToSet , attrsToClear 
Lesen: <numVar> = <obj>.visCompGeoAttrs (0)
Schreiben: <obj>.visCompGeoAttrs = attrsToSet , attrsToClear 

attrsToSet: zu setzende Attribute
attrsToClear: zu setzende Attribute

visCompDimensionAttrs

Die Instancevariable visCompDimensionAttrs spricht direkt die SDK-
Instancevariable VCI_geoDimensionAttrs der VisCompClass an. Sie können alle 
dort definierten Bits lesen und schreiben.

Syntax UI-Code: visCompDimensionAttrs = attrsToSet , attrsToClear 

Lesen: <numVar> = <obj>.visCompDimensionAttrs (0)
Schreiben:

<obj>.visCompDimensionAttrs = attrsToSet , attrsToClear 
attrsToSet: zu setzende Attribute
attrsToClear: zu setzende Attribute

contentAttrs

Die Instancevariable contentAttrs spricht direkt die SDK-Instancevariable 
VCNI_attrs der VisContentClass an. Sie können alle dort definierten Bits 
verwenden. Das gilt ebenso für GenContent-Klasse. Hier heißt die 
Instancevariable im SDK GCI_attrs.



R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

SDK-Möglichkeiten  - 520

Syntax UI-Code: contentAttrs = attrsToSet , attrsToClear 
Lesen: <numVar> = <obj>.contentAttrs (0)
Schreiben: <obj>.contentAttrs = attrsToSet , attrsToClear 

attrsToSet: zu setzende Attribute
attrsToClear: zu setzende Attribute

MarkInvalid2

Die Methode MarkInvalid2 ist eine Erweiterung der Methode MarkInvalid. Sie ruft 
direkt die SDK-Message MSG_VIS_MARK_INVALID auf. Sie können genau die 
Flags übergeben, die Sie möchten. Die Methode MarkInvalid hingegen übergibt 
immer die Flags VOF_GEOMETRY_INVALID und VOF_IMAGE_INVALID. 
Der Parameter updateMode sollte einer der Werte 0 (VUM_MANUAL), 1 
(VUM_NOW), 2 (VUM_DELAYED_VIA_UI_QUEUE) oder 3 (VUM_DELAYED_ 
VIA_APP_QUEUE) sein. 

Syntax: <obj>.MarkInvaild2 <visOptFlags>, updateMode 


