R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Objekt-Handbuch

Volume 10
Visual Objekt Klassen

Version 1.0

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 10

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis
Volume 10

LI VA=Y 00 41 = ¢ 1 492
5.4.1 Grundlegende Fahigkeitenccccocvviiiiiiiiinniiicnccie, 492
5.4.2 View-Content Konfigurationcccooiiiiiiiiiis 494
5.4.2.1 Wenn das Content eine feste GréBe hat 494

5.4.2.2 Wenn das Content eine variable Gré8e hat 497

5.4.3 Anlegen und Vernichten von Objektenccccccooviiiieeeennn. 498

5.5 VISOD] cererrereurereusessersusesssessssssssseussssssesssssasssssesssssssssasssssstassssassssseas 502
5.5.1 UDEIDICK «vrvevevereirerieieieiesieteseesteesteesseestesss e saesessense s ssesens 502
5.5.2 Grundlegende Fahigkeitencccooviiiiiiiii e 504
5.5.3 Maus- und Tastatur-Input ... 506
5.5.3.1 Arbeit mit der Maus ... 506

5.5.3.2 Der Weg der Nutzer-Eingabencccccoiiiiiieennes 507

5.5.83.3 Focus und Target ..o 509

5.5.4 Spezielle Fahigkeiten und TOOISoovvvviiiiiriiiiiiiiiiciiiieeciee 501
5.5.4.1 Rahmen und AnfasSer «.ccccceeeiriiiiiieieieeeeee e 511

T2 D] To o1V [513

5.6 Erweiterte Méglichkeiten fiir SDK-Programmiererccccuueeee 518

R-BASIC - Objekt-Handbuch - Vol. 10

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.4 VisContent

Objekte der Klasse VisContent dienen priméar
dazu, Grafiken in einem skalierbaren und
scrollbaren View auszugeben. Sie kdnnen
auBerdem auf Tastatur- und Mauseingaben
reagieren. Das VisContent-Objekt muss nur
die Grafik bereitstellen, das View-Objekt
kimmert sich um den darzustellenden
Bereich, Scrolling und Zoom.

] it

Dazu kann das VisContent-Objekt selbst Grafik ausgeben, oder es verwendet
Children (der Klasse VisObj), die ihrerseits Grafik ausgeben und auf Tastatur und
Maus reagieren konnen. Es ist die Entscheidung des Programmierers, welcher
Weg benutzt wird. Es ist auch mdglich, dass das VisContent, wie im Bild gezeigt,
eine Hintergrundgrafik ausgibt, auf die dann die VisObj-Objekte gezeichnet
werden.

Abstammung:

VisualClass |- VisGroup |— VisContent

Da VisContent Objekte von der VisualClass abstammen, kommen Sie nicht in den
generic Tree des Programms. Stattdessen werden sie Uber die Instance-Variable
"Content" eines Views mit dem View verbunden. Das View muss aber in den
generic Tree des Programms eingebunden werden.

Spezielle Instancevariablen:

Variable Syntax im Ul-Code Im BASIC-Code

contentAttrs contentAttrs = toSet , toClear lesen, schreiben

holdsLargeText holdsLargeText = TRUE lesen, schreiben
Methoden:

Methode Aufgabe

CreateVisObject Neues VisObj-Objekt anlegen

DestroyVisObject Mit CreateVisObject VisObj-Objekt vernichten

5.4.1 Grundlegende Fahigkeiten
VisContent-Objekte erben viele Fahigkeiten von der VisualClass. Dazu gehdren

die Arbeit mit der Maus, der Tastatur, dem Clipboard sowie die Arbeit mit der
Focus- und der Target-Hierarchie. Im Kapitel 5.1 dieses Handbuchs (Die Visual-

VisContent -492

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Class) finden Sie dazu eine Kurzbeschreibung sowie Verweise auf die
zugehdrigen Kapitel im Handbuch.

Weitere Féhigkeiten erben VisContent-Objekte von der VisGroup Class. Das sind
insbesondere die Darstellung auf dem Bildschirm (Ausgabe von Text und Grafik),
die Anordnung der eigenen Children sowie die Bestimmung der eigenen GroBe.
Die zugehdrigen Instancevariablen, Methode und Actionhandler sind ausfihrlich
im Kapitel 5.3 (VisGroup) des Objekthandbuchs beschrieben.

Besondere Hinweise flr VisContent-Objekte

+ Das VisContent-Objekt gibt (wie alle R-BASIC Objekte) die Tastaturereignisse
zuerst an seine Children weiter, bevor es den BASIC Tastaturhandler aufruft.
Sollten beide Objekte (Content und Children) einen Tastaturhandler haben wird
daher zuerst der Tastaturhandler der Children-Objekte aufgerufen und erst
danach der Tastaturhandler des Content-Objekts. Im Kapitel 14.4 des
Handbuchs "Spezielle Themen" ist am Beispiel eines Textobjekts beschrieben,
wie man vorgehen muss, um den BASIC-Tastaturhandler aufzurufen, bevor das
Objekt das Tastaturereignis an seine Children weitergibt.

+ Auch Mausereignisse werden zuerst an die Children weitergegeben, bevor der
eigene BASIC Handler aufgerufen wird. Sollten beide Objekte (Content und
Children) einen Maushandler haben wird daher zuerst der Maushandler der
Children-Objekte aufgerufen und erst danach der Maushandler des Content-
Objekts.

+ Um mit der Zwischenablage arbeiten zu kdnnen muss das VisContent-Objekt im
gepufferten Modus arbeiten (Instancevariable buffered = TRUE).

+ Sie sollten die visPosition-Werte fir VisContent-Objekte nicht &ndern. Das kann
zu unerwarteten Ergebnissen, insbesondere einer Verschiebung der Position
aller beteiligten Objekte, fuhren.

contentAttrs

Die Instancevariable contentAttrs enthéalt drei Konfigurationsbits. Bits, die in der
Tabelle unten nicht aufgefuhrt sind sollten Sie nicht setzen. Das kann zu
unerwarteten Ergebnissen flhren, da sie intern verwendet werden.

Syntax Ul-Code: contentAttrs = attrsToSet , attrsToClear
Lesen: <numVar> = <obj>.contentAttrs (0)
Die BASIC-Syntax erfordert beim Lesen von
contentAttrs einen Parameter. Der Wert wird hier
ignoriert.
Schreiben: <obj>.contentAttrs = atirsToSet , attrsToClear
attrsToSet: zu setzende Attribute, Bitflags, siehe Tabelle
attrsToClear: zu setzende Attribute, Bitflags, siehe Tabelle

Konstante | Wert (hex) |

VisContent - 493

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

CA_SAME_WIDTH_AS_VIEW 128 (&h80)
CA_SAME_HEIGHT_AS_VIEW 64 (&h40)
CA_VIEW_DOC_BOUNDS_SET_MANUALLY 4 (&h04)

Bedeutung der einzelnen Bits:

+ CA_SAME_WIDTH_AS_VIEW

+ CA_SAME_HEIGHT_AS_VIEW
Das Contentobjekt passt seine Breite bzw. Héhe an die GroBe des View-
Objekts an, wenn das mdglich ist. Haufig stellt man das View in die ent-
sprechende Richtung dann so ein, dass es nicht scrollbar ist.

Hinweis:

Im Allgemeinen mussen Sie zusétzlich die Bits VSF_EXPAND_WIDTH bzw.
VSF_EXPAND_HEIGHT in der Instancevariablen visSizeFlags setzen, um
die gewunschte Wirkung zu erreichen. Bitte beachten Sie die Konfigurationen
in den Beispieldateien.

« CA_VIEW_DOC_BOUNDS_SET_MANUALLY
Dieses Bit wird selten benutzt und verhindert, dass das VisContent dem View
automatisch seine GroBe mitteilt. Sie missen dann die Instancevariable
contentSize des View verwenden, um dem View-Objekt die Content-GréBe
mitzuteilen. Das View benétigt diese Information, um seine Rollbalken
anzupassen.

holdsLargeText

Die Instancevariable holdsLargeText muss fiir das VisContent und das zugehdrige
View auf TRUE gesetzt werden, damit die View/VisContent Kombination mit einem
LargeText Objekt zusammenarbeiten kann. Details dazu finden Sie im Kapitel
4.10.9 (VisText und LargeText) des Objekthandbuchs.

Syntax Ul-Code: holdsLargeText = TRUE
Schreiben: <obj>.holdsLargeText = TRUE | FALSE

VisContent -494

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.4.2 View-Content Konfiguration

Auf welche Weise ein VisContent mit seinem View interagiert, ob es seine GréBe
dem View anpasst oder umgekehrt, ob das gesamte Content oder nur ein Teil
davon zu sehen ist, hdngt sowohl von den Einstellungen des VisContent als auch
ganz entscheidend von der Einstellung des View-Objekts ab.

Eine ausflihrliche Beschreibung alle Instancevariablen eines View finden Sie im
Kapitel 4.9 des Objekthandbuchs. Die folgenden Abschnitte beschreiben typische
Konfigurationen und decken einen groBen Teil der Mdglichkeiten ab.

5.4.2.1 Wenn das Content eine feste GroBe hat

Typische Situationen, in der ein VisContent-Objekt eine feste GréBe hat, sind z.B.
eine Seite in einen Schreibprogramm oder ein Gameboard.

Um einem VisContent eine feste GroBe zu geben, gibt es zwei Moglichkeiten.
Entweder, Sie haben eine Objekt-Tree, dessen Objekte eine feste Position und
GréBe haben, oder Sie geben dem Content explizit eine feste GréBe, indem sie
folgende Instancevariablen im VisContent setzen:

visSizeOptions = VSO _FIXED SIZE
visSize = 400, 330 ' Als Beispiel

Im letzten Fall kann das VisContent ebenfalls Children haben, muss es aber nicht.

Jeweils ein Beispiel fir beide Varianten finden Sie in den Beispieldateien
"VisContent Fixed Size" und "VisContent Fixed Children", im Beispiel-Ordner
"Visual Class".

Wenn das Content eine feste Gr6Be hat wird das View sich entweder der GroBe
des Content anpassen, oder in eine oder beide Richtungen scrollbar sein. Im
Folgenden werden ein paar typische Konfigurationen dargestellt.

Um das Content in einem in beide Richtungen scrollbaren View darzustellen,
muss das View folgendermaBen konfiguriert werden. Andert der Nutzer jetzt die
GroBe des View, z.B. indem er die Gr6Be des zugehdrigen Hauptfensters éndert,
so wird mehr oder weniger vom Content-Objekt zu sehen sein und die Rollbalken
passen sich an.

View DemoView
Content = DemoContent
hControl = HVC SCROLLABLE + HVC NO LARGER THAN CONTENT
vControl = HVC_SCROLLABLE + HVC NO LARGER THAN CONTENT
initialSize = 200, 200 ' zum Beispiel

End OBJECT

Um nur in eine Richtung scrollable zu sein, passen wir die GroBe des Views in die
andere Richtung an die des Content an.

VisContent - 495

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

View DemoView
Content = DemoVisContent
hControl = HVC SCROLLABLE + HVC NO LARGER THAN CONTENT
vControl = HVC NO LARGER THAN CONTENT +\
HVC NO SMALLER THAN CONTENT

End OBJECT

Eine weitere Mdglichkeit ist, dass das View in beide Richtungen stets exakt so
groB ist, wie das Content. Um das zu erreichen gibt es zwei Mdglichkeiten:

View DemoView
Content = DemoContent
hControl = HVC NO LARGER THAN CONTENT + \
HVC NO SMALLER THAN CONTENT
vControl = HVC NO LARGER THAN CONTENT + \
HVC NO SMALLER THAN CONTENT

End OBJECT

oder

View DemoView

Content = DemoContent

viewAttrs = VA VIEW FOLLOWS CONTENT GEOMETRY , 0
End OBJECT

Eine besondere Situation ist, dass der Nutzer die GréBe des View-Objekts
verandern kann, aber stets das gesamte Content-Objekt sichtbar sein soll. Das ist
z.B. fir ein Gameboard interessant. Wenn der Nutzer die GréBe des
Spielprogramms verandert, wird stets das gesamte Spielfeld sichtbar bleiben.

Dazu muss das View seinen Zoomfaktor automatisch so &andern, dass das
gesamte Content innerhalb des verfligbaren Platzes dargestellt wird. Das erreicht
man, indem das Bit VA_SCALE_TO_FIT in der Instancevariablen viewAttrs

gesetzt wird.
Damit das View seine AnfangsgrdéBe kennt und anfangs einen Skalierungsfaktor

von 1 einstellt, geben wir sowohl einen Wert far initialSize als auch (den gleichen
Wert) fir contentSize vor.

Im Folgenden werden mehrere Varianten vorgestellt, die sich in ihrem Verhalten
jeweils etwas unterscheiden. Den kompletten Code finden Sie in der Beispieldatei
"VisContent ScaleToFit" im Ordner "Visual Class".

VisContent - 496

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Variante 1:
Die H6he des Views soll sich der vom Nutzer eingestellten Breite anpassen.

View DemoView
Content = DemoContent
viewAttrs = VA SCALE TO FIT, 0

initialSize = 490,210 ' Das passt in unserem Beispiel
contentSize = 490,210
hControl = HVC NO LARGER THAN CONTENT

vControl = HVC KEEP ASPECT RATIO

End OBJECT

Variante 2:
Analog zur Variante 1 soll sich die Breite des Views der vom Nutzer eingestellten
Hbhe anpassen.

View DemoView
Content = DemoContent
viewAttrs = VA SCALE TO FIT, 0
initialSize = 490,210 ' Das passt in unserem Beispiel
contentSize 490,210

hControl = HVC_KEEP_ASPECT RATIO
vControl = HVC NO LARGER THAN CONTENT

End OBJECT

Variante 3:
Der Skalierungsfaktor orientiert sich sowohl an der Breite als auch an der H6he
des View. ' Dabei kann das View hoéher als das Content werden.

View DemoView
Content = DemoContent
viewAttrs = VA SCALE TO FIT, O

initialSize = 490,210 ' Das passt in unserem Beispiel
contentSize = 490,210
hControl = HVC NO LARGER THAN CONTENT

vControl = HVC NO LARGER THAN CONTENT

End OBJECT

Variante 4:
SFO_BOTH_DIMENSIONS in der Instancevariablen scaleToFitOptions bewirkt,

dass der Zoomfaktor in beide Richtungen unabh&ngig voneinander berechnet
wird.

VisContent -497

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

View DemoView
Content = DemoContent
viewAttrs = VA SCALE TO FIT, 0
initialSize = 490,210 ' Das passt in unserem Beispiel
contentSize 490,210

scaleToFitOptions = SFO_BOTH DIMENSIONS
hControl = HVC NO LARGER THAN CONTENT
vControl = HVC NO LARGER THAN CONTENT

End OBJECT

5.4.2.2 Wenn das Content eine variable GroBe hat

Typische Situationen, in den ein VisContent-Objekt eine veranderliche GréBe hat
sind z.B. ein Dateimanager oder der Grafikviewer Gonzo. Hier kann sich die
Anzahl der dargestellten Objekte (Children des VisContent) dndern und wenn Sie
die GréBe des Hauptfensters verandern, ordnen sich die Children neu an.

Im Allgemeinen ist das View in diesem Fall in eine Richtung scrollbar, wahrend
sich das VisContent in der anderen Richtung an die Gr6Be des Views anpasst.
Das folgende Codefragment zeigt eine typische Konfiguration flr diesen Fall. Das
View passt sich der GroBe seines Parent-Objekts an und ist in vertikaler Richtung
scrollbar. Das Content passt sich in der Breite der Gr6B8e des View an, seine Héhe
berechnet es aus der Geometrie seiner Children. Diese oder eine &hnliche
Konfiguration wird in mehreren Beispielen im Ordner "Visual Class" verwendet.

View DemoView
Content = DemoContent
vControl = HVC_SCROLLABLE
initialSize = 400, 250
Expandwidth
ExpandHeight

End OBJECT

VisContent DemoContent
allowChildrenToWrap = TRUE
' Das Content-Objekt soll immer so breit sein, wie das
' zugehOrige View.
' Dazu miissen die folgenden Instancevariablen gesetzt sein.
contentAttrs CA_SAME WIDTH AS VIEW , O
visSizeFlags = VSF_EXPAND WIDTH

End OBJECT

VisContent - 498

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.4.3 Anlegen und Vernichten von Objekten

Methoden:
Methode Aufgabe
CreateVisObject Neues VisObj-Objekt anlegen
DestroyVisObject Mit CreateVisObject VisObj-Objekt vernichten

Im Zusammenhang mit VisObj-Objekten ist es sehr haufig, dass Sie VisObj-
Objekte zur Laufzeit anlegen und wieder vernichten mussen. Ein Beispiel ist der
GeoMananger, der fur jede Datei im Verzeichnis ein eigenes VisObj-Objekt
verwendet. Auch der Grafikviewer Gonzo legt fur jede gefundene Grafikdatei ein
VisObj-Objekt an und vernichtet es wieder, wenn das Verzeichnis gewechselt
wird.

Naturlich kénnen Sie die im Kapitel 2.1.5 des Objekthandbuchs beschriebenen
Routinen CreateObject und DestroyObject auch fir VisObj-Objekte benutzen. Sie
mussen sich dann aber auch um das Anlegen und die Verwaltung der
zugehdrigen Objektblécke kimmern. Insbesondere, wenn Sie viele Objekte
anlegen wollen bzw. deren Anzahl vorher nicht kennen, kann das sehr aufwéndig
sein.

Aus diesem Grund bietet das VisContent Objekt zwei Methoden, mit denen Sie
VisObj-Objekte zur Laufzeit ganz einfach anlegen und wieder vernichten kénnen.
Das VisContent managed die erforderlichen Objektblécke dabei selbsténdig.
CreateVisObject legt ein neues VisObj-Objekt an und bindet es bei Bedarf als
Child des VisContent in den visual Tree ein. DestroyVisObject vernichtet ein mit
CreateVisObject angelegtes VisObj-Objekt wieder.

CreateVisObject

Die Methode CreateVisObject legt ein neues VisObj-Objekt an und bindet es bei
Bedarf als Child des VisContent in den visual Tree ein. Falls erforderlich wird ein
neuer Objektblock angelegt.

Syntax: <objVar> = <obj>.CreateVisObject xSize, ySize [,addAsChild]
xSize: Anféngliche Breites des neu angelegten Objektes
ySize: Anféangliche Hohe des neu angelegten Objekts
addAsChild: Objekt als Child des VisContent in den visual Tree
einbinden (TRUE) oder nicht (FALSE). Der Defaultwert
ist TRUE, d.h. das Objekt wird als letztes Child des
VisContent eingebunden.

Um Objekte, die mit der Methode CreateVisObject angelegt wurden, zu
vernichten, missen Sie die Methode DestroyVisObject verwenden. Verwenden
Sie niemals die Routine DestroyObject dafirr. Allerdings ist es zuldssig ein
Programm zu beenden, ohne die angelegten VisObj-Objekte zu vernichten.

VisContent - 499

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Nachdem das Objekt angelegt wurde, muss es noch weiter initialisiert werden. Im
Allgemeinen bendtigt es einen OnDraw-Handler sowie haufig einen
OnMouseButton-Handler.

Nachdem alle gewlnschten VisObj-Objekte angelegt wurden, muissen Sie den
visual Tree aktualisieren, indem Sie die Methode Markinvalid fir das VisObj-
Objekt oder das VisContent aufrufen. Erst dann erscheinen die neu angelegten
Objekte auf dem Schirm.

Beispiel. Den vollstdndigen Code finden Sie in der Beispieldatei "Create VisObj
Demo".

BUTTONACTION DemoCreateChild
DIM obj AS OBJECT

obj = DemoContent.CreateVisObject 160, 100

' Initialisieren: Drawhandler, Maushandler usw.
obj.OnDraw = VisObjDraw

<mehr ...ausgelassen>

' Das neue Objekt auf dem Schirm sichtbar machen
obj.MarkInvalid

End ACTION ' DemoCreateChild

Im Modus customManageChildren ist es haufig sinnvoll, das neue VisObj nicht
als letztes, sondern als erstes Child des VisContent einzubinden, damit es Uber
allen schon vorhandenen Objekten gezeichnet wird. Dazu ist es sinnvoll (aber
nicht erforderlich), die Methode CreateVisObject mit dem Parameter addAsChild =
FALSE aufzurufen. AbschlieBend weisen wir das VisContent als Parent zu, wobei
als Child-Position der Wert Null verwendet wird. AuBerdem miuissen wir dem
Objekt eine visPosition zuweisen. Im Beispiel berechnen wir sie aus der Anzahl
der Children, die das DemoContent schon hat. Um das Objekt sichtbar zu
machen, mussen wir abschlieBend die Methode MarklInvalid aufrufen.

Beispiel. Den kompletten Code finden Sie in Beispieldatei "Create Custom
Managed VisObj".

DIM obj AS OBJECT
DIM n

obj = DemoContent.CreateVisObject 80, 60, FALSE
obj.Parent = DemoContent, O

n = DemoContent.numChildren - 1
obj.visPosition = 20*n + 10, 20*n+ 10

' Initialisieren: DrawHandler, Maushandler
< .. siehe Beispiel-Datei ..>

obj.MarkInvalid

End ACTION ' DemoCreateChild

VisContent - 500

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Dynamisch mit CreateVisObject angelegten Objekte lassen sich ohne
Einschrénkungen genauso verwenden, wie statisch im Ul-Code deklarierte
Objekte. Es ist also moglich, aus den neu angelegten VisObj-Objekten einen
komplexen Tree aufzubauen. Dazu mussen Sie einfach die Instancevariable
parent des VisObj-Objekts entsprechend setzen. AuBerdem ist es zulassig,
dynamisch mit CreateVisObject angelegte Objekte mit statisch im Ul-Code
deklarierten Objekten in einem Tree zu vermischen.

DestroyVisObject

Die Methode DestroyVisObject vernichtet ein mit der Methode CreateVisObject
angelegtes Objekt. Enthalt der zugehdérige Objektblock danach keine Objekte
mehr, so wird er automatisch freigegeben.

Syntax: <obj>.DestroyVisObject <objVar>
<objVar>: Referenz auf ein mit CreateVisObject angelegtes
VisObj-Objekt

Sie koénnen DestroyVisObject nur mit Objekten verwenden, die von
CreateVisObject angelegt wurden. Andernfalls kommt es zu einem Laufzeitfehler.
Sie kénnen ein VisObj-Objekt vernichten, wenn es noch mit seinem Parent verlinkt
ist. Allerdings darf es keine Children haben, sonst kommt es zu einem
Laufzeitfehler.

Wenn Sie ein Objekt mit DestroyVisObject vernichten, missen Sie im Modus
"customManageChildren" die Methode Markinvalid aufrufen, damit das Objekt
vom Bildschirm verschwindet. Im normalen Modus ist dies nicht nétig, der visual
Tree stellt sich automatisch neu dar.

Beispiel: Das letzte Child eines VisContent-Objekts soll vernichtet werden.

SUB DestroyLastChild
DIM ob as OBJECT
DIM count

count = DemoContent.numChildren
IF count = 0 THEN RETURN ' Keine Children mehr

' Die Zahlung der Children beginnt bei Null
' -> Das letzte Child hat die Nummer count-1
ob = DemoContent.children(count-1)
DemoContent.DestroyVisObject ob

End SUB

Beispiele fir die Verwendung von DestroyVisObject finden Sie in den
Beispieldateien "Create VisObj Demo" und "Create Custom Managed VisObj".

VisContent - 501

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.5 VisObj
5.5.1 Uberblick

Objekte der Klasse VisObj dienen priméar dazu, |.ceéss = %
Grafiken auszugeben. - oo
Sie kénnen auBerdem auf Tastatur- und Mauseingaben reagieren. Die VisObj-
Objekte (bzw. das VisContent-Objekt) missen nur die Grafik bereitstellen, das
zugehorige View-Objekt kimmert sich um den darzustellenden Bereich, Scrolling
und Zoom.

VisObj-Objekte konnen direkte Children eines VisContent-Objekts sein und sie
kénnen Children der Klasse VisObj haben, die ihrerseits Grafik ausgeben und auf
Tastatur und Maus reagieren kdnnen. Es ist eine Frage des Programm-Konzepts,
ob man die grafische Ausgabe Uber ein BitmapContent, ein VisContent ohne
Children oder eine Reihe von VisObj-Objekten realisiert. VisObj-Objekte bieten
sich immer an, wenn einzelne Objekte mit der Maus angeklickt oder Uber den
Bildschirm bewegt werden sollen.

Abstammung:
VisualClass (—# VisGroup > VisObj

VisObj-Objekte erben viele Fahigkeiten von der VisualClass. Dazu gehoren die
Arbeit mit der Maus, der Tastatur, dem Clipboard sowie die Arbeit mit der Focus-
und der Target-Hierarchie. Im Kapitel 5.1 dieses Handbuchs (Die VisualClass)
finden Sie dazu eine Kurzbeschreibung sowie Verweise auf die zugehdrigen
Kapitel im Handbuch.

Weitere Féahigkeiten erben VisObj-Objekte von der VisGroup Class. Das sind
insbesondere die Darstellung auf dem Bildschirm (Ausgabe von Text und Grafik),
die Anordnung der eigenen Children sowie die Bestimmung der eigenen GroBe.
Die zugehorigen Instancevariablen, Methode und Actionhandler sind ausfuhrlich
im Kapitel 5.3 (VisGroup) des Objekthandbuchs beschrieben.

Besondere Hinweise flr VisObj-Objekte

+ Um mit der Zwischenablage arbeiten zu kénnen muss das VisObj-Objekt im
gepufferten Modus arbeite (Instancevariable buffered = TRUE).
Verwenden Sie ClpPaste nicht, wenn das Objekt aktuell der Screen ist. Es
kommt dann zu einer Verschiebung der eingefugten Grafik.

VisObj - 502

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Spezielle Instancevariablen:

Variable Syntax im Ul-Code Im BASIC-Code
visDataValue visDataValue = numWert lesen, schreiben
drawable drawable = TRUE | FALSE lesen, schreiben
detectable detectable = TRUE | FALSE lesen, schreiben
managed managed = TRUE | FALSE lesen, schreiben
isDragging — nur lesen

dragGString — lesen, schreiben
dragPosition — nur Lesen

dragOffset — nur Lesen

grabFocusOnMouseEvents lesen, schreiben

| grabFocusOnMouseEvents = numWert

grabTargetOnMouseEvents | lesen, schreiben
| grabTargetOnMouseEvents = numWert

Methoden:
Methode Aufgabe
DragStart Drag-Modus initialisieren
DragMoveTo Umriss im Drag-Modus bewegen
DragEnd Drag-Modus beenden, Objekt neu positionieren
DragAbort Drag-Modus abbrechen
DrawHandles Anfasser zeichnen
TestHandles Prifen, ob Position innerhalb eines Anfassers liegt
DrawFrame Rahmen um das Objekt zeichnen
Drawlnverse Bereich des Objekts invertiert zeichnen

VisObj - 503

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.5.2 Grundlegende Fahigkeiten

Spezielle Instancevariablen:

Variable Syntax im Ul-Code Im BASIC-Code
visDataValue visDataValue = numWert lesen, schreiben
drawable drawable = TRUE | FALSE lesen, schreiben
detectable detectable = TRUE | FALSE lesen, schreiben
managed managed = TRUE | FALSE lesen, schreiben

visDataValue

Die Instancevariable visDataValue enthélt einen numerischen Wert (Longint-
Bereich), mit dem Sie bei Bedarf verschiedene VisObj-Objekte auseinanderhalten
kénnen, ohne auf die relativ umstandliche Verwendung der Instancevariablen

privData zurlckzugreifen. AuBerdem kdénnen Sie visDataValue bereits im Ul-Code
zuweisen.

Syntax Ul-Code: visDataValue = value
value: numerischer Wert, Longlint
Lesen: <numVar> = <obj>.visDataValue

Schreiben: <obj>.visDataValue =value

Naturlich steht lhnen die Instancevariable privData auch fir VisObj-Objekte zur
Verfugung, wenn Sie flr jedes individuelle VisObj-Objekt mehr als einen einzelnen
Zahlenwert abspeichern wollen. Eine Beschreibung der Instancevariablen privData
finden Sie im Handbuch Spezielle Themen, Kapitel 19.

Beispiel: Sie haben mehrere VisObj-Objekte, die den gleichen OnDraw-Handler
haben sollen, sich aber in der Farbe unterscheiden muissen.

VisObj Objl
OnDraw = VDraw
visDataValue = RED

END OBJECT
VisObj Objl
OnDraw = VDraw

visDataValue = BLUE

END OBJECT

DRAWCATION VDraw
Color sender.visDataValue, 0

END ACTION

VisObj - 504

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

drawable

Die Instancevariable drawable bestimmt, ob sich das Objekt und seine Children
auf dem Schirm darstellen kénnen (TRUE), oder nicht (FALSE). Der Defaultwert
ist TRUE. Setzen Sie den Wert zur Laufzeit auf FALSE, so werden das Objekt und
seine Children vom Schirm genommen und der Hintergrund im Bereich des
Objekts wird neu gezeichnet.

Beachten Sie, dass das Objekt auch weiterhin bei der Berechnung der Geometrie
berucksichtigt wird.

Syntax Ul-Code: drawable = TRUE | FALSE
Lesen: <numVar> = <obj>.drawable
Schreiben: <obj>.drawable = TRUE | FALSE

Hinweis fir einen seltenen Fall: In Bereichen, in denen die Children tber den
Rand des Objekts hinausragen sollten, wird der Hintergrund nicht neu gezeichnet,
wenn Sie drawable zur Laufzeit auf FALSE setzen. Rufen Sie in diesem Fall die
Methode MarklInvalid fir das zugehdrige VisContent auf.

detectable

Die Instancevariable detectable bestimmt, ob das Objekt Mausereignisse erhalten
kann (TRUE), oder nicht (FALSE). Der Defaultwert ist TRUE.

Syntax Ul-Code: detectable = TRUE | FALSE
Lesen: <numVar> = <obj>.detectable
Schreiben: <obj>.detectable = TRUE | FALSE

managed

Die Instancevariable managed bestimmt, ob das Objekt mit dem Geometrie-
manager zusammenarbeiten kann (TRUE) oder nicht (FALSE). Der Defaultwert ist
TRUE. Setzen Sie den Wert auf FALSE, so wird der Geometriemanager das
Objekt ignorieren. Sie missen dann einen Wert fir visPosition setzen.

Sie kébnnen den Wert auch im Modus customManageChildren auf TRUE lassen.

Syntax Ul-Code: managed = TRUE | FALSE
Lesen: <numVar> = <obj>.managed
Schreiben: <obj>.managed = TRUE | FALSE

Hinweis flr einen seltenen Fall: Sollten Sie managed zur Laufzeit auf FLASE
setzen, so missen Sie anschlieBend (!) einen Wert fur visPosition zuweisen und
die Methode Markinvalid aufrufen. Je nach Situation wird dabei mdglicherweise
der Hintergrund nicht korrekt neu gezeichnet. Rufen Sie in diesem Fall die
Methode Marklinvalid fir das zugehérige VisContent auf.

Das gilt entsprechend auch, wenn Sie managed zur Laufzeit auf TRUE setzen.

VisObj - 505

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.5.3 Maus- und Tastatur-Input

5.5.3.1 Arbeit mit der Maus

Sie kdnnen innerhalb eines Maushandlers Grafik auf den Schirm ausgeben, z.B.
um einen Umriss zu zeichnen, wahrend Sie das Objekt Gber den Schirm bewegen.
Dazu missen Sie das Objekt temporéar zum Screen machen. Eine ausflhrliche
Beschreibung, wie man mit der Maus arbeitet, finden Sie im Handbuch "Spezielle
Themen", Kapitel 17.

Es ist dabei von essentieller Bedeutung, dass wir der Zuweisung der globalen
Screen-Variablen groBe Aufmerksamkeit widmen. Sie sollten am Beginn jeder
Zeichenaktion den aktuell aktiven Screen in einer Variablen sichern und ihn am
Ende wieder zurlcksetzen. Vergessen Sie das Zurlicksetzen des Screens, kann
GEOS crashen - entweder gleich oder beim Beenden des Programms. Nur
BitmapContent-Objekte durfen beim Beenden des Programms der Screen sein.

Ahnliches gilt fir das Grabben der Maus. GEOS wird crashen, wenn beim
Beenden des Programms noch ein Objekt die Maus gegrabbt hat.

Das folgende Codefragment stammt aus dem Beispiel "Create VisObj Demo" und
zeigt, wie man korrekt auf einen Mausklick reagiert. Die Sub DrawFigure sichert
den Screen in einer (lokalen) Variablen und zeichnet eine inverse Ellipse.

MOUSEACTION VisObjButtonPressed

ON event SWITCH
CASE ME LEFT DOWN
' Linke Maustaste gedriickt: Inversen Kreis zeichnen
DrawFigure (sender)
' Maus grabben, damit das Loslassen der
' Maustaste erkannt wird, selbst wenn der Mauszeiger
' das Objekt verlassen hat
sender .GrabMouse
End CASE
CASE ME LEFT UP
' Inversen Kreis loschen und Maus releasen
DrawFigure (sender)
sender.ReleaseMouse
End CASE
End SWITCH

End ACTION ' VisObjButtonPressed

SUB DrawFigure (obj AS OBJECT)
DIM scr AS OBJECT

' Zundchst miissen wir den aktuellen Screen sichern
sSCcr = Screen
Screen = obj

VisObj - 506

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

" Jetzt kOnnen wir etwas zeichnen
graphic.mixmode = MM INVERT
FillEllipse 20, 20, MaxX - 20, MaxY - 20

' Ganz wichtig: den originalen Screen wieder herstellen
' auch wenn es, wie hier, ein Null-Objekt ist.
Screen = scr

End SUB 'DrawFigure

5.5.3.2 Der Weg der Nutzer-Eingaben

In der taglichen Programmierarbeit ist es nicht nétig, genau zu wissen, wie die
Maus- bzw. Tastatur-Ereignisse von Objekt zu Objekt weitergeleitet werden.
Reagiert Ihr Programm jedoch nicht so, wie Sie es erwartet haben, ist es hilfreich,
die hier besprochenen Informationen zu kennen.

Nehmen wir an, Sie haben einen visual Tree, wie er im néchsten Bild dargestellt
ist. Jedes der dargestellten Objekte habe sowohl einen Handler fir Mausklicks
(OnMouseButton) als auch einen Handler fir Tastatureingaben (OnKeyPressed).
Far den Weg, den die Eingabe-Ereignisse gehen, ist es allerdings egal, ob die
Objekte einen passenden Handler haben, oder nicht.

(VisContent: MyVisContent)

(" VisObj: GroupObj1)

pd

(" VisObj: GroupObj2) (VisObj: VisObj3)

(visObj: Visobj1) (VisObj: VisObj2)

GroupObj2 GroupObji MyVisContent

VisObj1 | VisObj2 VisObj3

Die VisObjekte VisObj1 und VisObj2 werden innerhalb der Grenzen ihrer Parents
(VisGroupObj1 und VisGroup2) dargestellt, liegen also "Uber" ihren Parents.

VisObj - 507

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Klickt der Nutzer jetzt mit der linken Maustaste auf das Objekt VisObj1, so wird
zunachst erkannt, dass das Ereignis innerhalb von MyVisContent stattfand.
Danach geht es jeweils an dasjenige Child, in dessen Grenzen es stattfand. Also
zunéchst an GroupObj1, von dort an GroupObj2 (und nicht an VisObj3!) und
schlieBlich an VisObj1. Folglich werden die folgenden Maushandler (falls
vorhanden) in der angegebenen Reihenfolge ausgefiihrt:

1. MyVisContent
2. GroupObij1

3. GroupObj2

4. VisObj1

Das Objekt VisObj1 hat anschlieBend den Focus und das Target - vereinfacht
gesagt, es wird zum "aktiven" Objekt. Das bedeutet, es erhalt Tastaturereignisse
direkt vom VisContent.

Betatigt der Nutzer anschlieBend eine Taste auf der Tastatur, so werden die
folgenden Tastaturhandler in der angegebenen Reihenfolge ausgefiihrt:

1. VisObj1
2. MyVisContent

Diese Reihenfolge resultiert daraus, dass das VisContent - wie alle Objekte -
Tastaturereignisse zuerst an seine Children weiterleitet, bevor es sie selbst
behandelt.

Der Tastatur-Handler der dazwischen liegenden Objekte GroupObj1 und
GroupObj2 werden nicht aktiviert, da VisObj1 die Ereignisse direkt vom
VisContent erhalt.

Solange nur eines der Objekte einen Tastatur- bzw. Maushandler hat, sind die
Verhéltnisse einfach. Es wird einfach der entsprechende Handler ausgefihrt. In
den meisten Fallen wird man also eine Baumstruktur wahlen, in der nur die am
Ende der Zweige befindlichen Objekte einen Maus- bzw. (falls erforderlich) einen
Tastaturhandler haben.

Wenn CustomManageChildren aktiv ist

Im Modus customManageChildren hat der Programmierer volle Kontrolle darlber,
welches Objekt sich wo befindet. Die Objekte kénnen sich beliebig Gberlappen. R-
BASIC stellt Gberlappende Objekte so dar, dass die "oben" liegenden Objekte
auch die Mausereignisse erhalten. Es wird daher dringend empfohlen in diesem
Modus alle VisObj-Objekte als direktes Child des VisContent einzubinden.

Naturlich kdnnen Sie auch hier Objekt-Trees verwenden, wenn es sinnvoll ist.
Dabei gelten die oben genannten Regeln weiter, d.h. die Maus-Events werden
vom Parent an die Children weitergereicht, bis sie das oben liegende Objekt
erreichen. Sie mussen hier aber selbst dafiir sorgen, dass jedes Objekt
vollstandig innerhalb der Grenzen seines Parents dargestellt wird, sonst
erhalt es moglicherweise Mausklicks nicht oder nur teilweise. Im Kapitel 5.3.2.2
(Wenn sich die Children Uberlappen) finden Sie ein Beispiel, das diese Situation
erlautert.

VisObj - 508

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.5.3.3 Focus und Target

Im Allgemeinen ist die Arbeit mit Focus und Target etwas flr fortgeschrittene
Programmierer. Sie kdnnen allerdings die Focus-Hierarchie einfach benutzen, um
festzustellen, welches Objekt als letztes angeklickt wurde, also das "aktive" Objekt
ist. Das Beispiel "VisObj Keyboard Demo" zeigt, wie man das macht.

Dieser Abschnitt richtet sich an erfahrene Programmierer und zeigt, wie man in die
Zuweisung von Focus und Target eingreifen kann. In den meisten Féllen sind die
Default-Einstellungen aber véllig ausreichend und angemessen. Eine ausfuhrliche
Beschreibung zu den Themen Focus und Target finden Sie in den Kapiteln 12
(Focus und Target) und 13 (Spezielle Menus) im Handbuch "Spezielle Themen".

Spezielle Instance-Variablen:
Variable Syntax im Ul-Code Im BASIC-Code

grabFocusOnMouseEvents lesen, schreiben
grabFocusOnMouseEvents = numWert

grabTargetOnMouseEvents | lesen, schreiben
| grabTargetOnMouseEvents = numWert

Per Default bekommt ein VisObj-Objekt bei einem Klick mit der linken Maustaste
das Target und den Focus (d.h. alle Tastatureingaben gehen an dieses Obijekt,
siehe Handbuch Spezielle Themen, Kapitel 12). Beim Loslassen der Maustaste
behélt es Focus und Target. Ein Rechtsklick auf ein anderes Objekt &ndert Focus
und Target auch nicht. Es sind nun Situationen denkbar, in denen dieses
Verhalten nicht adaquat ist. Z.B. kbnnte es erwlnscht sein, dass ein Linksklick auf
ein bestimmtes Objekt Focus und/oder Target nicht &ndert. Oder ein Objekt soll
auch bei einem Rechtsklick den Focus und/oder oder das Target bekommen. Far
diese Félle bietet R-BASIC die Instancevariablen grabFocusOnMouseEvents
und grabTargetOnMouseEvents. Per Default haben beide den gleichen Wert,
namlich ME_LEFT_DOWN. d.h. Focus und Target gehen an das Objekt, wenn der
Nutzer mit der linken Maustaste darauf klickt. Das ist unabhangig davon, ob das
Objekt einen OnMouseButton-Handler hat, oder nicht. Sie kdnnen diese
Instancevariablen mit einer anderen ME_-Konstante oder eine Kombination von
ME_-Konstanten belegen, z.B. mit ME_RIGHT_DOWN + ME_LEFT_DOWN.
Dann bekommt das Objekt auch dann den Focus bzw. das Target, wenn der
Nutzer mit der rechten Maustaste auf das Objekt klickt. Belegen Sie diese
Instancevariablen mit Null, bekommt das Objekt bei einem Linksklick den Focus
bzw. das Target nicht mehr.

VisObj - 509

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

grabFocusOnMouseEvents, grabTargetOnMouseEvents.

Syntax Ul-Code: grabFocusOnMouseEvents = value
value: Kombination von ME_-Konstanten
Lesen: <numVar> = <obj>.grabFocusOnMouseEvents

Schreiben: <obj>.grabFocusOnMouseEvents = value

Syntax Ul-Code: grabTargetOnMouseEvents = value
value: Kombination von ME_-Konstanten
Lesen: <numVar> = <obj>.grabTargetOnMouseEvents

Schreiben: <obj>.grabTargetOnMouseEvents = value

Einschrankungen:

Die Verwendung anderer Mausereignisse als den Linksklick, um Focus und Target
zu andern, ist mit bestimmten Einschrankungen verbunden. Insbesondere muss
das Top-Objekt des visual Tree, das VisContent, bereits den Focus und/oder das
Target haben. Das ist automatisch der Fall, wenn der Nutzer bereits mit der linken
Maustaste auf das VisContent oder eins seiner Children geklickt hat. Als
Programmierer kann man stattdessen die globalen Variablen Focus und Traget
mit fraglichen VisContent Objekt belegen, z.B. im OnStartup-Handler.

Das Belegen der globalen Variablen Focus und Traget funktioniert in bestimmten
Situationen auch innerhalb eines Maushandlers.

Unter Umstanden muissen Sie auch den gesamten Focus- bzw. Target-Pfad
anpassen.

Die Instancevariablen defaultFocus und defaultTarget sind leider nicht
verwendbar, da sie nur fir GenericClass Objekte definiert sind.

VisObj - 510

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.5.4 Spezielle Fahigkeiten und Tools

5.5.4.1 Rahmen und Anfasser

In bestimmten Situationen ist es sinnvoll, den Umriss des VisObj-Objekts oder
kleine Vierecke an den Ecken des Objekis zu zeichnen, die der Nutzer direkt
anklicken kann. Meist ist es so, dass diese Dinge wieder vom Schirm geldscht
werden mussen, ohne dass der Hintergrund verandert wurde. R-BASIC unterstitzt
beides und verwendet dabei dem MixMode MM_INVERT. In diesem Modus
invertiert jede Zeichenoperation Farbpixel auf dem Schirm, unabh&ngig von der
verwendeten Zeichenfarbe. Dadurch ist zum einen die gezeichnete Figur immer zu
sehen, egal welche Hintergrundfarbe vorhanden ist und zum anderen stellt eine
zweite Zeichenoperation den Hintergrund exakt wieder her.

Methoden:
Methode Aufgabe
DrawHandles Anfasser zeichnen
TestHandles Prufen, ob Position innerhalb eines Anfassers liegt
DrawFrame Rahmen um das Objekt zeichnen
Drawlnverse Bereich des Objekts invertiert zeichnen

DrawHandles

Diese Methode zeichnet kleine Quadrate ("Anfasser") an den Ecken oder Kanten
des Objekts im MixMode MM_INVERT. Dadurch léscht eine zweite Zeichen-
operation die Quadrate wieder.

Die Anfasser werden immer vom Rand in das Innere des Objekts gezeichnet,
niemals Uber die Grenzen des Objekts hinaus. Das ist erforderlich, weil Objekte
Mausklicks anfangs nur innerhalb der Grenzen des Objekts erkennen.

Syntax: <obj>.DrawHandles hanBits [, hanSize]
hanBits: Bitflags, welche Anfasser zu zeichnen sind.
Siehe Grafik unten.
hanSize: GroBe der Anfasser. Der Defaultwert ist 9.

Der Parameter hanBits ist eine Summe aus den Werten, die in der folgenden
Grafik angegeben sind. Dabei ist fur jeden Anfasser genau ein Bit gesetzt, so dass
Sie die Werte beliebig kombinieren kénnen.

1 (&HO1) 16 (&H10) 2 (&H02)

||
128 (&H80) l\

8 (&H08) 64 (&H40)

32 (&H20)
256 (&H100)

N i N

(&H04)

VisObj - 511

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Per Default sind die Anfasser 9 Pixel groB. Geben Sie einen Wert fur hanSize an,
wenn Sie eine andere GréBe winschen.

Beispiel: Zeichnen der 4 Anfasser an den Ecken sowie den in der Mitte
myObj.DrawHandles 15 + 256 ' = &H1OF

TestHandles

Die Methode TestHandles prift, ob die Ubergebene Position einem der Anfasser
entspricht oder nicht. Es wird nicht geprift, ob die Anfasser gezeichnet sind,
sondern es erfolgt nur ein Positionsvergleich.

TestHandles gibt die Nummer des Anfassers entsprechend dem Bild oben zurick,
oder Null, wenn die Position keinem der Anfasser entspricht.

Syntax: <numVar> = <obj>.TestHandles xPos , yPos [, hanSize]
xPos, yPos: zu prufende Position, i.A. Mauskoordinaten
hanSize: GroBe der Handles

Wenn Sie bei DrawHandles einen Parameter hanSize Ubergeben haben, missen
Sie den gleichen Wert auch an Testhandles tbergeben.

DrawFrame

Die Methode DrawFrame zeichnet einen (gestrichelten) Rahmen um das Objekt
im MixMode MM_INVERT. Dadurch léscht eine zweite Zeichenoperation den
Rahmen wieder.

Syntax: <obj>.DrawFrame [border [, lineStyle]]
border: Abstand zum Objektrand
lineStyle: Linienstil. Der Defaultwert ist LS_DASHED

Wenn Sie einen Wert fur den Parameter border angeben wird der Rahmen um die
entsprechende Anzahl an Pixeln im Inneren des Objekts gezeichnet. Um einen
Wert fir lineStyle anzugeben (z.B. LS_DOTTED), mussen Sie ebenfalls einen
Wert fur border angeben, z.B. Null.

Beispiel: Zeichnen von 4 Anfassern und einem Rahmen, der sich 4 Pixel innerhalb
der Grenzen des Objekts befindet. Dadurch sieht es so aus, als wirden die
Anfasser Uber das Objekt hinausragen.

MyObj.DrawHandles 1 + 2 + 3 + 4
MyObj.DrawFrame 4

VisObj - 512

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Es ergibt sich das folgende Bild.

Drawlnverse

Die Methode Drawlnverse zeichnet ein Rechteck im Bereich des Objekts im
MixMode MM_INVERT. Dadurch werden die Farben auf dem Schirm invertiert und
eine zweite Zeichenoperation I6scht das Rechteck wieder.

Syntax: <obj>.Drawinverse [border]
border: Abstand zum Objektrand

Wenn Sie einen Wert far den Parameter border angeben, wird an den Seiten des
Objekts ein entsprechend breiter Bereich nicht invertiert.

5.5.4.2 Dragging

Ein Objekt mit der Maus auf dem Bildschirm zu platzieren ist ein héaufiger
Einsatzfall von VisObj-Objekten. Dazu muss im zugehdrigen VisContent die
Instancevariable customManageChildren auf TRUE gesetzt sein.

R-BASIC unterstltzt das "Dragging" genannte Ziehen eines Objekts Uber den
Bildschirm sehr komfortabel. Dabei wird bei Bedarf der Umriss des Objekts an der
aktuellen Mausposition gezeichnet. Das ist per Default ein Rechteck, Sie kénnen
aber auch einen eigenen Umriss definieren.

Spezielle Instancevariablen:

Variable Syntax im Ul-Code Im BASIC-Code

isDragging — nur lesen

dragGString — lesen, schreiben

dragPosition — nur Lesen

dragOffset — nur Lesen
Methoden:

Methode Aufgabe

DragStart Drag-Modus initialisieren

DragMoveTo Umriss im Drag-Modus bewegen

DragEnd Drag-Modus beenden, Objekt neu positionieren

DragAbort Drag-Modus abbrechen

VisObj - 513

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

isDragging

Diese Instancevariable enthélt die Information, ob sich das Objekt gerade im Drag-
Modus befindet (TRUE) oder nicht (FALSE). Sie kann nur gelesen werden.

Syntax: <numVar> = <obj>.isDragging

dragGString

Per Default wird als Umriss beim Bewegen des Objekts tber den Bildschirm ein
gestricheltes Rechteck in der GréBe des Objekts verwendet. Wenn Sie einen
anderen Umriss verwenden wollen, missen Sie die Instancevariable dragGString
mit einer entsprechenden Grafik belegen. Sie sollten den GString im MixMode
MM_INVERT zeichnen, weil die Dragging-Methoden des VisObj voraussetzen,
dass ein zweimaliges Zeichnen des Umrisses ihn wieder vollstdndig vom
Bildschirm entfernt.

Um zu verhindern, dass Uberhaupt ein Umriss gezeichnet wird, missen Sie
dragGString mit einem ‘"leeren" GString, also einem GString ohne
Zeichenoperationen, belegen.

DragGString kann nicht im Ul-Code verwendet werden.

Syntax Schreiben: <obj>.dragGString = <gs>
<gs>: Variable oder Ausdruck vom Typ Handle
Lesen <gsVar> = <obj>.dragGString
<gsVar>: Variable vom Typ Handle

Das folgende Codefragment stammt aus dem OnMouseButton-Handler des
Beispiels "VisObj Dragging Demo". Wesentliche Elemente sind zur Erh6hung der
Ubersichtlichkeit farblich hervorgehoben. Wichtig ist, dass die globalen Variablen
MaxX und MaxY nach dem Aufruf von StartRecordGS() geéndert sind, dass man
den Mixmode MM_INVERT einstellt und dass man den GString am Schluss
wieder freigibt. Das Belegen von dragGString mit NullHandle() stellt sicher, dass
dragGString nicht auf nicht mehr existierende Daten verweist.

ON event SWITCH
CASE ME_LEFT DOWN:
sender .GrabMouse

' MaxX und MaxY sind nach StartRecordGS() immer 1920 x 1024
' Wir sichern sie in lokalen Variablen
mx = MaxX

my = MaxY

' GString aufzeichnen. Der MixMode MM INVERT ist zwingend,
' damit der Umriss gezeichnet werden kann

gs = StartRecordGS()

graphic.mixmode = MM_INVERT

VisObj - 514

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

graphic.linestyle = LS DOTTED
Rectangle 0, 0, mx, my

Line 0, 0, mx, my

Line mx, 0, 0, my

' Aufzeichnung beenden
EndRecordGS (gs)

' GString zuweisen und Dragging starten
sender.dragGString = gs
sender.DragStart xPos, yPos

End CASE

CASE ME_LEFT UP:
' Dragging beenden und GString freigeben
sender.DragEnd xPos, yPos
FreeGS(sender.dragGString)
sender.dragGString = NullHandle()

sender.ReleaseMouse
End CASE

End SWITCH

dragPosition

Diese Instancevariable enthalt die absoluten Koordinaten (d.h. relativ zum
VisContent) der linken oberen Ecke des Drag-Umrisses. Das ist im nachsten Bild
dargestellt. DragPosition kann nur gelesen werden und auch nur, solange der
Drag-Modus aktiv ist. Ansonsten kommt es zu einem Laufzeitfehler.

Syntax: <numVar> = <obj>.dragPosition (n)
n = 0: x-Koordinate lesen
n = 1: y-Koordinate lesen

dragOffset

Diese Instancevariable enthélt die Position der Maus, relativ zur linken oberen
Ecke des Drag-Umrisses. Dieser Wert ist konstant und wird beim Aufruf von
DragStart festgelegt. Das ist im n&chsten Bild dargestellt. DragOffset kann nur
gelesen werden und auch nur, solange der Drag-Modus aktiv ist. Ansonsten
kommt es zu einem Laufzeitfehler.

Syntax: <numVar> = <obj>.dragOffset (n)
n = 0: x-Offset lesen
n = 1: y-Offset lesen

VisObj - 515

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

dragPosition(1) ~ VisContent
dragPosition(0)

dragOffset(1)
dragOffset(0)

VisObj Drag-Umriss

DragStart

Die Methode DragStart initialisiert den Dragging-Modus fur das Objekt. Dabei wird
eine interne Datenstruktur initialisiert und der Umriss wird erstmalig gezeichnet.
Wenn Sie also einen eigenen Umriss verwenden wollen muss die Instancevariable
dragGString vorher belegt worden sein.

DragStart wird Ublicher Weise im OnMouseButton-Handler als Reaktion auf das
Ereignis ME_LEFT_HOLD oder ME_LEFT_DOWN gerufen.

Syntax: <obj>.DragStart xPos, yPos
xPos, yPos: aktuelle Position der Maus

DragMoveTo

Die Methode DragMoveTo bewegt dem Umriss zu einer neuen Position. Dazu wird
der Umriss zunéachst an der alten Position gezeichnet - womit er vom Bildschirm
verschwinden sollte - und dann an der neuen Position.

DragMoveTo wird Ublicher Weise im OnMouseMove-Handler gerufen. Die
Methode pruift selbsténdig, ob sich das Objekt gerade im Drag-Modus befindet, so
dass auf die Abfrage der Instancevariable isDragging verzichtet werden kann.

Syntax: <obj>.DragMoveTo xPos, yPos
xPos, yPos: neue Position der Maus

DragEnd

Die Methode DragEnd beendet den Drag-Modus und verschiebt das Objekt an die
neue Position. Dazu wird zunéchst der Umriss gezeichnet (also geléscht), das
Objekt neu positioniert und abschlieBend der visual Tree upgedatet.

DragStart wird Ublicher Weise im OnMouseButton-Handler als Reaktion auf das
Ereignis ME_LEFT_UP gerufen. Die Methode prift selbstandig, ob sich das

VisObj - 516

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Objekt gerade im Drag-Modus befindet, so dass auf die Abfrage der
Instancevariable isDragging verzichtet werden kann.

Falls Sie einen eigenen Umriss verwenden (Instancevariable dragGString), sollten
Sie den zugehorigen GString jetzt vernichten (falls Sie ihn nicht mehr anderweitig
brauchen).

Syntax: <obj>.DragEnd xPos, yPos
xPos, yPos: aktuelle Position der Maus

DragAbort

Die Methode DragAbort bricht den Drag-Modus ab, ohne das Objekt zu
verschieben und ohne den visual Tree upzudaten. Es wird nur der Umriss
gezeichnet (also geldscht).

Ansonsten gelten die Hinweise, die bei DragEnd gegeben wurden.

Syntax: <obj>.DragAbort

Ein Code-Beispiel fur die Verwendung von DragAbort finden Sie in der Beispiel-
Datei "VisObj Level Editor Demo".

VisObj - 517

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

5.6 Erweiterte Moglichkeiten fur SDK-Programmierer

Die Fahigkeiten der VisualClass-Objekte sind sehr komplex. R-BASIC fuhrt die
wichtigsten Féhigkeiten und Eigenschaften heraus. Erfahrene SDK-Programmierer
kennen vielleicht weitere Varianten oder es fehlen ihnen bestimmte
Einstellmdglichkeiten. Deswegen gibt es einige R-BASIC-Instancevariablen bzw.
Methoden, die den direkten Zugriff auf die SDK-Ebene erlauben.

Instance-Variablen und Methoden fur SDK-Programmierer:

Variable/Methode Syntax im Ul-Code Im BASIC-Code

visClassAttrs visClassAttrs = toSet, toClear lesen, schreiben

visCompGeoAttrs visCompGeoAttrs = toSet, toClear lesen, schreiben

visCompDimensionAttrs lesen, schreiben
visCompDimensionAttrs = toSet, toClear

contentAttrs contentAttrs = toSet , toClear lesen, schreiben

MarkInvalid2 — (Methode) nur schreiben

Nicht alle hier besprochenen Instancevariablen und Methoden funktionieren mit
allen VisualClass Objekten. Die Zuordnung finden Sie in der folgenden Tabelle

Instance-Variablen und Methoden fir SDK-Programmierer:

Variable/Methode Zugehodige Klassen

visClassAtirs VisContent, VisObj, BitmapContent, VisText,
LargeText

visCompGeoAttrs VisContent, VisObj, BitmapContent

visCompDimensionAttrs VisContent, VisObj, BitmapContent

contentAttrs VisContent, BitmapContent, GenContent

MarklInvalid2 VisContent, VisObj, BitmapContent, VisText,
LargeText

visClassAttrs

Die Instancevariable visClassAttrs spricht direkt die SDK-Instancevariable VI_attrs
der VisClass an. Sie haben damit Zugriff auf die Bits, die von R-BASIC nicht
herausgefiihrt werden. Der beim Schreiben bendétigte Parameter updateMode
sollte einer der Werte 0 (VUM_MANUAL), 1 (VUM_NOW), 2 (VUM_DELAYED
_VIA_UI_QUEUE) oder 3 (VUM_DELAYED_VIA_APP_QUEUE) sein.

SDK-Méglichkeiten - 518

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: visClassAttrs = attrsToSet , attrsToClear
Lesen: <numVar> = <obj>.visClassAttrs (0)
Schreiben:
<obj>.visClassAtirs = attrsToSet , attrsToClear , updateMode
attrsToSet: Zu setzende Attribute
attrsToClear: zu setzende Attribute

visCompGeoAtirs

Die Instancevariable visCompGeoAttrs spricht direkt die SDK-Instancevariable

VCI_geoAttrs der VisCompClass an. Sie kénnen alle dort definierten Bits lesen
und schreiben.

Syntax Ul-Code: visCompGeoAttrs = atirsToSet , atirsToClear
Lesen: <numVar> = <obj>.visCompGeoAttrs (0)
Schreiben: <obj>.visCompGeoAttrs = attrsToSet , attrsToClear
attrsToSet: zu setzende Attribute

attrsToClear: zu setzende Attribute

visCompDimensionAttrs

Die Instancevariable visCompDimensionAttrs spricht direkt die SDK-

Instancevariable VCI_geoDimensionAttrs der VisCompClass an. Sie kdnnen alle
dort definierten Bits lesen und schreiben.

Syntax Ul-Code: visCompDimensionAttrs = attrsToSet , attrsToClear

Lesen: <numVar> = <obj>.visCompDimensionAttrs (0)
Schreiben:

<obj>.visCompDimensionAttrs = attrsToSet , attrsToClear
attrsToSet: zu setzende Attribute
attrsToClear: zu setzende Attribute

contentAttrs

Die Instancevariable contentAttrs spricht direkt die SDK-Instancevariable
VCNI_attrs der VisContentClass an. Sie kbénnen alle dort definierten Bits

verwenden. Das gilt ebenso fiur GenContent-Klasse. Hier heif3t die
Instancevariable im SDK GCI_attrs.

SDK-Méglichkeiten - 519

R-BASIC - Objekt-Handbuch - Vol. 10
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: contentAttrs = attrsToSet , attrsToClear
Lesen: <numVar> = <obj>.contentAttrs (0)
Schreiben: <obj>.contentAttrs = atirsToSet , attrsToClear
attrsToSet: zu setzende Attribute

attrsToClear: zu setzende Attribute

Marklnvalid2

Die Methode Markinvalid2 ist eine Erweiterung der Methode Markinvalid. Sie ruft
direkt die SDK-Message MSG_VIS_MARK_INVALID auf. Sie kbénnen genau die
Flags Ubergeben, die Sie mdchten. Die Methode Markinvalid hingegen Ubergibt
immer die Flags VOF_GEOMETRY_INVALID und VOF_IMAGE_INVALID.

Der Parameter updateMode sollte einer der Werte 0 (VUM_MANUAL), 1
(VUM_NOW), 2 (VUM_DELAYED_VIA_UI_QUEUE) oder 3 (VUM_DELAYED_
VIA_APP_QUEUE) sein.

Syntax: <obj>.Markinvaild2 <visOptFlags>, updateMode

SDK-Méglichkeiten - 520

