R-BASIC

Einfach unter PC/GEOS programmieren

\O

ob
9&

Programmierhandbuch

Volume 1
Tutorial, Konzepte, Variablen und Typen

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 1

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis
1 Ein Anfanger-Tutorial ...t 4
2 Die BASIC Programmierspracheccccooeemmmriiniinmmemennnnnsssssssnessnnnnns 12
2.1 Grundlegende Konzeptecccceririiiimmmmriinns s sssssssssssss s 13
2.1.1 Die Struktur eines BASIC Programmscccccceeeeiiiieeeeeeneenn. 13
2.1.2 Begriffe und Faktenoooviiiiiii e 19
2.2 Variablen und TYPeNccccccciummmmmmmmmminniiresssssssssss s 24
2.2.1 Was sind Variablen? ... 24
2.2.2 Numerische Datentypen und numerische Ausdricke 27
2.2.3 Stringtypen und Stringausdrickecooovviiiiiieiiiiiiii, 30
2.2.4 Weitere Datentypenccooovvveiiiiiiiiiiiiiii 32
2.2.4.1 Der Datentyp FILEoovriieiiiiiii e 32
2.2.4.2 Der Datentyp HANDLEooooiiiiiiiiiii e 34
2.2.4.3 OBJECT Variablen «....coccouvmreeeeiiiieiiee e 36
2.2.4.4 R-BASIC Strukturtypencccoeeeviiiiiiiiiiiiiiiiie 37
225 Felder ... 38
2.2.6 Globale und Lokale Variablencccoociiiiiiiininiieee. 42
2.2.7 Interne Verwaltung der Variablen, HUGE Variablen 44
2.2.8 SHUKIUIEN - e e 46
2.2.8.1 Grundlagen «......cevvmmiiiiiiiiiiiee 46
2.2.8.2 Verschachtelung von Strukturenccccoociiiinnnnes 48
2.2.8.3 Strukturen und Feldercccoeeeeiiiiiiiiiiee 49
2.2.8.4 Strukturen und Unterprogrammecc.ccoovievennnennne. 50
2.2.8.5 Formale Syntax ..o, 51
2.2.8.6 Namenskonventionenccccoeeeeveeviveiineeeeeeeeeeeeeeens 52
2.2.8.7 Ein Anwendungsbeispielccoooiiiiiiiiiiii s 54
2.2.8.8 ANYSHIUCE ..o 55
2.2.9 Die Funktionen SizeOf und Swapcvvveemmeeiinni 57

2.2.10 Die CONST ANWEISUNG ----vveeeeeiiiieiiiiiie et 59

R-BASIC - Programmierhandbuch - Vol. 1

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

1. Ein Anfanger-Tutorial

Dieses Tutorial beschreibt an einem einfachen Beispiel, wie man ein R-BASIC
Programm erstellt. Dabei werden viele Fakten und Zusammenhénge einfach
benutzt, ohne sie ausfihrlich zu erklaren. Stattdessen gibt es jeweils Verweise auf
die Kapitel im Handbuch, wo Sie weiterfUhrende Erklarungen finden. Einige
Begriffe sind fett markiert. Diese Begriffe kommen im Handbuch immer wieder
vor. Eine exakte Erklarung dieser Begriffe finden Sie im nachsten Kapitel.

Die Schrittfolge, die hier dargestellt wird, kénnen Sie prinzipiell auf jedes
Programm anwenden.

1. Der Plan ...
Als Einstieg wollen wir uns ansehen, wie man das |[patei
folgende Programm erstellt. Der Nutzer soll eine zahl eingeben: (B 1%
Zahl eingeben und das Programm soll prifen, ob
die Zahl gerade ist oder nicht.

ungetestet

_Prifen

2. Die Ul (das User-Interface)

Das Erstellen eines Programms beginnt in den allermeisten Fallen mit der
Programmierung der Benutzeroberflache, der Ul. Das heiBt, Sie legen fest welche
Objekte es gibt und wie sie angeordnet sind.

Jedes Objekt hat einen Typ, der Programmierer sagt, es gehort einer Klasse an.
Die Klasse bestimmt die Eigenschaften und Fahigkeiten eines Objekts. Die in R-
BASIC verflugbaren Klassen und deren Eigenschaften sind im "Objekt-Handbuch"
beschrieben. Es ist durchaus vernunftig, sich zun&chst eine Zeichnung
anzufertigen. So kann man sich Uberlegen, wie die Programmoberflache ungeféhr
aussehen kénnte und wie viele und welche Objekte man benétigt. AuBerdem kann
man den wichtigsten Objekten jetzt schon einen aussagekraftigen Namen geben.

-‘—Ei I Q y M%ﬂ/‘@/‘/""(t
] ook T_“4/7/ &
Dot el - a—/@ /mé&/‘
flend &rél g4Hgeben. [::@ fasaae
[/e ’é’_ﬁ)(#
@ Tewkor—"Gsfo-

Prinzipiell sind Sie in der Wahl des Namens frei, es hat sich jedoch bewéhrt, den
Namen aus zwei Teilen zusammenzusetzen. Der erste Teil beschreibt das
Programm oder den Programmteil, zu dem das Objekt gehort. In unserem Fall
wahlen wir "Tutor". Der zweite Teil bezeichnet die Klasse, zu der das Objekt
gehdrt. Das Primary Objekt heit daher TutorPrimary, der Button heiBt
TutorButton usw. Das Datei-Men(ist auch ein Objekt. Es wird aber vom Primary-
Objekt automatisch erzeugt, so dass wir uns darum nicht kimmern mussen.

Flr unser Programm bendtigen also wir 5 Objekte:
1. Ein Objekt der Klasse "Number". Hier kann der Nutzer die Zahl eingeben.

Tutorial - 4

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2. Ein Objekt der Klasse "Memo". Das ist ein Text-Objekt, mit dem wir das
Ergebnis unserer Uberpriifung anzeigen wollen.

3. Ein Objekt der Klasse "Button". Das ist der Schalter, mit dem wir die
Uberpriifung starten wollen.

4. Das eigentliche Programmfenster ist auch ein Objekt. Es gehort der Klasse
"Primary" an.

5. Zusétzlich bendtigt jedes Programm ein unsichtbares Objekt der Klasse
"Application". Dieses stellt die Verbindung zum GEOS-System her.

Alle Objekte sind miteinander verbunden. Man sagt, ein Objekt hat "children"
(Kinder). Details zu Children und die Organisation von Objekten in Baumen
(Trees) finden Sie im Kapitel 2.1 (Objekte und Objekt-Bdume) des Objekt-
Handbuchs.

In unserem Fall sieht die Verbindung, der sogenannte Objekt-Tree (Objektbaum),
wie folgt aus. Zum Beispiel ist das Objekt TutorNumber ein child (Kind) des
Objekts TutorPrimary. Im Gegenzug ist das Objekt TutorPrimary das parent
(Eltern) des Objekts TutorNumber.

(TutorAppIication)

TutorP'rimary

(Datei-MenU (TutorNumber) (TutorText) TutorButton

Es ist ganz wichtig, dass alle Objekte in den Objekttree eingebunden sind. Dazu
gibt es die Anweisung "Children". Vergessen Sie das Einbinden eines Objekts in
den Tree, so wird das Objekt nicht auf dem Bildschirm erscheinen. Es gibt
dartber keine Fehlermeldung, da Sie nichts Verbotenes getan haben.

Alle Objekte werden im Ul-Codefenster vereinbart. Das Application-Objekt hat
genau ein Child, des Primary-Objekt.

Application TutorApplication
Children = TutorPrimary
End OBJECT

Um ein Objekt anzulegen miissen Sie nicht jede Zeile einzeln tippen. Offnen Sie
stattdessen das Menl "Extras" -> "Code-Bausteine" -> "Neues Objekt". Dort
finden Sie das Application-Objekt und auch alle anderen von uns benétigten
Objekte. Sie brauchen nur noch die programmspezifischen Dinge erganzen. Das
Application-Objekt wird von uns nicht als Child eines anderen Objekts gesetzt,
darum kiimmert sich das System.

Nun legen wir das Primary-Objekt an und binden es in den Tree ein. Haben Sie

daran gedacht, das Menu "Extras" -> "Code-Bausteine" -> "Neues Objekt" zu
verwenden, um das Primaryobjekt anzulegen? Nachdem Sie das Objekt angelegt

Tutorial - 5

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

haben erscheint automatisch ein Dialogbox, die Sie beim Einbinden des Objekts in
den Tree unterstutzt.

Application TutorApplication
Children = TutorPrimary

End OBJECT ”’/;T
Primary TutorPrimary

Children = __
SizelindowAsDesired
End OBJECT

Unser Primary-Obijekt soll drei Children haben: das Number-Objekt, den Text und
den Button. Es ist unter GEOS nicht Ublich die Position der Objekte explizit
anzugeben. Stattdessen geben wir an, wie die Objekte angeordnet werden sollen.
Details zum zu diesem Thema finden Sie im Kapitel 3.3 (Geometriemanagement)
des Objekt-Handbuchs. Wir wollen, dass die Children horizontal zentriert sind
(justifyChildren = J_CENTER). JustifyChildren ist ein Instancevariable des
Primaryobjekts. Instancevariablen kénnen unterschiedliche Werte annehmen. In
unserem Fall weisen wir ihr den Wert J_CENTER zu. J_CENTER ist eine
numerische Konstante, d.h. J_Center steht symbolisch flir eine Zahl. Die Ul-
Anweisung SizeWindowAsDesired bewirkt, dass das Primary nur so grof} ist, wie
unbedingt nétig. Probieren Sie ruhig aus, was passiert, wenn Sie eine oder
mehrere dieser Zeilen auskommentieren (Ausrufezeichen davor schreiben).

Primary TutorPrimary
Children = TutorNumber, TutorText, TutorButton
justifyChildren = J CENTER
SizeWindowAsDesired

End OBJECT

Flar das Number-Objekt setzen wir zur Demonstration ein paar Instancevariablen.
Die Instancevariable Caption$ enthalt Text, der das Number-Objekt naher
beschreiben soll. Er erscheint direkt neben oder auf dem Objekt. AuBerdem legen
wir einen Startwert (value) sowie einen Minimal- und einen Maximalwert (minVal,
maxVal) fest. Unser Numberobjekt stellt nur ganze Zahlen dar. Im Kapitel 4.7.2
(Display-Format) des Objekt-Handbuchs ist beschrieben, wie man Numberobjekte
konfiguriert, damit sie Dezimalstellen darstellen kénnen.

Number TutorNumber
Caption$ = "Zahl eingeben:"
value = 12
minvVal -100
maxVal
End OBJECT

Das Ergebnis unserer Prufung wollen wir in ein Textobjekt schreiben. Da der
Nutzer dort nichts eingeben soll setzen wir das Textobjekt auf "nur Lesen", d.h. wir
weisen der Instancevariablen readOnly den Wert TRUE zu. TRUE ist wieder eine
numerische Konstante. Die Ul-Anweisung TextFrame erzeugt einen Rahmen um
das Objekt, der sonst bei read-only Objekten fehlt. Da wir noch keine Prufung
vorgenommen haben setzen wir als Anfangswert fur den darzustellenden Text das

Tutorial - 6

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Wort "ungetestet". SchlieBlich bewirkt die Ul-Anweisung justifyText = J_CENTER,
dass der Text zentriert dargestellt wird. Eine ausfuhrliche Beschreibung der
Textobjekte finden Sie im Kapitel 4.10 des Objekt-Handbuchs.

Memo TutorText
text$ = "ungetestet"
readOnly = TRUE
TextFrame
justifyText = J CENTER
End OBJECT

SchlieBlich brauchen wir noch einen Button, mit dem wir die Prifung der Zahl
starten. Wenn wir den Button aktivieren wird eine spezielle Routine, der
Actionhandler des Buttons, gestartet. Die Anweisung ActionHandler = Check-
Number legt fest, dass die Routine "CheckNumber", die wir noch schreiben
mussen, gestartet werden soll, wenn wir den Button aktivieren. Button-Objekte
sind im Kapitel 4.3 des Objekt-Handbuchs beschrieben.

Die Null in der Caption$ - Zeile legt fest, dass der Buchstabe an Position Null (hier
das 'P’) unterstrichen und zur Tastaturnavigation benutzt werden soll.

Button TutorButton
Caption$ = "Priifen" , 0
ActionHandler = CheckNumber
End OBJECT

3. Der Actionhandler

Nun muassen wir noch den Actionhandler des Buttons schreiben. Actionhandler
sind spezielle Routinen, die direkt von einem Objekt aufgerufen werden. Action-
handler, die von einem Button aufgerufen werden, missen als BUTTONACTION
vereinbart werden. Auch hier benutzen wir das Men("Extras" -> "Code-Bausteine"
um den Actionhandler anzulegen (Unterpunkt "Action-Handler").

BUTTONACTION CheckNumber
DIM z " z: zahl
z = TutorNumber.value
IF z/2 = Int(z/2) THEN

TutorText.text$ = "gerade"
ELSE

TutorText.text$ = "ungerade"
END IF

END ACTION

Die Zeile "z = TutorNumber.value" ist eine Zuweisung. Sie liest den Zahlenwert
(value) des Numberobjekts aus und speichert ihn in der Variablen z. Man sagt, der
Variablen z wird ein Wert zugewiesen. Z muss vorher mit DIM vereinbart worden
sein.

Mit der IF-Anweisung kénnen wir Entscheidungen treffen. Ist der zwischen IF und
THEN stehende Ausdruck wahr, so werden die Anweisungen hinter THEN

Tutorial - 7

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

ausgefthrt (in unserem Fall ist es nur eine Anweisung), andernfalls die hinter
ELSE. End IF schlieBt den Entscheidungsteil. Das Kapitel 2.5.1 (Verzweigungen)
des Programmierhandbuchs beschreibt die Mdoglichkeiten von R-BASIC, Ent-
scheidungen zu treffen.

Um festzustellen, ob die Zahl gerade ist vergleichen wir die Halfte der Zahl (z/2)
mit dem ganzzahligen Anteil (Funktion Int(..)) der halben Zahl. Ist zum Beispiel
z =5, s0ist z/2 = 2,5 und Int(z/2) = 2. Die Werte sind nicht gleich, z ist ungerade.
Einen Uberblick tber die in R-BASIC verfligbaren mathematischen Funktionen
finden Sie im Kapitel 2.3.1 (Uberblick (iber numerische Funktionen) des Program-
mierhandbuchs.

Die Anweisung TutorText.text$ = "...." weist dem Textobjekt einen neuen Text zu,
der sofort angezeigt wird. Zeichenketten (genannt Strings) werden in "" einge-
schlossen, Stringvariablen werden Ublicherweise durch ein angehangtes $
gekennzeichnet. Das ist Ihnen bestimmt schon bei Caption$ aufgefallen.

Nachdem Sie das Programm eingetippt und gestartet haben sollten Sie damit
herumspielen. Andern Sie einzelne Codezeilen oder kommentieren Sie sie aus.
Uberlegen Sie vorher, was passieren wird und vergleichen Sie lhre Vorhersagen
mit dem erreichten Ergebnis.

4. Erste Verbesserungen

== Tutorial 2 =

Datei

Wir wollen nun unser Programm etwas
verandern, indem wir die Eingabe der Zahl nicht
Uber ein Numberobjekt, sondern Uber ein
Textobjekt machen. Das sieht besser aus und || MR
"Drag’n Drop" funktioniert auch. | _Brifen |

Zahl eingeben:
B |

Dazu verwenden wir die andere Textobjektklasse, tber die R-BASIC verflgt. Das
Objekt InputLine stellt einen einzeiligen Text bereit. Mit der Anweisung
"justifyCaption = J_TOP" verschieben wir die Aufschrift Gber das Objekt. Captions
sind sehr vielseitig. Sie kdnnen nicht nur Text sondern auch Grafiken enthalten.
Details dazu finden Sie im Kapitel 3.1 (Caption: Die Objekt-Beschriftung) des
Objekt Handbuchs.

InputLine TutorInputText

Caption$ = "Zahl eingeben:"
justifyCaption = J TOP
text$ = "12"

backColor = WHITE
textFilter = TF_SIGNED NUMERIC + TF NO_ SPACES
End OBJECT

Der Startwert (text$ = "12") ist natirlich keine Zahl, sondern ein String. Mit
"backColor = WHITE" machen wir den Texthintergrund wei. WHITE ist eine
numerische Konstante (ein Symbol fir eine Zahl). R-BASIC hat fur alle 16
Standardfarben eine entsprechende Konstante. Naheres zur Beschreibung von
Farben finden Sie im Kapitel 2.8.2 (Farben) des Programmierhandbuchs.

Tutorial - 8

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Von besonderer Bedeutung ist fur unsere Anwendung die Zeile "textFilter =
TF_NUMERIC + TF_NO_SPACES". Texffilter sind eigentlich etwas fir
Fortgeschrittene, aber an dieser Stelle sehr hilfreich. Ein Textfilter weist das
Objekt an, nur bestimmte Zeichen zu akzeptieren. In unserem Fall sind die Werte
TF_SIGNED_NUMERIC (nur Ziffern, Minus und Leerzeichen) kombiniert mit
TF_NO_SPACES (keine Leerzeichen) angebracht. Das Setzen eines Textfilters
erspart uns bei der Auswertung die Aufwandige Prufung, ob der Nutzer Gberhaupt
eine Zahl und nicht etwa "Paul" oder "eins" eingegeben hat. Textfilter sind im
Kapitel 4.10.5 (Textfilter) des Objekthandbuchs beschrieben.

Bitte vergessen Sie nicht, das neue Objekt anstelle des Number-Objekts als Child
des Primary-Objekts einzutragen.

Natdrlich muassen wir jetzt unsere Auswerteroutine anpassen. Insbesondere
mussen wir den vom Nutzer eingegebenen Text in eine Zahl umwandeln. Diese
Aufgabe erledigt die Funktion Val(...). Val steht fir das englische Wort value
(Wert). "t$ = TutorlnputText.text$" speichert zuvor den vom Nutzer eingegeben
Text in der Stringvariablen t$. Die DIM-Anweisung erkennt an dem angehangten
$-Zeichen, dass die Variable einen Text und keine Zahl aufnehmen soll.

BUTTONACTION CheckNumber
DIM z, t$ " zahl, text
t$ = TutorInputText.text$
z = Val(t$)
IF z/2 = int(z/2) THEN

TutorText.text$ = "gerade"
ELSE

TutorText.text$ = "ungerade"
END IF

END ACTION

Tipp: Da die Variable t$ nirgends weiter gebraucht wird kann man sie auch
einsparen. Die ersten beiden Zeilen werden dann zu:

z = Val(TutorInputText.text$)

Details zu Variablen und den zugehérigen Datentypen finden Sie weiter unten, im
Kapitel 2.2 (Variablen und Typen). Der leichte Umgang mit Zeichenketten (Strings)
gehért zu den groBen Stérken der BASIC-Syntax. Einen Uberblick tiber die in R-
BASIC zur Verfigung stehenden Stringfunktionen finden Sie im Abschnitt 2.4.1
des Programmierhandbuchs.

5. Weitere Anderungen
Nun mdéchten wir die am Anfang eingestellte Zahl durch eine zufallig ausgewéhlte
Zahl ersetzen. Dazu benétigen wir eine Routine, beim Programmstart automatisch

ausgefuhrt wird. Das ist eine sehr h&ufig auftretende Situation. In R-BASIC ist das
so gelést, dass wir dem Application-Objekt einen "OnStartup" Handler geben. Wir

Tutorial - 9

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

nennen ihn "AppStartup". Wir hatten ihn auch "Paul" nennen kénnen, aber die
Namenswahl AppStartup enthélt gleichzeitig einen Hinweis darauf, was der
Handler tun soll. Das ist prinzipiell immer eine gute Idee. Der Ul-Code des
Application-Objekts sieht jetzt also so aus:

Application TutorApplication
Children = TutorPrimary
OnStartup = AppStartup

End OBJECT

Das Application-Objekt ist im Kapitel 4.1 des Objekthandbuchs beschrieben. Es
bietet zum Beispiel die Méglichkeit einem Programm ein eigenes Token (Icon) zu
geben und vieles mehr.

Unser AppStartup Handler muss als SYSTEMACTION vereinbart werden. Je
nachdem, ob wir das Number-Objekt TutorNumber oder das InputLine-Objekt
TutorlnputText zur Eingabe der Zahl verwenden féllt der Handler geringfligig

anders aus.
Wir schauen uns zunachst die Variante mit dem Number-Objekt an.

’ Variante mit Number-Objekt
SYSTEMACTION AppStartup
DIM z " zahl
Randomize
z = Int(100 * Rnd())
TutorNumber.value = z
END ACTION

Als erstes initialisieren wir mit der Anweisung Randomize den Zufallsgenerator.
Das sollte jedes Programm, das mit Zufallszahlen arbeitet, tun.

Die Funktion Rnd() liefert eine Zufallszahl x im Bereich 0 <= x < 1. Wenn wir
unsere Zufallszahl z im Bereiche 0 <=z <100 haben wollen missen wir diesen
Wert mit 100 multiplizieren. Die Funktion Int() (Int steht fir Integer, ganzzahlig)
schneidet die Nachkommastellen ab. Die Zeile z = Int(100 * Rnd()) weist also der
Variablen z eine Ganze Zahl im Bereich zwischen 0 und 99 zu.

SchlieBlich weisen wir mit der Anweisung TutorNumber.value = z dem Objekt
TutorNumber den Wert der Variablen z zu. Das Objekt zeigt diesen Wert sofort an.

Wenn wir das Textobjekt zur Eingabe der Zahl verwenden sieht der Handler so
aus:

SYSTEMACTION AppStartup
DIM z ' zahl
Randomize
z = Int(100 * Rnd())
TutorInputText.text$ = Str$(z)
END ACTION

Tutorial - 10

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Wir sehen, dass sich nur die letzte Zeile unterscheidet. Zunachst hei3t die
Instancevariable, die wir belegen missen, bei einem Textobjekt "text$". Diese
enthalt natdrlich eine Zeichenkette (einen String) und keine Zahl. Deswegen
missen wir die Zahl z mit der Funktion Str$() in eine Zeichenkette umwandeln.
Das ist schon alles.

Zusammenfassung

+ Jedes BASIC Programm besteht aus den Objekten und dem eigentlichen
BASIC Code.

Die Objekte sind in einer Parent-Child-Struktur miteinander verbunden.

Man bengtigt auf jeden Fall ein Application-Objekt und ein Primary-Objekt.

Der Programmcode wird in Form von Actionhandlern realisiert.

Actionhandler werden aufgerufen, wenn der Nutzer eine Aktion auslést.

Tipps

* Programmieren lernt man nicht durch Lesen, sondern durch Programmieren.
Spielen Sie ruhig an den Programmen herum. Andern Sie etwas, lassen Sie
Anweisungen weg und sehen Sie, welche Auswirkungen das hat.

+ Wenn Sie sich mit einem neuen Problem beschéftigen, schauen Sie in die
Beispiele. R-BASIC liefert zu nahezu allen Befehlen, Instancevariablen und
Objekten Programmbeispiele mit.

+ Es ist vollig normal, dass Sie beim Lesen der Dokumentation vieles nicht auf den
ersten Blick verstehen. PC/GEOS Objekte sind wunderbar intelligent und
vielseitig einsetzbar. Entsprechend kompliziert sind einige Stellen der
"Bedienungsanleitung" (Dokumentation). Sie brauchen firs Erste nur das zu
verstehen, was sie gerade benutzen wollen.

+ Suchen Sie sich fur den Anfang einfache, Uberschaubare Projekte. Viele
Programmierer haben mit einem Lottozahlengenerator oder etwas Ahnlichem
angefangen.

Beherzigen Sie nach Moglichkeit die folgenden Ratschlége:

+ Machen Sie sich im Vorfeld eine Plan, was das Programm genau kénnen soll
und was es nicht kénnen soll.

+ Verwenden Sie aussagekréftige Namen fur Variablen, Objekte und Routinen.
Ein Textobjekt, in das der Nutzer etwas eingeben soll, kdnnte "EingabeText"
heiBen. Nennt man es nur "Eingabe" kdnnte man spater in Zweifel kommen,
ob man das Textobjekt oder den eigegebenen Text meint.

+ Verwenden Sie groBzigig Kommentare. Kommentieren Sie vor allem die
Ideen hinter einem Programmabschnitt. Das Notieren einer Idee hilft lhnen,
das Problem gut zu durchdenken und verringert so die Fehlerquote.

Tutorial - 11

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2 Die BASIC Programmiersprache

Die R-BASIC Programmiersprache baut auf einer einfachen BASIC Syntax auf.
Diese ist, wenn man den grundlegenden Elementen der englischen Sprache
méchtig ist, weitgehend selbsterklarend. Dabei geht R-BASIC weit Uber klassische
BASIC Programmiersprachen hinaus. Es unterstitzt nicht nur das GEOS
Objektsystem sondern auch die typischen GEOS-Eigenschaften und System-
dienste wie lange Dateinamen, Tokens (lcons), die Zwischenablage, Hilfedateien,
Timer und mehr.

Beachten Sie, dass die GroB3- und Kleinschreibung von Kommandos, Variablen,
Objekten usw. unter R-BASIC keine Rolle spielt.

Ziel des Programmierhandbuchs - dem Handbuch, dass Sie gerade lesen - ist es,
die Elemente der BASIC-Programmiersprache darzustellen. Dabei wird nicht jedes
Mal auf die notwendigen Objekte eingegangen. Diese werden im Objekthandbuch
beschrieben. Um die Beispiele und Codefragmente aus den folgenden Kapiteln
auszuprobieren haben Sie zwei Moglichkeiten.

Méglichkeit 1 (empfohlen):
Offnen Sie das Beispielprogramm "Hallo 1" aus dem Ordner "R-BASIC\
Beispiele\Erste Schritte" und speichern Sie es unter einem neuen Namen. Die
Beispielprogramme enthalten bereits alle notwendigen Objekte. Ersetzen Sie dann
im Fenster "BASIC Code" den Code des Beispiels durch den Code, den Sie
ausprobieren mdchten.
BUTTONACTION DemoHandler

. hier neuen Code einfiigen
End ACTION

DemoAction ist der Name der Routine (des sogenannten Actionhandlers), die
aufgerufen wird, wenn Sie auf den Button "Beispiel starten" klicken. Sie kénnen
den Zusammenhang zwischen dem Button und dem Actionhandler im Fenster "UI-
Code" nachvollziehen, wenn Sie ganz nach unten scrollen.

Moglichkeit 2:
Offnen Sie ein neues, leeres BASIC Programm. Schreiben Sie im Fenster "BASIC
Code" die Anweisung ClassicCode und dann den Code, den Sie ausprobieren
mdchten.
ClassicCode

. hier neuen Code einfiigen

Die Anweisung ClassicCode versetzt R-BASIC in den sogenannten "klassischen"
Modus. In diesem Modus stellt R-BASIC ein paar Objekte bereit, die sich so
verhalten, als hatten Sie einen altmodischen Homecomputer vor sich. Sie kénnen
direkt Text und Grafik auf den Bildschirm ausgeben, ohne sich um den
Objekthintergrund kiimmern zu muissen. Details dazu finden Sie im Kapitel 2.13.1
(Der klassische BASIC Modus).

Konzepte -12

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.1 Grundlegende Konzepte

Hier finden Sie eine Zusammenstellung wissenswerter und grundlegender Fakten

zur BASIC-Sprache. Eine ausfuhrliche Beschreibung der Zusammenhénge finden
Sie in den folgenden Kapiteln.

2.1.1 Die Struktur eines BASIC Programms

Jedes R-BASIC-Programm besteht im Wesentlichen aus zwei Teilen: den
Objekten und dem eigentlichen Programmcode.

Die Objekte sind sie sichtbaren Elemente des Programms. Sie werden im Ul-Code
Fenster vereinbart. Ul steht fir User-Interface. Die Objekte heiBen daher auch Ul-
Objekte. Alle Objekte sind miteinander verbunden. Ein "Parent" Objekt hat ein
oder mehrere "Children". Jedes der Children kann wieder Parent fir weitere
Objekte sein. Diese Struktur nennt man einen Objekt-Baum (object tree).

Das Top-Objekt jedes Programms ist ein Application-Objekt. Dessen Child ist ein
Primary-Objekt, das Hauptfenster des Programms. Dieses enthalt wiederum die
anderen sichtbaren Objekte des Programms: Buttons, Listen, Objekte zur
Grafikausgabe und so weiter.

R-BASIC stellt die allermeisten der unter PC/GEOS verfugbaren Objekte bereit.
Die Anwendung der Objekte wird dem Programmierer dabei so einfach wie

moglich gemacht. Eine ausfihrliche Beschreibung der Objekte finden Sie im
Objekt-Handbuch.

o)
Primary Objekt > Objekte
Button Weitere Objekte)

Zugriff auf Objekt
lButton wird gedriickt A%rllic hau Objekte

Actionhandler des Buttons

Riickgabe von BASIC
Aufruf von Unterprogrammen Werten Code

SUBs FUNCTIONs

Solange nichts passiert ist das Programm im Wartezustand. Wenn der Nutzer nun
zum Beispiel einen Button anklickt, so ruft dieser seinen Actionhandler auf. Dieser
Handler kann wiederum andere Subs oder Functions aufrufen. AuBerdem kann er
auf die Daten der anderen Objekte des Programms zugreifen, diese lesen oder
verandern. Naturlich kann er auch Grafiken ausgeben oder auf Dateien zugreifen.

Konzepte -13

R-BASIC - Programmierhandbuch - Vol. 1

Einfach unter PC/GEOS programmieren

Auf diese Weise wird die Funktionalitdt des Programms implementiert. Nachdem
der Code des Actionhandlers abgearbeitet ist geht das Programm wieder in den

Wartezustand Uber. ... Bis der Nutzer die nachste Aktion macht und der nachste
Actionhandler aufgerufen wird.

Zahlen

Zahlen kdnnen in folgender Weise dargestellt werden:

Einfache Zahlen, z.B. 12 oder 4.8. Dezimaltrennzeichen ist immer der Punkt.
Darstellung mit Zehnerpotenzen z.B. 1.8E4 (= 1,8:10" = 18000)
Binardarstellung, z.B. &B1001 (=9)

Hexadezimale Darstellung z.B. &HFF (= 255)

Zahlen dirfen keine Leerzeichen enthalten.

Eine ausfuhrliche Behandlung des Themas finden Sie im Kapitel 2.3 (Arbeit mit
numerischen Ausdriicken)

Strings (Zeichenketten)

Zeichenketten werden in BASIC als "Strings" bezeichnet

Strings werden immer in Anfuhrungszeichen gesetzt, z.B. "Im Haus des
Donners"

Innerhalb von Strings kdnnen Sonderzeichen vorkommen. Sie werden mit
einem Backslash "\" eingeleitet. Zum Beispiel er6ffnet "\r" eine neue Zeile und
"\200" fugt das Zeichen mit dem ASCII-Code 200 ein.

Eine ausflhrliche Behandlung des Themas finden Sie im Kapitel 2.5 (Arbeit mit
Strings)

Trennzeichen

1)

Erfordert ein Befehl mehrere Parameter, missen diese durch Komma
getrennt werden.

Hinter jedem Bezeichner (Variablennamen und dgl.) muss ein Zeichen folgen,
dass nicht Teil eines Bezeichners sein kann. Ublicher Weise sind das ein
Leerzeichen, ein Komma ’,’ oder eine 6ffnende Klammer ’(". R-BASIC kann
sonst nicht erkennen dass DIMA eigentlich DIM A heiBen soll.

Leerzeichen oder Tabulatoren sind Uberall erlaubt, auBer innerhalb von

Bezeichnern und innerhalb von Zahlen.

Kommentare

Kommentare und Leerzeilen dienen der optischen Strukturierung und der
Erlauterung des Programmcodes. Kommentare und Leerzeilen werden beim
Compilieren ignoriert, d.h. sie verlangern das Programm nicht, es wird dadurch
auch nicht langsamer. Weiter unten finden Sie einen Exkurs zur Verwendung von
Kommentaren und zur optischen Strukturierung von Programmen.

Konzepte -14

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Klammern

Klammern haben in R-BASIC zwei Funktionen:

1. Strukturieren von mathematischen Ausdriicken. Ausdriicke, die in Klammern
gesetzt sind, haben immer Vorrang.

2. EinschlieBen von Funktionsargumenten.

Einige BASIC-Befehle erfordern Klammern, andere nicht. Das Konzept dahinter
ist sehr einfach:

+ Befehle, die am Anfang einer Zeile stehen, erfordern keine Klammern.
Es ist aber erlaubt, die Befehlsparameter in Klammern zu setzen
Beispiel:

LINE 20, 30, 100, 200

LINE (20, 30, 100, 200) ' Beides ist gleichwertig

+ Befehle (genauer: Funktionen), die auf der rechten Seite einer Zuweisung
stehen (kénnen) erfordern in jedem Fall Klammern, damit R-BASIC weiB3, wie es
die Parameter zu behandeln hat.

Tipp fur Umsteiger: In R-BASIC kann man statt der BASIC-Ublichen runden
Klammern () auch die eckigen Klammern [] verwenden. Damit kann man, wie in
anderen Programmiersprachen Ublich, Feldindizes in eckige Klammern setzen,
wahrend man Funktionsargumente in runde Klammern setzt. R-BASIC unter-
scheidet jedoch beide Klammertypen nicht.

Exkurs: Setzen von Klammern
Sicher ist Ihnen aufgefallen, dass einige BASIC-Befehle Klammern erfordern,

andere nicht. Das Konzept dahinter ist sehr einfach:
Befehle, die am Anfang einer Zeile stehen, erfordern keine Klammern. z.B.

PRINT A, B, CS$

Befehle (genauer: Funktionen), die auf der rechten Seite einer Zuweisung stehen
(kbnnen), erfordern in jedem Fall Klammern, damit R-BASIC weiB3, wie es die
Parameter zu behandeln hat. AuBerdem erhdht das die Lesbarkeit ungemein.
Nehmen wir als Beispiel (SQR berechnet die Quadratwurzel):

DIM A, X
A = 16
X = SOR A ¢ 4 ! <—— Falsch, Klammern fehlen
PRINT X

Es ist etwas anderes, ob wir die Klammern so setzen:
X = SQR (A ¢ 4)

oder so

Konzepte -15

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

X = SQR(A) * 4

Im ersten Fall erhalten wir 8, im zweiten 16.

AuBerdem sollte Sie bei logischen Operatoren nicht mit Klammern sparen. Die
Operatoren folgen einer bestimmten Hierarchie, so dass es schnell passiert, dass
der Compiler etwas anderes versteht, als Sie ihm sagen wollten. Beispiel:

X
X

(7 OR 3) AND 1 ' liefert 1
7 OR (3 AND 1) " liefert 7

Exkurs: Optische Strukturierung des Programms
REM

REM (Remark - Anmerkung) leitet einen Kommentar ein. Der Kommentartext
erstreckt sich bis zum Ende der Zeile und kann beliebige Zeichen enthalten. Sie
sollten lhr Programm immer ausfihrlich kommentieren. Das erleichtert das
Verstandnis des eigenen Programms, wenn Sie es spéater noch einmal anschauen
oder Uberarbeiten.
+ REM kann durch eine Apostroph ° oder einem Ausrufezeichen ! abgekurzt
werden.
+ Vor REM (bzw. ’ oder !) kann man den Doppelpunkt weglassen.
+ Kommentare verlangsamen den Ablauf des Programms nicht! Der Compiler
ignoriert alle Kommentare, wahrend er das Programm Ubersetzt.

Der Doppelpunkt :

Der Doppelpunkt *:’ trennt mehrere Anweisungen in einer Zeile.

Syntax: Anweisung1 : Anweisung2

Beispiel:
COLOR 7,0 : CLS

Tipps:
+ Sie sollten eine haufige Verwendung des Doppelpunktes vermeiden, da er die
Ubersichtlichkeit des Programms negativ beeinflussen kann.

+ Anweisungsfolgen, die mit einem Doppelpunkt getrennt wurden, laufen
geringflgig schneller ab, als wenn sie jede in einer eigenen Zeile stehen. Der
Unterschied ist jedoch sehr gering.

+ Vor einem Kommentar ist kein Doppelpunkt erforderlich.

+ Ein Doppelpunkt am Zeilenende ist zulassig und wird von R-BASIC ignoriert.

Konzepte -16

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Leerzeichen und Tabulatoren

Es ist dringend zu empfehlen, ein Programm optisch zu strukturieren. Dazu eignen
sich insbesondere Leerzeilen und Einrickungen. Die optische Strukturierung
verbessert die Lesbarkeit und signalisiert die Struktur des Programms. Die
Abarbeitungsgeschwindigkeit wird nicht beeinflusst.

Das folgende Beispiel gibt die ersten Quadratzahlen aus. Dabei wird jede durch 3
teilbare Zahl rot dargestellt.

' Unstrukturiert
DIM n, z

COLOR 15, 0

CLS

Print "Ausgabe der Quadratzahlen"
FOR n = 1 TO 15

Z = n*n

IF z/3 = Int (z/3) THEN
Ink 12

ELSE

Ink 15

End IF

Print n, z

NEXT n

PRINT "Fertig"

' Strukturiert mit Einriickungen, Kommentaren und Leerzeilen
DIM n, z

COLOR 15, O ' WeiB auf Schwarz
CLS

Print "Ausgabe der Quadratzahlen"

FOR n = 1 TO 15

Z = n*n
IF z/3 = Int (2z/3) THEN ' Wenn durch 3 teilbar
Ink 12 ' Vordergrund rot
ELSE
Ink 15 ' ansonsten: Vordergrund weil3
End IF
Print n, z ' Ausgabe, tabuliert (wegen Komma)
NEXT n

PRINT "Fertig"

Konzepte -17

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Verwendung der Code-Fenster

Wenn Sie ein Programm schreiben stehen |hnen bis zu 6 Code-Fenster zur
Verflugung.

Ul-Objekte
In diesem Fenster missen die Ul-Objekte des Programms vereinbart werden.
Das Schreiben von Code in diesem Fenster ist nicht méglich.

DIM & DATA
Bei umfangreichen Projekten sollten hier global Deklarationen untergebracht
werden. Das Schreiben von Code ist méglich, aber ganz schlechter Stil.

Exports
Wenn Sie eine Library schreiben werden hier Deklarationen untergebracht, die

von der Library "exportiert" werden. Libraries sind im Kapitel 2.12 beschrieben.

BASIC-Code, Tools, Init-Code
Diese Fenster sind fur den eigentlichen Programmcode vorgesehen. Aus Sicht
von R-BASIC sind diese Codefenster alle gleichwertig. Einem erfahrenen
Programmierer ermdglichen sie, seinen Code Ubersichtlicher zu gestalten.
Programmieranfangern wird empfohlen zunéchst nur das Fenster BASIC-Code
zu benutzen.

Die Fenster werden in der Reihenfolge "Exports" -> "DIM & DATA" -> "UI-Objekte"
-> "Tools" -> "BASIC-Code" -> "Init" compiliert. Dadurch stehen den drei
eigentlichen Codefenstern sowohl die Vereinbarungen aus Exports und
DIM & DATA als auch die Namen aller Ul-Objekte zur Verfligung.

Tipps:

+ Die Codefenster kbnnen auch mit den Tastenkombinationen Strg-1 bis Strg-6
angewahlt werden.

+ Im MenlU "Optionen" -> "Editor-Einstellungen" finden Sie den Menupunkt
"Code-Windows umbenennen". Dort kénnen Sie den Windows "DIM & DATA",
"BASIC-Code", "Tools", und "Init" andere, an ihr aktuelles Projekt angepasste,
Namen geben.

Konzepte -18

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.1.2 Begriffe und Fakten

Im Folgenden werden ein paar Begriffe erlautert, die in den Handbuchern immer
wieder vorkommen. Sie mlssen diese Definitionen nicht auswendig lernen, aber
um die Handbicher zu verstehen und sich mit anderen Programmierern ver-
stédndigen zu kénnen sollten Sie in etwa wissen, was sie bedeuten.

Ausdruck

+ Alle Berechnungen oder Formeln zur Ermittlung eines Wertes werden als
Ausdruck bezeichnet.

+ Am wichtigsten sind numerische Ausdricke (das Ergebnis ist eine Zahl), es gibt
aber auch String-Ausdriicke (das Ergebnis ist ein Text), Objekt-Ausdricke,
Handle-Ausdricke usw.

+ Ausdricke stehen haufig - aber nicht ausschlieBlich - auf der rechten Seite einer
Zuweisung. Beispiel dafir:

y 7

z Int(y) + 5

st$ = "Hallo Welt"

+ Siehe auch: Funktion, Parameter, Zuweisung

Actionhandler

+ ActionHandler sind spezielle Unterprogramme, die automatisch aufgerufen
werden, wenn der Nutzer ein "Ereignis" ausldst, z.B. auf einen Button klickt.

« Siehe auch: Funktion, Parameter, Routine, Sub

Anweisung
+ Als Anweisung wird eine einzelne Codezeile bezeichnet. Eine Anweisung geht

bis zum Zeilenende oder bis zu einem Doppelpunkt. Dann stehen mehrere
Anweisungen in einer Zeile.

+ Der Begriff Anweisung wird haufig verwendet, wenn man nicht explizit angeben
kann oder will, ob es sich um eine Deklaration, eine Zuweisung oder eine Ul-
Anweisung handelt.

+ Kommentar- und Leerzeilen werden nicht als Anweisungen bezeichnet.

+ Kontroll-Anweisungen (z.B. FOR-TO-NEXT) stellen einen Spezialfall dar. Sie
beeinflussen den Programmablauf.

+ Vergleiche auch: Befehl, Deklaration, Parameter, Ul-Anweisung, Zuweisung

Befehl
+ Ein Befehl wird im Programm aufgerufen um eine bestimmte Aufgabe zu
erledigen, z.B. LINE, Print, CLS, EXIT oder FontFind.

+ Befehle werden oft von Parametern gefolgt. Beispiel:
LINE 10, 20, 100, 200

+ Sie auch: Anweisung, Deklaration, Zuweisung, Parameter

Konzepte -19

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Bezeichner

+ Alle Namen flr Variablen, Objekte, Strukturen usw. heiBen "Bezeichner". Sie
durfen bis zu 32 Zeichen lang sein.

+ Am Anfang eines Bezeichners steht immer ein Buchstabe. Zulassige Zeichen
sind weiterhin: die Ziffern (0..9), der Unterstrich ’_" und das Dollar-Zeichen ’$’.

+ R-BASIC unterscheidet nicht zwischen GroB- und Kleinschreibung. Es ist egal,
ob sie CLS, cls oder Cls schreiben. Der Editor erkennt R-BASIC Befehle und
hebt sie hervor. Dabei wird, wie in den Handbuichern auch, oftmals eine
kombinierte GroB-Kleinschreibung verwendet, z.B. FillEllipse statt FILLELLIPSE
oder fillellipse. BASIC Schlisselworte wie DIM, IF, THEN oder FOR werden
groB geschrieben.

+ Bezeichner dirfen keine Leerzeichen enthalten.

Deklaration
+ Deklarationen sind "Vereinbarungen". Zum Beispiel vereinbart

DIM A as Real

eine Variable mit dem Namen A, die eine Real-Zahl speichern kann.
+ Weitere Beispiele fur Deklarationen sind

DECL SUB MaleBild ()
CONST y 0 = 12

+ Eine Deklaration erzeugt noch keinen ausfiuhrbaren Code. Sie zeigt nur dem
Compiler an, dass der vereinbarte Bezeichner existiert und welche Eigen-
schaften er hat.

+ Es wird empfohlen, fir globale Deklarationen nur das Dim&Data-Fenster zu
nutzen.

+ Vergleiche auch: Anweisung, Ul-Anweisung, Zuweisung

Ereignis
+ Jeder Vorgang, der eine Reaktion des Programms erfordert, wird als Ereignis
bezeichnet.
+ Ereignisse sind zum Beispiel:
* Das Betatigen einer Taste auf der Tastatur
* Das Anklicken eines Buttons
* Das Auswéhlen eines Eintrags aus einer Liste
+ Ereignisse werden vom GEOS-System an das zustandige Objekt weitergeleitet.
Dieses behandelt das Ereignis dann intern oder es ruft den passenden BASIC-
Handler auf, damit das R-BASIC Programm das Ereignis behandeln kann.

Funktion

+ Funktionen sind Unterprogramme, die einen Wert zurtickgeben.

+ Es gibt BASIC-interne Funktionen (z.B. Int()) und selbst definierte Funktionen
(Schlisselwort FUNCTION).

+ Beim Aufruf einer Funktion missen Klammern angegeben werden, auch wenn
die Funktion keine Parameter hat.

+ Siehe auch: Actionhandler, Parameter, Routine, Sub

Konzepte -20

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Hint
+ Hints (=Hilfen) sind spezielle Instancevariablen, die einem Objekt mitteilen, wie
es sich zu verhalten oder darzustellen hat.

+ Hints kénnen von Objekten ignoriert werden, wenn es die Situation erfordert.

Instancevariable

+ Die Instancevariablen enthalten die Eigenschaften der einzelnen Objekte. So
hat jeder Button z.B. eine Aufschrift, die aber von Button zu Button verschieden
ist.

+ Instancevariablen werden im Objekt-Handbuch bei den zugehdrigen Objekten
besprochen.

+ Vergleiche auch: Methode, Objekt, Ul-Anweisung

Kommando
+ Siehe Befehl, Anweisung

Konstante

+ Eine Konstante ist ein symbolischer Name fir einen festen, d.h. wahrend des
Programmablaufs nicht veranderbaren, Wert.

* In R-BASIC sind Uber einhundert numerischen Konstanten definiert (d.h. sie
stehen fir eine Zahl). Besonders wichtig sind die Konstanten TRUE (Wert: —1)
und FALSE (Wert: 0)

+ Eigene Konstanten der Typen Real und String kann man mit der Anweisung
CONST definieren.

Methode

+ Methoden sind "Anweisungen an ein Objekt". Der Aufruf einer Methode fuhrt
dazu, dass das Objekt eine bestimmte Operation ausfuhrt.

+ Beispiel: Die Methode "Open" bringt eine Dialogbox auf den Schirm:

MyDialog.Open

+ Vergleiche auch: Instancevariable, Objekt, Ul-Anweisung

Objekt

+ Die sichtbaren Elemente der grafischen Oberfliche werden in R-BASIC als
Objekte bezeichnet. Das sind zum Beispiel ein Button, eine Liste oder eine
Dialogbox.

+ Die in R-BASIC verfugbaren Objekte werden im Objekt-Handbuch besprochen.

+ Vergleiche auch: Instancevariable, Methode, Ul-Anweisung

Parameter

+ Parameter sind Werte, die an eine Routine oder einen Befehl Ubergeben
werden. Felder kdnnen nicht als Parameter Ubergeben werden.

+ Fur Parameter sind alle in R-BASIC verfligbaren Typen zulassig.

+ Siehe auch: Actionhandler, Funktion, Routine, Sub

Konzepte -21

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Routine

+ Die Begriffe Routine und Unterprogramm werden zusammenfassend flr Sub,
Function und ActionHandler verwendet. Man benutzt sie, wenn man nicht naher
spezifizieren will oder kann, ob man ein Sub, eine Function oder einen
ActionHandler meint.

« Siehe auch: Actionhandler, Funktion, Parameter, Sub

Sub

+ Eine SUB (englisch flr Subroutine, Unterprogramm) ist ein in sich geschlos-
sener Programmteil, der eine bestimmte Aufgabe zu erledigen hat.

+ SUB’s kdnnen mehrfach aufgerufen werden und sie dienen der Strukturierung
des Programmes.

« Siehe auch: Actionhandler, Funktion, Parameter, Routine

Ul-Anweisung

+ Ul-Anweisungen sind spezielle Anweisungen, mit denen Objekte vereinbart oder
die Startwerte flr Instancevariablen belegt werden.

+ Ul-Anweisungen kénnen nur im Ul-Code Fenster stehen.

+ Vergleiche auch: Anweisung, Deklaration, Objekt, Instancevariable, Zuweisung

Unterprogramm
+ Siehe: Routine

Variable

« Variablen dienen zum Speichern von Zahlen, Texten und anderen Daten. lhr
Inhalt kann verandert werde, d.h. er ist variabel. Daher kommt auch der Name.

« Auf lokale Variablen kann nur innerhalb der Routine, in der sie deklariert
wurden, zugegriffen werden.

+ Globale Variablen sind fur alle Programmteile sichtbar.

+ Variablen sind eines der grundlegenden Konzepte in einer Programmier-
sprache. Sie werden ausfihrlich im nachsten Kapitel (Variablen und Typen)
erlautert.

Zuweisung
+ Zuweisungen bestehen aus einer Variablen (das kann auch eine Objekt-

Instancevariable sein), einem Gleichheitszeichen und auf der rechen Seite
einem Ausdruck, dessen Wert der Variablen zugewiesen werden soll.

NAMES = "Paul"

Dadurch wird der Wert "Paul" in der Variablen NAMES$ gespeichert.

+ Der Ausdruck auf der rechten Seite muss kompatibel zum Variablentyp sein,
d.h. Sie durfen z.B. einer String-Variablen keine Zahl zuweisen. Natrlich gibt es
entsprechende Umwandlungs-(Konvertierungs)-Funktionen.

+ Vergleiche auch: Anweisung, Deklaration, Ul-Anweisung

Konzepte -22

R-BASIC - Programmierhandbuch - Vol. 1

Einfach unter PC/GEOS programmieren

(Leerseite)

Konzepte -23

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2 Variablen und Typen

2.2.1 Was sind Variablen?

Wenn Sie eine Zahl oder eine Text abspeichern und anschlieBend wieder darauf
zugreifen wollen, benétigen Sie mindestens zwei Dinge: genug Speicherplatz um
die Daten abzulegen und einen Namen, unter dem Sie wieder auf die Daten
zugreifen kénnen. Um den Speicherplatz kiimmert sich R-BASIC automatisch, nur
den Namen mussen Sie selbst vergeben. Unter diesem Namen kénnen Sie spater
auch eine andere Zahl oder einen anderen Text in diesem Speicherplatz ablegen.
Der Inhalt des Speicherplatzes ist also veranderlich, d.h. variabel. Man sagt daher,
dass man es mit einer Variablen zu tun hat. Im Sprachgebrauch wird der Begriff
"Variable" gleichbedeutend mit dem Variablennamen verwendet. Statt "Die
Variable mit dem Namen X" sagt man "Die Variable X". Gemeint ist in beiden
Fallen jedoch, dass sich hinter dem Namen X ein Speicherbereich verbirgt, der
einen Wert, z.B. eine Zahl oder einen Text, enthalt. Variablen, die eine Zahl
enthalten, bezeichnet man als "numerische" Variablen. Variablen, die einen Text
enthalten, bezeichnet man als "String" Variablen. Der englische Begriff "String"
steht far Faden, Schnur bzw. Kette, in unserem Fall fir eine Abfolge von Zeichen
(= Buchstaben), eine "Zeichenkette".

Um eine Variable zu vereinbaren verwenden wir das Schlisselwort DIM. Wir
mussen auBer dem Namen der Variablen auch angeben, welche Art von Daten sie
enthalten soll, d.h. wir missen ihren Typ (auch Datentyp genannt) angeben. Dazu
dient das Schlisselwort AS. Der Typ der Variablen beschreibt auBer der Art der
Daten auch den benétigten Speicherplatz, die "GréBe" der Variablen. Das ist nicht
zu verwechseln mit dem Wert der Variablen. Der "Wert" gibt den Inhalt der
Variablen an (z.B. "Hallo"), die Gr6Be den bereitgestellten Speicherplatz, z.B. 10
Byte.

Ein einfaches Beispiel:

DIM X AS REAL
X = 12 ' Weise der Variablen X den Wert 12 zu
Print X " 12 erscheint
x = =7.9 '’ Weise der Variablen X den Wert -7.9 zu
Print x " =7.9 erscheint

DIM

Mit dem Schlusselwort DIM werden Variablen vereinbart. DIM ist sehr méchtig und
kann in verschiedenen Varianten verwendet werden, die im Folgenden erklart
werden:

Beispiel 1: Einfache Variablendefinition, automatische Typerkennung
DIM A, B

a=>5

b = 3.7

Print A*B

Variablen und Typen - 24

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Es wurden zwei numerische Variablen vom Datentyp "Real" vereinbart. Der
Variablen A wird der Wert 5, der Variablen B der Wert 3,7 zugewiesen. Beachten
Sie, dass als Dezimaltrennzeichen immer ein Punkt zu schreiben ist. AuBerdem
sehen Sie, dass die GroB/Kleinschreibung der Variablennamen egal ist.
AnschlieBend wird das Produkt (in unserem Fall 18.5) ausgegeben.

Beispiel 2: Einfache Variablendefinition, automatische Typerkennung

DIM AS$, BS
AS$S = "Hallo "
BS = "Welt"
Print AS; BS

Hier wurden zwei Stringvariablen vereinbart. R-BASIC erkennt an dem
nachgestellten Dollarzeichen ($), dass es sich um eine Zeichenkettenvariable
(Stringvariable) handeln soll. Das Dollarzeichen ist Teil des Namens der Variablen
und darf nicht weggelassen werden. R-BASIC unterscheidet die Variablen A$
(sprich: "A-String") von der Variablen A.

Der Variablen A$ wird der Wert "Hallo ", der Variablen B$ der Wert "Welt"
zugeordnet. Die Print-Anweisung gibt den Text "Hallo Welt" aus.

Beispiel 3: Einfache Variablendefinition, automatische Typerkennung
DIM Auto, Bus$

Diese Anweisung vereinbart die Realvariable Auto und die Stringvariable Bus$.
Wie fur alle Bezeichner in R-BASIC gilt auch fur Variablen: Sie missen mit einem
Buchstaben beginnen, dirfen Buchstaben, Ziffern und die Sonderzeichen ’$’
(Dollar) und ’_’ (Unterstrich) enthalten und kénnen bis zu 32 Zeichen lang sein.
GroB- und Kleinschreibung wird nicht unterschieden.

DIM AS

Das Schlisselwort AS legt den Typ der Variablen fest.

Beispiel 4: Numerische Variablen (siehe auch Kapitel 2.2.2)

DIM A, B AS WORD
DIM Hilf AS Longint
DIM ups AS REAL

Beispiel 5: Stringvariablen (siehe auch Kapitel 2.2.3)

DIM U$, V$ AS String
DIM Name$ As String(20)

Es ist in BASIC ublich, alle String Variablen durch ein Dollarzeichen am Ende zu
kennzeichnen. Erzwungen wird dies in R-BASIC jedoch nicht.

Beispiel 6: Feldvariablen
DIM X(10) AS REAL

Variablen und Typen - 25

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Ein Feld fasst Variablen gleichen Typs zusammen. Sie werden Uber den Feldindex
angesprochen. Das Beispiel vereinbart 11 REAL variablen, X(0) (Sprich X-von-
Null) bis X-von-10). Felder werden im Abschnitt 2.2.5 ausfuhrlich besprochen.

Hier ist die komplette Liste der Syntaxvarianten von DIM:

Syntax: DIM <VariablenListe>
Es werden ausschlieBlich REAL und STRING Variablen vereinbart.

Endet der Variablenname auf ’$’ (Dollar) wird eine Stringvariable
vereinbart, ansonsten eine REAL Variable.
Beispiel: DIM A, B(12), C$, D$(10,10)

Syntax: DIM <VariablenListe> AS <VariablenTyp>
Es werden Variablen vom angegebenen Typ vereinbart.
Beispiel: DIM X, Y, Z, P(12), Q(4,4) AS Integer

Syntax: DIM <VariablenListe> AS HUGE <VariablenTyp>
alternativ: HUGE <VariablenListe> AS <VariablenTyp>
Das Schlusselwort HUGE (=riesig) ist nur im Zusammenhang mit
Feldern zuléssig. Es zeigt an, dass die Felder sehr groB sind und
daher nicht vollstandig im Speicher gehalten werden kénnen.
Beispiel: DIM F(999, 999) AS HUGE REAL
Es wird ein Feld mit 1000 x 1000 = 1 000 000 Elementen vereinbart.
Jedes Element erfordert 10 Byte, das Feld insgesamt 10 Megabyte.

Dabei bedeuten:

<VariablenListe> Namen der zu vereinbarenden Variablen.
Einfache Variablen und Feldvariablen sind erlaubt.

<VariablenTyp> Typ der vereinbarten Variablen. Es sind alle R-BASIC
bekannten Datentypen erlaubt: Die Standarddatentypen, R-BASIC
Strukturtypen und mit dem Schlisselwort STRUCT selbst definierte
Datentypen.

Variablen und Typen - 26

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.2 Numerische Datentypen und numerische Ausdricke

Die Verarbeitung von Zahlen und mathematischen Funktionen gehoért zu den
Kernaufgaben einer Programmiersprache. Numerische Variablen speichern
Zahlen. In R-BASIC stehen die folgenden Typen zur Verfligung:

Typ Speicherbedarf Inhalt

REAL 10 Byte Reelle Zahl, mit Vorzeichen
+3.9999-10*" | 19 Stellen

BYTE 1 Byte vorzeichenlose Zahl, 0 .. 255

WORD 2 Byte vorzeichenlose Zahl, 0 .. 65535

INTEGER 2 Byte Ganze Zahl, vorzeichenbehaftet
— 32768 ... 32767

DWORD 4 Byte vorzeichenlose Zahl
0 ...4 294 967 295

LONGINT 4 Byte Ganze Zahl, vorzeichenbehaftet
— 2147 483 648 ... 2 147 483 647

WWEFIXED 4 Byte Dezimalzahl, vorzeichenbehaftet
maximal 4 Nachkommastellen
—32768.0 ... 32767.9999

Realvariablen
Realvariablen (real =reelle Zahlen) speichern Zahlen im Bereich von

+ 3.9999-104931 mit einer Genauigkeit von 19 Stellen. Zahlen mit negativen Expo-

. . —-4931
nenten sind bis + 10 erlaubt.

Byte, Word, Integer, DWord und Longint Variablen

Far Einsteiger in die Programmierung ist der Zahlentyp REAL voéllig ausreichend.
Fortgeschrittene Programmierer wirden jedoch bald die in der Computertechnik
dblichen "kleinen" Zahlentypen vermissen. R-BASIC unterstitzt daher zusatzlich
die in der Tabelle angegebenen Typen. Sie bendtigen auch wesentlich weniger
Speicherplatz als Realvariablen.

WWFixed Variablen

Berechnungen mit dem Datentyp WWFixed werden merklich schneller ausgefihrt
als mit den anderen numerischen Datentypen. Die begrenzte Genauigkeit von 4
Nachkommastellen ist fir viele Anwendungszwecke, insbesondere bei der
Ausgabe von Grafik, vollig ausreichend. Damit R-BASIC mit WWFixed-Werten
rechnet sind besondere Regeln einzuhalten. Diese sind im Kapitel 2.3.6 (Schnelle
Mathematik mit WWFixed) beschrieben. Sie sollten dieses Kapitel unbedingt
lesen, bevor Sie den Datentyp WWFixed verwenden!

Beispiele:

DIM a, b, ¢ AS REAL
DIM p, d, ¥ AS Word
DIM u, v, w AS Integer

Variablen und Typen - 27

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Hinweise:

+ Mit der Ausnahme von WWFixed rechnet R-BASIC grundséatzlich mit REAL-
Zahlen. Die anderen numerischen Typen werden daher vor jeder Benutzung
in REAL umgerechnet. Es ist in R-BASIC ein Irrtum anzunehmen, dass die
Verwendung der Datentypen Word oder Integer die Rechengeschwindigkeit
vergroBert.

+ Als Dezimaltrennzeichen muss immer ein Punkt verwendet werden.

+ Die "kleinen" Zahlentypen konnen grundsatzlich Gberall dort verwendet
werden, wo auch Realvariablen zul&ssig sind.

* Bei Zuweisung von Werten auBlerhalb des Wertebereichs werden die
Uberzahligen Bits einfach ignoriert. Das bedeutet:

— Bei vorzeichenbehaftete Typen (INTEGER, LONGINT sowie WWFixed)
werden zu groBe Zahlen zu negativen Zhalen und umgekehrt.

— Vorzeichenlose Typen (BYTE, WORD, DWord) arbeiten mit einem
Ubertrag. Das entspricht einer Modulo-Operation.

— Real-Zahlen speichern einen speziellen Fehlerwert.

Beispiele fir Zuweisungen auBerhalb des Wertebereichs:

DIM x, y ' REAL Variablen, weil kein Typ vorgegeben
DIM b AS Byte

DIM i AS Integer

DIM w AS Word

weil 98566 = 65536 + 33230
bzw. 98766 MOD 65536 = 33230

b =12.3 ' Der Wert 12 wird gespeichert

b = 300 ' Der Wert 44 wird gespeichert (300 = 256 + 44
' bzw. 300 MOD 256 = 44

i = 98766 ' Gespeichert wird 32767
' Das ist der groBtmogliche Integerwert

w = 98766 ' Gespeichert wird 33230

FlUr Zahlen gelten die folgenden Regeln

» Einfache Zahlen sind z.B. 12 oder 4.89
Als Dezimaltrenner wird immer der Punkt ’.’ verwendet, egal was Sie in den
PC/GEOS Voreinstellungen festgelegt haben. Dadurch kann man BASIC-
Programme auf allen PC/GEOS-Rechnern sofort laufen lassen.

+ Vor jede Zahl darf ein Vorzeichen (+ oder —) gesetzt werden.

+ FUr Zahlen mit 10er-Potenzen wird das E (oder e) verwendet.
~3,78-10"2 wird also so geschrieben: —3.78E12

6,673-10" " sieht so aus: 6.673E-11
Entsprechendes gilt auch fur die Ausgabe von Zahlen durch R-BASIC.

* Leerzeichen innerhalb von Zahlen sind unzul&ssig.

Variablen und Typen - 28

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

+ Zahlen kénnen auch in binérer Schreibweise (Vorsatz &B, z.B. 5 als &B101)
und in hexadezimaler Schreibweise (Vorsatz &H, z.B. 243 als &HF3)
dargestellt werden. In diesen Féllen sind 32 Bit oder 8 Hexadezimalstellen
zuldssig (Zahlenbereich DWord). Zahlen in dieser Schreibweise werden
grundsétzlich als positive Zahlen behandelt.

Tabelle der Rechenoperationen

Operator Bedeutung

+- 5 Grundrechenarten:
Addition, Subtraktion, Multiplikation, Division

A Exponentialoperator, z.B.3"2=9
MOD Modulo-Division zB.8MOD 3 =2
AND, OR, XOR, NOT Bitweise logische Operationen

Mathematische Funktionen

* R-BASIC verfligt Uber eine Vielzahl von mathematischen Funktionen. Diese
kdénnen beliebig verknlpft werden, wobei R-BASIC die Ublichen Vorrangregeln
(Punktrechnung vor Strichrechnung, Klammern gehen vor usw.) beachtet.

Beispiele:

y = 4*sin(5*x) + 7
y = sqgr(1 + tan(z))

« Uberall dort, wo in den Beispielen Zahlen oder numerische Variablen
verwendet wurden, kébnnen auch komplexe numerische Ausdriicke stehen.

Variablen und Typen - 29

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.3 Stringtypen und Stringausdriicke

Zeichenketten wie z.B. "Hallo Welt" werden in BASIC als Strings bezeichnet.
Stringvariablen speichern Zeichenketten (Texte) und sind in BASIC Ublicherweise
durch ein angehangtes $-Zeichen markiert. Das $-Zeichen ist Teil des Namens

und darf nicht weggelassen werden. Es gibt zwei Zeichenkettentypen: STRING
und STRING(n).

Variablen, die als STRING vereinbart wurden, kdénnen bis zu 128 Zeichen

aufnehmen. Variablen vom Typ STRING(n) kénnen bis zu n Zeichen lang sein.
Dabei gilt: n <= 1024.

Beispiele:

DIM TS ' STRING Variablen, weil der Name auf $ endet
' Max. 128 Zeichen

DIM RS, S$ AS STRING

DIM P$, Q$ AS STRING(100)

DIM U$, V$ AS STRING(1024)

Max. 128 Zeichen

Max. 100 Zeichen

Max. 1024 Zeichen

1024 ist die obere Grenze
Auch Stringvariablen, obwohl
der Name nicht auf $ endet

DIM A, B AS STRING

~ ~ 0~ ~ ~ 0~

Far Strings gelten die folgenden Regeln:

+ Stringkonstanten werden immer in Anfihrungszeichen gesetzt. Umlaute und
Sonderzeichen sind erlaubt.

AS = "Im Haus des Donners wird mir iibel."

« Stringvariablen sollten immer durch ein $ (Dollarzeichen) am Ende

gekennzeichnet sein. z.B. A$ (sprich A-String). VerstéBe gegen diese Regel
verschlechtern die Lesbarkeit des Programms.

+ Strings kénnen durch den Operator + zusammengefiigt werden. Klammern
sind erlaubt, aber nicht notig.

AS
AS

"Im Haus des Donners "
AS + "wird mir ibel."

« Ein Anflhrungszeichen oder andere besondere Zeichen innerhalb einer

Zeichenkette werden mit einem "Ruckwartsstrich" (Backslash) \' eingeleitet.
Beispiel: Die Anweisung

AS$ = "Im \"Haus des Donners\"!"

Speichert den Text: Im "Haus des Donners"! in der Variablen A$

Variablen und Typen - 30

R-BASIC - Programmierhandbuch - Vol. 1

Einfach unter PC/GEOS programmieren

+ Weitere Zeichen, die mit einem Backslash eingeleitet werden:
\t Tabulator
\r oder \n Zeilenschaltung
\ Backslash

+ Ein Backslash gefolgt von bis zu drei Ziffern (Dezimalzahl) kann verwendet
werden, um ASCII-Zeichen in Strings einzuflgen, die nicht direkt auf der
Tastatur verfligbar sind.

A$ = "a \195\180 b"

Speichert den Text a V¥ b in der Variablen A$
ASCII-Codes unterhalb von 32 (nicht druckbare Codes) sind ebenso zuléssig.
Die Null beendet eine String, darauffolgende Zeichen werden ignoriert.

+ Mit der Anweisung CONST koénnen Stringkonstanten definiert werden. Die
Stringkennung $ am Ende ist dabei optional.

Beispiel:
CONST NAMES = "Muller"
CONST FULL NAME$ = "Paul " + NAMES$

Print "Mein Name ist "; NAMES; ", "; FULL NAMES$

Variablen und Typen - 31

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.4 Weitere Datentypen

In diesem Abschnitt werden Datentypen beschrieben, die fir spezielle Zwecke, in
denen Zahlen oder Strings nicht geeignet sind, eingesetzt werden. Die Beispiele
enthalten daher gelegentlich Befehle, die erst in den zugehdérigen thematischen
Kapiteln beschrieben werden. Als Einsteiger werden Sie dieses Kapitel sicher nur
uberfliegen.

Tabelle der hier beschriebenen Standarddatentypen

Typ Speicherbedarf Inhalt

File 6 Byte Referenz auf eine Datei

Object 8 Byte Referenz auf ein UI-Objekt

Handle 6 Byte Referenz auf eine R-BASIC interne
Datenstruktur, die nicht bereits von
FILE oder OBJECT abgedeckt ist.

Variablen der hier beschriebenen Typen kdnnen behandelt werden wie alle
anderen Variablen in R-BASIC auch. Man kann z.B. Felder anlegen (z.B. DIM
Dateien(10) AS FILE), sie als Elemente von Strukturen verwenden, als Parameter
an SUB’s oder FUNCTION’s Ubergeben oder als Rickgabetyp von FUNCTION’s
benutzen.

2.2.4.1 Der Datentyp FILE

Wenn Sie mit einer Datei arbeiten wollen, benétigen Sie eine Referenz auf diese
Datei. Fur diesen Zweck gibt es Variablen vom Typ FILE (Dateivariablen). Alle
Dateibefehle erwarten eine solche Variable, um zu wissen, welche Datei gemeint
ist. Um die Details, z.B. wo die Datei auf der Platte zu finden ist und wie groB sie
aktuell ist, kimmert sich dabei das GEOS-System. Eine ausfihrliche
Beschreibung der Arbeit mit Dateien finden Sie im Kapitel 6 des Handbuchs
"Spezielle Themen".

Dateivariablen missen explizit AS FILE deklariert werden:

DIM fth AS FILE

Beim Offnen / Anlegen einer Datei wird der Variablen ein Wert zugewiesen. Die
Struktur dieses Wertes ist BASIC-intern und besteht aus mehreren Zahlen.

fh = FileOpen "info.txt"

Zum Arbeiten mit der Datei verwenden Sie die Variable, z.B.

X = FileRead (fh)
FileWrite fh, x

Variablen und Typen - 32

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Wenn Sie fertig sind, missen Sie die Datei schlieBen:

FileClose fh

Danach enthalt die Variable immer noch einen Wert, er ist jetzt jedoch ungultig.
Deswegen sollten Sie, wenn es nicht zu sehr auf Geschwindigkeit ankommt, die
Variable mit Hilfe der Funktion NullFile() einen "Null-Wert" zuweisen, sie also
I6schen. Dieser Schritt ist jedoch nicht zwingend erforderlich.

fh = NullFile()

NullFile

NuliFile() ist eine Funktion, die eine "leere" Dateivariable liefert, d.h. sie dient
zum Léschen einer Filevariablen. Achtung! NullFile() Uberschreibt die Referenz
in der Filevariablen mit Nullen, ohne die Datei zu schlieBen! Das muss vorher
passiert sein. Sie kénnen NullFile() auch benutzen, um zu prifen, ob eine
Dateivariable leer ist.

Syntax: <fVar> = NullFile()
Die Klammern sind erforderlich, weil NullFile eine Funktion ist.
<fVar>: Variable vom Typ FILE

Hinweise:

+ Es ist nicht zwingend erforderlich eine freigegebene Dateivariable auch mit
NullFile() zu léschen. R-BASIC kann jedoch eine geldschte Filevariable
erkennen und so eventuell einen Systemabsturz verhindern.

FileInfo$

Die Funktion FileInfo$ liefert einen Text, der interne Informationen Uber eine
Dateivariable liefert. Sie kdnnen diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = Filelnfo$(<fileExpr>)
<fileExpr>: Variable oder Ausdruck vom Typ FILE
<stringVar>: Stringvariable

Variablen und Typen - 33

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.4.2 Der Datentyp HANDLE

Ein "Handle" (= Anfasser) enthélt eine Referenz auf eine Datenstruktur, deren
Inhalt von R-BASIC verwaltet wird. Wo die Daten abgelegt sind, wie sie intern
organisiert sind usw. braucht den R-BASIC Programmierer nicht zu kimmern, er
greift immer indirekt Uber das Handle auf die Daten zu.

R-BASIC Programm Irgendwo im GEOS-System:

Handle - Variable

Referenz | Datenstruktur

Bild: Eine Handlevariable enthalt eine Referenz auf eine Datenstruktur

Ublicherweise gibt es einen BASIC-Befehl, der ein Handle anlegt (d.h. die
dahinterstehenden Datenstrukturen initialisiert), einen oder mehrere Befehle, die
das Handle benutzen (d.h. auf die dahinter stehenden Datenstrukturen zugreifen)
und einen Befehl, der das Handle wieder freigibt. Der letzte Schritt ist sehr wichtig
und sollte nicht vergessen werden, da hinter einem Handle oft Speicherblécke
stehen - und Speicher ist bekanntlich knapp unter GEOS.

Der Datentyp HANDLE ermdglicht es R-BASIC auf sehr einfache Weise mit
extrem komplexen Datenstrukturen umzugehen. Der Programmierer muss sich
nicht mit den Interna dieser Datenstrukturen herumschlagen.

Beispielsweise legt der Befehl FileFindFirst$ (suche die erste Datei und liefere
ihren Namen) ein Handle an. Dahinter steht ein Speicherblock, in dem eine Liste
der im Ordner vorhandenen Dateien und weitere Verwaltungsdaten abgelegt
werden. Der direkte Zugriff auf diese Liste wére fir den BASIC Programmierer
sehr aufwandig oder gar nicht machbar. Deswegen benutzt FileFindNext$ das
Handle um nacheinander die einzelnen Dateinamen aus der Liste auszulesen.
FileFindDone sorgt schlieBlich dafir, dass der von FileFindFirst$ angeforderte
Speicher wieder freigegeben wird.

DIM han AS HANDLE
DIM nameS$! Stringvariable

name$ FileFindFirst$ (han, "*") ! Handle initialisieren.

! "*" heiBt: alles finden

names$ FileFindNext$ (han) ! Handle benutzen
FileFindDone (han) Handle freigeben, d.h. die
Datenstrukturen werden
freigegeben. Die in han
gespeicherten Werte sind

jetzt ungliltig.

~ ~ N N o=

Variablen und Typen - 34

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

R-BASIC Programm

Handle - Variable

V'

Bild: Das Handle wurde freigegeben, die Referenz ist noch vorhanden, aber
unguiltig.

Nachdem das Handle freigegeben wurde (im Beispiel mit FileFindDone) kann die
Variable sofort flir andere Zwecke wieder verwendet werden.

Das Konzept der Handles ist dem des Datentyps FILE analog. Auch hier werden
R-BASIC-intern Daten angelegt (FileOpen), verwendet (FileRead bzw. FileWrite)
und wieder freigegeben (FileClose).

NullHandle

NullHandle() ist eine Funktion, die ein "leeres" Handle liefert, d.h. sie dient zum
Léschen einer Handlevariablen. Achtung! NullHandle() Uberschreibt die
Referenz in der Handlevariablen mit Nullen, ohne die dahinter stehenden
Datenstrukturen zu I6schen! Das muss vorher passiert sein.

Syntax: <han> = NullHandle()
Die Klammern sind erforderlich, weil NullHandle eine Funktion ist.
<han>: Variable vom Typ HANDLE

Hinweise:

+ Es ist nicht zwingend erforderlich ein freigegebenes Handle auch mit
NullHandle() zu l6schen. Die irrtiimliche Verwendung eines bereits ungiltigen
Handles kann aber zu einem Systemabsturz fiihren. R-BASIC kann jedoch ein
mit NullHandle() geléschtes Handle erkennen und so eventuell einen
Systemabsturz verhindern.

+ Nachdem ein Handle freigegeben wurde (d.h. die dahinter stehenden Daten-
strukturen freigegeben wurden) kann die Variable sofort fir andere Zwecke
wiederverwendet werden. Ein vorheriges Léschen mit NullHandle() ist nicht
notig.

Handlelnfo$

Die Funktion Handlelnfo$ liefert einen Text, der interne Informationen Uber jede
Art von Handle liefert. Sie kbnnen diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = HandleIlnfo$(<han>)
<han>: Variable oder Ausdruck vom Typ HANDLE
<stringVar>: Stringvariable

Variablen und Typen - 35

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.4.3 OBJECT Variablen

Eine Variable vom Type "Object" enthélt eine Referenz auf ein GEOS-Objekt, z.B.
einen Button, eine Liste oder ein anders Objekt des sogenannten "User-Interface".
Eine ausflhrliche Beschreibung der Arbeit mit Objekten finden Sie im Objekt
Handbuch.

Objektvariablen missen explizit AS OBJECT deklariert werden. Danach kann

man ihnen eine Wert (ein Objekt) zuweisen und sie wie jedes explizit aufgefihrte
Objekt verwenden.

DIM ob As OBJECT
ob = DemoPrimary ' Ein Objekt aus dem UI-Code
! Fenster
ob.Caption$ = "Neue Titelzeile"
NullObj

NullObj() ist eine Funktion, die ein "leeres" Objekt liefert, d.h. sie dient zum
Léschen einer Objektvariable, oder zum Prifen, ob sie leer ist.

Syntax: <oVar> = NullObj()
Die Klammern sind erforderlich, weil NullObj eine Funktion ist.
<oVar>: Variable vom Typ OBJECT

Objlnfo$

Die Funktion Objlnfo$ liefert einen Text, der interne Informationen (ber eine
Objektvariable liefert. Sie kébnnen diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = ObjIinfo$(<objExpr>)
<ObjExpr>: Variable oder Ausdruck vom Typ OBJECT
<stringVar>: Stringvariable

Variablen und Typen - 36

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.4.4 R-BASIC Strukturtypen

Die Strukturtypen sind hier der Vollstandigkeit halber aufgelistet. Sie werden im
Kontext der Kapitel erklart, in dem sie gebraucht werden. Im R-BASIC Anhang
finden Sie eine Zusammenfassung der Elemente dieser Strukturen und ihrer
Bedeutung.

Typ Speicherbedarf Inhalt

GeodeToken 7 Byte Ein "Token" eines Programms
oder Dokuments

DateAndTime 12 Byte Datum und Uhrzeit

PrintFontStruct 14 Byte Typ der Systemvariablen

printFont. Enthalt Infor-
mationen zur Steuerung der
Textausgabe mit PRINT.
NumberFormatStruct 32 Byte Typ der Systemvariablen
numberFormat. Enthalt Infor-
mationen zur Formatierung
von Zahlen bei der Ausgabe
mit PRINT.
GraphicDrawStruct 48 Byte Typ der Systemvariablen
graphic. Enthalt Infor-
mationen zur Grafikausgabe
wie Linienbreite, Flachenfarbe
usw.

TransMatrix 60 Byte Transformationsmatrix des
Bildschirms wie Skalierung
oder Rotation

PaletteEntry 3 Byte Ein einzelner Eintrag in einer
Farbpalette fur Bitmaps

FullPalette 768 Byte Eine vollstédndige Bitmap-
Farbpalette mit 256 Eintragen

AnyStruct 3500 Byte Strukturtyp der zu allen

anderen Strukturen
zuweisungskompatibel ist.

Graphiclnfo 8 Byte Informationen Uber eine Grafik
(Bitmap oder GString)

DocumentConfigStruct | 160 Byte Daten zur Konfiguration des
DocumentGuardian-Objekts

PointList 134 Byte Liste von Punkten um Poly-
gone und verbundene Linien
zu zeichnen.

ReleaseNumber 8 Byte Release- oder
Protokollnummer einer Datei

RectDWord 16 Byte Koordinaten eines Rechtecks

Variablen und Typen - 37

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.5 Felder

Felder (auch Arrays genannt) sind Zusammenfassungen von Variablen gleichen
Typs, die Uber einen Index abgesprochen werden.

Anfanger haben erfahrungsgemaB Schwierigkeiten, sich diesem Thema zu
néhern, aber Felder sind ein sehr leistungsfdhiges Konzept, dass in keiner
Programmiersprache fehlen darf.

Haufig gibt es némlich das Problem, dass eine Liste von Werten, z.B. Namen und
die dazugehorigen Telefonnummern verarbeitet werden sollen. Naturlich kénnte
man folgendermaBen vorgehen:

DIM NAlS, NA2S, NA3S, NA4S ' usw.
DIM TEL1, TEL2, TEL3, Tel4d ' usw.
NAlS = "Miller" : TEL1 = 1234567 " usw.

PRINT NAl$, TEL1
PRINT NA2S$, TEL2
PRINT NA3S$, TEL3

Das ist nicht nur sehr aufwéandig, sondern auch sehr fehleranféllig und unflexibel.
Die L6sung fur das Problem hei3t Felder.

Ein Feld fasst Variablen gleichen Typs (und i.A. gleicher Bedeutung) so
zusammen, dass die einzelnen Variablen des Feldes Uber eine Nummer (den
Index) angesprochen werden. Dieser Index geht immer von Null bis zu einem
vereinbarten Maximalwert. Die Anweisung

DIM NAS$(10), TEL(10)

vereinbart 11 Stringvariablen und 11 Realvariablen:

NA$(0), NAS(1), .. usw. bis NA$(10) fiir die Namen

TEL(0) bis TEL(10) fur die Telefonnummern.
Damit haben wir auf einen Schlag Platz fur 11 Personen in der Liste, die
auBerdem Uber ihren Index (Nummer) eindeutig identifiziert werden kénnen.

Diese Feldvariablen kdénnen genau wie ganz normale Variablen verwendet
werden:

NA§ (1)
TEL(1)

"Miller"
1234567 " usw.

Feldvariablen sind wie geschaffen fiir die Zusammenarbeit mit FOR-Schleifen. Die
Ausgabe der Namensliste gestaltet sich extrem einfach:
FOR N=0 TO 10

PRINT NAS$(N), TEL(N)
NEXT N

Variablen und Typen - 38

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Eine Berechnung des Feldindex ist zulassig und wird oft benutzt. Man kann hierfar
auch sehr komplexe Formeln verwenden, wenn man will. Sollte das Ergebnis der

Indexberechnungen einmal nicht ganzzahlig sein, so schneidet R-BASIC den Wert
ab.

Achtung: Wird eine Formel zur Berechnung eines Feldindexes verwendet, kann es
passieren, dass das Ergebnis dieser Formel auBerhalb des zuléssigen Bereichs
fir den Index liegt. In diesem Fall kommt es zu einem Laufzeitfehler und die
Programmabarbeitung wird beendet.

Beispiele:
DIM A(10) AS WORD ' A(0) bis A(10)
DIM C$(10,2) ' C$(0,0) bis C€$(10, 2)
DIM Z(4,2,2,1) ’ 4 Dimensionen - sehr exotisch

+ FUr Felder sind alle in R-BASIC vorhandenen Typen zuléssig:
* numerische Typen (Real, Byte, Word, Integer, DWord und Longint)
+ Zeichenketten-Typen String und String(n)
+ Handle, Object und File

BASIC interne Strukturtypen

« selbst definierte Strukturen

* Der zulassige Index beginnt immer mit Null und endet bei dem in der
Vereinbarung angegebenen Wert. Im Beispiel oben: A hat 11 Elemente: A(0) bis
A(10) (sprich: A-von-Null bis A-von-10).

+ Die Gr6Be einer Felddimension ist auf 32767 (positive Integerwerte) beschrankt.
Folgende Vereinbarung fihrt zu einem Compilerfehler:

DIM F(35000) ' DAS GEHT NICHT

+ Felder kdnnen bis zu 16 Dimensionen (Indizes) haben. Im Beispiel oben hat C$
zwei und Z hat 4 Dimensionen.

+ Nichtganzzahlige Indizes werden von R-BASIC gerundet

+ Liegt ein Feldindex auBerhalb des vereinbarten Bereichs (i.A. durch
Berechnung) kommt es zu einem Laufzeitfehler und das Programm wird
beendet.

+ Bei der Vereinbarung von Feldern kénnen flr die Indizes Konstanten verwendet
werden. Erlaubt sind auBerdem die Grundrechenarten, Klammern sowie die
folgenden Operatoren und Funktionen:

die Operationen * (Exponent) und MOD (Modulo-Division),

logische Operatoren (OR, AND, NOT, XOR)
die Funktionen INT(), ASC() und SizeOf().

Variablen und Typen - 39

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

CONST NUM_WORKERS 20
CONST NUM_ PEOPLE NUM_WORKERS + 5
DIM A(NUM_WORKERS), B(NUM PEOPLE) AS WORD

DIM C(2*NUM_WORKERS - 7)
DIM W(Int(NUM WORKERS/3))
DIM Z(4*sizeof (GeodeToken) + 3)

Felder mit mehreren Dimensionen:

Obwohl Felder mit einem Index (einer Dimension) oft ausreichen, kann man auch
Felder mit mehreren Dimensionen vereinbaren. Zweidimensionale Felder kommen
noch recht haufig vor. Die beiden Indizes werden dann hé&ufig als x- und y-
Koordinate bezeichnet.

Beispiel 1:
Ein Sudoku-Programm konnte zur Verwaltung der 9 x 9 Felder des Sudokubrettes
ein zweidimensionales REAL-Feld verwenden:

DIM BRETT (9, 9) AS REAL

99|

1,1 9,1

0,0

Die linke untere Ecke kénnte dem Element BRETT(1,1), rechts unten BRETT(9, 1)
und rechts oben BRETT(9, 9) entsprechen. Die Elemente mit dem Index Null sind
natlrlich auch vorhanden, aber in diesem konkreten Beispiel unbenutzt oder flr
Spezialaufgaben verwendbar.
Der folgende Code prift, ob in der ganz rechten Spalte die 7 schon vergeben ist:
FOR N =1 TO 9

IF brett(9, N) = 7 THEN PRINT "7 ist vergeben"

NEXT N

Felder mit mehr als einer Dimension erfordern sehr schnell sehr viel Platz. Das
Feld BRETT im obigen Beispiel vereinbart bereits 100 Realvariablen (10 in jeder
Dimension). Das kostet schon 1000 Byte Speicherplatz. Als WORD-Feld wéren es

Variablen und Typen - 40

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

nur 200 Byte - der Preis dafir ist eine geringfugig erhéhte Zugriffszeit, da die
WORD-Werte von R-BASIC vor ihrer Benutzung jedes Mal in eine Realzahl
konvertiert werden.

Beispiel 2:
Die Punkte einer Bitmap kann man ebenso als Feld mit zwei Dimensionen (x- und
y-Koordinate) auffassen.

DIM Bild(800, 600) AS HUGE DWORD

Da das Feld sehr groB ist (801x601x4 Byte = 1,9 MB) haben wir es als HUGE
vereinbart (siehe Abschnitt 2.2.7).

R-BASIC unterstitzt bis zu 16 Dimensionen und der HUGE Speicher fiir Felder

kann bis 2 GB groB3 werden - damit sollten selbst die ausgefallensten Wunsche
erfullbar sein.

Variablen und Typen - 41

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.6 Globale und Lokale Variablen

Neben dem Datentyp einer Variablen ist es ebenso bedeutsam, welcher
Programmteil auf eine Variable zugreifen kann. R-BASIC kennt grundsatzlich zwei
Gaultigkeitsbereiche von Variablen: globale und lokale Variablen.

Globale Variablen werden auBerhalb von Unterprogrammen (SUB'’s,
FUCNTION’s und ActionHandlern) vereinbart. Die Vereinbarung (mit DIM) erfolgt
ublicherweise am Anfang des Programms. Bei gr6Beren Projekten sollten Sie alle
globalen Variablen im "Dim & DATA" Fenster vereinbaren. Auf globale Variablen
kann von jedem Programmteil aus zugegriffen werden. Fur globale Variablen
stehen in R-BASIC drei Speicherbereiche bereit: der eigentliche "globalen
Variablenspeicher" (bis zu 12 kByte), der "globalen Stringspeicher" (bis zu bis
zu einigen hundert kByte) und der "HUGE Speicher" (bis zu 2 GigaByte). Details
dazu finden Sie im n&chsten Kapitel.

Sie sollten globale Variablen nur dann einsetzten, wenn es wirklich nétig ist.
Besonders Anféanger verwenden gern ausschlieBlich globale Variablen. Die
Verwendung einer globalen Variablen in verschiedenen Unterprogrammen zu
verschiedenen Zwecken kann jedoch schnell zu "unerklarlichen"
Wechselwirkungen und Fehlen fuhren.

Lokale Variablen werden innerhalb von Unterprogrammen definiert. Sie sind
deswegen nur diesem Unterprogramm bekannt. Dabei gelten die im Folgenden
genannten Spielregeln.

- R-BASIC legt (wie jede andere Programmiersprache auch) den
Speicherplatz fir diese Variablen erst beim Aufruf des Unterprogramms an
und gibt ihn nach Ausfihrung des Unterprogramms wieder frei.

+ Parameter, die an Unterprogramme Ubergeben werden, werden intern
genau wie lokale Variablen behandelt. R-BASIC kopiert beim Aufruf eines
Unterprogramms die Ubergabeparameter in den lokalen Variablenbereich
des Unterprogramms. Nach Beendigung des Unterprogramms werden die
Werte jedoch nicht zurlickkopiert.

- Die Benennung der lokalen Variablen und Parametern kann vdllig
unabhangig von anderen Programmteilen erfolgen. Namensdopplungen
mit globalen Variablen und lokalen Variablen bzw. Parametern anderer
Unterprogramme sind daher kein Problem. Bei der Verwendung eines
Variablennamens prift R-BASIC zunéachst, ob eine lokale Variable (oder
ein Parameter) dieses Namens existiert. Wenn ja, wird diese verwendet.
Erst dann wird gepruft, ob eine globale Variable dieses Namens existiert
und diese ggf. verwendet. Auf lokale Variablen anderer Unterprogramme
kann grundsétzlich nicht zugegriffen werden.

Fir lokale Variablen stehen fur jedes Unterprogramm bis zu 8 Kilobyte zur
Verfigung. Dort werden alle lokalen Variablen, auch die Stringvariablen, abgelegt.

Im folgenden Beispiel gibt es drei globale Variablen (A, B, und X). Die Sub
namens DemoSub hat zwei lokale Variablen: Den Parameter X und die Integer-
Variable A. Deswegen kann sie auf die globalen Variablen A und X nicht

Variablen und Typen - 42

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

zugreifen. Die Zeile "A = 2 * X - 3" belegt die lokale Variable A mit dem doppelten
des Wertes des Parameters X, abzlglich 3. Die Zeile "B = SQR(A)" belegt die
globale Variable B mit der Quadratwurzel aus der lokalen Variablen A.

Nach dem Aufruf der Sub mit "DemoSub 12" enthalt die globale Variable B den

Wert 4,5826 (= Sqr(2*12-3)). Die globalen Variablen A und X sind nicht veréandert.
DIM A, B, X ' Globale Variablen vom Typ REAL

SUB DemoSub (X AS word)
DIM A as Integer
A=2%*X -3
B = SQR(A)
END SUB

" Aufruf:
DemoSub 12

Die Belegung einer globalen Variablen in einer SUB ist prinzipiell ein schlechter
Stil und sollte vermieden werden (was leider nicht immer geht). Sauberer wére im
obigen Beispiel die Verwendung einer Funktion, die einen Wert zurlckliefert:

DIM A, B, X ' Globale Variablen vom Typ REAL

FUNCTION DemoFunc (X AS word) AS REAL
DIM A as Integer

A=2%*X -3

RETRUN SQR(A)
END FUNCTION

' Aufruf:
B = DemoFunc (12)

Variablen und Typen - 43

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.7 Interne Verwaltung der Variablen, HUGE Variablen

Lokale Variablen werden alle in einem Speicherblock abgelegt, der "lokaler
Variablenspeicher" genannt wird. Dadurch ist ein sehr effizienter Zugriff auf die
lokalen Variablen moglich. Jedes Unterprogramm hat seinen eigenen lokalen
Variablenspeicher. Dieser Speicherblock kann fir jedes Unterprogramm bis zu 8
Kilobyte groB sein. Das ist meist mehr als genug, PC/GEOS-SDK-Programmierer
haben z.B. deutlich weniger zur Verfigung.

Ein haufiger auftretendes Problem bei lokalen Variablen sind jedoch
Variablenfelder vom Typ STRING, da jedes Feldelement 129 Byte bendtigt. Die
(lokale) Anweisung

DIM SF$(120) AS STRING

erzeugt ein Feld mit 121 Elementen (Index von Null bis 120) und fordert bereits
121 Elemente a 129 Byte = 15609 Byte an. Es kommt zu einem Compilerfehler.
Sie kdnnen dann entweder den Datentyp STRING(N) verwenden, z.B.

DIM SF$(120) AS STRING(64)

womit nur 121*65 = 7865 Byte angefordert werden oder auf globale
Stringvariablen (STRING oder HUGE STRING) ausweichen.

Flr globale Variablen verwendet R-BASIC drei verschiedene Speicherbereiche.
Im normalen "globalen Variablenspeicher" werden alle Variablen und Felder
abgelegt, die nicht vom Datentyp STRING oder STRING(N) sind und die nicht mit
dem Schlusselwort HUGE vereinbart wurden. Fir den globalen Variablenspeicher
stellt R-BASIC bis zu 12 Kilobyte Speicher bereit. Auf Variablen im globalen
Variablenspeicher kann sehr effizient zugegriffen werden. Die globale
Vereinbarung

DIM RF(200) AS REAL

erzeugt ein Feld mit 201 Elementen (Index von Null bis 200) und belegt 20110 =
2010 Byte im globalen Variablenspeicher. Hingegen belegt die globale
Vereinbarung

DIM SF$(200) AS STRING

keinen Speicher im globalen Variablenspeicher. STRING Variablen (und
Variablen vom Typ STRING(N)) werden immer im globalen Stringspeicher
angelegt. Dieser Speicher wird von R-BASIC dynamisch und effektiv verwaltet, da
der wirklich von einer Stringvariablen bendétigte Platz davon abhéngt, ob sie einen
kurzen oder einen langen Text enthalt. Je nach erforderlicher Situation legt R-
BASIC Stringvariablen im RAM oder in einer Datei ab. Sie kénnen insgesamt
16383 (&H3FFF) globale Stringvariablen vereinbaren, wobei jedes Feldelement

Variablen und Typen - 44

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

als eigene Variable zu z&hlen ist. Die Lange der Strings ist dabei unerheblich.
Auch ein Stringfeld mit 16000 Elementen ist daher kein Problem:

DIM SF$(16000) AS String(128)

R-BASIC stellt die erforderlichen 2 Megabyte bereit.

Wollen Sie noch gréBere Felder verwalten kdnnen Sie das Schliusselwort HUGE
(= riesig) verwenden. Der Huge Speicher ist eine von R-BASIC bereitgestellte
Datei auf der Festplatte. Alle HUGE Feldelemente haben eine feste GréBe und
eine feste Position in der Datei (d.h. eine dynamische Stringverwaltung findet nicht
statt). Sie kénnen auf die HUGE Variablen mit der ganz normalen BASIC Syntax
zugreifen, die Dateiverwaltung von GEOS sorgt daflr, dass der Geschwindigkeits-
verlust durch die haufigen Festplattenzugriffe nicht allzu groB ausféllt. Der Huge
Speicher kann insgesamt bis zu 2 Gigabyte groB sein. Jedoch darf auch bei
HUGE Feldern ein einzelner Feldindex den Wert 32767 nicht Uberschreiten.
Verwenden Sie fur gréBere Datenmengen bitte mehrdimensionale Felder. Das
folgende Beispiel vereinbart drei Felder vom Typ und ein Feld vom Typ Word der
GesamtgrdBe von ca. 42 Megabyte.

DIM ImageRed(1280, 1024) AS HUGE REAL
DIM ImageGreen(1280, 1024) AS HUGE REAL
DIM ImageBlue(1280, 1024) AS HUGE REAL
DIM ImageMask(1280, 1024) AS HUGE WORD

Hinweis: Globale Variablen einer Library (egal ob exportiert oder nicht) werden im
globalen Variablenspeicher des aufrufenden Programm abgelegt. Wenn mehrere
Programme eine Library gleichzeitig verwenden, so wird fur jedes Programm ein
eigener Satz dieser Variablen angelegt. Library und Programm verwenden diese
Variablen so, als ob sie allein im System sind. Eine gegenseitige Beeinflussung
verschiedener Programme ist ausgeschlossen.

Variablen und Typen - 45

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.8 Strukturen

Mit Hilfe der STRUCT-Anweisung kann man Variablen unterschiedlichen Typs
zusammenfassen. Anfanger haben erfahrungsgemaB Schwierigkeiten, sich
diesem Thema zu nahern, aber Strukturen sind ein sehr leistungsfahiges Konzept,
dass in keiner Programmiersprache fehlen darf.

2.2.8.1 Grundlagen

Haufig besteht das Problem, dass zum Verwalten von Daten sehr viele
Informationen fir ein einzelnes Objekt gespeichert werden mussen.
Beispielsweise bendtigt man fur eine Kontaktliste neben Namen und Vornamen
auch Telefon, Email, Fax, Geburtsdatum und einiges mehr.

Strukturen bieten die Moglichkeit, alle diese Informationen "im Block" zu speichern
und zu verwalten. Dazu muss man zunachst einen neuen Struktur-Typ
vereinbaren, der alle nétigen Informationen enthélt. Die Syntax sieht so aus:

STRUCT Person ' Person ist der Name des neuen
' Strukturtyps
Name$, Vorname$ AS String(30)
Tel$ AS String(15)
persNummer AS Word " max 65000 - das reicht
END STRUCT ' Ende der Definition

Anmerkung 1: Strukturen mussen bei ihrer Vereinbarung mit STRUCT eine feste
GréBe haben. Daher muss der Datentyp STRING(N) verwendet werden, der Platz
far einen String der maximalen Lénge N fest reserviert.

Anmerkung 2: Strukturen sind auf eine GréBe von 3500 Byte begrenzt. Man
sollte daher, besonders bei gréBeren Strukturen, darauf achten, welche
Datentypen man einsetzt. REAL kostet z.B. 10 Byte, WORD aber nur 2. String(n)
reserviert N+1 Byte (Max. N Zeichen plus 1 Byte Ende-Kennung). Eine einfache
Variable der oben definierten Struktur "Person" benétigt z.B. 80 Byte.

Will man den neuen Typ verwenden, vereinbart man einfach mit DIM
entsprechende Variablen:

DIM Chef, Knecht, Magd AS Person

Verwendet werden Strukturvariablen genau wie alle anderen Variablen, allerdings
muss man sowohl die Variable (z.B. Chef) als auch das Strukturelement (z.B.
Name$), getrennt durch einen einfachen Punkt ’.” angeben.

Chef.Name$ = "Schneider"

Chef.Vorname$ = "Wilhelm"

Chef.Tel$ = "030 456 897 5654"

Chef.persNummer = 1 ' Der Boss ist wichtig
Magd.Name$ = Knecht.Name$ ' Sie haben geheiratet

Variablen und Typen - 46

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Man kann aber auch eine komplette Strukturvariable einer anderen zuweisen,
vorausgesetzt der Typ stimmt Uberein. Dadurch werden die Daten kopiert (Zeile
1). Zeile 2 und 3 dienen der lllustration.

Chef = Knecht
Chef.persNummer = 1

Er wurde befordert
persNummer wurde auch kopiert:
neu setzen

Die Stelle ist verfiigbar.

~ ~ ~ ~

Knecht.persNummer = 0

Ein weiterer Vorteil: Wenn man spater feststellt, dass man eine wichtige
Information, z.B. den Geburtsort, hinzufligen will, ist das kein Problem. Man
erganzt einfach die Strukturdefinition:

STRUCT Person

Name$, Vorname$ AS String(30)

Tel$ AS String(15)

gebOrts$ AS String(20) ' das ist neu.
persNummer AS Word

END STRUCT

Alle bisher geschriebenen Programmteile arbeiten weiter wie gewohnt, man muss
nur den Code zum Verwalten des Geburtsortes hinzufligen.

Far die Elemente einer Struktur sind - mit Ausnahme des Typs STRING - alle in R-
BASIC vorhandenen Typen zulassig:

- numerische Typen (Real, Byte, Word, Integer, DWord und Longint)

- Zeichenketten-Typ: nur String(n). (String ohne (n) ist unzulassig)

- Obiject, File und Handle

- andere Strukturen: R-BASIC intern oder selbst definiert

- Felder der oben genannten Typen

NullStruct

Die Funktion NullStruct() liefert eine "leere" Struktur zurlck, dient also zum
Léschen einer Struktur-Variablen. NullStruct ist auf Strukturen jeden Typs
anwendbar, ebenso auf Struktur-Elemente, die selbst Strukturen sind.

Syntax: strukturVariable = NullStruct()
Parameter: Keine. Die Klammern sind aber erforderlich.

Variablen und Typen - 47

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Beispiel:

STRUCT Strul
A, B AS REAL
END STRUCT

STRUCT Stru2
A AS REAL
S, T AS Strul
END STRUCT

DIM stVar AS Stru2
stVar = NullStruct() ' LOoscht die gesamte Struktur

stVar.s = NullStruct() ' Loscht nur stVar.s
" stVar.a und stVar.t bleiben erhalten

2.2.8.2 Verschachtelung von Strukturen

Es ist zuldssig Strukturen zu definieren, die andere Strukturen als Elemente
enthalten. Dies bezeichnet man als Verschachtelung von Strukturen.

Die Verschachtelung von Strukturen untereinander ist prinzipiell unbegrenzt. Eine
gute Planung der Strukturen ist aber Voraussetzung, sonst werden diese
Verschachtelungen schnell unibersichtlich und damit fehleranfallig.

Beispiel

STRUCT Firmenleitung
TheBoss AS Person
Tippse AS Person
Buchhalter As Person

END STRUCT

DIM DieChefs AS Firmenleitung

DieChefs.TheBoss.Name$ = "Setag"

DieChefs.TheBoss.Vorname$ = "Llib"
DieChefs.Tippse.Name$ = "Clausen"
DieChefs.Tippse.Vorname$ = "Ella"

Die GesamtgrtBe einer Struktur ergibt sich als Summe der GrdBe der einzelnen
Strukturelemente. Die Struktur "Firmenleitung" belegt z.B. 303 Byte. Bei
Verwendung von Felder innerhalb von Strukturen ist zu beachten, dass der

Feldindex immer bei Null beginnt. R-BASIC unterstitzt Strukturen bis zu einer
GroBe von 3500 Byte.

Variablen und Typen - 48

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.8.3 Strukturen und Felder

Strukturen kdénnen beliebig mit Feldern kombiniert werden. Hier sehen Sie an

einigen Beispielen, wie das geht. Beachten Sie jeweils die Position der Feldindizes
(die in den Klammern)

Felder von Strukturen

STRUCT Point ' Punkt mit 2 Koordinaten

PX, PY AS Word
END STRUCT

DIM pointList(10) AS Point ' 11 Punkte

pointList(0).px = 0 ' Erster Punkt, Koordinaten (0,0)
pointList(0).py = 0

pointList(l).px = 100 ' Zweiter Punkt, Koordinaten (100,50)
pointList(l).py = 50

Felder als Strukturelemente

STRUCT ByteFeld
anzahl AS 1Integer

value(2000) AS Byte ’ 2000 Byte. value heifit "Wert"
END STRUCT

DIM puffer AS ByteFeld

puffer.value(10) = 27
puffer.value(1ll) = 15
PRINT puffer.value(1l0) + 256 * puffer.value(ll)

Die Struktur "Person" aus dem Abschnitt 2.2.8.1 wird vorausgesetzt:
STRUCT Firma

Name$ AS String(100) ' z.B. der Firmenname
Worker (16) AS Person
END STRUCT ' Insgesamt 1818 Byte.

DIM Metzgerei AS Firma

Metzgerei.Name$ = "Metzger Hackbeil"
Metzgerei.Worker(0).Name$ = "Malocher"
Metzgerei.Worker(0).Vorname$ = "Max"
Metzgerei.Worker(1l).Name$ = "Schufter"
Metzgerei.Worker(l).Vorname$ = "Siegfried"

Variablen und Typen - 49

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.8.4 Strukturen und Unterprogramme

Strukturen kbénnen als Parameter und Rickgabewerte von Unterprogrammen
(SUB’s, FUNCTON's) verwendet werden. Das folgende Beispiel illustriert das. Die
Struktur "Person" aus dem Abschnitt 2.2.8.1 wird vorausgesetzt:

SUB PrintPerson(p AS Person)

Print p.Vorname$;" ";p.Name$;" Tel.";p.Tel$
END SUB

FUNCTION NewPerson (n$, v$, geb$ as string) AS Person
DIM P AS Person

p.Name$ = n$

p.Vorname$ = v$

p.GebOrt$ = geb$

RETURN P
END FUNCTION

DIM Jemand as Person

Jemand = NewPerson("Panther", "Paulchen", "Farbtopf")
PrintPerson(Jemand) ' Die Klammern sind optional

Variablen und Typen - 50

R-BASIC - Programmierhandbuch - Vol. 1

Einfach unter PC/GEOS programmieren

2.2.8.5 Formale Syntax

Aus Kompatibilitatsgrinden werden je zwei Syntaxvarianten fur Strukturen und
Strukturvariablen unterstitzt. Funktionell unterscheiden sich die Varianten aber

nicht.

Vereinbarung von Strukturen

Standard Syntaxvariante
STRUCT <StructName>
<elementListe> AS Type

END STRUCT

Syntaxvariante mit DIM
STRUCT <StructName>
DIM <elementListe> AS Type

END STRUCT

'z.B. a, b AS Real
" weitere Strukturelemente

’z.B. DIMa, b AS Real

Vereinbarung von Strukturvariablen

Standard Syntaxvariante
DIM <varListe> AS StructName

Syntaxvariante mit STRUCT

DIM <varListe> AS STRUCT StructName

Beispiele Standardsyntax:

STRUCT BspStruct

a, b AS real
c$ AS String(20)
END STRUCT

DIM P1, P2 As BspStruct

Beispiele alternative Syntax:

STRUCT BspStruct

DIM a, b AS real
DIM c$ AS String(20)
END STRUCT

DIM P1, P2 As STRUCT BspStruct

Variablen und Typen - 51

R-BASIC - Programmierhandbuch - Vol. 1

Einfach unter PC/GEOS programmieren

2.2.8.6 Namenskonventionen

Fir die Bezeichnung von Strukturen und Strukturelementen gelten genau zwei
einfache Regeln:

1. Der Name des Strukturtyps (z.B. Point s. unten) muss innerhalb des
Programms eindeutig sein. Es gelten die gleichen Konventionen wie far
globale Variablen oder Unterprogramme.

2. Der Name

von Strukturelementen muss nur innerhalb der Struktur eindeutig

sein. Namensdopplungen mit globalen Variablen, Elementen anderer

Strukturen,

ja sogar mit BASIC Befehlen, sind erlaubt. Sie haben bei

Strukturelementen also wesentliche mehr Freiheiten als bei einfachen

Variablen.

Am besten verwenden Sie einfache, selbsterklarende Bezeichnungen. Falls R-
BASIC ein Problem findet, gibt es einen Compilerfehler, d.h. ein Programm, dass
sich compilieren lasst, ist namenstechnisch in Ordnung.

Die folgenden Beispiele zeigen einige Moglichkeiten auf.

STRUCT Point

STRUCT Demo

pxX, py AS Word
END STRUCT

a, b AS Real ' nichts besonderes
pi AS Byte ' kein Konflikt mit 3.1415...
pxX, pPyAS Word ' kein Konflikt mit der
' Struktur Point
color AS Longint ' selbst BASIC-Befehle sind zuldssig
o} AS Point ' Struktur innerhalb der Struktur
p2 AS Point ’ Struktur innerhalb der Struktur

END STRUCT

' Variablen-Definitionen
DIM d AS Demo
DIM A AS Demo ' kein Problem mit A in der Struktur Demo
DIM px AS REAL ' kein Problem mit px in der Struktur Point
px = 12 ' Zuweisung zur Realvariablen
d.pi 12
d.px = 45
d.p.px = 59 " d.px wird nicht geadndert
d.p2.px = 79 " d.p.px und d.px bleiben erhalten
d.a = pi " weist 3.1415... zu.

" eine einfache Struktur

' d.pi bleibt erhalten (=12, siehe oben)

Variablen und Typen - 52

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Das folgende Beispiel zeigt zwar zuldssige Vereinbarungen die aber namens-
technisch sehr untbersichtlich gewéhlt sind:

STRUCT Point ' eine einfache Struktur
pxX, py AS Word
END STRUCT

STRUCT Komisch
point AS Point ' selbst dieser Name ist zuldssig
komisch AS Real ' Kein Problem mit dem Namen der
" Struktur, aber sehr uniibersichtlich
END STRUCT

DIM py AS Point ' py ist hier erlaubt, auch wenn es schon
' in Point enthalten ist
' das ist aber nicht mehr iibersichtlich
DIM k AS Komisch

py-px = 28 ' Zuweisung zum Strukturelement px der
' Strukturvariablen py
py.-py = 234 ' R-BASIC verwechselt das nicht

k.komisch = 12
k.point.px = 17

Beispiel fir eine unzulassige Vereinbarung

STRUCT Line " Schlecht. LINE ist ein BASIC-Befehl
x0, y0, x1, yl AS Word
END STRUCT

Variablen und Typen - 53

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.8.7 Ein Anwendungsbeispiel

Mit Strukturen kann man sehr einfach externe Daten abbilden. Das Beispiel zeigt
die Struktur der ersten Bytes einer PCX-Datei, des sogenannten Headers. Der
Code am Ende des Beispiels liest den PCX-Header komplett ein und gibt die
Abmessungen des Bildes aus.

STRUCT PCXPalette ' ein Farb-Paletteneintrag

rt, gn, bl AS Byte
END STRUCT

STRUCT PCXFileHeader '’ steht am Dateianfang
id, version AS Byte
compressed AS Byte
bitsPerPlane AS Byte
xMin, yMin AS Word
xMax, yMax AS Word
XRes, yRes AS Word
colorMap(16) AS PCXPalette ' ein Struktur-Feld
reserved AS Byte
colorPlanes AS Byte
bytesPerLine AS Word
paletteInformation AS Word
screenSizeX AS Word
screenSizeY AS Word
£fill (53) AS Byte ’ ein Byte Feld,
' 54 Byte

END STRUCT

DIM header AS PCXFileHeader
DIM f AS FILE

f = FileOpen("FLOWER.PCX")
header = FileRead (f, SizeOf (PCXFileHeader)) ' alles
' einlesen
FileClose (f)
Print "Abmessungen:"; header.xMax; "x"; header.yMax; "Pixel"

Variablen und Typen - 54

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.8.8 AnyStruct

Dieser Abschnitt richtet sich an fortgeschrittene Programmierer. Eine Ubersicht
Uber die verschiedenen Strukturtypen, die in R-BASIC definiert sind, kbnnen Sie
im Abschnitt 2.2.4.4 finden.

In sehr seltenen Spezialfallen sind Routinen sinnvoll, denen in verschiedenen
Situationen Strukturen verschiedener Typen Ubergeben werden sollen oder die in
unterschiedlichen Situationen Strukturen verschiedener Typen zurlickgeben
sollen. Dafur dient der Typ AnyStruct. Variablen oder Funktionen von diesem Typ
sind zuweisungskompatibel zu jedem beliebigen Strukturtyp.

Die Library "VMFiles" macht davon Gebrauch.

Definition:

STRUCT AnyStruct
any struct dummy byte array (3499) as BYTE
End struct

Hinweise:

« Eine Variable oder ein Parameter des Typs AnyStruct belegt 3500 Byte im
Variablenspeicher.

+ Es ist im Allgemeinen nicht nétig, auf die Elemente dieser Struktur zuzugreifen.

+ Bei einer Zuweisung oder Parameteribergabe werden stets nur so viele Bytes
kopiert, wie der kleinere der beteiligten Strukturtypen fassen kann.

Beispiel 1: Einfache Zuweisungen

DIM g AS GeodeToken
DIM t AS DateAndTime
DIM a AS AnyStruct

! Erlaubt ist z.B. folgendes
g = a
a==t

Beispiel 2: Ubergabe verschiedener Strukturtypen an eine SUB

DIM g AS GeodeToken
DIM t AS DateAndTime

DECL SUB AnyTestl(a as AnyStruct, x as WORD)

AnyTestl(g, 0) ' Ubergabe GeodeToken
AnyTestl(t, 1) ' Ubergabe DateAndTime

Variablen und Typen - 55

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Beispiel 3: Rluckgabe verschiedener Strukturtypen

DIM g AS GeodeToken
DIM t AS DateAndTime

DECL Function AnyTest2(x as WORD) AS AnyStruct

g = AnyTest2(0) ' Zuweisung an eine GeodeToken Struktur
t AnyTest2(1) ' Zuweisung an eine DateAndTime Struktur

Implementationen der Routinen aus den Beispielen

SUB AnyTestl(a as AnyStruct, x as WORD)
DIM gt as GeodeToken
DIM dat as DateAndTime
IF x = 0 THEN
gt = a
<hier mit gt arbeiten>
ELSE
dat = a
<hier mit dat arbeiten>
END IF
END SUB

Function AnyTest2(x as WORD) AS AnyStruct
DIM gt as GeodeToken
DIM dat as DateAndTime
IF x = 0 THEN
<hier gt belegen>
return gt
ELSE
<hier dat belegen>
return dat
END IF
END FUNCTION

Variablen und Typen - 56

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.9 Die Funktionen SizeOf und Swap

SizeOf

Die Funktion SizeOf (GroBe von) liefert den Speicherbedarf einer Variablen oder
eines Datentyps. Diese Funktion ist sehr hilfreich bei der Fehlersuche und im
Zusammenhang mit Strukturen. AuBerdem kbénnen Sie lhr Programm besser
lesbar gestalten. Die Formulierung "10 * SizeOf(WORD)" macht klar, dass der
Speicherbedarf von 10 Word-Variablen gemeint ist, wahrend die Zahl 20 alles
Mogliche bedeuten kann. Die Verwendung von SizeOf fir Strukturen erspart
Ihnen das mihsame und fehleranfalige Zusammenzéhlen der GréBen der
einzelnen Elemente und liefert automatisch wieder den korrekten Wert, wenn Sie
die Definition der Struktur spater andern.

Syntax: <numVar> = SizeOf(type)
type: Beschreibt den Datentyp, dessen GréBe ermittelt werden soll.

Wichtig:
SizeOf() wird schon vom Compiler in eine Zahl Ubersetzt, d.h. es ist von der

Ablaufgeschwindigkeit egal ob Sie schreiben:
y = 10 oder y = SizeOf (REAL)

Zulassig far type sind:
+ R-BASIC Datentypen (Real, Byte, Word, File usw.)
- von R-BASIC definierte Strukturdatentypen (GeodeToken, DateAndTime,
NumberFormatStruct usw.)
* mit STRUCT selbst definierte Datentypen
+ Variablen beliebigen Typs:
- Einfache Variablen
- Feldvariablen
- Strukturvariablen
- Strukturelemente
Nicht zulassig sind einfache Systemvariablen (z.B. MaxX, tabWidth, fileError usw.)
und Strukturelemente von Systemvariablen (z.B. graphic.areaColor).

Beispiel 1:

DIM y, a, c$
DIM s$ AS STRING(30)

y = SizeOf (REAL) ' liefert 10
y = SizeOf(A) ' liefert 10
y = SizeOf(C$) ' liefert 129
y = SizeOf(S$) " liefert 31

Variablen und Typen - 57

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Beispiel 2 (komplexes Beispiel):
' Es sei eine Struktur MyStruct definiert:
STRUCT MyStruct

a AS Real

b(12) AS word

END STRUCT

DIM msVar AS MyStruct

y = SizeOf (MyStruct) ' in diesem Fall: 28

y = SizeOf (msVar) ' in diesem Fall: 28

y = SizeOf(msVar.a) ' in diesem Fall: 10

y = SizeOf(msVar.b(0)) ' in diesem Fall: 2
DIM msFeld(4) AS MyStruct

y = SizeOf (msFeld(0)) " in diesem Fall: 28

y = SizeOf (msFeld(0).a) ' in diesem Fall: 10
Swap

Das Kommando Swap vertauscht die Werte zweier Variablen. Das ist
ubersichtlicher und deutlich schneller als der Umweg Uber eine temporare
Variable.

Syntax: Swap var1 , var2
vari, var2: Variablen, deren Werte vertauscht werden sollen.

Die Anweisung
Swap a, b

verhalt sich so, als wirden Sie den folgenden Code schreiben, wobei die Variable
tmp vom gleichen Datentyp ist, wie die Variablen a und b.

o
'o

o |

m a

a
b = tmp

+ Zulassig fur die Variablen von Swap sind, analog zu SizeOf, Variablen aller in R-
BASIC verfugbaren Datentypen, auch selbst definierte Strukturen,
Strukturelemente und Feldvariablen.

+ Nicht zulassig sind Systemvariablen (z.B. MaxX, tabWidth, FileError usw.) und
Strukturelemente von Systemvariablen (z.B. graphic.areaColor).

+ Der Compiler fuhrt keinen strengen Typvergleich, sondern nur einen
GroBenvergleich aus. Damit kénnen Sie z.B. auch Word- und Integer-Variablen
vertauschen. Der Programmierer ist selbst dafur verantwortlich, keine
inkompatiblen Typen zu vertauschen.

+ Das Vertauschen zuweisungskompatibler Variablen mit verschiedener GrdBe
(z.B. Integer und Real) ist nicht moglich.

Variablen und Typen - 58

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

2.2.10 Die CONST Anweisung

Mit der Anweisung CONST kann man symbolische Namen fir numerische Werte
oder Strings festlegen. Diese werden vom Compiler durch ihren Wert ersetzt.

Syntax: CONST name = <wert>

Der Typ der Konstante wird durch den Typ des Wertes bestimmt. Pro Anweisung
kann nur eine Konstante definiert werden.

Beispiele:
CONST anzahl werte = 12 ' eine Real-Konstante
CONST testwert = —3.786 " jede Zahl ist zulédssig
CONST author$ = "Mein Name"

Vorteile:

- Das Programm wird Ubersichtlicher und besser lesbar

- Die Fehlerwahrscheinlichkeit sinkt drastisch
Andert man den Konstanten-Wert (eine Stelle im Programm), so wirkt sich
die Anderung an alles Stellen aus, an denen die Konstante verwendet
wurde.

Im folgenden Beispiel braucht man beim Andern der Konstanten (anzahl oder
startwert) den Code nicht anzupassen:

CONST anzahl = 31
CONST startwert = 115.7
DIM N, Feld(anzahl)

FOR N = 0 TO anzahl
Feld(N) = startwert
NEXT N

Numerische Konstantendefinitionen kénnen sich auf andere Konstanten beziehen
und diese mit Zahlen, den Grundrechenarten und Klammern verknipfen. AuBer-
dem sind zugelassen: Die Operationen * (Exponent) und MOD (Modulo-Division),
logische Operatoren (OR, AND, NOT, XOR) und die Funktionen INT(), ASC(),
SQR(), FRAC(), TRUC(), SIN(), COS(), TAN(), EXP(), LN(), LOG(), LG() und
SizeOf(). Fur Stringkonstanten ist nur das Pluszeichen erlaubt.

600
SizeOf (MyStruct) + 10
2* MAX X + DELTA X
INT ((MAX_X+7)/8)
(MAX_X AND &hF) OR 3
"Meier"
"Hans " + NAME SIMPEL

CONST MAX X
CONST DELTA X
CONST MAX Y

CONST MASK X
CONST K2

CONST NAME_SIMPEL
CONST NAME_ FULL

Analog darf man auch bei Felddefinitionen vorgehen:
DIM A(MAX_X), B(MAX X + DELTA X / 2) AS WORD

Variablen und Typen - 59

