

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 ProgrammierhandbuchProgrammierhandbuch

Volume 1
Tutorial, Konzepte, Variablen und Typen

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

1 Ein Anfänger-Tutorial ... 4

2 Die BASIC Programmiersprache ... 12
2.1 Grundlegende Konzepte ... 13

2.1.1 Die Struktur eines BASIC Programms 13
2.1.2 Begriffe und Fakten .. 19

2.2 Variablen und Typen ... 24
 2.2.1 Was sind Variablen? .. 24
 2.2.2 Numerische Datentypen und numerische Ausdrücke 27
 2.2.3 Stringtypen und Stringausdrücke ... 30
 2.2.4 Weitere Datentypen ... 32
 2.2.4.1 Der Datentyp FILE .. 32
 2.2.4.2 Der Datentyp HANDLE .. 34
 2.2.4.3 OBJECT Variablen .. 36
 2.2.4.4 R-BASIC Strukturtypen ... 37
 2.2.5 Felder ... 38
 2.2.6 Globale und Lokale Variablen ... 42
 2.2.7 Interne Verwaltung der Variablen, HUGE Variablen 44
 2.2.8 Strukturen .. 46
 2.2.8.1 Grundlagen .. 46
 2.2.8.2 Verschachtelung von Strukturen 48
 2.2.8.3 Strukturen und Felder .. 49
 2.2.8.4 Strukturen und Unterprogramme 50
 2.2.8.5 Formale Syntax ... 51
 2.2.8.6 Namenskonventionen .. 52
 2.2.8.7 Ein Anwendungsbeispiel ... 54
 2.2.8.8 AnyStruct ... 55
 2.2.9 Die Funktionen SizeOf und Swap .. 57
 2.2.10 Die CONST Anweisung ... 59

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 4

1. Ein Anfänger-Tutorial

Dieses Tutorial beschreibt an einem einfachen Beispiel, wie man ein R-BASIC
Programm erstellt. Dabei werden viele Fakten und Zusammenhänge einfach
benutzt, ohne sie ausführlich zu erklären. Stattdessen gibt es jeweils Verweise auf
die Kapitel im Handbuch, wo Sie weiterführende Erklärungen finden. Einige
Begriffe sind fett markiert. Diese Begriffe kommen im Handbuch immer wieder
vor. Eine exakte Erklärung dieser Begriffe finden Sie im nächsten Kapitel.
Die Schrittfolge, die hier dargestellt wird, können Sie prinzipiell auf jedes
Programm anwenden.

1. Der Plan ...

Als Einstieg wollen wir uns ansehen, wie man das
folgende Programm erstellt. Der Nutzer soll eine
Zahl eingeben und das Programm soll prüfen, ob
die Zahl gerade ist oder nicht.

2. Die UI (das User-Interface)

Das Erstellen eines Programms beginnt in den allermeisten Fällen mit der
Programmierung der Benutzeroberfläche, der UI. Das heißt, Sie legen fest welche
Objekte es gibt und wie sie angeordnet sind.
Jedes Objekt hat einen Typ, der Programmierer sagt, es gehört einer Klasse an.
Die Klasse bestimmt die Eigenschaften und Fähigkeiten eines Objekts. Die in R-
BASIC verfügbaren Klassen und deren Eigenschaften sind im "Objekt-Handbuch"
beschrieben. Es ist durchaus vernünftig, sich zunächst eine Zeichnung
anzufertigen. So kann man sich überlegen, wie die Programmoberfläche ungefähr
aussehen könnte und wie viele und welche Objekte man benötigt. Außerdem kann
man den wichtigsten Objekten jetzt schon einen aussagekräftigen Namen geben.

Prinzipiell sind Sie in der Wahl des Namens frei, es hat sich jedoch bewährt, den
Namen aus zwei Teilen zusammenzusetzen. Der erste Teil beschreibt das
Programm oder den Programmteil, zu dem das Objekt gehört. In unserem Fall
wählen wir "Tutor". Der zweite Teil bezeichnet die Klasse, zu der das Objekt
gehört. Das Primary Objekt heißt daher TutorPrimary, der Button heißt
TutorButton usw. Das Datei-Menü ist auch ein Objekt. Es wird aber vom Primary-
Objekt automatisch erzeugt, so dass wir uns darum nicht kümmern müssen.

Für unser Programm benötigen also wir 5 Objekte:
1. Ein Objekt der Klasse "Number". Hier kann der Nutzer die Zahl eingeben.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 5

2. Ein Objekt der Klasse "Memo". Das ist ein Text-Objekt, mit dem wir das
Ergebnis unserer Überprüfung anzeigen wollen.

3. Ein Objekt der Klasse "Button". Das ist der Schalter, mit dem wir die
Überprüfung starten wollen.

4. Das eigentliche Programmfenster ist auch ein Objekt. Es gehört der Klasse
"Primary" an.

5. Zusätzlich benötigt jedes Programm ein unsichtbares Objekt der Klasse
"Application". Dieses stellt die Verbindung zum GEOS-System her.

Alle Objekte sind miteinander verbunden. Man sagt, ein Objekt hat "children"
(Kinder). Details zu Children und die Organisation von Objekten in Bäumen
(Trees) finden Sie im Kapitel 2.1 (Objekte und Objekt-Bäume) des Objekt-
Handbuchs.
In unserem Fall sieht die Verbindung, der sogenannte Objekt-Tree (Objektbaum),
wie folgt aus. Zum Beispiel ist das Objekt TutorNumber ein child (Kind) des
Objekts TutorPrimary. Im Gegenzug ist das Objekt TutorPrimary das parent
(Eltern) des Objekts TutorNumber.

TutorPrimary

TutorNumber TutorText TutorButton

TutorApplication

Datei-Menü

Es ist ganz wichtig, dass alle Objekte in den Objekttree eingebunden sind. Dazu
gibt es die Anweisung "Children". Vergessen Sie das Einbinden eines Objekts in
den Tree, so wird das Objekt nicht auf dem Bildschirm erscheinen. Es gibt
darüber keine Fehlermeldung, da Sie nichts Verbotenes getan haben.

Alle Objekte werden im UI-Codefenster vereinbart. Das Application-Objekt hat
genau ein Child, des Primary-Objekt.

Application TutorApplication
Children = TutorPrimary

End OBJECT

Um ein Objekt anzulegen müssen Sie nicht jede Zeile einzeln tippen. Öffnen Sie
stattdessen das Menü "Extras" -> "Code-Bausteine" -> "Neues Objekt". Dort
finden Sie das Application-Objekt und auch alle anderen von uns benötigten
Objekte. Sie brauchen nur noch die programmspezifischen Dinge ergänzen. Das
Application-Objekt wird von uns nicht als Child eines anderen Objekts gesetzt,
darum kümmert sich das System.

Nun legen wir das Primary-Objekt an und binden es in den Tree ein. Haben Sie
daran gedacht, das Menü "Extras" -> "Code-Bausteine" -> "Neues Objekt" zu
verwenden, um das Primaryobjekt anzulegen? Nachdem Sie das Objekt angelegt

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 6

haben erscheint automatisch ein Dialogbox, die Sie beim Einbinden des Objekts in
den Tree unterstützt.

Unser Primary-Objekt soll drei Children haben: das Number-Objekt, den Text und
den Button. Es ist unter GEOS nicht üblich die Position der Objekte explizit
anzugeben. Stattdessen geben wir an, wie die Objekte angeordnet werden sollen.
Details zum zu diesem Thema finden Sie im Kapitel 3.3 (Geometriemanagement)
des Objekt-Handbuchs. Wir wollen, dass die Children horizontal zentriert sind
(justifyChildren = J_CENTER). JustifyChildren ist ein Instancevariable des
Primaryobjekts. Instancevariablen können unterschiedliche Werte annehmen. In
unserem Fall weisen wir ihr den Wert J_CENTER zu. J_CENTER ist eine
numerische Konstante, d.h. J_Center steht symbolisch für eine Zahl. Die UI-
Anweisung SizeWindowAsDesired bewirkt, dass das Primary nur so groß ist, wie
unbedingt nötig. Probieren Sie ruhig aus, was passiert, wenn Sie eine oder
mehrere dieser Zeilen auskommentieren (Ausrufezeichen davor schreiben).

Primary TutorPrimary
Children = TutorNumber, TutorText, TutorButton
justifyChildren = J_CENTER
SizeWindowAsDesired

End OBJECT

Für das Number-Objekt setzen wir zur Demonstration ein paar Instancevariablen.
Die Instancevariable Caption$ enthält Text, der das Number-Objekt näher
beschreiben soll. Er erscheint direkt neben oder auf dem Objekt. Außerdem legen
wir einen Startwert (value) sowie einen Minimal- und einen Maximalwert (minVal,
maxVal) fest. Unser Numberobjekt stellt nur ganze Zahlen dar. Im Kapitel 4.7.2
(Display-Format) des Objekt-Handbuchs ist beschrieben, wie man Numberobjekte
konfiguriert, damit sie Dezimalstellen darstellen können.

Number TutorNumber
Caption$ = "Zahl eingeben:"
value = 12
minVal = -100
maxVal = 100

End OBJECT

Das Ergebnis unserer Prüfung wollen wir in ein Textobjekt schreiben. Da der
Nutzer dort nichts eingeben soll setzen wir das Textobjekt auf "nur Lesen", d.h. wir
weisen der Instancevariablen readOnly den Wert TRUE zu. TRUE ist wieder eine
numerische Konstante. Die UI-Anweisung TextFrame erzeugt einen Rahmen um
das Objekt, der sonst bei read-only Objekten fehlt. Da wir noch keine Prüfung
vorgenommen haben setzen wir als Anfangswert für den darzustellenden Text das

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 7

Wort "ungetestet". Schließlich bewirkt die UI-Anweisung justifyText = J_CENTER,
dass der Text zentriert dargestellt wird. Eine ausführliche Beschreibung der
Textobjekte finden Sie im Kapitel 4.10 des Objekt-Handbuchs.

Memo TutorText
text$ = "ungetestet"
readOnly = TRUE
TextFrame
justifyText = J_CENTER

End OBJECT

Schließlich brauchen wir noch einen Button, mit dem wir die Prüfung der Zahl
starten. Wenn wir den Button aktivieren wird eine spezielle Routine, der
Actionhandler des Buttons, gestartet. Die Anweisung ActionHandler = Check-
Number legt fest, dass die Routine "CheckNumber", die wir noch schreiben
müssen, gestartet werden soll, wenn wir den Button aktivieren. Button-Objekte
sind im Kapitel 4.3 des Objekt-Handbuchs beschrieben.
Die Null in der Caption$ - Zeile legt fest, dass der Buchstabe an Position Null (hier
das ’P’) unterstrichen und zur Tastaturnavigation benutzt werden soll.

Button TutorButton
Caption$ = "Prüfen" , 0
ActionHandler = CheckNumber

End OBJECT

3. Der Actionhandler

Nun müssen wir noch den Actionhandler des Buttons schreiben. Actionhandler
sind spezielle Routinen, die direkt von einem Objekt aufgerufen werden. Action-
handler, die von einem Button aufgerufen werden, müssen als BUTTONACTION
vereinbart werden. Auch hier benutzen wir das Menü "Extras" -> "Code-Bausteine"
um den Actionhandler anzulegen (Unterpunkt "Action-Handler").

BUTTONACTION CheckNumber
DIM z ’ z: zahl
z = TutorNumber.value
IF z/2 = Int(z/2) THEN
TutorText.text$ = "gerade"

ELSE
TutorText.text$ = "ungerade"

END IF
END ACTION

Die Zeile "z = TutorNumber.value" ist eine Zuweisung. Sie liest den Zahlenwert
(value) des Numberobjekts aus und speichert ihn in der Variablen z. Man sagt, der
Variablen z wird ein Wert zugewiesen. Z muss vorher mit DIM vereinbart worden
sein.

Mit der IF-Anweisung können wir Entscheidungen treffen. Ist der zwischen IF und
THEN stehende Ausdruck wahr, so werden die Anweisungen hinter THEN

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 8

ausgeführt (in unserem Fall ist es nur eine Anweisung), andernfalls die hinter
ELSE. End IF schließt den Entscheidungsteil. Das Kapitel 2.5.1 (Verzweigungen)
des Programmierhandbuchs beschreibt die Möglichkeiten von R-BASIC, Ent-
scheidungen zu treffen.

Um festzustellen, ob die Zahl gerade ist vergleichen wir die Hälfte der Zahl (z/2)
mit dem ganzzahligen Anteil (Funktion Int(..)) der halben Zahl. Ist zum Beispiel
z = 5, so ist z/2 = 2,5 und Int(z/2) = 2. Die Werte sind nicht gleich, z ist ungerade.
Einen Überblick über die in R-BASIC verfügbaren mathematischen Funktionen
finden Sie im Kapitel 2.3.1 (Überblick über numerische Funktionen) des Program-
mierhandbuchs.

Die Anweisung TutorText.text$ = "...." weist dem Textobjekt einen neuen Text zu,
der sofort angezeigt wird. Zeichenketten (genannt Strings) werden in " " einge-
schlossen, Stringvariablen werden üblicherweise durch ein angehängtes $
gekennzeichnet. Das ist Ihnen bestimmt schon bei Caption$ aufgefallen.

Nachdem Sie das Programm eingetippt und gestartet haben sollten Sie damit
herumspielen. Ändern Sie einzelne Codezeilen oder kommentieren Sie sie aus.
Überlegen Sie vorher, was passieren wird und vergleichen Sie Ihre Vorhersagen
mit dem erreichten Ergebnis.

4. Erste Verbesserungen

Wir wollen nun unser Programm etwas
verändern, indem wir die Eingabe der Zahl nicht
über ein Numberobjekt, sondern über ein
Textobjekt machen. Das sieht besser aus und
"Drag’n Drop" funktioniert auch.

Dazu verwenden wir die andere Textobjektklasse, über die R-BASIC verfügt. Das
Objekt InputLine stellt einen einzeiligen Text bereit. Mit der Anweisung
"justifyCaption = J_TOP" verschieben wir die Aufschrift über das Objekt. Captions
sind sehr vielseitig. Sie können nicht nur Text sondern auch Grafiken enthalten.
Details dazu finden Sie im Kapitel 3.1 (Caption: Die Objekt-Beschriftung) des
Objekt Handbuchs.

InputLine TutorInputText
Caption$ = "Zahl eingeben:"
justifyCaption = J_TOP
text$ = "12"
backColor = WHITE
textFilter = TF_SIGNED_NUMERIC + TF_NO_SPACES

End OBJECT

Der Startwert (text$ = "12") ist natürlich keine Zahl, sondern ein String. Mit
"backColor = WHITE" machen wir den Texthintergrund weiß. WHITE ist eine
numerische Konstante (ein Symbol für eine Zahl). R-BASIC hat für alle 16
Standardfarben eine entsprechende Konstante. Näheres zur Beschreibung von
Farben finden Sie im Kapitel 2.8.2 (Farben) des Programmierhandbuchs.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 9

Von besonderer Bedeutung ist für unsere Anwendung die Zeile "textFilter =
TF_NUMERIC + TF_NO_SPACES". Textfilter sind eigentlich etwas für
Fortgeschrittene, aber an dieser Stelle sehr hilfreich. Ein Textfilter weist das
Objekt an, nur bestimmte Zeichen zu akzeptieren. In unserem Fall sind die Werte
TF_SIGNED_NUMERIC (nur Ziffern, Minus und Leerzeichen) kombiniert mit
TF_NO_SPACES (keine Leerzeichen) angebracht. Das Setzen eines Textfilters
erspart uns bei der Auswertung die Aufwändige Prüfung, ob der Nutzer überhaupt
eine Zahl und nicht etwa "Paul" oder "eins" eingegeben hat. Textfilter sind im
Kapitel 4.10.5 (Textfilter) des Objekthandbuchs beschrieben.

Bitte vergessen Sie nicht, das neue Objekt anstelle des Number-Objekts als Child
des Primary-Objekts einzutragen.

Natürlich müssen wir jetzt unsere Auswerteroutine anpassen. Insbesondere
müssen wir den vom Nutzer eingegebenen Text in eine Zahl umwandeln. Diese
Aufgabe erledigt die Funktion Val(...). Val steht für das englische Wort value
(Wert). "t$ = TutorInputText.text$" speichert zuvor den vom Nutzer eingegeben
Text in der Stringvariablen t$. Die DIM-Anweisung erkennt an dem angehängten
$-Zeichen, dass die Variable einen Text und keine Zahl aufnehmen soll.

BUTTONACTION CheckNumber
DIM z, t$ ’ zahl, text
t$ = TutorInputText.text$
z = Val(t$)
IF z/2 = int(z/2) THEN
TutorText.text$ = "gerade"

ELSE
TutorText.text$ = "ungerade"

END IF
END ACTION

Tipp: Da die Variable t$ nirgends weiter gebraucht wird kann man sie auch
einsparen. Die ersten beiden Zeilen werden dann zu:

z = Val(TutorInputText.text$)

Details zu Variablen und den zugehörigen Datentypen finden Sie weiter unten, im
Kapitel 2.2 (Variablen und Typen). Der leichte Umgang mit Zeichenketten (Strings)
gehört zu den großen Stärken der BASIC-Syntax. Einen Überblick über die in R-
BASIC zur Verfügung stehenden Stringfunktionen finden Sie im Abschnitt 2.4.1
des Programmierhandbuchs.

5. Weitere Änderungen

Nun möchten wir die am Anfang eingestellte Zahl durch eine zufällig ausgewählte
Zahl ersetzen. Dazu benötigen wir eine Routine, beim Programmstart automatisch
ausgeführt wird. Das ist eine sehr häufig auftretende Situation. In R-BASIC ist das
so gelöst, dass wir dem Application-Objekt einen "OnStartup" Handler geben. Wir

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 10

nennen ihn "AppStartup". Wir hätten ihn auch "Paul" nennen können, aber die
Namenswahl AppStartup enthält gleichzeitig einen Hinweis darauf, was der
Handler tun soll. Das ist prinzipiell immer eine gute Idee. Der UI-Code des
Application-Objekts sieht jetzt also so aus:

Application TutorApplication
Children = TutorPrimary
OnStartup = AppStartup

End OBJECT

Das Application-Objekt ist im Kapitel 4.1 des Objekthandbuchs beschrieben. Es
bietet zum Beispiel die Möglichkeit einem Programm ein eigenes Token (Icon) zu
geben und vieles mehr.

Unser AppStartup Handler muss als SYSTEMACTION vereinbart werden. Je
nachdem, ob wir das Number-Objekt TutorNumber oder das InputLine-Objekt
TutorInputText zur Eingabe der Zahl verwenden fällt der Handler geringfügig
anders aus.
Wir schauen uns zunächst die Variante mit dem Number-Objekt an.

’ Variante mit Number-Objekt
SYSTEMACTION AppStartup
DIM z ’ zahl
Randomize
z = Int(100 * Rnd())
TutorNumber.value = z

END ACTION

Als erstes initialisieren wir mit der Anweisung Randomize den Zufallsgenerator.
Das sollte jedes Programm, das mit Zufallszahlen arbeitet, tun.

Die Funktion Rnd() liefert eine Zufallszahl x im Bereich 0 <= x < 1. Wenn wir
unsere Zufallszahl z im Bereiche 0 <= z < 100 haben wollen müssen wir diesen
Wert mit 100 multiplizieren. Die Funktion Int() (Int steht für Integer, ganzzahlig)
schneidet die Nachkommastellen ab. Die Zeile z = Int(100 * Rnd()) weist also der
Variablen z eine Ganze Zahl im Bereich zwischen 0 und 99 zu.

Schließlich weisen wir mit der Anweisung TutorNumber.value = z dem Objekt
TutorNumber den Wert der Variablen z zu. Das Objekt zeigt diesen Wert sofort an.

Wenn wir das Textobjekt zur Eingabe der Zahl verwenden sieht der Handler so
aus:

SYSTEMACTION AppStartup
DIM z ’ zahl
Randomize
z = Int(100 * Rnd())
TutorInputText.text$ = Str$(z)

END ACTION

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Tutorial - 11

Wir sehen, dass sich nur die letzte Zeile unterscheidet. Zunächst heißt die
Instancevariable, die wir belegen müssen, bei einem Textobjekt "text$". Diese
enthält natürlich eine Zeichenkette (einen String) und keine Zahl. Deswegen
müssen wir die Zahl z mit der Funktion Str$() in eine Zeichenkette umwandeln.
Das ist schon alles.

Zusammenfassung
 • Jedes BASIC Programm besteht aus den Objekten und dem eigentlichen

BASIC Code.
 • Die Objekte sind in einer Parent-Child-Struktur miteinander verbunden.
 • Man benötigt auf jeden Fall ein Application-Objekt und ein Primary-Objekt.
 • Der Programmcode wird in Form von Actionhandlern realisiert.
 • Actionhandler werden aufgerufen, wenn der Nutzer eine Aktion auslöst.

Tipps

• Programmieren lernt man nicht durch Lesen, sondern durch Programmieren.
Spielen Sie ruhig an den Programmen herum. Ändern Sie etwas, lassen Sie
Anweisungen weg und sehen Sie, welche Auswirkungen das hat.

• Wenn Sie sich mit einem neuen Problem beschäftigen, schauen Sie in die
Beispiele. R-BASIC liefert zu nahezu allen Befehlen, Instancevariablen und
Objekten Programmbeispiele mit.

• Es ist völlig normal, dass Sie beim Lesen der Dokumentation vieles nicht auf den
ersten Blick verstehen. PC/GEOS Objekte sind wunderbar intelligent und
vielseitig einsetzbar. Entsprechend kompliziert sind einige Stellen der
"Bedienungsanleitung" (Dokumentation). Sie brauchen fürs Erste nur das zu
verstehen, was sie gerade benutzen wollen.

• Suchen Sie sich für den Anfang einfache, überschaubare Projekte. Viele
Programmierer haben mit einem Lottozahlengenerator oder etwas Ähnlichem
angefangen.

Beherzigen Sie nach Möglichkeit die folgenden Ratschläge:
• Machen Sie sich im Vorfeld eine Plan, was das Programm genau können soll

und was es nicht können soll.
• Verwenden Sie aussagekräftige Namen für Variablen, Objekte und Routinen.

Ein Textobjekt, in das der Nutzer etwas eingeben soll, könnte "EingabeText"
heißen. Nennt man es nur "Eingabe" könnte man später in Zweifel kommen,
ob man das Textobjekt oder den eigegebenen Text meint.

• Verwenden Sie großzügig Kommentare. Kommentieren Sie vor allem die
Ideen hinter einem Programmabschnitt. Das Notieren einer Idee hilft Ihnen,
das Problem gut zu durchdenken und verringert so die Fehlerquote.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 12

2 Die BASIC Programmiersprache

Die R-BASIC Programmiersprache baut auf einer einfachen BASIC Syntax auf.
Diese ist, wenn man den grundlegenden Elementen der englischen Sprache
mächtig ist, weitgehend selbsterklärend. Dabei geht R-BASIC weit über klassische
BASIC Programmiersprachen hinaus. Es unterstützt nicht nur das GEOS
Objektsystem sondern auch die typischen GEOS-Eigenschaften und System-
dienste wie lange Dateinamen, Tokens (Icons), die Zwischenablage, Hilfedateien,
Timer und mehr.

Beachten Sie, dass die Groß- und Kleinschreibung von Kommandos, Variablen,
Objekten usw. unter R-BASIC keine Rolle spielt.

Ziel des Programmierhandbuchs - dem Handbuch, dass Sie gerade lesen - ist es,
die Elemente der BASIC-Programmiersprache darzustellen. Dabei wird nicht jedes
Mal auf die notwendigen Objekte eingegangen. Diese werden im Objekthandbuch
beschrieben. Um die Beispiele und Codefragmente aus den folgenden Kapiteln
auszuprobieren haben Sie zwei Möglichkeiten.

Möglichkeit 1 (empfohlen):
Öffnen Sie das Beispielprogramm "Hallo 1" aus dem Ordner "R-BASIC\
Beispiele\Erste Schritte" und speichern Sie es unter einem neuen Namen. Die
Beispielprogramme enthalten bereits alle notwendigen Objekte. Ersetzen Sie dann
im Fenster "BASIC Code" den Code des Beispiels durch den Code, den Sie
ausprobieren möchten.
BUTTONACTION DemoHandler
... hier neuen Code einfügen

End ACTION

DemoAction ist der Name der Routine (des sogenannten Actionhandlers), die
aufgerufen wird, wenn Sie auf den Button "Beispiel starten" klicken. Sie können
den Zusammenhang zwischen dem Button und dem Actionhandler im Fenster "UI-
Code" nachvollziehen, wenn Sie ganz nach unten scrollen.

Möglichkeit 2:
Öffnen Sie ein neues, leeres BASIC Programm. Schreiben Sie im Fenster "BASIC
Code" die Anweisung ClassicCode und dann den Code, den Sie ausprobieren
möchten.
ClassicCode
... hier neuen Code einfügen

Die Anweisung ClassicCode versetzt R-BASIC in den sogenannten "klassischen"
Modus. In diesem Modus stellt R-BASIC ein paar Objekte bereit, die sich so
verhalten, als hätten Sie einen altmodischen Homecomputer vor sich. Sie können
direkt Text und Grafik auf den Bildschirm ausgeben, ohne sich um den
Objekthintergrund kümmern zu müssen. Details dazu finden Sie im Kapitel 2.13.1
(Der klassische BASIC Modus).

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 13

2.1 Grundlegende Konzepte

Hier finden Sie eine Zusammenstellung wissenswerter und grundlegender Fakten
zur BASIC-Sprache. Eine ausführliche Beschreibung der Zusammenhänge finden
Sie in den folgenden Kapiteln.

2.1.1 Die Struktur eines BASIC Programms

Jedes R-BASIC-Programm besteht im Wesentlichen aus zwei Teilen: den
Objekten und dem eigentlichen Programmcode.

Die Objekte sind sie sichtbaren Elemente des Programms. Sie werden im UI-Code
Fenster vereinbart. UI steht für User-Interface. Die Objekte heißen daher auch UI-
Objekte. Alle Objekte sind miteinander verbunden. Ein "Parent" Objekt hat ein
oder mehrere "Children". Jedes der Children kann wieder Parent für weitere
Objekte sein. Diese Struktur nennt man einen Objekt-Baum (object tree).
Das Top-Objekt jedes Programms ist ein Application-Objekt. Dessen Child ist ein
Primary-Objekt, das Hauptfenster des Programms. Dieses enthält wiederum die
anderen sichtbaren Objekte des Programms: Buttons, Listen, Objekte zur
Grafikausgabe und so weiter.
R-BASIC stellt die allermeisten der unter PC/GEOS verfügbaren Objekte bereit.
Die Anwendung der Objekte wird dem Programmierer dabei so einfach wie
möglich gemacht. Eine ausführliche Beschreibung der Objekte finden Sie im
Objekt-Handbuch.

Application Objekt

Primary Objekt

Button Weitere Objekte

Actionhandler des Buttons

Button wird gedrückt

Aufruf von Unterprogrammen

Objekte

BASIC
Code

SUBs FUNCTIONs

Zugriff auf Objekte
möglich

Rückgabe von
Werten

Solange nichts passiert ist das Programm im Wartezustand. Wenn der Nutzer nun
zum Beispiel einen Button anklickt, so ruft dieser seinen Actionhandler auf. Dieser
Handler kann wiederum andere Subs oder Functions aufrufen. Außerdem kann er
auf die Daten der anderen Objekte des Programms zugreifen, diese lesen oder
verändern. Natürlich kann er auch Grafiken ausgeben oder auf Dateien zugreifen.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 14

Auf diese Weise wird die Funktionalität des Programms implementiert. Nachdem
der Code des Actionhandlers abgearbeitet ist geht das Programm wieder in den
Wartezustand über. ... Bis der Nutzer die nächste Aktion macht und der nächste
Actionhandler aufgerufen wird.

Zahlen

Zahlen können in folgender Weise dargestellt werden:
• Einfache Zahlen, z.B. 12 oder 4.8. Dezimaltrennzeichen ist immer der Punkt.
• Darstellung mit Zehnerpotenzen z.B. 1.8E4 (= 1,8•104 = 18000)
• Binärdarstellung, z.B. &B1001 (= 9)
• Hexadezimale Darstellung z.B. &HFF (= 255)
• Zahlen dürfen keine Leerzeichen enthalten.
Eine ausführliche Behandlung des Themas finden Sie im Kapitel 2.3 (Arbeit mit
numerischen Ausdrücken)

Strings (Zeichenketten)

• Zeichenketten werden in BASIC als "Strings" bezeichnet
• Strings werden immer in Anführungszeichen gesetzt, z.B. "Im Haus des

Donners"
• Innerhalb von Strings können Sonderzeichen vorkommen. Sie werden mit

einem Backslash "\" eingeleitet. Zum Beispiel eröffnet "\r" eine neue Zeile und
"\200" fügt das Zeichen mit dem ASCII-Code 200 ein.

Eine ausführliche Behandlung des Themas finden Sie im Kapitel 2.5 (Arbeit mit
Strings)

Trennzeichen

• Erfordert ein Befehl mehrere Parameter, müssen diese durch Komma ’,’
getrennt werden.

• Hinter jedem Bezeichner (Variablennamen und dgl.) muss ein Zeichen folgen,
dass nicht Teil eines Bezeichners sein kann. Üblicher Weise sind das ein
Leerzeichen, ein Komma ’,’ oder eine öffnende Klammer ’(’. R-BASIC kann
sonst nicht erkennen dass DIMA eigentlich DIM A heißen soll.

• Leerzeichen oder Tabulatoren sind überall erlaubt, außer innerhalb von
Bezeichnern und innerhalb von Zahlen.

Kommentare

Kommentare und Leerzeilen dienen der optischen Strukturierung und der
Erläuterung des Programmcodes. Kommentare und Leerzeilen werden beim
Compilieren ignoriert, d.h. sie verlängern das Programm nicht, es wird dadurch
auch nicht langsamer. Weiter unten finden Sie einen Exkurs zur Verwendung von
Kommentaren und zur optischen Strukturierung von Programmen.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 15

Klammern

Klammern haben in R-BASIC zwei Funktionen:
1. Strukturieren von mathematischen Ausdrücken. Ausdrücke, die in Klammern

gesetzt sind, haben immer Vorrang.
2. Einschließen von Funktionsargumenten.

Einige BASIC-Befehle erfordern Klammern, andere nicht. Das Konzept dahinter
ist sehr einfach:

• Befehle, die am Anfang einer Zeile stehen, erfordern keine Klammern.
Es ist aber erlaubt, die Befehlsparameter in Klammern zu setzen
Beispiel:

LINE 20, 30, 100, 200
LINE (20, 30, 100, 200) ’ Beides ist gleichwertig

• Befehle (genauer: Funktionen), die auf der rechten Seite einer Zuweisung
stehen (können) erfordern in jedem Fall Klammern, damit R-BASIC weiß, wie es
die Parameter zu behandeln hat.

Tipp für Umsteiger: In R-BASIC kann man statt der BASIC-üblichen runden
Klammern () auch die eckigen Klammern [] verwenden. Damit kann man, wie in
anderen Programmiersprachen üblich, Feldindizes in eckige Klammern setzen,
während man Funktionsargumente in runde Klammern setzt. R-BASIC unter-
scheidet jedoch beide Klammertypen nicht.

Exkurs: Setzen von Klammern

Sicher ist Ihnen aufgefallen, dass einige BASIC-Befehle Klammern erfordern,
andere nicht. Das Konzept dahinter ist sehr einfach:
Befehle, die am Anfang einer Zeile stehen, erfordern keine Klammern. z.B.

PRINT A, B, C$

Befehle (genauer: Funktionen), die auf der rechten Seite einer Zuweisung stehen
(können), erfordern in jedem Fall Klammern, damit R-BASIC weiß, wie es die
Parameter zu behandeln hat. Außerdem erhöht das die Lesbarkeit ungemein.
Nehmen wir als Beispiel (SQR berechnet die Quadratwurzel):

DIM A, X
A = 16
X = SQR A • 4 ’ <-- Falsch, Klammern fehlen
PRINT X

Es ist etwas anderes, ob wir die Klammern so setzen:
X = SQR (A • 4)

oder so

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 16

X = SQR(A) • 4

Im ersten Fall erhalten wir 8, im zweiten 16.

Außerdem sollte Sie bei logischen Operatoren nicht mit Klammern sparen. Die
Operatoren folgen einer bestimmten Hierarchie, so dass es schnell passiert, dass
der Compiler etwas anderes versteht, als Sie ihm sagen wollten. Beispiel:

X = (7 OR 3) AND 1 ’ liefert 1
X = 7 OR (3 AND 1) ’ liefert 7

Exkurs: Optische Strukturierung des Programms

REM

REM (Remark - Anmerkung) leitet einen Kommentar ein. Der Kommentartext
erstreckt sich bis zum Ende der Zeile und kann beliebige Zeichen enthalten. Sie
sollten Ihr Programm immer ausführlich kommentieren. Das erleichtert das
Verständnis des eigenen Programms, wenn Sie es später noch einmal anschauen
oder überarbeiten.

• REM kann durch eine Apostroph ’ oder einem Ausrufezeichen ! abgekürzt
werden.

• Vor REM (bzw. ’ oder !) kann man den Doppelpunkt weglassen.
• Kommentare verlangsamen den Ablauf des Programms nicht! Der Compiler

ignoriert alle Kommentare, während er das Programm übersetzt.

Der Doppelpunkt :

Der Doppelpunkt ’:’ trennt mehrere Anweisungen in einer Zeile.

Syntax: Anweisung1 : Anweisung2

Beispiel:
COLOR 7,0 : CLS

Tipps:
• Sie sollten eine häufige Verwendung des Doppelpunktes vermeiden, da er die

Übersichtlichkeit des Programms negativ beeinflussen kann.
• Anweisungsfolgen, die mit einem Doppelpunkt getrennt wurden, laufen

geringfügig schneller ab, als wenn sie jede in einer eigenen Zeile stehen. Der
Unterschied ist jedoch sehr gering.

• Vor einem Kommentar ist kein Doppelpunkt erforderlich.
• Ein Doppelpunkt am Zeilenende ist zulässig und wird von R-BASIC ignoriert.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 17

Leerzeichen und Tabulatoren

Es ist dringend zu empfehlen, ein Programm optisch zu strukturieren. Dazu eignen
sich insbesondere Leerzeilen und Einrückungen. Die optische Strukturierung
verbessert die Lesbarkeit und signalisiert die Struktur des Programms. Die
Abarbeitungsgeschwindigkeit wird nicht beeinflusst.

Das folgende Beispiel gibt die ersten Quadratzahlen aus. Dabei wird jede durch 3
teilbare Zahl rot dargestellt.

’ Unstrukturiert
DIM n, z

COLOR 15, 0
CLS
Print "Ausgabe der Quadratzahlen"
FOR n = 1 TO 15
z = n*n
IF z/3 = Int (z/3) THEN
Ink 12
ELSE
Ink 15
End IF
Print n, z
NEXT n
PRINT "Fertig"

’ Strukturiert mit Einrückungen, Kommentaren und Leerzeilen
DIM n, z

COLOR 15, 0 ’ Weiß auf Schwarz
CLS
Print "Ausgabe der Quadratzahlen"

FOR n = 1 TO 15
z = n*n
IF z/3 = Int (z/3) THEN ’ Wenn durch 3 teilbar

Ink 12 ’ Vordergrund rot
ELSE

Ink 15 ’ ansonsten: Vordergrund weiß
End IF

Print n, z ’ Ausgabe, tabuliert (wegen Komma)
NEXT n

PRINT "Fertig"

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 18

Verwendung der Code-Fenster

Wenn Sie ein Programm schreiben stehen Ihnen bis zu 6 Code-Fenster zur
Verfügung.

UI-Objekte
In diesem Fenster müssen die UI-Objekte des Programms vereinbart werden.
Das Schreiben von Code in diesem Fenster ist nicht möglich.

DIM & DATA
Bei umfangreichen Projekten sollten hier global Deklarationen untergebracht
werden. Das Schreiben von Code ist möglich, aber ganz schlechter Stil.

Exports
Wenn Sie eine Library schreiben werden hier Deklarationen untergebracht, die
von der Library "exportiert" werden. Libraries sind im Kapitel 2.12 beschrieben.

BASIC-Code, Tools, Init-Code
Diese Fenster sind für den eigentlichen Programmcode vorgesehen. Aus Sicht
von R-BASIC sind diese Codefenster alle gleichwertig. Einem erfahrenen
Programmierer ermöglichen sie, seinen Code übersichtlicher zu gestalten.
Programmieranfängern wird empfohlen zunächst nur das Fenster BASIC-Code
zu benutzen.

Die Fenster werden in der Reihenfolge "Exports" -> "DIM & DATA" -> "UI-Objekte"
-> "Tools" -> "BASIC-Code" -> "Init" compiliert. Dadurch stehen den drei
eigentlichen Codefenstern sowohl die Vereinbarungen aus Exports und
DIM & DATA als auch die Namen aller UI-Objekte zur Verfügung.

Tipps:
• Die Codefenster können auch mit den Tastenkombinationen Strg-1 bis Strg-6

angewählt werden.
• Im Menü "Optionen" -> "Editor-Einstellungen" finden Sie den Menüpunkt

"Code-Windows umbenennen". Dort können Sie den Windows "DIM & DATA",
"BASIC-Code", "Tools", und "Init" andere, an ihr aktuelles Projekt angepasste,
Namen geben.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 19

2.1.2 Begriffe und Fakten

Im Folgenden werden ein paar Begriffe erläutert, die in den Handbüchern immer
wieder vorkommen. Sie müssen diese Definitionen nicht auswendig lernen, aber
um die Handbücher zu verstehen und sich mit anderen Programmierern ver-
ständigen zu können sollten Sie in etwa wissen, was sie bedeuten.

Ausdruck
• Alle Berechnungen oder Formeln zur Ermittlung eines Wertes werden als

Ausdruck bezeichnet.
• Am wichtigsten sind numerische Ausdrücke (das Ergebnis ist eine Zahl), es gibt

aber auch String-Ausdrücke (das Ergebnis ist ein Text), Objekt-Ausdrücke,
Handle-Ausdrücke usw.

• Ausdrücke stehen häufig - aber nicht ausschließlich - auf der rechten Seite einer
Zuweisung. Beispiel dafür:

y = 7
z = Int(y) + 5
st$ = "Hallo Welt"

• Siehe auch: Funktion, Parameter, Zuweisung

Actionhandler
• ActionHandler sind spezielle Unterprogramme, die automatisch aufgerufen

werden, wenn der Nutzer ein "Ereignis" auslöst, z.B. auf einen Button klickt.
• Siehe auch: Funktion, Parameter, Routine, Sub

Anweisung
• Als Anweisung wird eine einzelne Codezeile bezeichnet. Eine Anweisung geht

bis zum Zeilenende oder bis zu einem Doppelpunkt. Dann stehen mehrere
Anweisungen in einer Zeile.

• Der Begriff Anweisung wird häufig verwendet, wenn man nicht explizit angeben
kann oder will, ob es sich um eine Deklaration, eine Zuweisung oder eine UI-
Anweisung handelt.

• Kommentar- und Leerzeilen werden nicht als Anweisungen bezeichnet.
• Kontroll-Anweisungen (z.B. FOR-TO-NEXT) stellen einen Spezialfall dar. Sie

beeinflussen den Programmablauf.
• Vergleiche auch: Befehl, Deklaration, Parameter, UI-Anweisung, Zuweisung

Befehl
• Ein Befehl wird im Programm aufgerufen um eine bestimmte Aufgabe zu

erledigen, z.B. LINE, Print, CLS, EXIT oder FontFind.
• Befehle werden oft von Parametern gefolgt. Beispiel:

LINE 10, 20, 100, 200

• Sie auch: Anweisung, Deklaration, Zuweisung, Parameter

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 20

Bezeichner
• Alle Namen für Variablen, Objekte, Strukturen usw. heißen "Bezeichner". Sie

dürfen bis zu 32 Zeichen lang sein.
• Am Anfang eines Bezeichners steht immer ein Buchstabe. Zulässige Zeichen

sind weiterhin: die Ziffern (0..9), der Unterstrich ’_’ und das Dollar-Zeichen ’$’.
• R-BASIC unterscheidet nicht zwischen Groß- und Kleinschreibung. Es ist egal,

ob sie CLS, cls oder Cls schreiben. Der Editor erkennt R-BASIC Befehle und
hebt sie hervor. Dabei wird, wie in den Handbüchern auch, oftmals eine
kombinierte Groß-Kleinschreibung verwendet, z.B. FillEllipse statt FILLELLIPSE
oder fillellipse. BASIC Schlüsselworte wie DIM, IF, THEN oder FOR werden
groß geschrieben.

• Bezeichner dürfen keine Leerzeichen enthalten.

Deklaration
• Deklarationen sind "Vereinbarungen". Zum Beispiel vereinbart

DIM A as Real

eine Variable mit dem Namen A, die eine Real-Zahl speichern kann.
• Weitere Beispiele für Deklarationen sind

DECL SUB MaleBild ()
CONST y_0 = 12

• Eine Deklaration erzeugt noch keinen ausführbaren Code. Sie zeigt nur dem
Compiler an, dass der vereinbarte Bezeichner existiert und welche Eigen-
schaften er hat.

• Es wird empfohlen, für globale Deklarationen nur das Dim&Data-Fenster zu
nutzen.

• Vergleiche auch: Anweisung, UI-Anweisung, Zuweisung

Ereignis
• Jeder Vorgang, der eine Reaktion des Programms erfordert, wird als Ereignis

bezeichnet.
• Ereignisse sind zum Beispiel:

* Das Betätigen einer Taste auf der Tastatur
* Das Anklicken eines Buttons
* Das Auswählen eines Eintrags aus einer Liste

• Ereignisse werden vom GEOS-System an das zuständige Objekt weitergeleitet.
Dieses behandelt das Ereignis dann intern oder es ruft den passenden BASIC-
Handler auf, damit das R-BASIC Programm das Ereignis behandeln kann.

Funktion
• Funktionen sind Unterprogramme, die einen Wert zurückgeben.
• Es gibt BASIC-interne Funktionen (z.B. Int()) und selbst definierte Funktionen

(Schlüsselwort FUNCTION).
• Beim Aufruf einer Funktion müssen Klammern angegeben werden, auch wenn

die Funktion keine Parameter hat.
• Siehe auch: Actionhandler, Parameter, Routine, Sub

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 21

Hint
• Hints (=Hilfen) sind spezielle Instancevariablen, die einem Objekt mitteilen, wie

es sich zu verhalten oder darzustellen hat.
• Hints können von Objekten ignoriert werden, wenn es die Situation erfordert.

Instancevariable
• Die Instancevariablen enthalten die Eigenschaften der einzelnen Objekte. So

hat jeder Button z.B. eine Aufschrift, die aber von Button zu Button verschieden
ist.

• Instancevariablen werden im Objekt-Handbuch bei den zugehörigen Objekten
besprochen.

• Vergleiche auch: Methode, Objekt, UI-Anweisung

Kommando
• Siehe Befehl, Anweisung

Konstante
• Eine Konstante ist ein symbolischer Name für einen festen, d.h. während des

Programmablaufs nicht veränderbaren, Wert.
• In R-BASIC sind über einhundert numerischen Konstanten definiert (d.h. sie

stehen für eine Zahl). Besonders wichtig sind die Konstanten TRUE (Wert: –1)
und FALSE (Wert: 0)

• Eigene Konstanten der Typen Real und String kann man mit der Anweisung
CONST definieren.

Methode
• Methoden sind "Anweisungen an ein Objekt". Der Aufruf einer Methode führt

dazu, dass das Objekt eine bestimmte Operation ausführt.
• Beispiel: Die Methode "Open" bringt eine Dialogbox auf den Schirm:

MyDialog.Open

• Vergleiche auch: Instancevariable, Objekt, UI-Anweisung

Objekt
• Die sichtbaren Elemente der grafischen Oberfläche werden in R-BASIC als

Objekte bezeichnet. Das sind zum Beispiel ein Button, eine Liste oder eine
Dialogbox.

• Die in R-BASIC verfügbaren Objekte werden im Objekt-Handbuch besprochen.
• Vergleiche auch: Instancevariable, Methode, UI-Anweisung

Parameter
• Parameter sind Werte, die an eine Routine oder einen Befehl übergeben

werden. Felder können nicht als Parameter übergeben werden.
• Für Parameter sind alle in R-BASIC verfügbaren Typen zulässig.
• Siehe auch: Actionhandler, Funktion, Routine, Sub

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 22

Routine
• Die Begriffe Routine und Unterprogramm werden zusammenfassend für Sub,

Function und ActionHandler verwendet. Man benutzt sie, wenn man nicht näher
spezifizieren will oder kann, ob man ein Sub, eine Function oder einen
ActionHandler meint.

• Siehe auch: Actionhandler, Funktion, Parameter, Sub

Sub
• Eine SUB (englisch für Subroutine, Unterprogramm) ist ein in sich geschlos-

sener Programmteil, der eine bestimmte Aufgabe zu erledigen hat.
• SUB’s können mehrfach aufgerufen werden und sie dienen der Strukturierung

des Programms.
• Siehe auch: Actionhandler, Funktion, Parameter, Routine

UI-Anweisung
• UI-Anweisungen sind spezielle Anweisungen, mit denen Objekte vereinbart oder

die Startwerte für Instancevariablen belegt werden.
• UI-Anweisungen können nur im UI-Code Fenster stehen.
• Vergleiche auch: Anweisung, Deklaration, Objekt, Instancevariable, Zuweisung

Unterprogramm
• Siehe: Routine

Variable
• Variablen dienen zum Speichern von Zahlen, Texten und anderen Daten. Ihr

Inhalt kann verändert werde, d.h. er ist variabel. Daher kommt auch der Name.
• Auf lokale Variablen kann nur innerhalb der Routine, in der sie deklariert

wurden, zugegriffen werden.
• Globale Variablen sind für alle Programmteile sichtbar.
• Variablen sind eines der grundlegenden Konzepte in einer Programmier-

sprache. Sie werden ausführlich im nächsten Kapitel (Variablen und Typen)
erläutert.

Zuweisung
• Zuweisungen bestehen aus einer Variablen (das kann auch eine Objekt-

Instancevariable sein), einem Gleichheitszeichen und auf der rechen Seite
einem Ausdruck, dessen Wert der Variablen zugewiesen werden soll.

NAME$ = "Paul"

Dadurch wird der Wert "Paul" in der Variablen NAME$ gespeichert.
• Der Ausdruck auf der rechten Seite muss kompatibel zum Variablentyp sein,

d.h. Sie dürfen z.B. einer String-Variablen keine Zahl zuweisen. Natürlich gibt es
entsprechende Umwandlungs-(Konvertierungs)-Funktionen.

• Vergleiche auch: Anweisung, Deklaration, UI-Anweisung

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Konzepte - 23

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 24

2.2 Variablen und Typen

2.2.1 Was sind Variablen?

Wenn Sie eine Zahl oder eine Text abspeichern und anschließend wieder darauf
zugreifen wollen, benötigen Sie mindestens zwei Dinge: genug Speicherplatz um
die Daten abzulegen und einen Namen, unter dem Sie wieder auf die Daten
zugreifen können. Um den Speicherplatz kümmert sich R-BASIC automatisch, nur
den Namen müssen Sie selbst vergeben. Unter diesem Namen können Sie später
auch eine andere Zahl oder einen anderen Text in diesem Speicherplatz ablegen.
Der Inhalt des Speicherplatzes ist also veränderlich, d.h. variabel. Man sagt daher,
dass man es mit einer Variablen zu tun hat. Im Sprachgebrauch wird der Begriff
"Variable" gleichbedeutend mit dem Variablennamen verwendet. Statt "Die
Variable mit dem Namen X" sagt man "Die Variable X". Gemeint ist in beiden
Fällen jedoch, dass sich hinter dem Namen X ein Speicherbereich verbirgt, der
einen Wert, z.B. eine Zahl oder einen Text, enthält. Variablen, die eine Zahl
enthalten, bezeichnet man als "numerische" Variablen. Variablen, die einen Text
enthalten, bezeichnet man als "String" Variablen. Der englische Begriff "String"
steht für Faden, Schnur bzw. Kette, in unserem Fall für eine Abfolge von Zeichen
(= Buchstaben), eine "Zeichenkette".
Um eine Variable zu vereinbaren verwenden wir das Schlüsselwort DIM. Wir
müssen außer dem Namen der Variablen auch angeben, welche Art von Daten sie
enthalten soll, d.h. wir müssen ihren Typ (auch Datentyp genannt) angeben. Dazu
dient das Schlüsselwort AS. Der Typ der Variablen beschreibt außer der Art der
Daten auch den benötigten Speicherplatz, die "Größe" der Variablen. Das ist nicht
zu verwechseln mit dem Wert der Variablen. Der "Wert" gibt den Inhalt der
Variablen an (z.B. "Hallo"), die Größe den bereitgestellten Speicherplatz, z.B. 10
Byte.

Ein einfaches Beispiel:
DIM X AS REAL
x = 12 ’ Weise der Variablen X den Wert 12 zu
Print x ’ 12 erscheint
x = -7.9 ’ Weise der Variablen X den Wert -7.9 zu
Print x ’ -7.9 erscheint

DIM

Mit dem Schlüsselwort DIM werden Variablen vereinbart. DIM ist sehr mächtig und
kann in verschiedenen Varianten verwendet werden, die im Folgenden erklärt
werden:

Beispiel 1: Einfache Variablendefinition, automatische Typerkennung
DIM A, B
a = 5
b = 3.7
Print A*B

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 25

Es wurden zwei numerische Variablen vom Datentyp "Real" vereinbart. Der
Variablen A wird der Wert 5, der Variablen B der Wert 3,7 zugewiesen. Beachten
Sie, dass als Dezimaltrennzeichen immer ein Punkt zu schreiben ist. Außerdem
sehen Sie, dass die Groß/Kleinschreibung der Variablennamen egal ist.
Anschließend wird das Produkt (in unserem Fall 18.5) ausgegeben.

Beispiel 2: Einfache Variablendefinition, automatische Typerkennung
DIM A$, B$
A$ = "Hallo "
B$ = "Welt"
Print A$; B$

Hier wurden zwei Stringvariablen vereinbart. R-BASIC erkennt an dem
nachgestellten Dollarzeichen ($), dass es sich um eine Zeichenkettenvariable
(Stringvariable) handeln soll. Das Dollarzeichen ist Teil des Namens der Variablen
und darf nicht weggelassen werden. R-BASIC unterscheidet die Variablen A$
(sprich: "A-String") von der Variablen A.
Der Variablen A$ wird der Wert "Hallo ", der Variablen B$ der Wert "Welt"
zugeordnet. Die Print-Anweisung gibt den Text "Hallo Welt" aus.

Beispiel 3: Einfache Variablendefinition, automatische Typerkennung
DIM Auto, Bus$

Diese Anweisung vereinbart die Realvariable Auto und die Stringvariable Bus$.

Wie für alle Bezeichner in R-BASIC gilt auch für Variablen: Sie müssen mit einem
Buchstaben beginnen, dürfen Buchstaben, Ziffern und die Sonderzeichen ’$’
(Dollar) und ’_’ (Unterstrich) enthalten und können bis zu 32 Zeichen lang sein.
Groß- und Kleinschreibung wird nicht unterschieden.

DIM AS

Das Schlüsselwort AS legt den Typ der Variablen fest.

Beispiel 4: Numerische Variablen (siehe auch Kapitel 2.2.2)
DIM A, B AS WORD
DIM Hilf AS Longint
DIM ups AS REAL

Beispiel 5: Stringvariablen (siehe auch Kapitel 2.2.3)
DIM U$, V$ AS String
DIM Name$ As String(20)

Es ist in BASIC üblich, alle String Variablen durch ein Dollarzeichen am Ende zu
kennzeichnen. Erzwungen wird dies in R-BASIC jedoch nicht.

Beispiel 6: Feldvariablen
DIM X(10) AS REAL

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 26

Ein Feld fasst Variablen gleichen Typs zusammen. Sie werden über den Feldindex
angesprochen. Das Beispiel vereinbart 11 REAL variablen, X(0) (Sprich X-von-
Null) bis X-von-10). Felder werden im Abschnitt 2.2.5 ausführlich besprochen.

Hier ist die komplette Liste der Syntaxvarianten von DIM:

Syntax: DIM <VariablenListe>
Es werden ausschließlich REAL und STRING Variablen vereinbart.
Endet der Variablenname auf ’$’ (Dollar) wird eine Stringvariable
vereinbart, ansonsten eine REAL Variable.

Beispiel: DIM A, B(12), C$, D$(10,10)

Syntax: DIM <VariablenListe> AS <VariablenTyp>
Es werden Variablen vom angegebenen Typ vereinbart.

Beispiel: DIM X, Y, Z, P(12), Q(4,4) AS Integer

Syntax: DIM <VariablenListe> AS HUGE <VariablenTyp>
alternativ: HUGE <VariablenListe> AS <VariablenTyp>

Das Schlüsselwort HUGE (=riesig) ist nur im Zusammenhang mit
Feldern zulässig. Es zeigt an, dass die Felder sehr groß sind und
daher nicht vollständig im Speicher gehalten werden können.

Beispiel: DIM F(999, 999) AS HUGE REAL
Es wird ein Feld mit 1000 x 1000 = 1 000 000 Elementen vereinbart.
Jedes Element erfordert 10 Byte, das Feld insgesamt 10 Megabyte.

Dabei bedeuten:

<VariablenListe> Namen der zu vereinbarenden Variablen.
Einfache Variablen und Feldvariablen sind erlaubt.

<VariablenTyp> Typ der vereinbarten Variablen. Es sind alle R-BASIC
bekannten Datentypen erlaubt: Die Standarddatentypen, R-BASIC
Strukturtypen und mit dem Schlüsselwort STRUCT selbst definierte
Datentypen.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 27

2.2.2 Numerische Datentypen und numerische Ausdrücke

Die Verarbeitung von Zahlen und mathematischen Funktionen gehört zu den
Kernaufgaben einer Programmiersprache. Numerische Variablen speichern
Zahlen. In R-BASIC stehen die folgenden Typen zur Verfügung:

Typ Speicherbedarf Inhalt
REAL 10 Byte Reelle Zahl, mit Vorzeichen

 ± 3.9999•104931 , 19 Stellen
BYTE 1 Byte vorzeichenlose Zahl, 0 .. 255
WORD 2 Byte vorzeichenlose Zahl, 0 .. 65535
INTEGER 2 Byte Ganze Zahl, vorzeichenbehaftet

– 32768 ... 32767
DWORD 4 Byte vorzeichenlose Zahl

0 ... 4 294 967 295
LONGINT 4 Byte Ganze Zahl, vorzeichenbehaftet

– 2 147 483 648 ... 2 147 483 647
WWFIXED 4 Byte Dezimalzahl, vorzeichenbehaftet

maximal 4 Nachkommastellen
– 32768.0 ... 32767.9999

Realvariablen
Realvariablen (real = reelle Zahlen) speichern Zahlen im Bereich von
± 3.9999•104931 mit einer Genauigkeit von 19 Stellen. Zahlen mit negativen Expo-
nenten sind bis ± 10–4931 erlaubt.

Byte, Word, Integer, DWord und Longint Variablen
Für Einsteiger in die Programmierung ist der Zahlentyp REAL völlig ausreichend.
Fortgeschrittene Programmierer würden jedoch bald die in der Computertechnik
üblichen "kleinen" Zahlentypen vermissen. R-BASIC unterstützt daher zusätzlich
die in der Tabelle angegebenen Typen. Sie benötigen auch wesentlich weniger
Speicherplatz als Realvariablen.

WWFixed Variablen
Berechnungen mit dem Datentyp WWFixed werden merklich schneller ausgeführt
als mit den anderen numerischen Datentypen. Die begrenzte Genauigkeit von 4
Nachkommastellen ist für viele Anwendungszwecke, insbesondere bei der
Ausgabe von Grafik, völlig ausreichend. Damit R-BASIC mit WWFixed-Werten
rechnet sind besondere Regeln einzuhalten. Diese sind im Kapitel 2.3.6 (Schnelle
Mathematik mit WWFixed) beschrieben. Sie sollten dieses Kapitel unbedingt
lesen, bevor Sie den Datentyp WWFixed verwenden!

Beispiele:
DIM a, b, c AS REAL
DIM p, q, r AS Word
DIM u, v, w AS Integer

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 28

Hinweise:
• Mit der Ausnahme von WWFixed rechnet R-BASIC grundsätzlich mit REAL-

Zahlen. Die anderen numerischen Typen werden daher vor jeder Benutzung
in REAL umgerechnet. Es ist in R-BASIC ein Irrtum anzunehmen, dass die
Verwendung der Datentypen Word oder Integer die Rechengeschwindigkeit
vergrößert.

• Als Dezimaltrennzeichen muss immer ein Punkt verwendet werden.
• Die "kleinen" Zahlentypen können grundsätzlich überall dort verwendet

werden, wo auch Realvariablen zulässig sind.
• Bei Zuweisung von Werten außerhalb des Wertebereichs werden die

überzähligen Bits einfach ignoriert. Das bedeutet:
– Bei vorzeichenbehaftete Typen (INTEGER, LONGINT sowie WWFixed)

werden zu große Zahlen zu negativen Zhalen und umgekehrt.
– Vorzeichenlose Typen (BYTE, WORD, DWord) arbeiten mit einem

Übertrag. Das entspricht einer Modulo-Operation.
– Real-Zahlen speichern einen speziellen Fehlerwert.

Beispiele für Zuweisungen außerhalb des Wertebereichs:
DIM x, y ’ REAL Variablen, weil kein Typ vorgegeben
DIM b AS Byte
DIM i AS Integer
DIM w AS Word

b = 12.3 ’ Der Wert 12 wird gespeichert
b = 300 ’ Der Wert 44 wird gespeichert (300 = 256 + 44

’ bzw. 300 MOD 256 = 44
i = 98766 ’ Gespeichert wird 32767

’ Das ist der größtmögliche Integerwert
w = 98766 ’ Gespeichert wird 33230

’ weil 98566 = 65536 + 33230
’ bzw. 98766 MOD 65536 = 33230

Für Zahlen gelten die folgenden Regeln

• Einfache Zahlen sind z.B. 12 oder 4.89
Als Dezimaltrenner wird immer der Punkt ’.’ verwendet, egal was Sie in den
PC/GEOS Voreinstellungen festgelegt haben. Dadurch kann man BASIC-
Programme auf allen PC/GEOS-Rechnern sofort laufen lassen.

• Vor jede Zahl darf ein Vorzeichen (+ oder –) gesetzt werden.

• Für Zahlen mit 10er-Potenzen wird das E (oder e) verwendet.
–3,78·1012 wird also so geschrieben: –3.78E12
6,673·10–11 sieht so aus: 6.673E-11

Entsprechendes gilt auch für die Ausgabe von Zahlen durch R-BASIC.

• Leerzeichen innerhalb von Zahlen sind unzulässig.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 29

• Zahlen können auch in binärer Schreibweise (Vorsatz &B, z.B. 5 als &B101)
und in hexadezimaler Schreibweise (Vorsatz &H, z.B. 243 als &HF3)
dargestellt werden. In diesen Fällen sind 32 Bit oder 8 Hexadezimalstellen
zulässig (Zahlenbereich DWord). Zahlen in dieser Schreibweise werden
grundsätzlich als positive Zahlen behandelt.

Tabelle der Rechenoperationen

Operator Bedeutung
+, -, *, / Grundrechenarten:

Addition, Subtraktion, Multiplikation, Division

^ Exponentialoperator, z.B. 3^2 = 9
MOD Modulo-Division z.B. 8 MOD 3 = 2
AND, OR, XOR, NOT Bitweise logische Operationen

Mathematische Funktionen

• R-BASIC verfügt über eine Vielzahl von mathematischen Funktionen. Diese
können beliebig verknüpft werden, wobei R-BASIC die üblichen Vorrangregeln
(Punktrechnung vor Strichrechnung, Klammern gehen vor usw.) beachtet.

Beispiele:
y = 4*sin(5*x) + 7
y = sqr(1 + tan(z))

• Überall dort, wo in den Beispielen Zahlen oder numerische Variablen
verwendet wurden, können auch komplexe numerische Ausdrücke stehen.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 30

2.2.3 Stringtypen und Stringausdrücke

Zeichenketten wie z.B. "Hallo Welt" werden in BASIC als Strings bezeichnet.
Stringvariablen speichern Zeichenketten (Texte) und sind in BASIC üblicherweise
durch ein angehängtes $-Zeichen markiert. Das $-Zeichen ist Teil des Namens
und darf nicht weggelassen werden. Es gibt zwei Zeichenkettentypen: STRING
und STRING(n).

Variablen, die als STRING vereinbart wurden, können bis zu 128 Zeichen
aufnehmen. Variablen vom Typ STRING(n) können bis zu n Zeichen lang sein.
Dabei gilt: n <= 1024.

Beispiele:
DIM T$ ’ STRING Variablen, weil der Name auf $ endet

’ Max. 128 Zeichen
DIM R$, S$ AS STRING ’ Max. 128 Zeichen
DIM P$, Q$ AS STRING(100) ’ Max. 100 Zeichen
DIM U$, V$ AS STRING(1024) ’ Max. 1024 Zeichen

’ 1024 ist die obere Grenze
DIM A, B AS STRING ’ Auch Stringvariablen, obwohl

’ der Name nicht auf $ endet

Für Strings gelten die folgenden Regeln:

• Stringkonstanten werden immer in Anführungszeichen gesetzt. Umlaute und
Sonderzeichen sind erlaubt.

A$ = "Im Haus des Donners wird mir übel."

• Stringvariablen sollten immer durch ein $ (Dollarzeichen) am Ende
gekennzeichnet sein. z.B. A$ (sprich A-String). Verstöße gegen diese Regel
verschlechtern die Lesbarkeit des Programms.

• Strings können durch den Operator + zusammengefügt werden. Klammern
sind erlaubt, aber nicht nötig.

A$ = "Im Haus des Donners "
A$ = A$ + "wird mir übel."

• Ein Anführungszeichen oder andere besondere Zeichen innerhalb einer
Zeichenkette werden mit einem "Rückwärtsstrich" (Backslash) ’\’ eingeleitet.
Beispiel: Die Anweisung

A$ = "Im \"Haus des Donners\"!"

Speichert den Text: Im "Haus des Donners"! in der Variablen A$

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 31

• Weitere Zeichen, die mit einem Backslash eingeleitet werden:
\t Tabulator
\r oder \n Zeilenschaltung
\\ Backslash

• Ein Backslash gefolgt von bis zu drei Ziffern (Dezimalzahl) kann verwendet
werden, um ASCII-Zeichen in Strings einzufügen, die nicht direkt auf der
Tastatur verfügbar sind.

A$ = "a \195\180 b"

Speichert den Text a √¥ b in der Variablen A$
ASCII-Codes unterhalb von 32 (nicht druckbare Codes) sind ebenso zulässig.
Die Null beendet eine String, darauffolgende Zeichen werden ignoriert.

• Mit der Anweisung CONST können Stringkonstanten definiert werden. Die
Stringkennung $ am Ende ist dabei optional.
Beispiel:

CONST NAME$ = "Müller"
CONST FULL_NAME$ = "Paul " + NAME$
Print "Mein Name ist "; NAME$; ", "; FULL_NAME$

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 32

2.2.4 Weitere Datentypen

In diesem Abschnitt werden Datentypen beschrieben, die für spezielle Zwecke, in
denen Zahlen oder Strings nicht geeignet sind, eingesetzt werden. Die Beispiele
enthalten daher gelegentlich Befehle, die erst in den zugehörigen thematischen
Kapiteln beschrieben werden. Als Einsteiger werden Sie dieses Kapitel sicher nur
überfliegen.

Tabelle der hier beschriebenen Standarddatentypen

Typ Speicherbedarf Inhalt
File 6 Byte Referenz auf eine Datei
Object 8 Byte Referenz auf ein UI-Objekt
Handle 6 Byte Referenz auf eine R-BASIC interne

Datenstruktur, die nicht bereits von
FILE oder OBJECT abgedeckt ist.

Variablen der hier beschriebenen Typen können behandelt werden wie alle
anderen Variablen in R-BASIC auch. Man kann z.B. Felder anlegen (z.B. DIM
Dateien(10) AS FILE), sie als Elemente von Strukturen verwenden, als Parameter
an SUB’s oder FUNCTION’s übergeben oder als Rückgabetyp von FUNCTION’s
benutzen.

2.2.4.1 Der Datentyp FILE

Wenn Sie mit einer Datei arbeiten wollen, benötigen Sie eine Referenz auf diese
Datei. Für diesen Zweck gibt es Variablen vom Typ FILE (Dateivariablen). Alle
Dateibefehle erwarten eine solche Variable, um zu wissen, welche Datei gemeint
ist. Um die Details, z.B. wo die Datei auf der Platte zu finden ist und wie groß sie
aktuell ist, kümmert sich dabei das GEOS-System. Eine ausführliche
Beschreibung der Arbeit mit Dateien finden Sie im Kapitel 6 des Handbuchs
"Spezielle Themen".

Dateivariablen müssen explizit AS FILE deklariert werden:

DIM fh AS FILE

Beim Öffnen / Anlegen einer Datei wird der Variablen ein Wert zugewiesen. Die
Struktur dieses Wertes ist BASIC-intern und besteht aus mehreren Zahlen.

fh = FileOpen "info.txt"

Zum Arbeiten mit der Datei verwenden Sie die Variable, z.B.

x = FileRead (fh)
FileWrite fh, x

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 33

Wenn Sie fertig sind, müssen Sie die Datei schließen:

FileClose fh

Danach enthält die Variable immer noch einen Wert, er ist jetzt jedoch ungültig.
Deswegen sollten Sie, wenn es nicht zu sehr auf Geschwindigkeit ankommt, die
Variable mit Hilfe der Funktion NullFile() einen "Null-Wert" zuweisen, sie also
löschen. Dieser Schritt ist jedoch nicht zwingend erforderlich.

fh = NullFile()

NullFile

NullFile() ist eine Funktion, die eine "leere" Dateivariable liefert, d.h. sie dient
zum Löschen einer Filevariablen. Achtung! NullFile() überschreibt die Referenz
in der Filevariablen mit Nullen, ohne die Datei zu schließen! Das muss vorher
passiert sein. Sie können NullFile() auch benutzen, um zu prüfen, ob eine
Dateivariable leer ist.

Syntax: <fVar> = NullFile()
Die Klammern sind erforderlich, weil NullFile eine Funktion ist.
<fVar>: Variable vom Typ FILE

Hinweise:
• Es ist nicht zwingend erforderlich eine freigegebene Dateivariable auch mit

NullFile() zu löschen. R-BASIC kann jedoch eine gelöschte Filevariable
erkennen und so eventuell einen Systemabsturz verhindern.

FileInfo$

Die Funktion FileInfo$ liefert einen Text, der interne Informationen über eine
Dateivariable liefert. Sie können diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = FileInfo$(<fileExpr>)
<fileExpr>: Variable oder Ausdruck vom Typ FILE
<stringVar>:Stringvariable

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 34

2.2.4.2 Der Datentyp HANDLE

Ein "Handle" (= Anfasser) enthält eine Referenz auf eine Datenstruktur, deren
Inhalt von R-BASIC verwaltet wird. Wo die Daten abgelegt sind, wie sie intern
organisiert sind usw. braucht den R-BASIC Programmierer nicht zu kümmern, er
greift immer indirekt über das Handle auf die Daten zu.

R-BASIC Programm

Handle - Variable
Datenstruktur

Irgendwo im GEOS-System:

Referenz

Bild: Eine Handlevariable enthält eine Referenz auf eine Datenstruktur

Üblicherweise gibt es einen BASIC-Befehl, der ein Handle anlegt (d.h. die
dahinterstehenden Datenstrukturen initialisiert), einen oder mehrere Befehle, die
das Handle benutzen (d.h. auf die dahinter stehenden Datenstrukturen zugreifen)
und einen Befehl, der das Handle wieder freigibt. Der letzte Schritt ist sehr wichtig
und sollte nicht vergessen werden, da hinter einem Handle oft Speicherblöcke
stehen - und Speicher ist bekanntlich knapp unter GEOS.

Der Datentyp HANDLE ermöglicht es R-BASIC auf sehr einfache Weise mit
extrem komplexen Datenstrukturen umzugehen. Der Programmierer muss sich
nicht mit den Interna dieser Datenstrukturen herumschlagen.

Beispielsweise legt der Befehl FileFindFirst$ (suche die erste Datei und liefere
ihren Namen) ein Handle an. Dahinter steht ein Speicherblock, in dem eine Liste
der im Ordner vorhandenen Dateien und weitere Verwaltungsdaten abgelegt
werden. Der direkte Zugriff auf diese Liste wäre für den BASIC Programmierer
sehr aufwändig oder gar nicht machbar. Deswegen benutzt FileFindNext$ das
Handle um nacheinander die einzelnen Dateinamen aus der Liste auszulesen.
FileFindDone sorgt schließlich dafür, dass der von FileFindFirst$ angeforderte
Speicher wieder freigegeben wird.

DIM han AS HANDLE
DIM name$! Stringvariable
...
name$ = FileFindFirst$ (han, "*") ! Handle initialisieren.

! "*" heißt: alles finden
...
name$ = FileFindNext$ (han) ! Handle benutzen
...
FileFindDone (han) ! Handle freigeben, d.h. die

’ Datenstrukturen werden
’ freigegeben. Die in han
’ gespeicherten Werte sind
’ jetzt ungültig.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 35

R-BASIC Programm

Handle - Variable

Bild: Das Handle wurde freigegeben, die Referenz ist noch vorhanden, aber
ungültig.

Nachdem das Handle freigegeben wurde (im Beispiel mit FileFindDone) kann die
Variable sofort für andere Zwecke wieder verwendet werden.

Das Konzept der Handles ist dem des Datentyps FILE analog. Auch hier werden
R-BASIC-intern Daten angelegt (FileOpen), verwendet (FileRead bzw. FileWrite)
und wieder freigegeben (FileClose).

NullHandle

NullHandle() ist eine Funktion, die ein "leeres" Handle liefert, d.h. sie dient zum
Löschen einer Handlevariablen. Achtung! NullHandle() überschreibt die
Referenz in der Handlevariablen mit Nullen, ohne die dahinter stehenden
Datenstrukturen zu löschen! Das muss vorher passiert sein.

Syntax: <han> = NullHandle()
Die Klammern sind erforderlich, weil NullHandle eine Funktion ist.
<han>: Variable vom Typ HANDLE

Hinweise:
• Es ist nicht zwingend erforderlich ein freigegebenes Handle auch mit

NullHandle() zu löschen. Die irrtümliche Verwendung eines bereits ungültigen
Handles kann aber zu einem Systemabsturz führen. R-BASIC kann jedoch ein
mit NullHandle() gelöschtes Handle erkennen und so eventuell einen
Systemabsturz verhindern.

• Nachdem ein Handle freigegeben wurde (d.h. die dahinter stehenden Daten-
strukturen freigegeben wurden) kann die Variable sofort für andere Zwecke
wiederverwendet werden. Ein vorheriges Löschen mit NullHandle() ist nicht
nötig.

HandleInfo$

Die Funktion HandleInfo$ liefert einen Text, der interne Informationen über jede
Art von Handle liefert. Sie können diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = HandleInfo$(<han>)
<han>: Variable oder Ausdruck vom Typ HANDLE
<stringVar>: Stringvariable

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 36

2.2.4.3 OBJECT Variablen

Eine Variable vom Type "Object" enthält eine Referenz auf ein GEOS-Objekt, z.B.
einen Button, eine Liste oder ein anders Objekt des sogenannten "User-Interface".
Eine ausführliche Beschreibung der Arbeit mit Objekten finden Sie im Objekt
Handbuch.

Objektvariablen müssen explizit AS OBJECT deklariert werden. Danach kann
man ihnen eine Wert (ein Objekt) zuweisen und sie wie jedes explizit aufgeführte
Objekt verwenden.

DIM ob AS OBJECT

ob = DemoPrimary ’ Ein Objekt aus dem UI-Code
’ Fenster

ob.Caption$ = "Neue Titelzeile"

NullObj

NullObj() ist eine Funktion, die ein "leeres" Objekt liefert, d.h. sie dient zum
Löschen einer Objektvariable, oder zum Prüfen, ob sie leer ist.

Syntax: <oVar> = NullObj()
Die Klammern sind erforderlich, weil NullObj eine Funktion ist.
<oVar>: Variable vom Typ OBJECT

ObjInfo$

Die Funktion ObjInfo$ liefert einen Text, der interne Informationen über eine
Objektvariable liefert. Sie können diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = ObjInfo$(<objExpr>)
<objExpr>: Variable oder Ausdruck vom Typ OBJECT
<stringVar>: Stringvariable

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 37

2.2.4.4 R-BASIC Strukturtypen

Die Strukturtypen sind hier der Vollständigkeit halber aufgelistet. Sie werden im
Kontext der Kapitel erklärt, in dem sie gebraucht werden. Im R-BASIC Anhang
finden Sie eine Zusammenfassung der Elemente dieser Strukturen und ihrer
Bedeutung.

Typ Speicherbedarf Inhalt
GeodeToken 7 Byte Ein "Token" eines Programms

oder Dokuments
DateAndTime 12 Byte Datum und Uhrzeit
PrintFontStruct 14 Byte Typ der Systemvariablen

printFont. Enthält Infor-
mationen zur Steuerung der
Textausgabe mit PRINT.

NumberFormatStruct 32 Byte Typ der Systemvariablen
numberFormat. Enthält Infor-
mationen zur Formatierung
von Zahlen bei der Ausgabe
mit PRINT.

GraphicDrawStruct 48 Byte Typ der Systemvariablen
graphic. Enthält Infor-
mationen zur Grafikausgabe
wie Linienbreite, Flächenfarbe
usw.

TransMatrix 60 Byte Transformationsmatrix des
Bildschirms wie Skalierung
oder Rotation

PaletteEntry 3 Byte Ein einzelner Eintrag in einer
Farbpalette für Bitmaps

FullPalette 768 Byte Eine vollständige Bitmap-
Farbpalette mit 256 Einträgen

AnyStruct 3500 Byte Strukturtyp der zu allen
anderen Strukturen
zuweisungskompatibel ist.

GraphicInfo 8 Byte Informationen über eine Grafik
(Bitmap oder GString)

 DocumentConfigStruct 160 Byte Daten zur Konfiguration des
DocumentGuardian-Objekts

PointList 134 Byte Liste von Punkten um Poly-
gone und verbundene Linien
zu zeichnen.

ReleaseNumber 8 Byte Release- oder
Protokollnummer einer Datei

RectDWord 16 Byte Koordinaten eines Rechtecks

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 38

2.2.5 Felder

Felder (auch Arrays genannt) sind Zusammenfassungen von Variablen gleichen
Typs, die über einen Index abgesprochen werden.

Anfänger haben erfahrungsgemäß Schwierigkeiten, sich diesem Thema zu
nähern, aber Felder sind ein sehr leistungsfähiges Konzept, dass in keiner
Programmiersprache fehlen darf.

Häufig gibt es nämlich das Problem, dass eine Liste von Werten, z.B. Namen und
die dazugehörigen Telefonnummern verarbeitet werden sollen. Natürlich könnte
man folgendermaßen vorgehen:
DIM NA1$, NA2$, NA3$, NA4$ ’ usw.
DIM TEL1, TEL2, TEL3, Tel4 ’ usw.

NA1$ = "Müller" : TEL1 = 1234567 ’ usw.

PRINT NA1$, TEL1
PRINT NA2$, TEL2
PRINT NA3$, TEL3

Das ist nicht nur sehr aufwändig, sondern auch sehr fehleranfällig und unflexibel.
Die Lösung für das Problem heißt Felder.

Ein Feld fasst Variablen gleichen Typs (und i.A. gleicher Bedeutung) so
zusammen, dass die einzelnen Variablen des Feldes über eine Nummer (den
Index) angesprochen werden. Dieser Index geht immer von Null bis zu einem
vereinbarten Maximalwert. Die Anweisung

DIM NA$(10), TEL(10)

vereinbart 11 Stringvariablen und 11 Realvariablen:
NA$(0), NA$(1), .. usw. bis NA$(10) für die Namen
TEL(0) bis TEL(10) für die Telefonnummern.

Damit haben wir auf einen Schlag Platz für 11 Personen in der Liste, die
außerdem über ihren Index (Nummer) eindeutig identifiziert werden können.

Diese Feldvariablen können genau wie ganz normale Variablen verwendet
werden:

NA$(1) = "Müller"
TEL(1) = 1234567 ’ usw.

Feldvariablen sind wie geschaffen für die Zusammenarbeit mit FOR-Schleifen. Die
Ausgabe der Namensliste gestaltet sich extrem einfach:

FOR N = 0 TO 10
PRINT NA$(N), TEL(N)
NEXT N

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 39

Eine Berechnung des Feldindex ist zulässig und wird oft benutzt. Man kann hierfür
auch sehr komplexe Formeln verwenden, wenn man will. Sollte das Ergebnis der
Indexberechnungen einmal nicht ganzzahlig sein, so schneidet R-BASIC den Wert
ab.

Achtung: Wird eine Formel zur Berechnung eines Feldindexes verwendet, kann es
passieren, dass das Ergebnis dieser Formel außerhalb des zulässigen Bereichs
für den Index liegt. In diesem Fall kommt es zu einem Laufzeitfehler und die
Programmabarbeitung wird beendet.

Beispiele:
DIM A(10) AS WORD ’ A(0) bis A(10)
DIM C$(10,2) ’ C$(0,0) bis C$(10, 2)
DIM Z(4,2,2,1) ’ 4 Dimensionen - sehr exotisch

• Für Felder sind alle in R-BASIC vorhandenen Typen zulässig:
• numerische Typen (Real, Byte, Word, Integer, DWord und Longint)
• Zeichenketten-Typen String und String(n)
• Handle, Object und File
• BASIC interne Strukturtypen
• selbst definierte Strukturen

• Der zulässige Index beginnt immer mit Null und endet bei dem in der
Vereinbarung angegebenen Wert. Im Beispiel oben: A hat 11 Elemente: A(0) bis
A(10) (sprich: A-von-Null bis A-von-10).

• Die Größe einer Felddimension ist auf 32767 (positive Integerwerte) beschränkt.
Folgende Vereinbarung führt zu einem Compilerfehler:
DIM F(35000) ’ DAS GEHT NICHT

• Felder können bis zu 16 Dimensionen (Indizes) haben. Im Beispiel oben hat C$
zwei und Z hat 4 Dimensionen.

• Nichtganzzahlige Indizes werden von R-BASIC gerundet

• Liegt ein Feldindex außerhalb des vereinbarten Bereichs (i.A. durch
Berechnung) kommt es zu einem Laufzeitfehler und das Programm wird
beendet.

• Bei der Vereinbarung von Feldern können für die Indizes Konstanten verwendet
werden. Erlaubt sind außerdem die Grundrechenarten, Klammern sowie die
folgenden Operatoren und Funktionen:

die Operationen ^ (Exponent) und MOD (Modulo-Division),
logische Operatoren (OR, AND, NOT, XOR)
die Funktionen INT(), ASC() und SizeOf().

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 40

CONST NUM_WORKERS 20
CONST NUM_PEOPLE NUM_WORKERS + 5

DIM A(NUM_WORKERS), B(NUM_PEOPLE) AS WORD
DIM C(2*NUM_WORKERS - 7)
DIM W(Int(NUM_WORKERS/3))
DIM Z(4*sizeof(GeodeToken) + 3)

Felder mit mehreren Dimensionen:

Obwohl Felder mit einem Index (einer Dimension) oft ausreichen, kann man auch
Felder mit mehreren Dimensionen vereinbaren. Zweidimensionale Felder kommen
noch recht häufig vor. Die beiden Indizes werden dann häufig als x- und y-
Koordinate bezeichnet.

Beispiel 1:
Ein Sudoku-Programm könnte zur Verwaltung der 9 x 9 Felder des Sudokubrettes
ein zweidimensionales REAL-Feld verwenden:

DIM BRETT (9, 9) AS REAL

1,1 9,1

9,9

0,0

Die linke untere Ecke könnte dem Element BRETT(1,1), rechts unten BRETT(9, 1)
und rechts oben BRETT(9, 9) entsprechen. Die Elemente mit dem Index Null sind
natürlich auch vorhanden, aber in diesem konkreten Beispiel unbenutzt oder für
Spezialaufgaben verwendbar.
Der folgende Code prüft, ob in der ganz rechten Spalte die 7 schon vergeben ist:

FOR N = 1 TO 9
IF brett(9, N) = 7 THEN PRINT "7 ist vergeben"
NEXT N

Felder mit mehr als einer Dimension erfordern sehr schnell sehr viel Platz. Das
Feld BRETT im obigen Beispiel vereinbart bereits 100 Realvariablen (10 in jeder
Dimension). Das kostet schon 1000 Byte Speicherplatz. Als WORD-Feld wären es

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 41

nur 200 Byte - der Preis dafür ist eine geringfügig erhöhte Zugriffszeit, da die
WORD-Werte von R-BASIC vor ihrer Benutzung jedes Mal in eine Realzahl
konvertiert werden.

Beispiel 2:
Die Punkte einer Bitmap kann man ebenso als Feld mit zwei Dimensionen (x- und
y-Koordinate) auffassen.

DIM Bild(800, 600) AS HUGE DWORD

Da das Feld sehr groß ist (801x601x4 Byte = 1,9 MB) haben wir es als HUGE
vereinbart (siehe Abschnitt 2.2.7).

R-BASIC unterstützt bis zu 16 Dimensionen und der HUGE Speicher für Felder
kann bis 2 GB groß werden - damit sollten selbst die ausgefallensten Wünsche
erfüllbar sein.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 42

2.2.6 Globale und Lokale Variablen

Neben dem Datentyp einer Variablen ist es ebenso bedeutsam, welcher
Programmteil auf eine Variable zugreifen kann. R-BASIC kennt grundsätzlich zwei
Gültigkeitsbereiche von Variablen: globale und lokale Variablen.

Globale Variablen werden außerhalb von Unterprogrammen (SUB’s,
FUCNTION’s und ActionHandlern) vereinbart. Die Vereinbarung (mit DIM) erfolgt
üblicherweise am Anfang des Programms. Bei größeren Projekten sollten Sie alle
globalen Variablen im "Dim & DATA" Fenster vereinbaren. Auf globale Variablen
kann von jedem Programmteil aus zugegriffen werden. Für globale Variablen
stehen in R-BASIC drei Speicherbereiche bereit: der eigentliche "globalen
Variablenspeicher" (bis zu 12 kByte), der "globalen Stringspeicher" (bis zu bis
zu einigen hundert kByte) und der "HUGE Speicher" (bis zu 2 GigaByte). Details
dazu finden Sie im nächsten Kapitel.

Sie sollten globale Variablen nur dann einsetzten, wenn es wirklich nötig ist.
Besonders Anfänger verwenden gern ausschließlich globale Variablen. Die
Verwendung einer globalen Variablen in verschiedenen Unterprogrammen zu
verschiedenen Zwecken kann jedoch schnell zu "unerklärlichen"
Wechselwirkungen und Fehlen führen.

Lokale Variablen werden innerhalb von Unterprogrammen definiert. Sie sind
deswegen nur diesem Unterprogramm bekannt. Dabei gelten die im Folgenden
genannten Spielregeln.

• R-BASIC legt (wie jede andere Programmiersprache auch) den
Speicherplatz für diese Variablen erst beim Aufruf des Unterprogramms an
und gibt ihn nach Ausführung des Unterprogramms wieder frei.

• Parameter, die an Unterprogramme übergeben werden, werden intern
genau wie lokale Variablen behandelt. R-BASIC kopiert beim Aufruf eines
Unterprogramms die Übergabeparameter in den lokalen Variablenbereich
des Unterprogramms. Nach Beendigung des Unterprogramms werden die
Werte jedoch nicht zurückkopiert.

• Die Benennung der lokalen Variablen und Parametern kann völlig
unabhängig von anderen Programmteilen erfolgen. Namensdopplungen
mit globalen Variablen und lokalen Variablen bzw. Parametern anderer
Unterprogramme sind daher kein Problem. Bei der Verwendung eines
Variablennamens prüft R-BASIC zunächst, ob eine lokale Variable (oder
ein Parameter) dieses Namens existiert. Wenn ja, wird diese verwendet.
Erst dann wird geprüft, ob eine globale Variable dieses Namens existiert
und diese ggf. verwendet. Auf lokale Variablen anderer Unterprogramme
kann grundsätzlich nicht zugegriffen werden.

Für lokale Variablen stehen für jedes Unterprogramm bis zu 8 Kilobyte zur
Verfügung. Dort werden alle lokalen Variablen, auch die Stringvariablen, abgelegt.

Im folgenden Beispiel gibt es drei globale Variablen (A, B, und X). Die Sub
namens DemoSub hat zwei lokale Variablen: Den Parameter X und die Integer-
Variable A. Deswegen kann sie auf die globalen Variablen A und X nicht

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 43

zugreifen. Die Zeile "A = 2 * X - 3" belegt die lokale Variable A mit dem doppelten
des Wertes des Parameters X, abzüglich 3. Die Zeile "B = SQR(A)" belegt die
globale Variable B mit der Quadratwurzel aus der lokalen Variablen A.
Nach dem Aufruf der Sub mit "DemoSub 12" enthält die globale Variable B den
Wert 4,5826 (= Sqr(2*12-3)). Die globalen Variablen A und X sind nicht verändert.
DIM A, B, X ’ Globale Variablen vom Typ REAL

SUB DemoSub (X AS word)
DIM A as Integer
A = 2 * X - 3
B = SQR(A)

END SUB

’ Aufruf:
DemoSub 12

Die Belegung einer globalen Variablen in einer SUB ist prinzipiell ein schlechter
Stil und sollte vermieden werden (was leider nicht immer geht). Sauberer wäre im
obigen Beispiel die Verwendung einer Funktion, die einen Wert zurückliefert:
DIM A, B, X ’ Globale Variablen vom Typ REAL

FUNCTION DemoFunc (X AS word) AS REAL
DIM A as Integer
A = 2 * X - 3
RETRUN SQR(A)

END FUNCTION

’ Aufruf:
B = DemoFunc (12)

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 44

2.2.7 Interne Verwaltung der Variablen, HUGE Variablen

Lokale Variablen werden alle in einem Speicherblock abgelegt, der "lokaler
Variablenspeicher" genannt wird. Dadurch ist ein sehr effizienter Zugriff auf die
lokalen Variablen möglich. Jedes Unterprogramm hat seinen eigenen lokalen
Variablenspeicher. Dieser Speicherblock kann für jedes Unterprogramm bis zu 8
Kilobyte groß sein. Das ist meist mehr als genug, PC/GEOS-SDK-Programmierer
haben z.B. deutlich weniger zur Verfügung.

Ein häufiger auftretendes Problem bei lokalen Variablen sind jedoch
Variablenfelder vom Typ STRING, da jedes Feldelement 129 Byte benötigt. Die
(lokale) Anweisung

DIM SF$(120) AS STRING

erzeugt ein Feld mit 121 Elementen (Index von Null bis 120) und fordert bereits
121 Elemente a 129 Byte = 15609 Byte an. Es kommt zu einem Compilerfehler.
Sie können dann entweder den Datentyp STRING(N) verwenden, z.B.

DIM SF$(120) AS STRING(64)

womit nur 121*65 = 7865 Byte angefordert werden oder auf globale
Stringvariablen (STRING oder HUGE STRING) ausweichen.

Für globale Variablen verwendet R-BASIC drei verschiedene Speicherbereiche.
Im normalen "globalen Variablenspeicher" werden alle Variablen und Felder
abgelegt, die nicht vom Datentyp STRING oder STRING(N) sind und die nicht mit
dem Schlüsselwort HUGE vereinbart wurden. Für den globalen Variablenspeicher
stellt R-BASIC bis zu 12 Kilobyte Speicher bereit. Auf Variablen im globalen
Variablenspeicher kann sehr effizient zugegriffen werden. Die globale
Vereinbarung

DIM RF(200) AS REAL

erzeugt ein Feld mit 201 Elementen (Index von Null bis 200) und belegt 201*10 =
2010 Byte im globalen Variablenspeicher. Hingegen belegt die globale
Vereinbarung

DIM SF$(200) AS STRING

keinen Speicher im globalen Variablenspeicher. STRING Variablen (und
Variablen vom Typ STRING(N)) werden immer im globalen Stringspeicher
angelegt. Dieser Speicher wird von R-BASIC dynamisch und effektiv verwaltet, da
der wirklich von einer Stringvariablen benötigte Platz davon abhängt, ob sie einen
kurzen oder einen langen Text enthält. Je nach erforderlicher Situation legt R-
BASIC Stringvariablen im RAM oder in einer Datei ab. Sie können insgesamt
16383 (&H3FFF) globale Stringvariablen vereinbaren, wobei jedes Feldelement

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 45

als eigene Variable zu zählen ist. Die Länge der Strings ist dabei unerheblich.
Auch ein Stringfeld mit 16000 Elementen ist daher kein Problem:

DIM SF$(16000) AS String(128)

R-BASIC stellt die erforderlichen 2 Megabyte bereit.

Wollen Sie noch größere Felder verwalten können Sie das Schlüsselwort HUGE
(= riesig) verwenden. Der Huge Speicher ist eine von R-BASIC bereitgestellte
Datei auf der Festplatte. Alle HUGE Feldelemente haben eine feste Größe und
eine feste Position in der Datei (d.h. eine dynamische Stringverwaltung findet nicht
statt). Sie können auf die HUGE Variablen mit der ganz normalen BASIC Syntax
zugreifen, die Dateiverwaltung von GEOS sorgt dafür, dass der Geschwindigkeits-
verlust durch die häufigen Festplattenzugriffe nicht allzu groß ausfällt. Der Huge
Speicher kann insgesamt bis zu 2 Gigabyte groß sein. Jedoch darf auch bei
HUGE Feldern ein einzelner Feldindex den Wert 32767 nicht überschreiten.
Verwenden Sie für größere Datenmengen bitte mehrdimensionale Felder. Das
folgende Beispiel vereinbart drei Felder vom Typ und ein Feld vom Typ Word der
Gesamtgröße von ca. 42 Megabyte.

DIM ImageRed(1280, 1024) AS HUGE REAL
DIM ImageGreen(1280, 1024) AS HUGE REAL
DIM ImageBlue(1280, 1024) AS HUGE REAL
DIM ImageMask(1280, 1024) AS HUGE WORD

Hinweis: Globale Variablen einer Library (egal ob exportiert oder nicht) werden im
globalen Variablenspeicher des aufrufenden Programm abgelegt. Wenn mehrere
Programme eine Library gleichzeitig verwenden, so wird für jedes Programm ein
eigener Satz dieser Variablen angelegt. Library und Programm verwenden diese
Variablen so, als ob sie allein im System sind. Eine gegenseitige Beeinflussung
verschiedener Programme ist ausgeschlossen.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 46

2.2.8 Strukturen

Mit Hilfe der STRUCT-Anweisung kann man Variablen unterschiedlichen Typs
zusammenfassen. Anfänger haben erfahrungsgemäß Schwierigkeiten, sich
diesem Thema zu nähern, aber Strukturen sind ein sehr leistungsfähiges Konzept,
dass in keiner Programmiersprache fehlen darf.

2.2.8.1 Grundlagen

Häufig besteht das Problem, dass zum Verwalten von Daten sehr viele
Informationen für ein einzelnes Objekt gespeichert werden müssen.
Beispielsweise benötigt man für eine Kontaktliste neben Namen und Vornamen
auch Telefon, Email, Fax, Geburtsdatum und einiges mehr.

Strukturen bieten die Möglichkeit, alle diese Informationen "im Block" zu speichern
und zu verwalten. Dazu muss man zunächst einen neuen Struktur-Typ
vereinbaren, der alle nötigen Informationen enthält. Die Syntax sieht so aus:

STRUCT Person ’ Person ist der Name des neuen
’ Strukturtyps

Name$, Vorname$ AS String(30)
Tel$ AS String(15)
persNummer AS Word ’ max 65000 - das reicht
END STRUCT ’ Ende der Definition

Anmerkung 1: Strukturen müssen bei ihrer Vereinbarung mit STRUCT eine feste
Größe haben. Daher muss der Datentyp STRING(N) verwendet werden, der Platz
für einen String der maximalen Länge N fest reserviert.

Anmerkung 2: Strukturen sind auf eine Größe von 3500 Byte begrenzt. Man
sollte daher, besonders bei größeren Strukturen, darauf achten, welche
Datentypen man einsetzt. REAL kostet z.B. 10 Byte, WORD aber nur 2. String(n)
reserviert N+1 Byte (Max. N Zeichen plus 1 Byte Ende-Kennung). Eine einfache
Variable der oben definierten Struktur "Person" benötigt z.B. 80 Byte.

Will man den neuen Typ verwenden, vereinbart man einfach mit DIM
entsprechende Variablen:

DIM Chef, Knecht, Magd AS Person

Verwendet werden Strukturvariablen genau wie alle anderen Variablen, allerdings
muss man sowohl die Variable (z.B. Chef) als auch das Strukturelement (z.B.
Name$), getrennt durch einen einfachen Punkt ’.’ angeben.
Chef.Name$ = "Schneider"
Chef.Vorname$ = "Wilhelm"
Chef.Tel$ = "030 456 897 5654"
Chef.persNummer = 1 ’ Der Boss ist wichtig
Magd.Name$ = Knecht.Name$ ’ Sie haben geheiratet

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 47

Man kann aber auch eine komplette Strukturvariable einer anderen zuweisen,
vorausgesetzt der Typ stimmt überein. Dadurch werden die Daten kopiert (Zeile
1). Zeile 2 und 3 dienen der Illustration.

Chef = Knecht ’ Er wurde befördert
Chef.persNummer = 1 ’ persNummer wurde auch kopiert:

’ neu setzen
Knecht.persNummer = 0 ’ Die Stelle ist verfügbar.

Ein weiterer Vorteil: Wenn man später feststellt, dass man eine wichtige
Information, z.B. den Geburtsort, hinzufügen will, ist das kein Problem. Man
ergänzt einfach die Strukturdefinition:

STRUCT Person
Name$, Vorname$ AS String(30)
Tel$ AS String(15)
gebOrt$ AS String(20) ’ das ist neu.
persNummer AS Word
END STRUCT

Alle bisher geschriebenen Programmteile arbeiten weiter wie gewohnt, man muss
nur den Code zum Verwalten des Geburtsortes hinzufügen.

Für die Elemente einer Struktur sind - mit Ausnahme des Typs STRING - alle in R-
BASIC vorhandenen Typen zulässig:

- numerische Typen (Real, Byte, Word, Integer, DWord und Longint)
- Zeichenketten-Typ: nur String(n). (String ohne (n) ist unzulässig)
- Object, File und Handle
- andere Strukturen: R-BASIC intern oder selbst definiert
- Felder der oben genannten Typen

NullStruct

Die Funktion NullStruct() liefert eine "leere" Struktur zurück, dient also zum
Löschen einer Struktur-Variablen. NullStruct ist auf Strukturen jeden Typs
anwendbar, ebenso auf Struktur-Elemente, die selbst Strukturen sind.

Syntax: strukturVariable = NullStruct()
Parameter: Keine. Die Klammern sind aber erforderlich.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 48

Beispiel:
STRUCT Stru1
A, B AS REAL
END STRUCT

STRUCT Stru2
A AS REAL
S, T AS Stru1

END STRUCT

DIM stVar AS Stru2

stVar = NullStruct() ’ Löscht die gesamte Struktur
stVar.s = NullStruct() ’ Löscht nur stVar.s

’ stVar.a und stVar.t bleiben erhalten

2.2.8.2 Verschachtelung von Strukturen

Es ist zulässig Strukturen zu definieren, die andere Strukturen als Elemente
enthalten. Dies bezeichnet man als Verschachtelung von Strukturen.
Die Verschachtelung von Strukturen untereinander ist prinzipiell unbegrenzt. Eine
gute Planung der Strukturen ist aber Voraussetzung, sonst werden diese
Verschachtelungen schnell unübersichtlich und damit fehleranfällig.

Beispiel
STRUCT Firmenleitung
TheBoss AS Person
Tippse AS Person
Buchhalter As Person
END STRUCT

DIM DieChefs AS Firmenleitung
DieChefs.TheBoss.Name$ = "Setag"
DieChefs.TheBoss.Vorname$ = "Llib"
DieChefs.Tippse.Name$ = "Clausen"
DieChefs.Tippse.Vorname$ = "Ella"

Die Gesamtgröße einer Struktur ergibt sich als Summe der Größe der einzelnen
Strukturelemente. Die Struktur "Firmenleitung" belegt z.B. 303 Byte. Bei
Verwendung von Felder innerhalb von Strukturen ist zu beachten, dass der
Feldindex immer bei Null beginnt. R-BASIC unterstützt Strukturen bis zu einer
Größe von 3500 Byte.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 49

2.2.8.3 Strukturen und Felder

Strukturen können beliebig mit Feldern kombiniert werden. Hier sehen Sie an
einigen Beispielen, wie das geht. Beachten Sie jeweils die Position der Feldindizes
(die in den Klammern)

Felder von Strukturen

STRUCT Point ’ Punkt mit 2 Koordinaten
px, py AS Word
END STRUCT

DIM pointList(10) AS Point ’ 11 Punkte

pointList(0).px = 0 ’ Erster Punkt, Koordinaten (0,0)
pointList(0).py = 0
pointList(1).px = 100 ’ Zweiter Punkt, Koordinaten (100,50)
pointList(1).py = 50

Felder als Strukturelemente

STRUCT ByteFeld
anzahl AS Integer
value(2000) AS Byte ’ 2000 Byte. value heißt "Wert"
END STRUCT

DIM puffer AS ByteFeld

puffer.value(10) = 27
puffer.value(11) = 15
PRINT puffer.value(10) + 256 * puffer.value(11)

Die Struktur "Person" aus dem Abschnitt 2.2.8.1 wird vorausgesetzt:
STRUCT Firma
Name$ AS String(100) ’ z.B. der Firmenname
Worker(16) AS Person
END STRUCT ’ Insgesamt 1818 Byte.

DIM Metzgerei AS Firma
Metzgerei.Name$ = "Metzger Hackbeil"
Metzgerei.Worker(0).Name$ = "Malocher"
Metzgerei.Worker(0).Vorname$ = "Max"
Metzgerei.Worker(1).Name$ = "Schufter"
Metzgerei.Worker(1).Vorname$ = "Siegfried"

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 50

2.2.8.4 Strukturen und Unterprogramme

Strukturen können als Parameter und Rückgabewerte von Unterprogrammen
(SUB’s, FUNCTON’s) verwendet werden. Das folgende Beispiel illustriert das. Die
Struktur "Person" aus dem Abschnitt 2.2.8.1 wird vorausgesetzt:

SUB PrintPerson(p AS Person)
Print p.Vorname$;" ";p.Name$;" Tel.";p.Tel$

END SUB

FUNCTION NewPerson (n$, v$, geb$ as string) AS Person
DIM P AS Person
p.Name$ = n$
p.Vorname$ = v$
p.GebOrt$ = geb$
RETURN P

END FUNCTION

DIM Jemand as Person
Jemand = NewPerson("Panther", "Paulchen", "Farbtopf")
PrintPerson(Jemand) ’ Die Klammern sind optional

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 51

2.2.8.5 Formale Syntax

Aus Kompatibilitätsgründen werden je zwei Syntaxvarianten für Strukturen und
Strukturvariablen unterstützt. Funktionell unterscheiden sich die Varianten aber
nicht.

Vereinbarung von Strukturen

Standard Syntaxvariante
STRUCT <StructName>

<elementListe> AS Type ’ z.B. a, b AS Real
... ’ weitere Strukturelemente
END STRUCT

Syntaxvariante mit DIM
STRUCT <StructName>

DIM <elementListe> AS Type ’ z.B. DIM a, b AS Real
...
END STRUCT

Vereinbarung von Strukturvariablen

Standard Syntaxvariante
DIM <varListe> AS StructName

Syntaxvariante mit STRUCT
DIM <varListe> AS STRUCT StructName

Beispiele Standardsyntax:
STRUCT BspStruct

a, b AS real
c$ AS String(20)
END STRUCT

DIM P1, P2 As BspStruct

Beispiele alternative Syntax:
STRUCT BspStruct

DIM a, b AS real
DIM c$ AS String(20)
END STRUCT

DIM P1, P2 As STRUCT BspStruct

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 52

2.2.8.6 Namenskonventionen

Für die Bezeichnung von Strukturen und Strukturelementen gelten genau zwei
einfache Regeln:

 1. Der Name des Strukturtyps (z.B. Point s. unten) muss innerhalb des
Programms eindeutig sein. Es gelten die gleichen Konventionen wie für
globale Variablen oder Unterprogramme.

 2. Der Name von Strukturelementen muss nur innerhalb der Struktur eindeutig
sein. Namensdopplungen mit globalen Variablen, Elementen anderer
Strukturen, ja sogar mit BASIC Befehlen, sind erlaubt. Sie haben bei
Strukturelementen also wesentliche mehr Freiheiten als bei einfachen
Variablen.

Am besten verwenden Sie einfache, selbsterklärende Bezeichnungen. Falls R-
BASIC ein Problem findet, gibt es einen Compilerfehler, d.h. ein Programm, dass
sich compilieren lässt, ist namenstechnisch in Ordnung.

Die folgenden Beispiele zeigen einige Möglichkeiten auf.

STRUCT Point ’ eine einfache Struktur
px, py AS Word
END STRUCT

STRUCT Demo
a, b AS Real ’ nichts besonderes
pi AS Byte ’ kein Konflikt mit 3.1415...
px, py AS Word ’ kein Konflikt mit der

’ Struktur Point
color AS Longint ’ selbst BASIC-Befehle sind zulässig
p AS Point ’ Struktur innerhalb der Struktur
p2 AS Point ’ Struktur innerhalb der Struktur
END STRUCT

’ Variablen-Definitionen
DIM d AS Demo
DIM A AS Demo ’ kein Problem mit A in der Struktur Demo
DIM px AS REAL ’ kein Problem mit px in der Struktur Point

px = 12 ’ Zuweisung zur Realvariablen

d.pi = 12
d.px = 45
d.p.px = 59 ’ d.px wird nicht geändert
d.p2.px = 79 ’ d.p.px und d.px bleiben erhalten
d.a = pi ’ weist 3.1415... zu.

’ d.pi bleibt erhalten (=12, siehe oben)

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 53

Das folgende Beispiel zeigt zwar zulässige Vereinbarungen die aber namens-
technisch sehr unübersichtlich gewählt sind:
STRUCT Point ’ eine einfache Struktur
px, py AS Word
END STRUCT

STRUCT Komisch
point AS Point ’ selbst dieser Name ist zulässig
komisch AS Real ’ Kein Problem mit dem Namen der

’ Struktur, aber sehr unübersichtlich
END STRUCT

DIM py AS Point ’ py ist hier erlaubt, auch wenn es schon
’ in Point enthalten ist
’ das ist aber nicht mehr übersichtlich

DIM k AS Komisch

py.px = 28 ’ Zuweisung zum Strukturelement px der
’ Strukturvariablen py

py.py = 234 ’ R-BASIC verwechselt das nicht
k.komisch = 12
k.point.px = 17

Beispiel für eine unzulässige Vereinbarung

STRUCT Line ’ Schlecht. LINE ist ein BASIC-Befehl
x0, y0, x1, y1 AS Word
END STRUCT

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 54

2.2.8.7 Ein Anwendungsbeispiel

Mit Strukturen kann man sehr einfach externe Daten abbilden. Das Beispiel zeigt
die Struktur der ersten Bytes einer PCX-Datei, des sogenannten Headers. Der
Code am Ende des Beispiels liest den PCX-Header komplett ein und gibt die
Abmessungen des Bildes aus.

STRUCT PCXPalette ’ ein Farb-Paletteneintrag
rt, gn, bl AS Byte
END STRUCT

STRUCT PCXFileHeader ’ steht am Dateianfang
id, version AS Byte
compressed AS Byte
bitsPerPlane AS Byte
xMin, yMin AS Word
xMax, yMax AS Word
xRes, yRes AS Word
colorMap(16) AS PCXPalette ’ ein Struktur-Feld
reserved AS Byte
colorPlanes AS Byte
bytesPerLine AS Word
paletteInformation AS Word
screenSizeX AS Word
screenSizeY AS Word
fill (53) AS Byte ’ ein Byte Feld,

’ 54 Byte
END STRUCT

DIM header AS PCXFileHeader
DIM f AS FILE

f = FileOpen("FLOWER.PCX")
header = FileRead (f, SizeOf(PCXFileHeader)) ’ alles

 ’ einlesen
FileClose (f)
Print "Abmessungen:"; header.xMax; "x"; header.yMax; "Pixel"

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 55

2.2.8.8 AnyStruct

Dieser Abschnitt richtet sich an fortgeschrittene Programmierer. Eine Übersicht
über die verschiedenen Strukturtypen, die in R-BASIC definiert sind, können Sie
im Abschnitt 2.2.4.4 finden.

In sehr seltenen Spezialfällen sind Routinen sinnvoll, denen in verschiedenen
Situationen Strukturen verschiedener Typen übergeben werden sollen oder die in
unterschiedlichen Situationen Strukturen verschiedener Typen zurückgeben
sollen. Dafür dient der Typ AnyStruct. Variablen oder Funktionen von diesem Typ
sind zuweisungskompatibel zu jedem beliebigen Strukturtyp.
Die Library "VMFiles" macht davon Gebrauch.

Definition:
STRUCT AnyStruct
any_struct_dummy_byte_array_ (3499) as BYTE
End struct

Hinweise:
• Eine Variable oder ein Parameter des Typs AnyStruct belegt 3500 Byte im

Variablenspeicher.
• Es ist im Allgemeinen nicht nötig, auf die Elemente dieser Struktur zuzugreifen.
• Bei einer Zuweisung oder Parameterübergabe werden stets nur so viele Bytes

kopiert, wie der kleinere der beteiligten Strukturtypen fassen kann.

Beispiel 1: Einfache Zuweisungen
DIM g AS GeodeToken
DIM t AS DateAndTime
DIM a AS AnyStruct

! Erlaubt ist z.B. folgendes
g = a
a = t

Beispiel 2: Übergabe verschiedener Strukturtypen an eine SUB
DIM g AS GeodeToken
DIM t AS DateAndTime

DECL SUB AnyTest1(a as AnyStruct, x as WORD)

AnyTest1(g, 0) ’ Übergabe GeodeToken
AnyTest1(t, 1) ’ Übergabe DateAndTime

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 56

Beispiel 3: Rückgabe verschiedener Strukturtypen
DIM g AS GeodeToken
DIM t AS DateAndTime

DECL Function AnyTest2(x as WORD) AS AnyStruct

g = AnyTest2(0) ’ Zuweisung an eine GeodeToken Struktur
t = AnyTest2(1) ’ Zuweisung an eine DateAndTime Struktur

Implementationen der Routinen aus den Beispielen
SUB AnyTest1(a as AnyStruct, x as WORD)
DIM gt as GeodeToken
DIM dat as DateAndTime
IF x = 0 THEN
gt = a
<hier mit gt arbeiten>

ELSE
dat = a
<hier mit dat arbeiten>

END IF
END SUB

Function AnyTest2(x as WORD) AS AnyStruct
DIM gt as GeodeToken
DIM dat as DateAndTime
IF x = 0 THEN
<hier gt belegen>
return gt

ELSE
<hier dat belegen>
return dat

END IF
END FUNCTION

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 57

2.2.9 Die Funktionen SizeOf und Swap

SizeOf

Die Funktion SizeOf (Größe von) liefert den Speicherbedarf einer Variablen oder
eines Datentyps. Diese Funktion ist sehr hilfreich bei der Fehlersuche und im
Zusammenhang mit Strukturen. Außerdem können Sie Ihr Programm besser
lesbar gestalten. Die Formulierung "10 * SizeOf(WORD)" macht klar, dass der
Speicherbedarf von 10 Word-Variablen gemeint ist, während die Zahl 20 alles
Mögliche bedeuten kann. Die Verwendung von SizeOf für Strukturen erspart
Ihnen das mühsame und fehleranfällige Zusammenzählen der Größen der
einzelnen Elemente und liefert automatisch wieder den korrekten Wert, wenn Sie
die Definition der Struktur später ändern.

Syntax: <numVar> = SizeOf(type)
type: Beschreibt den Datentyp, dessen Größe ermittelt werden soll.

Wichtig:
SizeOf() wird schon vom Compiler in eine Zahl übersetzt, d.h. es ist von der
Ablaufgeschwindigkeit egal ob Sie schreiben:
y = 10 oder y = SizeOf (REAL)

Zulässig für type sind:
• R-BASIC Datentypen (Real, Byte, Word, File usw.)
• von R-BASIC definierte Strukturdatentypen (GeodeToken, DateAndTime,

NumberFormatStruct usw.)
• mit STRUCT selbst definierte Datentypen
• Variablen beliebigen Typs:

- Einfache Variablen
- Feldvariablen
- Strukturvariablen
- Strukturelemente

Nicht zulässig sind einfache Systemvariablen (z.B. MaxX, tabWidth, fileError usw.)
und Strukturelemente von Systemvariablen (z.B. graphic.areaColor).

Beispiel 1:
DIM y, a, c$
DIM s$ AS STRING(30)

y = SizeOf(REAL) ’ liefert 10
y = SizeOf(A) ’ liefert 10
y = SizeOf(C$) ’ liefert 129
y = SizeOf(S$) ’ liefert 31

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 58

Beispiel 2 (komplexes Beispiel):
’ Es sei eine Struktur MyStruct definiert:
STRUCT MyStruct
a AS Real
b(12) AS word
END STRUCT

DIM msVar AS MyStruct
y = SizeOf(MyStruct) ’ in diesem Fall: 28
y = SizeOf(msVar) ’ in diesem Fall: 28
y = SizeOf(msVar.a) ’ in diesem Fall: 10
y = SizeOf(msVar.b(0)) ’ in diesem Fall: 2

DIM msFeld(4) AS MyStruct
y = SizeOf(msFeld(0)) ’ in diesem Fall: 28
y = SizeOf(msFeld(0).a) ’ in diesem Fall: 10

Swap

Das Kommando Swap vertauscht die Werte zweier Variablen. Das ist
übersichtlicher und deutlich schneller als der Umweg über eine temporäre
Variable.

Syntax: Swap var1 , var2
var1, var2: Variablen, deren Werte vertauscht werden sollen.

Die Anweisung
Swap a, b

verhält sich so, als würden Sie den folgenden Code schreiben, wobei die Variable
tmp vom gleichen Datentyp ist, wie die Variablen a und b.

tmp = a
a = b
b = tmp

• Zulässig für die Variablen von Swap sind, analog zu SizeOf, Variablen aller in R-
BASIC verfügbaren Datentypen, auch selbst definierte Strukturen,
Strukturelemente und Feldvariablen.

• Nicht zulässig sind Systemvariablen (z.B. MaxX, tabWidth, FileError usw.) und
Strukturelemente von Systemvariablen (z.B. graphic.areaColor).

• Der Compiler führt keinen strengen Typvergleich, sondern nur einen
Größenvergleich aus. Damit können Sie z.B. auch Word- und Integer-Variablen
vertauschen. Der Programmierer ist selbst dafür verantwortlich, keine
inkompatiblen Typen zu vertauschen.

• Das Vertauschen zuweisungskompatibler Variablen mit verschiedener Größe
(z.B. Integer und Real) ist nicht möglich.

R-BASIC - Programmierhandbuch - Vol. 1
Einfach unter PC/GEOS programmieren

Variablen und Typen - 59

2.2.10 Die CONST Anweisung

Mit der Anweisung CONST kann man symbolische Namen für numerische Werte
oder Strings festlegen. Diese werden vom Compiler durch ihren Wert ersetzt.

Syntax: CONST name = <wert>

Der Typ der Konstante wird durch den Typ des Wertes bestimmt. Pro Anweisung
kann nur eine Konstante definiert werden.

Beispiele:
CONST anzahl_werte = 12 ’ eine Real-Konstante
CONST testwert = –3.786 ’ jede Zahl ist zulässig
CONST author$ = "Mein Name"

Vorteile:
- Das Programm wird übersichtlicher und besser lesbar
- Die Fehlerwahrscheinlichkeit sinkt drastisch

Ändert man den Konstanten-Wert (eine Stelle im Programm), so wirkt sich
die Änderung an alles Stellen aus, an denen die Konstante verwendet
wurde.

Im folgenden Beispiel braucht man beim Ändern der Konstanten (anzahl oder
startwert) den Code nicht anzupassen:

CONST anzahl = 31
CONST startwert = 115.7
DIM N, Feld(anzahl)

FOR N = 0 TO anzahl
Feld(N) = startwert
NEXT N

Numerische Konstantendefinitionen können sich auf andere Konstanten beziehen
und diese mit Zahlen, den Grundrechenarten und Klammern verknüpfen. Außer-
dem sind zugelassen: Die Operationen ^ (Exponent) und MOD (Modulo-Division),
logische Operatoren (OR, AND, NOT, XOR) und die Funktionen INT(), ASC(),
SQR(), FRAC(), TRUC(), SIN(), COS(), TAN(), EXP(), LN(), LOG(), LG() und
SizeOf(). Für Stringkonstanten ist nur das Pluszeichen erlaubt.

CONST MAX_X = 600
CONST DELTA_X = SizeOf(MyStruct) + 10
CONST MAX_Y = 2* MAX_X + DELTA_X
CONST MASK_X = INT((MAX_X+7)/8)
CONST K2 = (MAX_X AND &hF) OR 3
CONST NAME_SIMPEL = "Meier"
CONST NAME_FULL = "Hans " + NAME_SIMPEL

Analog darf man auch bei Felddefinitionen vorgehen:
DIM A(MAX_X), B(MAX_X + DELTA_X / 2) AS WORD

