R-BASIC

Einfach unter PC/GEOS programmieren

\O

ob
9&

Programmierhandbuch

Volume 2
Numerische Ausdricke, Stringausdriicke
Programmablaufsteuerung

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

2.3 Arbeit mit numerischen Ausdricken .-..ccccoreiireiireiireinneeseeennane. 64
2.3.1 Grundlagen und UDEerblickevrerrrernirieeninieseseseeeseeies 64
2.3.2 Mathematische Funktionencccccooiiiiiiiiii i 67
2.3.3 Operatoren und Vergleiche ..., 71
2.3.4 Bits, Bytes, Binar- und Hexadezimalzahlenooo 73
2.3.5 Logische und Bit-Operationenccccceeeiiiiiiiiiiii, 77
2.3.5.1 Logische Ausdrlcke in Entscheidungen 77

2.3.5.2 Anwendung der logischen Operatoren auf Zahlen 79

2.3.5.3 Bit-Schiebe-Operationenccccceveeeiiiiiieeiiieeneenne 81

2.3.5.4 Sonderfall: Bitflagsvveeeeevmeieiiiiiiiiiiiii 82

2.3.6 Schnelle Mathematik mit WWFixedcccovvvvviiiiiiin, 86
2.3.7 Exkurs: Vergleiche innerhalb numerischer Ausdrucke 91

2.4 Arbeit mit StriNgScccoiriiiii e ——————————— 92
2.4.1 Bearbeiten von Strings ... 92
2.4.2 Vergleichen von Strings «...ooovoiiieiniiii 97
2.4.3 Konvertierungsfunktionen ..o 99

2.5 Programmablaufsteuerungcccccciniiiimmmsmnssnnnssissssssssnnnnnes 106
2.5.1 VErzZWeIQUNGENeuviiiiiiiiiiiiiiieeeeee ettt 106
2.5.2 SCRIBIFEN 1oeeeeeeieee ettt e e e e e e 114
2.5.3 Pause und Delay -..coooooeiieiiiiii 122
2.5.4 Unbedingte SPrungeccueeeeeiiiiiiiiieee et 123

2.5.5 Vorzeitiger Programmabbruchccccoocciiiiiiiiis 125

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3 Arbeit mit numerischen Ausdriicken

In diesem Kapitel erfahren Sie alles Uber die Arbeit mit mathematischen Aus-
dricken. Vorher sollten Sie das Kapitel 2.2.2 (Numerische Variablen) gelesen
haben.

2.3.1 Grundlagen und Uberblick

Die Verarbeitung von Zahlen und mathematischen Funktionen gehdért zu den
Kernaufgaben einer Programmiersprache. Hier finden Sie eine Zusammenstellung
der wesentlichen Dinge, die beim Verarbeiten von Zahlen mit R-BASIC zu
beachten sind.

Far Zahlen gelten die folgenden Regeln

+ Einfache Zahlen sind z.B. 12 oder 4.89
Als Dezimaltrenner wird immer der Punkt .’ verwendet, egal was Sie in den
PC/GEOS Voreinstellungen festgelegt haben. Dadurch kann man BASIC-
Programme auf allen PC/GEOS-Rechnern sofort laufen lassen.

+ Vor jede Zahl darf ein Vorzeichen (+ oder —) gesetzt werden.

+ FUr Zahlen mit 10er-Potenzen wird das E (oder e) verwendet.
—3,78-10" wird also so geschrieben: —3.78E12

6,673-107"" sieht so aus: 6.673E—11
Entsprechendes gilt auch fur die Ausgabe von Zahlen durch R-BASIC.

* Leerzeichen innerhalb von Zahlen sind unzulassig.

« Zahlen kénnen auch in bindrer Schreibweise (Vorsatz &B, z.B. 5 als &B101)
und in hexadezimaler Schreibweise (Vorsatz &H, z.B. 243 als &HF3) dargestellt
werden. In diesen Féllen sind 32 Bit oder 8 Hexadezimalstellen zulassig
(Zahlenbereich DWord). Zahlen in dieser Schreibweise werden grundsatzlich
als positive Zahlen behandelt.

+ Achtung!
Bei einer Zahlenbereichsuberschreitung der 1, 2 und 4-Byte Datentypen
werden intern die Uberschissigen Bits ignoriert. Flr die vorzeichenlosen
Datentypen (Byte, Word, DWord) entspricht das einer Modulo-Operation.
Bei vorzeichenbehafteten Werten (Integer und Longlnt) fihrt das dazu, dass
aus einer zu gro3en positiven Zahl eine negative Zahl wird und umgekehrt.
Beispiel: Die Zuweisung des Wertes 257 zu einer Byte-Variable (Bereich 0 bis
255) fuhrt dazu, dass der Wert 1 gespeichert wird (257 MOD 256 = 1).

Mathematische Operatoren und Vergleiche:

Neben den Grundrechenarten (+, —, *, /) beherrscht R-BASIC die Exponenten-

darstellung (A, z.B. 2* = 24), die Modulo-Operation (MOD, Rest nach Division)
sowie die Vergleichsoperatoren =, <, >, <= , >= und <. Das Ergebnis eines

Arbeit mit numerischen Ausdriicken - 64

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Vergleichs ist immer wahr (TRUE, siehe unten, numerische Konstanten) oder
falsch (FALSE). Eine ausfihrliche Darstellung der Zusammenhénge finden Sie im
Kapitel 2.3.3 (Vergleiche und Operatoren).

Mithilfe von logischen Operatoren (NOT, AND, OR , XOR) und Bit-Operationen

(SHL(x, n), SHR(x, n), Shi32(x, n), Shr32(x, n)) kénnen einzelne Bits manipulieren.
Mit diesem Thema beschéftigen sich das Kapitel 2.3.5.

Mathematische Funktionen

+ R-BASIC verfugt Gber eine Vielzahl von mathematischen Funktionen. Diese
kénnen beliebig verkniupft werden, wobei R-BASIC die Ublichen Vorrangregeln
(Punktrechnung vor Strichrechnung, Klammern gehen vor usw.) beachtet.
Beispiele:

y = 4*sin(5*x) + 7

y sqr(1 + tan(z))

« Uberall dort, wo in den Beispielen Zahlen oder numerische Variablen
verwendet wurden, kénnen auch komplexe numerische Ausdriicke stehen.

+ Zu den mathematischen Funktionen gehéren zum Beispiel ABS(x) (absoluter
Betrag), INT(x) (ganzzahliger Anteil), SQR(x) (Square root - Quadratwurzel)
und SIN(x) (Sinus). Eine vollstandige Liste finden Sie im nachsten Abschnitt.

Numerische Konstanten

R-BASIC enthélt viele vordefinierte symbolische Konstanten, die anstelle ihrer
Zahlenwerte verwendet werden kdnnen. In vielen Féllen kann dadurch die Lesbar-
keit des Programms verbessert werden. Dazu gehdren zum Beispiel Konstanten
fir die Farbwerte (Farbkonstanten), fur Zeichensatze (Fonts) und vieles mehr.
Diese Konstanten werden im Zusammenhang mit den entsprechenden Themen
besprochen.

Zusétzlich gibt es noch einige "allgemeine" Konstante, die hier aufgefuhrt sind.

Konstante Wert Bedeutung
Pl 3,1415... reprasentiert die Kreiszahl 1t
Beispiel: u = PlI*d
FALSE 0 Wahrheitswert "falsch"
TRUE —1 Wahrheitswert "wahr"
YES 1 Bestétigung
NO 0 Ablehnung
Hinweise:

+ Vergleichsausdriicke liefern immer TRUE (—1) oder FALSE (Null) zurtick

+ R-BASIC behandelt in Entscheidungssituationen (IF... THEN) alle Ausdricke,
die Null ergeben als "falsch", alle Ausdricke die nicht Null ergeben als "wahr".

+ Mit der Anweisung CONST (siehe Kapitel 2.2.10) kénnen Sie sich beliebige
Konstanten fir eigene Zwecke definieren.

Arbeit mit numerischen Ausdriicken - 65

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Hierarchie der mathematischen Operatoren

Die mathematischen Operatoren in R-BASIC werden nach einer bestimmten
Prioritéat abgearbeitet. Aus der Schule kennen Sie das als "Punktrechnung geht vor
Strichrechnung".

Prioritéat der Operatoren, hochpriorisierte Operatoren stehen oben:
1. Klammern
2. Exponenten A
3. Vorzeichen —, +
4. Multiplikation und Division: *, /, MOD
5. Addition, Subtraktion: +, —
6. Vergleichsoperatoren =, <, >, <=, >=, <
7. NOT,
8. AND,
9. OR,
10. XOR

Gleichwertige Operatoren werden von links nach rechts abgearbeitet.
Beispiele

Die Prioritaten sichern ab, dass folgende Ausdriicke so abgearbeitet werden, als
waren die im Kommentar angegebenen Klammern gesetzt:

! Punktrechnung vor Strichrechnung:
4*N + 7*B ! ———> (4*A) + (7*B)

! Exponenten-Operator ~ vor den Vorzeichen:
—572 I ——> —(572)
5%-2 I ——> 57 (=2)

! Rechenoperationen vor den Vergleichsoperatoren:
IF 4eA <= B—1 THEN .. —-——> IF (4°A) <= (B — 1) THEN

! Vergleichsoperatoren vor den logischen Operatoren:
IF a>4 OR B<2 THEN .. -——> IF (a>4) OR (B<2)THEN

! NOT hat die hochste Prioritadt unter den logischen Operationen

IF NOT A AND NOT B THEN ..
! ———> IF (NOT A) AND (NOT B) THEN ..

Anmerkung: Ausdricke mit mehreren verschiedenen logischen Operatoren sind
sehr unubersichtlich. AuBerdem kommt es sehr schnell zu Fehleinschatzungen
der Abarbeitungs-Prioritat. Deswegen gibt der Compiler eine Warnung aus, wenn
Sie verschiedene logische Operatoren in der gleichen Klammerebene verwenden.

Arbeit mit numerischen Ausdriicken - 66

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.2 Mathematische Funktionen

Dieses Kapitel beschreibt alle in R-BASIC verfigbaren mathematischen Funk-
tionen. Mathematische Funktionen sind BASIC-Anweisungen, die einen nume-
rischen Wert berechnen. Sie werden in der Form y = ABS(x) verwendet (Aus-
nahme: RANDOMIZE), wobei y eine numerische Variable ist. Die Grundlagen zu
numerischen Variablen finden Sie im Kapitel 2.2.2.

R-BASIC arbeitet mit REAL-Zahlen im Bereich von +3.9999-10 . Einige der
mathematischen Funktionen haben einen eingeschrénkten Definitionsbereich, d.h.
sie sind fuir Argumente (x-Werte) auBerhalb eines bestimmten Zahlenbereichs
nicht anwendbar. Ubergibt man einen x-Wert auBerhalb des Definitionsbereichs so
liefern die Funktionen einen spezielle "Fehlerwert", es kommt nicht zum
Programmabbruch! Eine Auflistung der Definitionsbereiche und Fehlerwerte finden
Sie im Anhang.

Rechnet man mit den Fehlerwerten (Fehler, Unterlauf und Uberlauf) weiter, so
bleibt der Fehlerwert erhalten. Gibt man einen Fehlerwert aus (Z.B. PRINT oder
Str$(x)), so wird der entsprechende Text ("Fehler", "Uberlauf', "Unterlauf"
ausgeben.

Beispiel:
PRINT SQR(-3) ! Das Wort "Fehler" erscheint

Einfache mathematische Funktionen:

Funktion Bedeutung

ABS(x) Absoluter Betrag von x: Ix

SGN(x) Signum-Funktion (Vorzeichen-Funktion)
Liefert —1 (negativ), 0 oder +1 (positiv)

INT(x) Liefert die nachst kleinere ganze Zahl, d.h. es wird nach
unten gerundet: INT(x) < x

TRUNC(x) Kirzt x auf seinen ganzzahligen Anteil, d.h. es wird

Richtung Null gerundet. TRUNC(x) und INT(x) unter-
schieden sich bei negativen x.

FRAC(x) Liefert den gebrochenen Anteil von x, d.h. die Nach-
kommastellen. Das Ergebnis ist immer positiv.
ROUND(x [, n]) Rundet x auf n Stellen nach dem Komma.

Wird n weggelassen, erfolgt die Rundung auf ganze
Zahlen, (so als ob n = 0 ware).

Arbeit mit numerischen Ausdriicken - 67

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispieltabelle flr die einfachen mathematischen Funktionen:

X SGN(x) INT(x) TRUNC(x)] FRAC(x) ROUND(x)
3.8 +1 3 3 0.8 4
3.5 +1 3 3 0.5 4
3.1 +1 3 3 0.1 3
0 0 0 0 0 0
-3.2 -1 -4 -3 0.2 -3
-3.5 -1 -4 -3 0.5 -3
-3.7 -1 -4 -3 0.7 -4
Anmerkungen:

+ ROUND verwendet bei x.5 "Gerade-Zahl-Regel". Das bedeutet, dass auf die
nachste gerade Zahl gerundet wird, auch bei negativen Zahlen. Beispiele:

ROUND(3.5) --> 4

ROUND(2.5) --> 2

ROUND(1.5) --> 2

ROUND(—2.5) —--> =2

« INT(x), TRUNC(x) und FRAC(x) fihren vorher keine Rundung aus, sondern
nehmen der Wert, wie er intern vorhanden ist. Beim Ausgeben eine Zahl

(Print oder Str$) wird jedoch gerundet. Das kann zu scheinbaren Wider-
spruchen fuhren:

PRINT 4.999999999999 --> 5
PRINT INT(4.999999999999) -=> 4
PRINT FRAC(4.999999999999) -->1

Sollte das ein Problem sein, runden Sie den Wert vorher.

Zufalls-Zahlen:

Funktion Bedeutung

RANDOMIZE [n] Initialisiert den Zufallsgenerator.

n: Initialisierungswert (n sollte eine groBe Zahl sein). Bei
gleichem Initialisierungswert liefert der Zufalls-
generator immer die gleiche "zufallige" Folge.
Beispiel: RANDOMIZE 1123581321

Ohne n: Der Initialisierungswert wird aus der Systemzeit
ermittelt. Der Zufallsgenerator liefert immer
verschiedene "zufallige" Folgen.

RND() Liefert eine Zufallszahl im Bereich 0 <=x< 1

Arbeit mit numerischen Ausdriicken - 68

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Tipps:
+ Initialisieren Sie den Zufallsgenerator nur einmal im Programm, am besten
am Programmanfang:

RANDOMIZE

« Ganzzahlige Zufallszahlen im Bereich von 0...n-1 (jeweils einschlieBlich)
erhalt man mit:

y = INT(n * RND())

« Warnung! RANDOMIZE und RND() verwenden den GEOS-internen Zufalls-
generator. Der Programmierer von R-BASIC kann daher nicht garantieren,
dass bei verschieden Systemversionen die RND() -Funktion bei gleichem
Initialisierungswert von RANDOMIZE wirklich die gleiche Zufallszahlenfolge
liefert. Diese Warnung ist z.B. fur kryptografische Programme bedeutsam.
Der Programmierer tbernimmt diesbezuglich keinerlei Haftung!

INCR und DECR

Die Anweisungen INCR (engl. increment, Zuwachs, VergréBerung) und DECR
(engl. decrement, Verringerung) vergroéBern oder verkleinern den Wert einer
numerischen Variablen um 1 oder um einen vorgegeben Wert n. N muss
ganzzahlig sein, im Bereich von -32768 bis +32767 liegen und zur Compilezeit
berechenbar sein. Einfache Berechnungen (+, -, *, /, Klammern, * (Exponent) ,
MOD (Modulo-Division), OR, AND, NOT, XOR und die Funktionen INT(), ASC(),
SQR(), FRAC(), TRUC(), SIN(), COS(), TAN(), EXP(), LN(), LOG(), LG() und
SizeOf(). sowie negative Werte sind zugelassen. Variablen und sonstige
Funktionen sind nicht erlaubt.

Funktion Bedeutung

INCR <numVar> VergrdéBerung des Variablenwertes um 1

INCR <numVar>, n | VergréBerung des Variablenwertes um n (n: ganzzahlig)
DECR <numVar> Verkleinerung des Variablenwertes um 1

DECR <numVar>, n| Verkleinerung des Variablenwertes um n (n: ganzzahlig)

Beispiele:

DIM x as REAL
DIM w as WORD
CONST D X = 18

INCR x ' entspricht x = x + 1
DECR w, 12 ' entspricht w = w — 12
INCR w, D X + 2 ' entspricht w = w + 20

INCR und DECR laufen deutlich schneller als ihre Entsprechungen x = x + n bzw.
X=X-n.

Arbeit mit numerischen Ausdriicken - 69

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Transzendente Funktionen:

Funktion Bedeutung

SQR(x) Quadratwurzel aus x

EXP(x) Exponentialfunktion eX

LN(x) Naturlicher Logarithmus von x, d.h. Logarithmus zur
Basis e

LOG(x) Dekadischer Logarithmus von x, d.h. Logarithmus zur
Basis 10, log10(x)

LG(x) Logarithmus zur Basis 2, log2(x)

Trigonometrische Funktionen:

Funktion Bedeutung

SIN(x) Sinus von x, x im BogenmafB

COS(x) Cosinus von x, x im BogenmafB

TAN(x) Tangens von x, x im BogenmafB

ASN(x) ArcusSinus von x - Umkehroperation zu Sinus
ACS(x) ArcusCosinus von x - Umkehroperation zu Cosinus
ATN(x) ArcusTanges von x - Umkehroperation zu Tangens

Im BogenmalB hat ein Vollkreis nicht 360°, sondern den Wert 2. Die Um-
rechnungsformel lautet:

wert im bogenmaB = wert im gradmaB3 * PI / 180

Wenn Sie das Argument im GradmaB haben und mit einer Genauigkeit von 4
Stellen nach dem Komma auskommen kénnen Sie statt der in der Tabelle
angegeben Funktionen auch eine der WWFixed-Funktionen FixSin, FixCos,
FixTan und FixAsn verwenden. Diese Funktionen kénnen direkt (d.h. ohne
Konvertierungsfunktion) in Real-Ausdriicken verwendet werden und erwarten das
Argument im GradmaB. Details zu den WWFixed-Funktionen finden Sie im Kapitel

2.3.6.

Hyperbolische Funktionen:

Funktion Bedeutung
SinH(x) Sinus Hyperbolicus von x
CosH(x) Cosinus Hyperbolicus von x
TanH(x) Tangens Hyperbolicus von x
ASNH(x) Arcus Sinus Hyperbolicus von x
ACSH(x) Arcus Cosinus Hyperbolicus von x
ATNH(x) Arcus Tangens Hyperbolicus von x

Arbeit mit numerischen Ausdriicken - 70

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.3 Operatoren und Vergleiche

R-BASIC verfugt UGber die im Folgenden angegebenen mathematischen
Operatoren. Eine Ubersicht Uber die Hierarchie (Abarbeitungsreihenfolge) der
Operatoren finden Sie vorn, im Kapitel 2.3.1 (Grundlagen)

Einfache Operatoren:

Operator Funktion

+, — Addition und Subtraktion

* Multiplikation und Division.

A Exponent. z.B. 2A3 entspricht 2°

MOD Modulo-Operation: Division mit Rest, wobei der Rest das
Ergebnis ist. Beispiele:
7 MOD 3 liefert 1 denn 7/3 = 2 Rest 1
3.4 MOD 1.3 liefert 0.8 denn 3.4=2:1.3+0.8

Tipp: Die Zeichen * (Exponent) * (Sternchen far Multiplikation) und - (Minus) sind
eventuell nicht oder nur schwer am Bildschirm zu identifizieren. R-BASIC
unterstitzt daher flr diese Zeichen Ersatz-Zeichen, die Sie stattdessen schreiben
kénnen, um die Lesbarkeit lhres Codes zu verbessern.

A Exponent-Ersatzzeichen : ** (zwei Sternchen)

* . Multiplikation-Ersatzzeichen : « (AltGr+Shift+8, ASCII-Code 165)

- : Minus-Ersatzzeichen : — (AltGr+Minus, ASCII-Code 208)

Vergleichsoperatoren

Vergleichsoperationen liefern Wahr (TRUE, —1) oder Falsch (FALSE, 0)

Operator Syntax Funktion
= A=B Wahr, wenn A gleich B ist
< A<B Wahr, wenn A kleiner als B ist
> A>B Wahr, wenn A gréBer als B ist
<= A<=B Wahr, wenn A kleiner oder gleich B ist
>= A>=B Wahr, wenn A gréBer oder gleich B ist
< A<B Wahr, wenn A ungleich B ist

Die Vergleichsoperatoren (<, <=, >, >=, = <>) stehen auch fir Zeichenketten zur
Verfigung. Fir Variablen vom Typ FILE, HANDLE oder OBJECT sowie fir
Strukturen stehen die Vergleichsoperatoren = und <> zur Verfugung.

Hinweis: Statt A = B kann man fir Vergleich auch ein doppeltes Gleichheits-
zeichen schreiben (A == B). Das verbessert gelegentlich die Lesbarkeit.

Arbeit mit numerischen Ausdriicken - 71

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Logische Operatoren

Logische Operatoren wirken bitweise auf die Operanden. Eine ausfihrliche
Erklarung sowie Beispiele finden Sie im nachsten Kapitel.

Operator | Syntax Funktion
NOT NOT A Negation
Liefert immer das Gegenteil
AND A AND B Logisches UND
Liefert Wahr, wenn beide Werte wahr sind.
OR A OR B Logisches ODER
Liefert Wahr, wenn mindestens einer der Werte wahr
ist.
XOR A XOR B Logisches Exklusiv ODER
Liefert Wahr, wenn entweder der eine oder der
andere Wert wahr ist. Sind beide Werte Wahr, liefert
XOR Falsch.
Beispiele:
Da Vergleiche hdher priorisiert sind benétigt man hier keine Klammern.
NOT 4 > 7 ' liefert Wahr
3 >7O0R 5 > =2 ' liefert Wahr
3 >7 AND 5 > =2 ' liefert Falsch
3> 7 XOR 5 > =2 " liefert Wahr

Arbeit mit numerischen Ausdriicken - 72

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.4 Bits, Bytes, Binar- und Hexadezimalzahlen

Als fortgeschrittener Programmierer kommt man letztlich um binédr und Hexa-
dezimaldarstellungen nicht herum. Als Anféanger sollte man dieses Kapitel
zumindest Uberfliegen, damit man eine Vorstellung davon bekommt, was das
Ganze eigentlich soll.

Um zu verstehen, wie Computer Zahlen darstellen, missen wir uns zunéachst
daruber klar werden, wie wir das eigentlich selber im taglichen Umgang mit Zahlen
machen.

Unser "normales" Dezimalsystem hat 10 Ziffern: 0 bis 9 - damit kbnnten wir genau
10 Zahlen darstellen, ndmlich 0 bis 9. Wenn wir gr6B8ere Zahlen darstellen wollen,
setzen wir einfach weitere Ziffern davor - in 47 bedeutet die 4 eigentlich 4-10 und
in 398 bedeutet die 3 in Wirklichkeit 3-100. Das hat man so vereinbart und jeder
halt sich daran.

Da 100 = 10%ist, 10 = 10" und 1 = 10°, kann man sagen, dass gilt:

398 = 3:10% + 9-10" + 8-10°
Dieses Prinzip wenden wir auf alle Zahlen an, wobei die 10er-Potenzen daher

kommen, dass wir eben 10 Ziffern (0 bis 9) haben. Man beachte, dass, obwohl wir
10 Ziffern haben, bereits die Zahl 10 zweistellig ist - weil wir ja mit Null beginnen.

Computer kennen nur zwei Ziffern: 0 und 1 (entsprechend Strom an und Strom
aus). Sie sind also gezwungen bereits eine Ziffer "davor" zu setzen, wenn sie die
Zahl Zwei darstellen wollen. Die Zahlendarstellung mit nur zwei Ziffern nennen wir
"binar" (bzw. Binarsystem).

Analog zu unserer Ublichen Vereinbarung, dass
40 = 4+10" + 0 +10°

ist, gilt fir Bindrzahlen ebenfalls
10=12" +0-2°

bzw. 11= 1:2"+1:2°

Wir verwenden Zweier-Potenzen, das wir genau zwei Ziffern (0 und 1) haben.
Dieses Prinzip kann man auf beliebig lange Binédrzahlen anwenden. Eine weitere
Vereinbarung aus unserem ublichen Dezimalsystem, namlich dass fuhrende
Nullen zul&ssig sind (es ist egal ob wir 7 oder 007 schreiben), ermdglicht uns, die
folgende Tabelle aufzustellen:

binar Zweierpotenz dezimal
0000 keine 0
0001 2° 1
0010 2! 2
0100 2° 4
1000 2° 8

Arbeit mit numerischen Ausdriicken - 73

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Jede Zahl kann man als Summe dieser "elementaren" Zweierpotenzen darstellen,
z.B. ist

1010=2*+2'=8+2=10

In der Computertechnik wird eine einzelne Binéarstelle als Bit bezeichnet. Ist der
Wert 1, sagt man, das Bit ist "gesetzt", andernfalls ist es "nicht gesetzt". Es ist
ublich, die Bits von rechts beginnend durchzunummerieren, wobei die ganz rechte
Stelle als Bit Null bezeichnet wird. Das hat fur den Mathematiker den Vorteil, dass
die Bitposition gleich dem Potenzwert ist (Bit 0 : 2°, Bit 1 : 2" usw.).

Im Beispiel oben (1010) sind also die Bits 1 und 3 gesetzt.

Mit einem Bit kann man 2' = 2 Zahlen darstellen, bei zwei Bit sind es bereits 2° = 4
Zahlen (00, 01, 10 und 11) und mit 4 Bit sind es 2* = 16 Zahlen. Das ist noch nicht
sehr viel. Daher fasst man 8 Bit zu einem Byte zusammen. Ein Byte enthalt also
die Bits 0 bis 7:

71651413 |2|1]0

Damit kann man 2° = 256 verschiedene Zahlen darstellen (0 bis 255). Wenn das
nicht reicht, nimmt man 16 Bit, ein sogenanntes Word. Hier kommt man auf

2'® = 65536 Zahlen (0 bis 65535). Fir gehobene Anspriiche gibt es noch das
DWord (Double word) mit 32 Bit, dort reicht der Zahlenbereich bis 4294967295.

Bereits bei einem Byte wird die Binérdarstellung untbersichtlich. Man erfasst den
Unterschied zwischen 10010101 (= 149) und 10101001 (=169) nicht mehr auf den
ersten Blick. Deswegen hat es sich als praktisch erwiesen, jeweils 4 Binarziffern
zusammenzufassen. Mit vier Binarziffern (4 Bit) kann man aber 16
Zahlendarstellen - die Ziffern 0 bis 9 reichen da nicht mehr. Man behilft sich daher
mit den ersten Buchstaben des Alphabets (konkret A bis F). Diese Darstellung
nennt man hexadezimal (hexa = 6, dezi = 10).

binar hexadezimal dezimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Arbeit mit numerischen Ausdriicken - 74

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Nach einiger Ubung kommt man mit dieser zunachst sehr exotisch anmutenden
Zahlendarstellung gut zurecht und wird bald die Vorteile zu schatzen wissen
Einige Beispiele:

1001 0101 =95 (hex.) (=149 dez.)
1010 1001 = A9 (hex.) (=169 dez.)
1111 1111 = FF (hex.) (=255dez.)
1100 0111 = C7 (hex.) (=199 dez.)

Aus der Tabelle wird ein Problem ersichtlich: ohne Kommentar kann man nicht
entscheiden, ob z.B. 1001 dezimal oder bindr gemeint ist (oder sogar hexa-
dezimal?). Daher ist es in Programmiersprachen Ubliche, das Zahlensystem zu
kennzeichnen. In R-BASIC gilt folgende Vereinbarung:

ohne Kennung: dezimal z.B. 12

Kennung &H: hexadezimal
Far C-Programmierer: Ox: Hexadezimal
Kennung &B: binar

z.B. &H95 (= 149 dez.)
z.B. 0x95 (= &H95 = 149 dez.)
z.B. &B1100 (= 12 dez.)

Rein formal kann man auch beim Hexadezimalsystem mit der Potenzdarstellung
arbeiten, nur dass hier die Basis 16 verwendet werden muss (beachte: 16° = 1):
&h95 =9:16' + 5:16° =144 +5 =149
&hA9 = A-16' + 9-16° =10-16"+9:16° =160 + 9 = 169
Dieses Verfahren kann man verwenden, wenn man Hexadezimalzahlen "von
Hand" in Dezimalzahlen umwandeln muss. Die meisten wissenschaftlichen
Taschenrechner verfugen aber heute Uber entsprechende Funktionen.

R-BASIC bietet Uber das Menl "Extras" -> "Tools" ein kleines Programm an
(HBDConverter, © by John Howard and used by permission), mit dem man
Binar-, Dezimal- und Hexadezimalzahlen ineinander umrechnen kann. Das Pro-
gramm ist in der Standardinstallation von R-BASIC nicht enthalten, es muss
separat von der R-BASIC-Webseite heruntergeladen werden.

AuBerdem gibt es die Stringfunktionen Hex$() und Bin$(), mit denen Sie Zahlen
in hexadezimaler und binarer Darstellung ausgeben kbénnen.

Was passiert eigentlich, wenn man bei einem Byte zu der gréBten darzustellenden
Zahl (255 = &HFF) noch Eins addiert? Eigentlich kommt ja 256 (=&H100) heraus.
Im Binarsystemsieht das so aus:

1111 1111

+ 1

1 0000 0000
Diese Zahl hat 9 Bit und kann in einem Byte nicht mehr dargestellt werden. Man
hat festgelegt, dass in einem solchen Fall, die wir Uberlauf nennen, die filhrenden
Bits, die nicht in das Byte passen, ignoriert werden: 255 + 1 ist also in diesem Fall
Null. "In diesem Fall" heiBt, dass wir das Ergebnis in einem Byte speichern wollen.
Haben wir ein Word (16 Bit) zur Verfigung, kénnen wir das Ergebnis sehr wohl

Arbeit mit numerischen Ausdriicken - 75

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

abspeichern und es kommt 256 heraus. Erst 65535 + 1 ergabe 65536, was nicht
mehr in ein Word passt und daher wieder Null ergibt. Dieses Phanomen muss
man kennen, wenn man mit Bits und Bytes direkt arbeitet.

Das Problem des Uberlaufs fiihrt immer wieder zu schwer auffindbaren Fehlern. In
R-BASIC sollte daher nach Moglichkeit der Datentyp REAL (Genauigkeit 10 Byte)
verwendet werden. Da intern alle Berechnungen mit REAL-Zahlen ausgeflhrt
werden, ist dieser Datentyp auch fast am schnellsten. Nur WWFixed ist schneller.

Wenn Sie die "kleinen" Datentypen verwenden muissen, stehen Ihnen in R-BASIC
die Typen Byte, Word , Integer, DWord, Longint (4 Byte, mit Vorzeichen) sowie
der Typ WWEFixed zur Verfigung. Im Kapitel 2.2.2 (Numerische Datentypen und
numerische Ausdriicke) finden Sie weitere Informationen dazu.

Und nun noch die verrickten Mathematiker ... (oder: Futter fir Fortgeschrittene)

Ein Mathematiker wird sich schnell beschweren, dass es keine negativen Zahlen
gibt. Aber ihm kann geholfen werden. Wie bereits mehrfach erwéhnt, basiert bei
der Zahlendarstellung sehr viel auf Vereinbarungen.
Wie wir gerade gesehen haben ergibt, wenn wir ein Byte binéar betrachten,
11111111+ 1 =0
Also muss gelten:
0O-1=1111 1111
0—1 ist aber —1. Es ergibt daher Sinn, wenn man negative Zahlen bendtigt,
festzulegen, dass alle Zahlen, deren fihrendes Bit gesetzt ist (beim Byte also Bit
7, beim Word das Bit 15), negative Zahlen sein sollen.

0000 0000 =0
1111 1111 = -1
1111 1110 =-2
usw. bis

1000 0000 =- 128
Man kann in einem Byte also Zahlen von —128 bis +127 darstellen - insgesamt
wieder 256 verschiedene Zahlen. Man nennt diese Darstellung "Zweierkomple-
ment".
Offensichtlich ist es nur eine Frage der Vereinbarung, ob man die Binarzahl
1111 1111 als -1 oder als + 255 auffasst. Das ist sicher anféanglich sehr verwirrend
und zum Gluck bendétigt man diese Informationen nur sehr selten.
Dem Computer ist das letztlich egal, denn die Rechenregeln sind so aufgestellt,
dass er immer so tun kann, als seien alle Zahlen positiv. Tun wir es ihm nach.

Arbeit mit numerischen Ausdriicken - 76

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.5 Logische Operatoren und Bit-Operationen

In R-BASIC sind die folgenden bitweisen logischen Operatoren und Funktionen
definiert:

Operator / Funktion Funktion

NOT A bitweise Negation

A AND B bitweises logisches UND

A OR B bitweises logisches ODER

A XOR B bitweises logisches Exklusiv ODER
SHL bitweises Linksschieben, 16 Bit
Shi32 bitweises Linksschieben, 32 Bit
SHR bitweises Rechtsschieben, 16 Bit
Shr32 bitweises Rechtsschieben, 32 Bit

Zur Arbeit mit den bitweisen logischen Operationen sind die folgenden Konstanten
hilfreich:

Konstante Wert Bedeutung
FALSE 0 Wahrheitswert "falsch"
TRUE —1 Wahrheitswert "wahr"

TRUE ist als -1 definiert, weil in der Binardarstellung dann alle Bits gesetzt sind.
Das ermdglich eine einfache Zusammenarbeit von Vergleichen (sie liefern TRUE
oder FALSE) und logischen Operationen (z.B. AND oder OR).

2.3.5.1 Logische Ausdricke in Entscheidungen

In einigen Situationen (z.B. bei den Anweisungen IF und WHILE, siehe
Kapitel 2.5) muss R-BASIC Entscheidungen treffen. Dazu wird ein numerischer

Ausdruck ausgewertet. In vielen Féllen ist das einfache Vergleichsoperation.
Beispiele:

IF A > B THEN ...

IF (A + B) > 12 THEN ...
WHILE A > 0

WEND

Gelegentlich mussen aber mehrere Bedingungen erflllt sein. Zum Beispiel kann

es sein, dass A>B und C<0 gleichzeitig gelten muss. Oder es reicht aus wenn
eine der Bedingungen X>Y oder Z<0 erfullt ist.

Naturlich kann man die Bedingungen nacheinander abfragen. Aber eleganter und
effizienter ist es, die Bedingungen durch logische Operationen zu verknupfen.

Arbeit mit numerischen Ausdriicken - 77

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Wenn R-BASIC eine Vergleichsoperation ausfihrt kann das Ergebnis wahr
(TRUE) oder falsch (FALSE) sein. Fur die VerknlUpfung mithilfe logischer
Operatoren gilt folgendes:
NOT A ist wahr, wenn A falsch ist und umgekehrt.
+ A AND B ist wahr, wenn sowohl A als auch B wahr sind
+ A ORB (logsiches ODER) ist wahr, wenn A oder B, oder beide wahr sind
+ A XOR B (exklusives ODER) ist wahr, wenn entweder A oder B wahr sind.
Sind beide wahr liefert A XOR B falsch.

Die folgende Tabelle verdeutlicht das. A und B seien Ergebnisse einer Vergleichs-
operation, die wahr (W, TRUE, —1) oder falsch (F, FALSE, 0) sein kénnen.

A B NOT A A AND B AORB A XOR B

F F w F F F

F w w F w w

w F F F w w

w w F w w F
Beispiele

Da die Vergleichsoperatoren héher priorisiert sind als die logischen Operatoren
fihrt R-BASIC zuerst die Vergleiche aus und verknlpft deren Ergebnisse an-
schlieBend mit den logischen Operationen. Wenn Sie mehrere logische
Operatoren verwenden sollten Sie Klammern setzten.

IF A > (0 THEN ...

IF A >0 OR Name$ = "Paul" THEN ...

IF (A>= 0 AND A <=9) OR (A >= 100 AND A <= 109) THEN ...
REPEAT

UNTIL C > 0 AND D = 7

Wenn R-BASIC eine Entscheidung trifft (IF, WHILE, UNTIL) prift es, ob der
entsprechende numerische Ausdruck Null ist oder nicht. Jeder Wert, der nicht
Null ist, wird als wahr angesehen. Folgende Formulierungen sind daher
gleichwertig:

IF A <> 0 THEN ...
IF A THEN ...

Ein Wert kann also "wahr" sein (z.B. 12) ohne TRUE (—1) zu sein. Vermeiden Sie
daher Formulierungen wie die folgende, das kann zu schwer zu findenden Fehlern
fuhren.

' Moglicherweise fehlerhafter Code:
IF A = TRUE THEN .. ' ist nur erfillt, wenn A den
" Wert —1 hat

Arbeit mit numerischen Ausdriicken - 78

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.5.2 Anwendung der logischen Operatoren auf Zahlen

Achtung! Das ist ein sehr komplexes, aber auch ein sehr leistungsfahiges Thema.
Kenntnisse in Logik, der Binar- und Hexadezimal-Darstellung von Zahlen sind
hilfreich.

Intern werden die logischen Operatoren bitweise auf 16-Bit Zahlen (Datentyp
Word) angewandt. Andere Datentypen werden vorher in den Datentyp Word
konvertiert.

Dadurch kénnen die logischen Operatoren auch auf alle Zahlen angewendet und
in numerischen Ausdricken verwendet werden. Beispiele:

DIM A, B, Y
A =3 ' einfache Zuweisung
B = 7 AND A
Y =B OR 4
Y=NOT ((A +5) AND 7)

Wichtig ist das Setzen von Klammern. Der Compiler hat zwar eine bestimmte
Hierarchie bei der Abarbeitung der logischen Operatoren, es kommt hier jedoch
sehr schnell zu Fehleinschatzungen von Seiten des Programmierers.
Insbesondere gilt, dass auch hinter NOT stets der gesamte numerische Ausdruck
ausgewertet wird. Klammern beschranken den Wirkungsbereich von NOT nicht,
weil NOT keine Funktion sondern ein Operator ist. Die Anweisung

y = NOT(4) + 1

ist deshalb identisch mit

y = NOT 5 " bzw y = NOT ((4) + 1)

und nicht mit

y = (NOT 4) + 1

Zum Verstandnis der Wirkung von logischen Operatoren auf Zahlen muss man die
Zahlen in die Binar-Darstellung umwandeln. Binarzahlen sind im Kapitel 2.3.4
erklart.
Bei der logischen Verknupfung von Zahlen passiert folgendes:
- Die Operanden werden in ein 16-Bit-Bitmuster umgewandelt (Datentyp: Word)
-Die Bitmuster werden entsprechend der folgenden Tabelle bitweise
miteinander verknupft.

Tabelle: Logische Operatoren bei Anwendung auf einzelne Bits

A B NOT A A AND B AORB AXORB
0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Arbeit mit numerischen Ausdriicken - 79

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel fur die Anwendung logischer Operatoren auf Zahlen. Aus Platzgrinden
werden in der Bin&rdarstellung nur die unteren 4 Bit betrachtet. In Klammern steht
die zugehorige Dezimalzahl.

A B A AND B AORB A XOR B
0011 (= 3) 0100 (= 4) 0000 (=0) | 0111 (=7) 0111 (= 7)
0100 (= 4) 0111 (= 7) 0100 (=4) | 0111 (=7) 0011 (= 3)
0111 (= 7) 0011 (= 3) 0011 (=3) | 0111 (=7) 0100 (= 4)

Die logische Operation NOT negiert alle Bits. Die folgende Tabelle verdeutlicht
das.

A Binardarstellung NOT A (binéar) NOT A
3 0000 0000 0000 0011 | 1111 1111 1111 1100 65532
7 0000 0000 0000 O111 | 1111 1111 1111 1000 65528

TRUE (-1) | 1111 1111 1111 1111 | 0000 0000 0000 0000 | O (FALSE)

Wenn Sie mit Hilfe der logischen Operatoren Bit-Manipulationen vornehmen,
sollten Sie Variablen vom Datentyp WORD oder BYTE verwenden, um
unerwartete Ergebnisse zu vermeiden. Insbesondere kann es passieren, dass
negative Zahlen auftreten. Dies ist kein Fehler, denn es ist auch méglich, negative
Zahlen mit logischen Operatoren zu verknipfen. Dazu muss man folgendes
wissen:

* Logische Operatoren arbeiten gleichwertig mit vorzeichenbehafteten und mit
vorzeichenlosen 16-Bit-Zahlen.

+ Eine vorzeichenbehaftete 16-Bit-Zahl ist negativ, wenn das hdchstwertige Bit
(Bit 15) gesetzt ist.

« Die Zusammenarbeit von logischen Operatoren mit den Vergleichs-
operatoren funktioniert deshalb, weil in — 1 alle Bits gesetzt sind, wéhrend in
der Null kein Bit gesetzt ist. Deswegen ist TRUE als — 1 definiert

- Die bitweise Verwendung von vorzeichenbehafteten Ganzzahlen macht
selbst erfahrenen Programmieren oft Mihe.

Mann kann die logischen Verknipfungen von Zahlen auch direkt in einer IF-
Anweisung (bzw. WHILE-WEND oder REPEAT-UNTIL-Anweisung) verwenden.
Allerdings muss man hier beachten, dass jede Zahl, die nicht Null ist, als "wahr"
interpretiert wird. Im folgenden Codefragment wird deshalb der THEN-Zweig nicht
abgearbeitet. Der Grund ist, das die logische VerknlUpfung 4 AND 2 den Wert Null
liefert.

DIM A, B
A =4
B =2

IF A AND B THEN

End IF

Arbeit mit numerischen Ausdriicken - 80

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.5.3 Bit-Schiebe-Operationen

Um die in diesem Abschnitt beschriebenen Kommandos verwenden zu kdnnen
sollten Sie sich mit der Binardarstellung von Zahlen (siehe Kapitel 2.3.4)
auskennen.

SHL, ShiI32

Die Funktion SHL (Shift Left - schiebe nach links) flhrt eine bitweise Schiebe-
operation auf ein 16-Bit-Word aus. Shi32 fiihrt diese Operation auf ein 32-Bit-
DWord aus. Die niederwertigen Bits werden mit Null aufgefullt, die héchstwertig-
sten Bits gehen verloren.

Syntax: <numVar> = SHL (x, n)
<numVar> = Shl32 (x, n)
x:numerischer Ausdruck
16-Bit-Word bei SHL, 32-Bit-DWord bei Shi32
n: Anzahl der Bits, um die geschoben werden soll.

Bit-Nr: 14 12 10 8 6 4 2 0

LITTTIT [T [ed44—41—SHE

Beispiel:
y = SHL(7, 2)
' 7 ist binar 000111, also ist y = 011100 (binadr), d.h. y = 21

SHR, Shr32

Die Funktion SHR (Shift Right - schiebe nach rechts) fuhrt eine bitweise
Schiebeoperation auf ein 16-Bit-Word aus. Shr32 fiihrt diese Operation auf ein 32-
Bit-DWord aus. Die hochstwertigen Bits werden mit Null aufgefillt, die nieder-
wertigsten Bits gehen verloren.

Syntax: <numVar> = SHR (x, n)
<numVar> = Shr32 (x, n)
x:numerischer Ausdruck
16-Bit-Word bei SHL, 32-Bit-DWord bei Shi32
n: Anzahl der Bits, um die geschoben werden soll.

Bit-Nr: 14 12 10 8 6 4 2 0

rrtr++r| [[[[[]][] SHR

Beispiel:

y = SHR(12, 2)
'’ 12 ist bindr 001100, also ist y = 000011 bindr, d.h. y =

Arbeit mit numerischen Ausdriicken - 81

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.5.4 Sonderfall: Bitflags

In vielen Fallen ist es so, dass ein Wert vom Datentyp WORD so interpretiert
werden muss, dass jedes einzelne Bit eine eigene Bedeutung hat. Jedes Bit zeigt
an, ob eine bestimmte Eigenschaft vorhanden ist oder nicht. Es ist wie eine Flagge
(englisch: flag), die gesetzt sein kann (das Bit ist 1) oder nicht (das Bit ist Null). In
dieser Situation sagt man, der Wert enthélt Bitflags. Alternativ wird auch der
Begriff Flagbits verwendet.

Ein Beispiel ist die globale Variable printFont.style. Die einzelnen Bits enthalten
jeweils die Information ob der Text zum Beispiel fett (Bit TS_BOLD gesetzt),
unterstrichen (TS_UNDERLINE gesetzt) oder kursiv (Bit TS_ITALIC gesetzt)
ausgegeben werden soll. Sind alle drei Bits gesetzt, so wird der Text fett kursiv
und unterstrichen ausgegeben.

Ein anderes Beispiel ist die Instancevariable csFeatures des ColorSelector-
Objekts. Sie enthalt fur jedes Ul-Element, dass der ColorSelector darstellen kann,
ein Bit, das angibt, ob dieses Ul-Element gezeigt oder verborgen werden soll.
Gerade bei Instancevariablen und Ul-Objekten kommen Bitflags relativ haufig vor.

Die Herausforderung bei Bitflags besteht darin, dass einzelne Bits gesetzt,
zurickgesetzt oder angefragt werden muissen, ohne dass die anderen Bits
beeinflusst werden. Hier helfen uns die logischen Operatoren (NOT, AND, OR,
XOR) weiter.

Um ein Bit zu setzen verwenden wir die Operation OR. Das Ergebnis einer OR-
Operation ist wahr, wenn mindestens einer der Operanden wahr ist.

neueBitFlags = alteBitFlags OR bitsZuSetzen

Beispiele zum Setzen von Bits mit OR

alte BitFlags Bits zu Setzen neue Bitflags
0000 1000 1000
1000 1000 1000
1000 1001 1001
0011 1001 1011

Beispiel: Setzen des Bits TS_BOLD in der globalen Variablen printFont.style. Die
Textausgabe erfolgt anschlieBend fett, egal ob sie vorher schon fett erfolgte oder
nicht.

printFont.style = printFont.style OR TS BOLD

Es ist méglich, mehrere Bits gleichzeitig zu setzen. Das folgende Codefragment
stellt sicher, dass sowohl das Bit TS_BOLD als auch das Bit TS_ITALIC gesetzt
sind.

printFont.style = printFont.style OR TS BOLD OR TS ITALIC

Arbeit mit numerischen Ausdriicken - 82

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Um ein Bit zu zurlickzusetzen (zu l6schen) verwenden wir die Operatoren AND
und NOT. Zuerst invertiert die NOT-Operation alle zu I6schenden Bits, dann setzt
die AND-Operation die zum Léschen vorgesehenen Bits auf Null.

neueBitFlags = alteBitFlags AND (NOT bitsZuLochen)

Die Klammern sind eigentlich nicht nétig, da die NOT-Operation héher priorisiert
ist, als die AND-Operation. Es wird aber dringend empfohlen bei Verwendung von
mehreren logischen Operatoren innerhalb einer Anweisung Klammern zu setzen.
Der Compiler vertut sich niemals mit der Hierarchie, der Programmierer schon.

Beispiele zum Ldschen von Bits mit AND und NOT

BitFlags Bits zu L6schen negierte Bits (nach NOT) Ergebnis
0000 0001 1110 0000
1111 0001 1110 1110
1101 1000 0111 0101
1100 1001 0110 0100
1011 1111 0000 0000

Beispiel: Loschen des Bits TS_BOLD in der globalen Variablen printFont.style. Die
Textausgabe erfolgt anschlieBend nicht fett, egal ob sie vorher fett erfolgte oder
nicht.

printFont.style = printFont.style AND (NOT TS BOLD)

Es ist mdglich, mehrere Bits gleichzeitig zu I6schen. Dazu missen die zu
I6schenden Bits zunachst OR-Verknlpft werden. In diesem Fall ist notwendig um
die zu léschenden Bit eine Klammer zusetzen, weil OR niedriger priorisiert ist als
NOT. Der Compiler gibt daher eine Warnung aus, wenn wir die Klammern
vergessen.

Das folgende Codefragment stellt sicher, dass sowohl das Bit TS_BOLD als auch
das Bit TS_ITALIC gel6scht sind.

printFont.style = printFont.style AND \
(NOT (TS BOLD OR TS TITALIC))

Um ein Bit zu invertieren verwenden wir die Operation XOR. Das Ergebnis einer
XOR-Operation ist nur dann wahr, wenn genau einer der Operanden wahr ist.
Sind beide wahr ist das Ergebnis falsch.

neueBitFlags = alteBitFlags XOR bitsZuInvertieren

Arbeit mit numerischen Ausdriicken - 83

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiele zum Invertieren von Bits mit XOR

alte BitFlags Bits zu Invertieren neue Bitflags
0000 1000 1000
1000 1000 0000
1000 1001 0001
0011 1001 1010
1011 1111 0100

Beispiel: Invertieren des Bits TS_UNDERLINE in der globalen Variablen print-
Font.style. Die Textausgabe erfolgt anschlieBend unterstrichen, wenn sie vorher
normal erfolgte. War sie vorher unterstrichen erfolgt sie jetzt normal.

printFont.style = printFont.style XOR TS UNDERLINE

Es ist moglich, mehrere Bits gleichzeitig zu invertieren. Dazu mussen die zu
invertierenden Bits zunachst OR-Verknupft werden. In diesem Fall ist notwendig
um die zu lI6schenden Bit eine Klammer zusetzen, weil OR niedriger priorisiert ist
als NOT. Der Compiler gibt daher eine Warnung aus, wenn wir die Klammern
vergessen.

Das folgende Codefragment schaltet sowohl das Bit TS_BOLD als auch das Bit

TS_ITALIC um.
printFont.style = printFont.style XOR (TS BOLD OR TS ITALIC)

Um ein Bit abzufragen verwenden wir die Operation AND. Das Ergebnis einer
AND-Operation ist wahr, wenn beide Operanden wahr sind.

ergebnis = bitFlags AND bitsZuTesten
Beispiele zum Abfragen von Bits mit AND
BitFlags Bits zu Testen Ergebnis
0000 1000 0000
1000 1000 1000
0111 1000 0000
0110 1001 0000
1111 1001 1001
1100 1001 1000

In der letzten Zeile der Tabelle ist zu sehen, dass das Ergebnis ungleich Null ist,
obwohl nur eins der zu testenden Bits gesetzt ist. In einer IF-Anweisung wird aber
jeder Wert ungleich Null als wahr angesehen. Deswegen mussen wir beim Testen
von mehreren Bits unterscheiden, ob es uns reicht, dass eins der zu prifenden
Bits gesetzt ist oder ob alle Bits gesetzt sein mussen.

Arbeit mit numerischen Ausdriicken - 84

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel: Testen, ob das Bit TS_BOLD in der globalen Variablen printFont.style
gesetzt ist. Der THEN-Zweig wird ausgefuhrt, wenn das Bit gesetzt ist, egal wie
die anderen Bits aussehen.

IF printFont.style AND TS BOLD THEN

END TIF

Abfrage von mehreren Bits

Wenn es ausreicht zu wissen, ob eins der zu prufenden Bits gesetzt ist, reicht eine
einfache Abfrage mit AND aus (siehe auch Tabelle vorn). In der Zahl 3 sind die

Bits Null (2° = 1) und Eins (2' = 2) gesetzt. Das folgende Codefragment fragt ab,
ob in der Variablen A das Bit Null oder das Bit Eins (oder beide) gesetzt sind.

IF A AND 3 THEN

END IF

Beispieltabelle fur das Codefragment oben

Variable A Bits zu Testen Ergebnis THEN Zweig ausfuhren?
0000 (= 0) 0011 0000 nein

0001 (= 1) 0011 0001 ja

0010 (= 2) 0011 0010 ja

0011 (=3) 0011 0011 ja

0100 (= 4) 0011 0000 nein

0101 (=5) 0011 0001 ja

Wenn wir sicherstellen wollen, dass alle zu prifenden Bits gesetzt sind missen
wir das Ergebnis der AND-Verknipfung mit den zu prifenden Bits vergleichen.
Das folgende Codefragment zeigt das wieder am Beispiel der Bits Null und Eins
(Vergleichswert: 2' + 2° = 3). Die Klammern sind erforderlich, weil Vergleiche
hoher priorisiert sind als die AND-Operation!

IF (A AND 3) = 3 THEN

END IF

Beispieltabelle fiir das Codefragment oben. Beachten Sie die letzte Zeile!

Variable A Bits zu Testen A AND 3 THEN Zweig ausfuhren?
0000 (= 0) 0011 0000 nein

0001 (= 1) 0011 0001 nein

0010 (= 2) 0011 0010 nein

0011 (= 3) 0011 0011 ja

0100 (= 4) 0011 0000 nein

0111 (=7) 0011 0011 ja

Arbeit mit numerischen Ausdriicken - 85

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.6 Schnelle Mathematik mit WWFixed

Der hohen Genauigkeit und dem groBen Wertebereich des Zahlenbereichs REAL,
mit der R-BASIC im Normalfall rechnet, steht als Nachteil eine h6here Rechenzeit
gegenuber. R-BASIC bietet deswegen mit den Datentyp WWFixed (Word-Word-
Fixed) die Moglichkeit, von der schnelleren Ganzzahlarithmetik zu profitieren. Da
der Zeitbedarf zum Lesen und Schreiben von Variablen sowie der Analyse des
mathematischen Terms gleich bleibt héngt der erreichbare Geschwindigkeitsvorteil
etwas von der Situation ab. Reine WWFixed-Berechnungen laufen ca. 25% bis
30% schneller. Wenn Sie innerhalb eines WWFixed-Ausdrucks auf Real-Variablen
zugreifen verringert sich der Laufzeitvorteil wegen der notwendigen Konver-
tierungen geringfugig.

Im Folgenden werden "normale" numerische Ausdricke mit den Datentypen
REAL, Byte, Word, DWord, Integer und Longlnt als "Real"-Ausdricke bezeichnet.
Hier rechnet R-BASIC immer mit 10-Byte Real-Zahlen. Im Gegensatz dazu stehen
die "WWFixed"-Ausdrlcke, in denen R-BASIC die schnellere Ganzzahlarithmetik
verwendet.

Konvertierungsfunktionen

WWFixed-Werte sind nur begrenzt zuweisungskompatibel mit den anderen
numerischen Datentypen. Das ist Absicht, damit nicht durch die gemischte
Verwendung von Real- und WWFixed-Werten der Performancegewinn unab-
sichtlich aufgebraucht wird.

Wenn Sie das Ergebnis einer WWFixed-Rechnung in einem Real-Ausdruck ver-
wenden wollen oder einen Real-Wert in eine WWFixed-Rechnung einbinden
mochten missen Sie in meistes die folgenden schnellen Konvertierungsroutinen
benutzen. Es gibt jedoch auch Ausnahmen, die weiter unten beschrieben sind.

Funktion Bedeutung

MakeFixed(x) Rechnet einen REAL-Wert in einen WWFixed-Wert um.
FixToReal(x) Rechnet einen WWFixed-Wert in einen REAL-Wert um.
FixToWord(x) Rechnet einen WWFixed-Wert in einen REAL-Wert um.

Die Zahl wird zuerst gerundet (x=ROUND(x)), das
Ergebnis wird als Word-Wert interpretiert. Negative
Zahlen werden so zu Werten gréBer als 32767.

Beispiele

DIM f1, f2 AS WWFixed
DIM a as REAL
f1 = MakeFixed(MyNumberObj.value)
f2 = MakeFixed(ASC("A"))
LINE 0, 0, FixToWord(fl1), FixToWord (f1 + f2)
MyNumberObj.value = FixToReal (fl1 * f2)
a = FixToReal (fl1/£2)

Arbeit mit numerischen Ausdriicken - 86

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Der Datentyp WWFixed besteht intern aus einem DWord. Das héherwertige Word
wird als vorzeichenbehafteter ganzzahliger Anteil interpretiert (Wertebereich:
Integer), das niederwertige Word ist der gebrochene Anteil. Ein Bit entspricht

damit einem Wert von 1,526+10™°. Daraus ergibt sich ein Wertebereich von

— 32768.0000 <= x <= 32767.99999

mit einer Genauigkeit von 4 Stellen nach dem Komma. Diese Genauigkeit ist fur
viele Anwendungen vollig ausreichend.

Sie kbnnen Berechnungen mit WWFixed-Werten genau so programmieren, wie
mit jedem anderen numerischen Datentyp. Es gibt jedoch drei Ausnahmen:
+ Die Verwendung von einigen mathematischen Funktionen ist nicht zulassig.
In den Tabellen unten finden Sie die zugelassenen Funktionen.
+ Das Lesen von numerischen Instancevariablen ist nicht zulassig.
+ Die Verwendung der Operationen MOD und * (x-hoch-y) ist nicht méglich.
Sie missen in diesen Fallen die Konvertierungsfunktion MakeFixed() benutzen.

Der Compiler erwartet einen WWFixed-Ausdruck in zwei Fallen
1. Wir haben eine Zuweisung zu einer WWFixed Variablen.
2. Wir haben eine Sub oder Function, die einen WWFixed Parameter erwartet.

Zulassig fur WWFixed-Ausdricke sind:

+ Zahlen (in beliebiger Schreibweise, auch mit bindr, hexadezimal und mit
Exponent)

* Numerische BASIC-Konstanten (wie z.B. Pl oder GREEN) und selbst
definierte Konstanten (Anweisung: CONST). Der R-BASIC Compiler rechnet
den Wert automatisch in eine WWFixed-Zahl um.

+ Grundrechenarten und Klammern

+ Variablen vom Typ WWFixed

+ Funktionen (auch selbst definiert) mit dem Ruckgabetyp WWFixed

+ Logische Operatoren

* Vergleichsoperatoren

Um den extensiven Gebrauch der Konvertierungsfunktionen zu vermeiden sind
zusatzlich folgende Elemente zuléssig:

+ Variablen der anderen numerischen Datentypen. Die Werte werden von R-
BASIC automatisch in den Datentyp WWFixed konvertiert.

* Die in den Tabellen unten ausgewiesenen numerischen Funktionen. R-
BASIC verwendet in diesem Fall nicht den gleichen Code wie fir Real-
Funktionen, sondern spezielle, fur die Verwendung von WWFixed-Werten
angepasste Funktionen.

Berechnungen mit WWFixed Werten fiihrt R-BASIC mit der schnellen 32 Bit Ganz-

zahlarithmetik durch. Es erfolgt keine Fehlerprifung. Das bedeutet:

- Ubertrage werden nicht erkannt. Multipliziert oder addiert man zum Beispiel
zwei WWFixed-Zahlen und das Ergebnis ist groBer als 32768, so werden die
héherwertigsten Bits abgeschnitten. Das Ergebnis ist selbst fur erfahrene
Programmierer schwer vorherzusehen. Haufig entstehen sogar negative
Zahlen.

Arbeit mit numerischen Ausdriicken - 87

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

+ Division durch Null oder die Wurzel aus einer negativen Zahl fuhrt nicht zu

einem Fehler, sondern zu einem zufélligen Wert.
+ Zuweisung von Werten auBerhalb des gultigen Wertebereichs fuhrt haufig zu
"unerwarteten" Ergebnissen.

Priifen Sie vor der Verwendung von WWFixed-Berechnungen unbedingt, ob

die Berechnungen den zulassigen Wertebereich nicht tiberschreiten kénnen.
Die Verletzung dieser Regel kann zu schwer auffindbaren Fehlern fuhrten!

Rechenoperationen

Innerhalb von WWFixed-Ausdriicken sind die folgenden Rechenoperationen
erlaubt:

Operationen Bedeutung
+ = 50() Grundrechenarten, Klammern
AND, OR, XOR, NOT | bitweise logische Operationen
< <=, =, >, 5=, < Vergleiche

Die Operationen MOD (Division mit Rest) und * (x-hoch-y) sind innerhalb von
WWFixed-Ausdricken nicht zulassig.

Beispiele:
DIM a, b, c AS WWFixed
CONST f = PI/2

a = 12.5

b =180 * £ * a

c =12 *(a + b) / PI

PRINT "Ergebnis = "; FixToReal(c)

DIM a, b, c AS WWFixed
b =a OR 7
c a AND 2

Die logischen Operationen liefern WWFixed-Werte, wenn Sie in WWFixed-
Ausdricken verwendet werden. Auch hier missen Sie die Konvertierungsfunktion
FixToReal benutzen, wenn Sie logische Operationen mit WWFixed-Werten
innerhalb einer Entscheidungsanweisung verwenden.

Beispiele:

DIM fa, fb AS WWFixed
fa = fb OR 4 ' einfache Zuweisung

IF FixToReal(fa AND 2) THEN ...
WHILE FixToReal(fa AND 1)

WEND

Arbeit mit numerischen Ausdriicken - 88

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Die Vergleichsoperationen liefern TRUE (numerischer Wert: —1) oder FALSE
(numerischer Wert: 0). Das Ergebnis ist ein WWFixed-Wert. Da IF-Anweisungen
(und andere Entscheidungsoperationen wie WHILE) einen Real-Ausdruck
erwarten mussen Sie hier die Konvertierungsfunktion FixToReal benutzen.

Beispiele:

DIM fa, fb AS WWFixed
IF FixToReal(fa > fb) THEN ...
WHILE FixToReal(fa < 0)

WEND

Einfache mathematische Funktionen:

Um den gehauften Aufruf der Konvertierungsfunktionen zu vermeiden, kénnen
innerhalb von WWFixed-Ausdricken die folgenden einfachen numerischen
Funktionen verwendet werden. Der Compiler erkennt dabei, dass es sich um
einen WWFixed-Ausdruck handelt und compiliert den Aufruf einer fir WWFixed
optimierten Routine. Dadurch profitieren diese Funktionen ebenfalls vom
Geschwindigkeitsvorteil der WWFixed-Mathematik. Syntaktisch unterscheidet sich
die Verwendung der Funktionen nicht von ihren Real-Versionen. Ausnahme ist die
Round-Funktion. Hier ist kein zweiter Parameter zulassig und bei x.5 wird immer
nach unten gerundet.

Funktion Bedeutung

Abs(x) Absoluter Betrag von x: Ix

Sgn(x) Signum-Funktion (Vorzeichen-Funktion)
Liefert —1 (negativ), 0 oder +1 (positiv)

Int(x) Liefert die nachst kleinere ganze Zahl, d.h. es wird nach
unten gerundet: Int(x) < x

Trunc(x) Kirzt x auf seinen ganzahligen Anteil, d.h. es wird

Richtung Null gerundet. Trunc(x) und Int(x) unter-
schieden sich bei negativen x.

Frac(x) Liefert den gebrochenen Anteil von x, d.h. die Nach-
kommastellen. Das Ergebnis ist immer positiv.

Round(x) Rundet x auf die nachste ganze Zahl

SizeOf(x) Berechnet den Speicherbedarf einer Variablen oder

eines Datentyps. Der Wert wird vom Compiler ermittelt
und als Zahl gespeichert.

Beispiele:
DIM a, b, c, d as WWFixed
a=12.3
b = INT(a)
c = FRAC(a)
d = 4 * ROUND(a) - b * SizeOf (WWFixed)

Arbeit mit numerischen Ausdriicken - 89

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Hbéhere mathematische Funktionen:

Fir WWFixed-Ausdricke sind die folgenden hdéheren Funktionen definiert. R-
BASIC verwendet zur Berechnung dieser Funktionen die schnelle Ganzzahlarith-
metik.

Funktion Bedeutung

FixSqr(x) Quadratwurzel von x

FixSin(x) Sinus von x, x im GradmanB

FixCos(x) Cosinus von x, x im GradmaB

FixTan(x) Tangens von x, x im Gradmaf

FixAsn(x) ArcusSinus von x - Umkehroperation zu Sinus

Fir das Argument der Winkelfunktionen sind auch Werte auBerhalb des Bereichs
0 bis 360° zulassig. Das gilt auch fur negative Werte.

FixAsn und FixSqr arbeiten nur flar positive Argumente korrekt. Negative
Argumente fuhren zu fehlerhaften Ergebnissen, aber nicht zu einer Fehler-
meldung.

Alle in der Tabelle oben angegeben Funktionen sind auch innerhalb von Real-Aus-
dricken zuldssig. Der R-BASIC Compiler erkennt den Aufruf dieser Fixed-
Funktionen und compiliert automatisch den Aufruf der Konvertierungsfunktion
FixToReal().

Die Winkelfunktionen fir WWFixed-Ausdricke unterscheiden sich von den
Winkelfunktionen der Real-Ausdriicke dadurch, dass sie das Argument im Grad-
maB (der Vollkreis hat 360°) erwarten. Die Real-Winkelfunktionen erwarten das
Argument dagegen im BogenmaB (ein Vollkreis entspricht 2m). Wenn Sie das
Argument im BogenmalB haben brauchen Sie es nicht selbst ins GradmaB
umzurechnen. Stattdessen kénnen Sie innerhalb von WWFixed-Ausdricken die in
der folgenden Tabelle angegebenen Real-Winkelfunktionen direkt verwenden. R-
BASIC erkennt, dass es sich um einen WWFixed-Ausdruck handelt, rechnet das
Argument automatisch ins BogenmaB um und ruft dann die entsprechende Fixed-
Funktion auf. Da ist sogar noch etwas schneller als die manuelle Umrechnung.

Funktion Bedeutung

SIN(x) Sinus von x, x im BogenmafB

COS(x) Cosinus von x, x im BogenmafB

TAN(x) Tangens von x, x im BogenmaRB

ASN(x) ArcusSinus von x - Umkehroperation zu Sinus
Beispiele:
DIM x, y AS WWFixed

y = 50 * FixSin(x) + 150 '’ x im GradmaB

y = 1/TAN(X) ' Cotangens, x im BogenmaB

Arbeit mit numerischen Ausdriicken - 90

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.3.7 Exkurs: Vergleiche innerhalb numerischer Ausdriicke

Achtung! Die folgenden Ausfiuhrungen richten sich an fortgeschrittene Program-
mierer. Sie sind daher moglicherweise etwas abstrakt. Ihr Verstdndnis kann
hilfreich sein, ist aber zur Anwendung innerhalb von Entscheidungsausdricken
nicht unbedingt erforderlich.

Intern behandelt R-BASIC Vergleichsausdriicke und logische Ausdricke als
Zahlen. Das hat Konsequenzen: Jeder Vergleich liefert entweder TRUE (wahr, —1)
oder FALSE (falsch, Null). Es ist deshalb méglich, das Ergebnis eines Vergleichs
in einer numerischen Variablen abzuspeichern.

Beispiele (DIM A, B, Y vorausgesetzt):

Y=A>0

Der Compiler erkennt die Zuweisung "Y =" und berechnet den numerischen
Ausdruck auf der rechten Seite. Da "A > 0" ein gultiger numerischer Ausdruck ist,
der TRUE (—1) oder FALSE (0) liefern kann, wird Y der Wert 0 oder —1 zuge-
wiesen, je nachdem ob A gréBer Null ist, oder nicht.

Y = Name$ = "Paul"

Der Compiler erkennt wieder die Zuweisung "Y =" und berechnet den rechten
Ausdruck (den Vergleich Name$ = "Paul"), der wiederum TRUE (-1) oder FALSE
(0) ergeben kann.

In diesem Zusammenhang sind Vergleichsausdriicke nur spezielle numerische
Ausdriicke:

Beispiel 1:
Y = (B< 7) AND (Name$ = "Paul")

Der Compiler berechnet die Ausdriicke (B <7) und (Name$ = "Paul"), die jeweils
TRUE (—1) oder FALSE (0) ergeben. AnschlieBend wird die logische Verknupfung
AND ausgefihrt. AND ist zwar eine bitweise Funktion, aber das Zusammenspiel
funktioniert, da in TRUE alle 16 Bit gesetzt sind, wahrend in FALSE alle 16 Bit Null
sind. Y wird TRUE, wenn beide Bedingungen erfillt sind und FALSE, wenn
mindestens eine Bedingung nicht erfullt ist.

Beispiel 2:
Y= (A>5) AND 7 ' Liefert 0 oder 7, je nach A

Arbeit mit numerischen Ausdriicken - 91

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.4 Arbeit mit Strings

2.4.1 Bearbeiten von Strings

Zeichenketten wie z.B. "Hallo Welt" werden in BASIC als Strings bezeichnet. Die
Verarbeitung von Strings ist eine der grundlegenden Fahigkeiten von R-BASIC.
Die Grundlagen zur Verwendung von Strings und von Stringvariablen finden Sie
im Kapitel 2.2.3 (Stringtypen und Stringausdricke).

Left$

Die Funktion Left$(A$, N) (Left - links) liefert die N ersten (linken) Zeichen des
Strings AS.

Syntax: <stringVar> = Left$(AS, N)
Parameter: A$: ein Stringausdruck
N: numerischer Ausdruck, Anzahl der Zeichen

Beispiel:
L$ = Left$("Paulchen N." , 4) ' Entspricht L$ = "Paul"
L$ = Left$(Ls , 1) ' Macht aus "Paul" ein "P"
Right$

Die Funktion Right$(A$, N) (Right - rechts) liefert die N letzten (rechten) Zeichen
des Strings A$.

Syntax: <stringVar> = Right$(AS$, N)
Parameter: A$: ein Stringausdruck
N: numerischer Ausdruck, Anzahl der Zeichen

Beispiel:
R$ = Right$("Paulchen N." , 4) ' Entspricht R$ = "n N."
R$ = Right$ (Left$("ABCDEF" , 4) , 2) ' liefert "cD"

Mids

Die Funktion Mid$(A$, P, N) (Middle - Mitte) liefert N Zeichen ab der Position P in
einem String.

Formate: <stringVar> = Mid$(AS$, P, N)
<stringVar>= Mid$(A$, P)
Parameter: P: Erste Zeichenposition, die kopiert werden soll
N: Anzahl der Zeichen die kopiert werden sollen
ohne N: Alle restlichen Zeichen werden kopiert

Stringausdriicke -92

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiele:
X$ = Mid$("OTTOKAR", 3, 4) ' liefert "TOKRA"
X$ = Mid$("OTTOKAR", 5) ' liefert "KAR"

Anmerkung: Ist der String A$ zu kurz, werden entsprechen weniger Zeichen
geliefert. Ist der String A$ klrzer als der Parameter P erfordert, liefert Mid$ einen
leeren String.

Trim$

Die Funktion Trim$(A$ [,mode]) entfernt Leerzeichen und Tabs am Anfang und /
oder am Ende der Zeichenkette.

Syntax: <stringVar> = Trim$(A$ [,mode]))

Parameter: mode: numerischer Ausdruck, bestimmt ob Leerzeichen und
Tabulatoren am Anfang (mode = 1), Am Ende (mode =2)
oder beiden (mode = 3, Defaultwert) entfernt werden

sollen.
AS$: Stringausdruck, der bearbeitet werden soll.
Beispiel:
X$ = Trim$(" Paul ") " liefert "Paul"
X$ = Trim$(" Paul ", 1) ' liefert "Paul "
X$ = Trim$(" Paul ", 2) " liefert " Paul"
ReplaceStr$

Die Funktion ReplaceStr$(s$, a$, b$) ersetzt jedes Auftreten des Strings a$ in s$
durch b$.

Syntax: <stringVar> = ReplaceStr$(s$, a$, b$)
<stringVar>: Stringvariable
s$: String, der durchsucht werden soll
a$: String, der ersetzt werden soll
b$: String, der a$ ersetzen soll
b$ darf genauso lang, langer oder kirzer als a$ sein.
Ist b$ ein Leerstring wird jedes Auftreten von a$ geldscht

Beispiele:
Anweisung Ergebnis
ReplaceStr$ ("Hallo", "a", "e") "Hello"
ReplaceStr$ ("Hallo", "al", "(xyz)") "H(xyz)lo"
ReplaceStr$ ("Hallo", "lI", ™) "Hao"
ReplaceStr$ ("Hallo Welt!", "I", "-X-") "Ha-X--X-0 We-X-t!"
ReplaceStr$ ("12.75 Euro", ".", ",") "12,75 Euro"

Stringausdriicke -93

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

String$
Die Funktion String$(N, A$) vervielfacht Zeichenkettenausdriicke.

Syntax: <stringVar> = String$(N, AS)
Parameter: N: numerischer Ausdruck, Anzahl der Vervielfachungen
A$: Stringausdruck, der vervielfacht werden soll

Beispiel:
X$ = String$ (4, "X") ' liefert "XXXX"
X$ = String$(2, Left$("KOMA", 2)) ' liefert "KOKO"
InStr

Die Funktion InStr(A$, B$) (d.h. In-String) ermittelt die Position, ab welcher A$ in
B$ enthalten ist.

Syntax: <numVar> = InStr(A$, BS)
Parameter: A$: String-Ausdruck: der zu findende String
B$: String-Ausdruck: String, der A$ enthalten soll

Beispiel:
DIM Anz
Anz = InStr("ul", "Paula") ' liefert 3
Anz = InStr("lala", "Paula") ' liefert Null
Hinweise:

+ GroB- und Kleinbuchstaben werden unterschieden
+ Ist der String nicht oder nicht vollstdndig enthalten, liefert InStr den Wert Null.
+ Ist einer der beiden Strings ein Leerstring (""), liefert InStr den Wert Null.

LEN

Die Funktion LEN (Length - Lange) liefert die Lange des Strings, d.h. die Anzahl
der enthaltenen Zeichen.

Syntax: <numVar> = LEN(AS)
Parameter: A$ String-Ausdruck

Beispiel:

DIM A
A = LEN("Paula") ' liefert 5
A = LEN("") " liefert Null

Stringausdriicke -94

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

CountStr

Die Funktion CountStr(A$, B$) zahlt, wie oft A$ in B$ enthalten ist.

Syntax: <numVar> = CountStr(A$, B$)
Parameter: A$: String-Ausdruck: der zu findende String
B$: String-Ausdruck: String, der A$ enthalten soll

Beispiel:
DIM N
N = CountStr("ul", "Paula") ' liefert 1
N = CountStr("a", "Paula") ' liefert 2
N = CountStr("aha", "Hahaha") ' liefert 1
Hinweise:
« GroB- und Kleinbuchstaben werden unterschieden

+ Ist der String nicht oder nicht vollstandig enthalten, liefert CountStr den Wert

Null.
+ Ist einer der beiden Strings ein Leerstring (""), liefert CountStr den Wert Null.
+ Beachten Sie Beispiel 3! Buchstaben, die bereits gefunden wurden, werden

nicht noch einmal bertcksichtigt.

Stringoperation +

Die Operation + verbindet zwei Strings.

Syntax: <stringVar> = A$ + B$
Parameter: A$, B$: Beliebige Stringausdriicke

Beispiel:
A$ = "Paul" + " " + "Miller" " liefert "Paul Miiller"
A$ = "->" + Left$("Paul", 2) + "<-" ' liefert "->Pa<-"
Tipp:

+ Klammern, z. B. ("Paul" + " ") + "Muller", sind méglich, aber nicht erforderlich.

Stringausdriicke -95

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

GetTextWitdh, GetTextHeight

GetTextWidth berechnet die Breite (in Pixeln), die ein String bei Ausgabe auf den
Bildschirm bendtigt. GetTextHeight berechnet die entsprechende Hbéhe (in Pixeln).
Die beiden Routinen sind in allen Fontmodi (Fixed-, Block- und GEOS-Font-
Modus, siehe Handbuch Spezielle Themen, Kapitel 2), anwendbar. Sie eignen
sich zum Beispiel um einen Text zentriert an eine bestimmte Position zu drucken.

Syntax: <numVar> = GetTextWidth ("Text")
<numVar> = GetTextHeight ("Text")

Beachten Sie, dass im GEOS-Font-Modus (Routine FontSetGeos, siehe
Handbuch Spezielle Themen, Kapitel 2.4) die Breite und Hohe wirklich nur den
von den Buchstaben Uberdeckten Bereich umfassen. Der als Texthintergrund
eingeféarbte Bereich ist im Allgemeinen merklich gréBer. Das kann insbesondere
dann verwirrend sein, wenn Sie einen Rahmen um einen Text zeichnen wollen.

Die folgende Routine zeichnet einen Rahmen um einen Text. Im GEOS-Font-
Modus machen wir den Rahmen etwas breiter (4 Pixel) und héher (8 Pixel) und
berucksichtigen, dass der eigentliche Buchstabe immer etwas rechts unterhalb der
in Print atXY angegebenen Position gezeichnet wird. Die notwendigen Werte flr
die Verschiebung und die VergréBerung des Rahmens hangen etwas vom
eingestellten Font und der SchriftgréBe ab.

SUB DrawTextFramed(t$ as String, x, y AS REAL)
DIM w, h

Print atXY x, y; t$

GetTextWidth(t$)
GetTextHeight (t$)

F printfont.type = FT GEOS THEN
x -1

\
h
I

2
4
8

+ + +

y
"
h

[oTi= L SIS

=
3
H
e

Rectangle x-1, y-1, x+w, yth, LIGHT CYAN
END SUB

Stringausdriicke -96

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.4.2 Vergleichen von Strings

Vergleichsoperatoren

Die Standard-Vergleichsoperatoren (<, <=, >, >=, =, <) stehen auch fur
Zeichenketten (Strings) zur Verfugung. Die Strings werden dabei Zeichen far
Zeichen verglichen, wobei ausschlieBlich die ASCII-Codes der einzelnen Zeichen
berucksichtigt werden. Das heiBt z.B., dass Umlaute entsprechend ihrer Position
in der ASCII-Code-Tabelle (also noch hinter z) gewertet werden. Fur lexikalisch
korrekte Vergleiche verwenden Sie bitte die unten beschriebene Funktion
CompStr.

Syntax: A$ <B$

AS$ <= B$ usw.
Parameter: A$, B$ String-Ausdriicke, die verglichen werden sollen
Ergebnis: Wahr (TRUE, numerischer Wert: —1)

oder Falsch (FALSE, numerischer Wert: 0)

Beispiel:

IF A$ >= "Paul" THEN ...
IF A$ <> Left$("Paul", 2) THEN ...

Hinweis: Statt A$ = B$ kann man fir Vergleich auch ein doppeltes
Gleichheitszeichen schreiben (A$ == B$). Das verbessert gelegentlich die
Lesbarkeit.

Tipp:

String-Vergleiche arbeiten auch mit den logischen Operatoren zusammen. Da
Vergleiche héher priorisiert sind, bendtigt man hier meist keine Klammern.
Beispiele:

IF NAMES$ = "Miiller" OR NAMES = "Meier" THEN ...

IF A$ < B$ OR A$ < C$ THEN ...

Tipp fur Fortgeschrittene:

String-Vergleiche liefern als Ergebnis eine Zahl (Null oder —1), sie durfen deshalb
innerhalb von numerischen Ausdriicken vorkommen. Beispiel (Die Klammern sind
nicht erforderlich, sie verbessern die Lesbarkeit.):

DIM A As Real
DIM Name$ as String
A = (Name$ = "Miller")
' A wird -1 (wahr), wenn Name$ = "Miller" ist.
' andernfalls wir A Null

Stringausdriicke -97

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

CompStr

Die Funktion CompStr (Compare Strings, d.h. vergleiche Zeichenketten) vergleicht
zwei Strings entsprechend ihrer Anordnung im Wérterbuch. Dabei gelten folgende
Regeln:
* Umlaute reihen sich ein
+ GroBbuchstaben stehen bei ansonsten gleichen Strings vor den
Kleinbuchstaben. Beispiel: "Schwimmen" steht vor "schwimmen"
+ Kdrzere Strings stehen bei Gleichheit mit langeren Strings vorn. Beispiel:
"Paul" steht vor "Paula".

Syntax: <numVar> = CompStr(A$, BS)
Parameter: A$, B$ String-Ausdriicke, die verglichen werden sollen
Ergebnis: -1 wenn A$ < BS$, d.h. A$ steht vor B$ im Wérterbuch
0 wenn A$ = B$, d.h. A$ und B$ stehen an gleicher Stelle im
Woérterbuch. Dann sind beide Strings identisch.
+1 wenn A$ > BS$, d.h. A$ steht nach B$ nach Wérterbuch

Beispiel:

Dim V as Real
IF CompStr(AS$, BS) > 0 THEN ..
V = CompStr(AS, BS)

Achtung! Die Funktion verwendet landerspezifische Regeln. Es ist méglich, dass
auf anderen, insbesondere auf nicht deutschen PC/GEOS-Systemen, andere
Regeln bezlglich der Anordnung im Wérterbuch gelten. CompStr verwendet die
auf dem jeweiligen PC/GEOS-System geltenden Regeln.

Stringausdriicke -98

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.4.3 Konvertierungsfunktionen

Konvertierung Zahl zu String

Bing

Die Funktion Bin$ (Binar Konvertierung) wandelt eine Ganzzahl in ihre binare
Darstellung (zur Basis 2) um. Nichtganzzahlige Argumente x werden gerundet.
Negative Zahlen werden ebenfalls korrekt behandelt.

Syntax: <stringVar> = Bin$(x [,min [,max]])
Parameter: x: numerischer Ausdruck, Zahlenbereich DWord (32 Bit)
min: optional: Mindestanzahl auszugebender Binéarziffern. Es
werden bei Bedarf fuhren Nullen hinzugefugt.
max: optional: Maximalzahl auszugebender Binarziffern. Fihrende
Stellen werden gerundet.
min und max durfen im Bereich von 1 bis 32 liegen

Beispiel:
A$ = Bin$(5) ' AS$ = "101"
A$ = Bin$(18) ' AS$ = "10010"
A$ = Bin$(5, 4) ' AS$ = "0lo01"
AS$ = Bin$ (18, 4, 4) ' A$ = "0010"
' das fiinfte Bit wird ignoriert

Tipp:Setzen Sie min = max fir eine feste Stellenzahl (siehe letztes Beispiel)

Chr$

Die Funktion Chr$(x) (Character - Zeichen) liefert das Text-Zeichen, das zum
ASCII-Code x gehort. Chr$(0) liefert einen leeren String.

Syntax: <stringVar> = Chr$(x)
Parameter: x: numerischer Ausdruck

Beispiel:
A$ = Chr$(65 + 1) ' Entspricht A$ = "B"

Innerhalb von Strings kann man statt der Funktion Chr$(x) auch einen Backslash,
gefolgt von bis zu drei Ziffern, verwenden. Folgende Zeilen sind daher
gleichwertig:

A$ = "a" + Chr$(180) + "b"
A$ = "a\180b"

Stringausdriicke -99

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Hex$

Die Funktion Hex$ (Hexadezimal Konvertierung) wandelt eine Ganzzahl in ihre
hexadezimale Darstellung (zur Basis 16) um. Nichtganzzahlige Argumente x
werden gerundet. Negative Zahlen werden ebenfalls korrekt behandelt.

Syntax: <stringVar> = Hex$(x [,min [,max]])
Parameter: x: numerischer Ausdruck, Zahlenbereich DWord (32 Bit d.h. 8
Hex-Stellen)

min: optional: Mindestanzahl auszugebender Hex-Ziffern. Es
werden bei Bedarf fihren Nullen hinzugefugt.

max: optional: Maximalzahl auszugebender Hex-Ziffern. Fihrende
Stellen werden gerundet.

min und max dirfen im Bereich von 1 bis 8 liegen

Beispiele:
AS = Hex$(11) ' A$ = "B"
AS = Hex$(11l, 2) ' A$ = "OB"
AS = Hex$(764, 2) ' AS = "2FC"
AS = Hex$(764, 2, 2) ' A$ = "FC"
AS = Hex$ (764, 4, 4) ' AS = "02FC"

Tipp:Setzen Sie min = max fir eine feste Stellenzahl (siehe letztes Beispiel)

str$

Die Funktion Str$(x) (String - Zeichenfolge) konvertiert eine Zahl in eine
Zeichenkette, genau so, als ob Sie die Zahl mit PRINT auf den Bildschirm
ausgeben. Als Dezimaltrennzeichen wird immer der Punkt . verwendet.

Syntax: <stringVar> = Str$(x)
Parameter: x: numerischer Ausdruck

Beispiel:
AS = Str$(12+3) ' Entspricht A$ = " 15 "

Hinweis: Das Zahlenformt der konvertierten Zahl kann mit der System-Variablen
numberFormat beeinflusst werden.

StrLocal$

Die Funktion StrLocal$(x) (String Local) konvertiert eine Zahl in eine Zeichenkette
unter Verwendung der lokal (auf dem aktuellen Rechner) glltigen Einstellungen
fir Dezimal- und Tausender-Trennzeichen. Verwenden Sie diese Konvertierungs-
Funktion, wenn Sie dem Nutzer seine "gewohnte" Zahlendarstellung prasentieren
wollen.

Stringausdriicke - 100

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Syntax: <stringVar> = StrLocal$(x)
Parameter: x: numerischer Ausdruck

Beispiel:

A$ = StrLocal$(9.82347E5) ' Liefert auf den meisten
' deutschen Computern " 98.234,7"

Achtung:

Das Ergebnis dieser Konvertierungsfunktion hangt von den Einstellungen des
aktuellen Computers ab. Sie sollten keine Annahmen Uber das Format der
konvertierten Zahl machen.

Hinweis:

Das Zahlenformt der konvertierten Zahl kann mit der System-Variablen
numberFormat beeinflusst werden.

Konvertierung String zu Zahl

ASC

Die Funktion ASC (von ASCII) liefert den ASCII-Code des ersten Zeichens des
Strings. ASC("") (Leerstring) liefert Null.

Syntax: <numVar> = ASC(AS)
Parameter: A$: String-Ausdruck

Beispiel:
X = ASC("Auto") ' liefert 65, den ASCII-Code von A

VAL

Die Funktion VAL (Value - Wert) wandelt eine Zeichenkette in die entsprechende
Zahl um. Entspricht die Zeichenkette keiner Zahl, versucht VAL seine Aufgabe "so
gut wie moglich" zu erfllen und konvertiert so viele Zeichen wie es finden kann -
findet es gar keine gultigen Zeichen, liefert es Null.

Syntax: <numVar> = VAL(AS)
Parameter: A$: String-Ausdruck

Beispiel:
X = VAL("-12.8") ' Entspricht X = —-12.8
X = VAL("Paul") " liefert Null.

Stringausdriicke - 101

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

VallLocal

Die Funktion ValLocal wandelt eine Zeichenkette in die entsprechende Zahl um.
Dabei werden die lokal (auf dem aktuellen Computer) eingestellten Dezimal- und
Tausendertrennzeichen erwartet. Verwenden Sie diese Konvertierungs-Funktion,
wenn der Nutzer eine Zahl in der fir ihn vertrauten Weise eingeben soll.

Syntax: <numVar> = ValLocal(A$%)
Parameter: A$: String-Ausdruck

Beispiel:
X = ValLocal("12.824,2") ' funktioniert fiir die meisten
' deutschen Computer und liefert
' Zwolftausendachthundertvierundzwanzig Komma Sieben
Achtung:

Ob die Zahl korrekt konvertiert wird, hangt von den Einstellungen des aktuellen
Computers ab.

Zeichenséatze konvertieren

Convert$

GEOS verwendet einen anderen Zeichensatz als DOS oder Windows, d.h. die
ASCII-Codes fur bestimmte Zeichen (ASCII-Code >= 128) unterscheiden sich und
es gibt Zeichen in jedem Zeichensatz, die in den anderen Zeichenséatzen nicht
darstellbar sind. Die Funktion Convert$() Gbernimmt die Konvertierung zwischen
den verschiedenen Zeichensatzen und ersetzt Codes, die im neuen Zeichensatz
nicht darstellbar sind.

Syntax: <stringVar> = Convert$(A$, mode [, replace])
Parameter: A$: Stringausdruck, der konvertiert werden soll
mode: Bestimmt, zwischen welchen Zeichensatzen konvertiert
werden soll. Siehe Tabelle unten.
replace: ASCII-Code des Ersatz-Zeichens, falls ein Zeichen nicht
konvertierbar ist. 'replace’ ist optional.
- Wird ’replace’ nicht angegeben, wird das Standardzeichen
'’ verwendet.
- Wird fir ‘replace’ Null angegeben, werden nicht
konvertierbare Zeichen gelbscht.

Stringausdriicke - 102

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Far 'mode’ stehen folgende Werte zur Verfigung:

Wert

Bezeichnung

Konvertierung zwischen ...

0

(keine)

Zeichensatz nicht andern

1

DOS_TO_GEOS

DOS nach GEOS

2

GEOS_TO_WIN

GEOS nach Windows (Codepage 1252,
ANSI)

WIN_TO_GEOS

Windows (Codepage 1252, ANSI) nach
GEOS

GEOS_TO_DOS

GEOS nach DOS (Codepage 437)

HTML_TO_GEOS

HTML-Codes far Umlaute und
Sonderzeichen werden durch die
entsprechenden GEOS Zeichen ersetzt.
Tags wie
 werden nicht geéndert,
replace’ wird nicht verwendet.

Zeichen mit einem Code Uber 127 werden
durchgereicht (nicht geandert).

GEOS_TO_HTML

Jedes GEOS-Zeichen mit einem Code Uber
127, z.B. Umlaute, werden durch den
entsprechenden HTML-Code ersetzt.
'Replace’ wird nicht verwendet.

HTML_TO_GEOS_BR

Wie HTML_TO_GEOS, allerdings wird
jedes der Tags <p>,
, </p> und </br>
durch ein "CarriageReturn" (CR, Code 13
bzw "\r") ersetzt.

GEOS_TO_HTML_BR

Wie GEOS_TO_HTML. Zusatzlich wird vor
jedem "CarriageReturn" (CR, Code 13 bzw
"\r") ein HTML-Zeilenumbruch "
"
eingeflgt.

UTF8_TO_GEOS

UTF-8 nach GEOS

GEOS_TO_UTF8

GEOS nach UTF-8

Jeder der Werte aus der Tabelle oben kann mit den folgenden Flags kombiniert
werden, indem die Werte addiert oder logisch OR kombiniert werden. AuBerdem
kdnnen die Flags auch allein verwendet werden.

Wert

Bezeichnung

Wirkung

16

CRLF_TO_CR

Jedes Auftreten der Codefolge CR+LF
(Codes 13 und 10) oder von LF (Code 10)
alleine wird durch ein einfaches
"CarriageReturn" (CR, Code 13 bzw. "\r")
ersetzt. Dieses Zeichen wird innerhalb von
GEQOS zur Zeilentrennung verwendet.

32

CR_TO_CRLF

Jedes Auftreten eines "CarriageReturn"
(CR, Code 13 bzw. "\r") wird durch ein

Stringausdriicke - 103

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

"LineFeed" (LF, Code 10) ergéanzt. Diese
Kombination (CR+LF) wird in DOS-Text-
Dateien als Zeilenbegrenzung verwendet.

512 | CR_TO_LF Jedes Auftreten eines "CarriageReturn"
(CR, Code 13 bzw. "\r") wird durch ein
"LineFeed" (LF, Code 10) ersetzt. Dieses
Zeichen wird in Text-Dateien unter Linux
und macOS als Zeilenbegrenzung

verwendet.
64 DOWNCASE_CHARS Zeichen in Kleinbuchstaben umwandeln
128 UPCASE_CHARS Zeichen in GroBbuchstaben umwandeln

256 REMOVE_HTML_TAGS | Alle "Ein-Wort-HTML-Tags" wie ,
</center> usw. werden entfernt. HTML-
Tags, die Leerzeichen enthalten, wie <A
...>, oder Kommentare, werden
nicht entfernt.

Dieses Flag wird nach allen anderen
Operationen angewendet.

Beispiele
X$ = Converts$(A$, DOS TO_ GEOS)
X$ = Convert$(A$, GEOS TO DOS OR CR to CRLF)
X$ = Convert$(A$, WIN TO GEOS + DOWNCASE CHARS, ASC("#"))

Alles in GroBbuchstaben umwandeln:

X$ = Convert$(AS$, UPCASE CHARS)

HTML-Text in GEOS-Zeichensatz konvertieren, DOS-Zeilenumbruch (CR+LF),

 und <p> durch GEOS-Zeilenumbruch (CR) ersetzen:

X$ = Convert$(A$, HTML_TO GEOS_BR + CRLF_TO CR)

Hinweise:

Die Funktionalitdt des Flags CRLF_TO_CR, auch einzelne LF-Zeichen zu er-
kennen, stellt sicher, dass alle Textdateien korrekt eingelesen werden kdnnen.
Dabei ist es egal, ob sie unter DOS, Windows, macOS oder Linux erstellt
wurden. Man muss die Quelle der Datei nicht kennen.

Bei der Umwandlung zwischen Klein- und GroBbuchstaben werden die lokalen
Einstellungen des Computers benutzt.

Das Ersetzen von HTML-Tags lasst sich auch vorteilhaft mit der Funktion
RepalceStr$ erledigen.

Wenn Sie einen HTML-Text haben, der ANSI (Codepage 1252, Latin-1) oder
UTF-8 kodiert ist (also glltige Zeichen mit einem Code > 127 enthalt) missen
sie vorher die entsprechende Konvertierungsroutine aufrufen.

BS Convert$ (AS$, WIN TO GEOS)
X$ Convert$ (B$, HTML TO GEOS)

Stringausdriicke - 104

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

bzw.
B$ = Convert$(As$, UTF8 TO_ GEOS)
X$ = Converts$(BS, HTML TO GEOS)

+ Convert$ verwendet fur die Konvertierung zwischen GEOS und DOS- bzw.
Windows-Zeichensatz eine Systemfunktion, die eine "N&herungskonvertierung"
durchfuhrt. Fir nicht im neuen Zeichensatz enthaltene Zeichen wird zunachst
versucht, ein "ahnlich aussehendes" Zeichen zu finden, bevor das Ersatzzeichen
verwendet wird.

Wenn Sie auf exakte Konvertierung oder weitere Codepages Wert legen, sollten
Sie die Library "CodepageTools" von der R-BASIC Webseite herunterladen.

convertError

Findet Convert$ im Modus UTF8_TO_GEOS am Ende des Strings einen
unvollstandigen UTF-8-Code (also z.B. nur 2 von 3 erforderlichen Bytes) oder ein
unvollstdndiges HTML-Tag (z.B. "&u") so setzt es die Systemvariable convertError
auf die Anzahl der gefundenen Bytes (im Beispiel also auf 2). Andernfalls setzt es
convertError auf Null.

Syntax: <numVar> = convertError

Diese Situation kann vorkommen, wenn Sie Text blockweise statt zeilenweise aus
einer Datei lesen mussen, z.B. weil die Zeilen sonst zu lang sind. In diesem Fall
kébnnen Sie den Dateizeiger folgendermaBen auf den Anfang des unvollstandig
gelesenen UTF-8-Zeichens zurlicksetzen (beachten Sie das Minuszeichen!):
IF convertError THEN

FileSetPos(filevVar, —convertError, TRUE)
END IF

Hinweise:

+ Sie mussen prifen, ob Sie sich bereits am Dateiende befinden, bevor Sie den
Dateizeiger zurticksetzen. Andernfalls landen Sie in einer Endlosschleife.

+ Convert$ ersetzt unvollstindige UTF-8-Codes durch das Ersatzzeichen (genau
ein Zeichen), unvollstandige HTML-Codes werden vollstandig kopiert (Anzahl =
convertError). Diese Zeichen sollten Sie, wenn Sie nicht am Dateiende sind, aus
dem Zielstring entfernen.

+ Es wird empfohlen, fir das Einlesen und konvertieren gréBerer Textmengen ein
LargeText-Objekt zu verwenden. Dieses handelt die genannten Sonderfélle
automatisch.

Stringausdriicke - 105

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.5 Programmablaufsteuerung

2.5.1 Verzweigungen

In vielen Féllen muss R-BASIC Entscheidungen treffen und je nach Situation
unterschiedliche Dinge tun. Fur einfache Fallunterscheidungen stehen die Befehle
IF ... THEN ... ELSE (falls ... dann ... ansonsten) zur Verfugung.

Far die Unterscheidung von mehr als zwei Féallen gibt es die Anweisung ON ..
SWITCH.

Entscheidungen mit IF - THEN - ELSE

Die Anweisung IF pruft den auf IF folgenden numerischen Ausdruck. Ergibt dieser
einen Wert ungleich Null wird er als WAHR interpretiert und der THEN-Zweig wird
abgearbeitet. Ergibt er den Wert NULL, so wird der ELSE-Zweig abgearbeitet.

Far IF stehen zwei Formate zur Verfligung: Das Standard-Format und das Kurz-
Format. Beim Standard-Format muss THEN die letzte Anweisung in der Code-
Zeile sein, beim Kurzformat folgen auf THEN weitere Anweisungen in der gleichen
Zeile. Details dazu siehe unten.

Standard-Syntax:
IF <Bedingung> THEN
<Anweisungsfolge 1 (THEN-Zweig)>
ELSE
<Anweisungsfolge 2 (ELSE-Zweig)>
END IF

<Bedingung>
Ein numerischer Ausdruck, der WAHR (ungleich Null) oder FALSCH
(gleich Null) sein kann. Daflr stehen zur Verfugung:

+ einfache numerische Ausdricke oder Variablen

* logische Operatoren (NOT, AND, OR, XOR)

+ Vergleichsoperatoren (<, <=, >, >=, =, <, =) flr Zahlen und Strings.
Vergleichsoperationen ergeben WAHR (Konstante TRUE,
numerischer Wert: —1) wenn die Bedingung erflillt ist oder FALSCH
(Konstante FALSE, numerischer Wert Null) wenn die Bedingung
nicht erfallt ist.

+ Fur Variablen vom Typ FILE, HANDLE oder OBJECT und far
Strukturen stehen die Vergleichsoperatoren = und < zur
Verflgung.

<THEN-Zweig>

Wird abgearbeitet, wenn die Bedingung WAHR ergibt.
<ELSE-Zweig>

Wird abgearbeitet, wenn die Bedingung FALSCH ergibt.

ELSE und <Anweisungsfolge 2 (ELSE-Zweig)> kbnnen weggelassen
werden.

Programmablaufsteuerung - 106

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel:

IF A > 0 THEN
PRINT "Positiv"

ELSE
PRINT "Nicht positiv"
END IF

Beispiel Standard-Format ohne ELSE-Zweig

IF X < 0 AND g$ = "m" THEN
PRINT "Ich habe gar kein Auto."
END IF
Kurzform

In vielen Féllen mussen, falls die Bedingung wahr ist, nur einer oder wenige
Befehle abgearbeitet werden. Fir diesen Zweck unterstitzt R-BASIC eine
Kurzform der IF-Anweisung. Dabei missen alle Anweisungen des THEN- und des
ELSE- Zweigs in der gleichen Code-Zeile wie die IF-Anweisung stehen.

Syntax: IF < Bedingung> THEN <THEN-Zweig> : ELSE <ELSE-Zweig>
bzw.: IF < Bedingung> THEN <THEN-Zweig>

Beispiel:
IF Name$ = "Paul" THEN Print "Paul gefunden"

Hinweise:

+ Hinter THEN und ELSE kann der Doppelpunkt weggelassen werden.

+ in der Kurzform muss vor ELSE ein Doppelpunkt stehen.

* In der Kurzform kann END IF weggelassen werden.

+ R-BASIC unterscheidet die Standard- und die Kurzform daran, ob hinter der
THEN-Anweisung noch weitere Anweisungen folgen. Ist THEN nicht die
letzte Anweisung in der Zeile, so wird die Kurzform aktiviert. Ein Doppelpunkt
zahlt dabei ebenfalls als Anweisung, Kommentare sind aber zugelassen.

+ Seien Sie vorsichtig, wenn Sie Strukturvergleiche verwenden. Strukturen
werden Byte fur Byte verglichen, was zu Problemen fihren kann, wenn sie
Strings enthalten. Die vom String nicht benutzten Bytes des String-Bereichs
kénnen zuféllige Werte enthalten.

Kompatibilitat:

Aus Grinden der Kompatibilitdt werden in der Kurzform von IF auch die folgenden
Formate unterstitzt. Sie sollten diese Formate in eigenen Programmen aber nicht
einsetzen.

Programmablaufsteuerung - 107

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Syntax: IF < Bedingung> THEN <Zeilennummer>

Statt THEN GOTO <Zeilennummer>.

Funktioniert nur mit Zeilennummern, nicht mit Labels.
Syntax: IF < Bedingung> GOTO <Ziel>

Statt THEN GOTO <Ziel>

Funktioniert sowohl mit Zeilennummern, als auch mit Labels.

Beispiele zur IF-Anweisung

Fur das Normale IF-Format muss THEN am Ende einer Zeile stehen. Kommentare
hinter THEN sind aber erlaubt. ELSE muss nicht allein in einer Zeile stehen. Hinter
ELSE kann man den Doppelpunkt weglassen:

IF A > B THEN ' Ich bin ein Kommentar
A=A—-—2:B=B+1
ELSE PRINT "Fertig“ 3 END 1IF

Neben logischen Ausdricken mit Zahlen kbnnen auch Zeichenketten verglichen
werden (Temp$, Name$ und AlterName$ seien String-Variablen)

IF Name$ > AlterName$ THEN
Temp$ = Name$ ' Vertauschen der Namen
Name$ = AlterName$
AlterName$ = Temp$

END IF

Logische Operatoren in IF-Anweisungen sind sehr hilfreich. Bitte beachten Sie die
Hierarchie der Operatoren oder setzen Sie Klammern!

Label nochmal: " Riucksprungmarke
INPUT "Bitte A eingeben"; A
IF A <O OR A > B THEN
Print "A ist ungililtig"
GOTO nochmal
END IF

Numerische Ausdriicke sind WAHR, wenn sie nicht Null sind.

IF A THEN Print "A ist nicht Null"

IF 17¢A — B THEN Print "17¢A ergibt nicht B"

Programmablaufsteuerung - 108

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

IF-Anweisungen konnen ineinander verschachtelt werden. Vorsicht! Das wird sehr
schnell untbersichtlich und daher fehleranféllig. Die Farben deuten im Beispiel die
Zugehorigkeit an.

IF A > 0 THEN
PRINT "Positiv"
ELSE
IF A = 0 THEN
PRINT "Null"
ELSE

PRINT "Negativ"
END IF

END IF

Mehrfachverzweigungen

Zur Unterscheidung von mehr als zwei Féllen steht die Anweisung ON ... SWITCH
(je nach ... schalte um) zur Verfligung.

Syntax: ON <Ausdruck> SWITCH
CASE <Ni1>:
<Code>
END CASE
CASE <N2>:
CASE <N3>:
<Code>
END CASE

DEFAULT:
<Code>
END SWITCH

Beispiel (A sei eine numerische Variable):

ON A SWITCH
CASE O0:
Print "A ist Null"
END CASE
CASE 1:
Print "A ist 1"
END CASE
DEFAULT:
Print "A nicht Null oder 1"
END SWITCH

Programmablaufsteuerung - 109

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Bedeutung der Werte:

ON ... SWITCH
ON ... SWITCH (= je nach ... schalte um) leitet die Mehrfachver-
zweigung ein.

<Ausdruck>
<Ausdruck> ist ein numerischer Ausdruck, der einen ganzzahligen Wert
(Longint) ergeben muss.

CASE <N>
CASE (= Fall) leitet die Codesequenz ein, die abgearbeitet wird, wenn
<Ausdruck> den Wert <N> ergibt.

<N> <N>ist ein fester, ganzzahliger Wert.
Einfache Berechnungen (+, -, *, /, Klammern, * (Exponent) , MOD
(Modulo-Division), OR, AND, NOT, XOR und die Funktionen IINT(),
ASC(), SQR(), FRAC(), TRUC(), SIN(), COS(), TAN(), EXP(), LN(),
LOG(), LG() und SizeOf()) sowie negative Werte sind zugelassen.
Variablen und sonstige Funktionen sind nicht erlaubt.

END CASE
Beendet den entsprechenden Code-Abschnitt.

DEFAULT
DEFAULT (=Vorgabe) leitet den Codeabschnitt ein, der ausgefihrt
wird, wenn keine der CASE <N> Bedingungen zutrifft. Der Default-Zeig
ist optional.

END SWITCH
SchieBt die Mehrfachverzweigung ab.

Abarbeltung von ON <Ausdruck> SWITCH... CASE

St6Bt R-BASIC auf die Anweisung ON . . SWITCH, so wird zunachst der
<Ausdruck> ausgewertet.
Daraufhin wird gepruft, welche der CASE-Bedingungen <N> zutrifft. Das geht
sehr schnell, weil der Compiler einer Tabelle erstellt hat. Gegebenenfalls wird
der entsprechende Code abgearbeitet.
St6Bt der R-BASIC auf die Anweisung END CASE, so wird die Mehrfach-
verzweigung beendet, d.h. es wird mit der auf END SWITCH folgenden
Anweisung fortgesetzt.
Gibt es zu einem CASE kein END CASE, so wird der auf das ndchste CASE
folgenden Code ebenfalls ausgefihrt. Beispiel:
CASE 1:
Print "A ist 1"
CASE 2: ' hier kein END CASE davor
Print "A ist 1 oder 2"
END CASE

Findet R-BASIC keinen passenden CASE-Zweig, so wird der Code
abgearbeitet, der auf die Anweisung DEFAULT folgt.
Der DEFAULT-Zweig ist optional.

Hinweise:

Der DEFAULT-Zweig kann weggelassen werden.

Der Doppelpunkt hinter der CASE-Bedingung kann weggelassen werden, er
dient nur der Kompatibilitat.

Direkt vor END SWITCH kann END CASE weggelassen werden.

Programmablaufsteuerung - 110

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

+ Hinter ON ... SWICTH und hinter End CASE kann die Zeile nicht mit einem
Doppelpunkt und weiteren Befehlen fortgesetzt werden.

+ Die folgende Konstruktion ist nicht zugelassen. IF .. THEN END CASE fuhrt
zu einem Compilerfehler:

CASE 1:
IF B > 0 THEN END CASE
CASE 2:
Print "A ist 1 oder 2"
END CASE

Einfache Beispiele:

INPUT "Geben Sie bitte A ein"; A
ON A SWITCH
CASE 1:
Print "A ist 1"
END CASE
CASE 2:
Print "A ist 2"
END CASE
DEFAULT:
Print "A ist weder 1 noch 2" ' END CASE kann hier entfallen

END SWITCH

Hinter CASE sind einfache Berechnungen und die Funktionen INT(), ASC() und
SizeOf() zugelassen (siehe vorne).

DIM AS ' String-Variable
INPUT "Geben Sie einen Text ein"; AS
ON ASC(AS) SWITCH ' ersten Buchstaben testen

CASE ASC("A"):
Print "Der erste Buchstabe ist ein A"
END CASE

CASE ASC("z"):
Print "Der Text beginnt mit einem kleinen z."
' END CASE kann hier entfallen

END SWITCH

Beispiel fur kurze CASE-Falle

INPUT "Geben Sie bitte A ein"; A

ON A SWITCH
CASE l: Print "A ist 1" : END CASE
CASE 2: Print "A ist 2" : END CASE
DEFAULT: Print "A ist weder 1 noch 2"
END SWITCH

Programmablaufsteuerung - 111

R-BASIC - Programmierhandbuch

- Vol. 2

Einfach unter PC/GEOS programmieren

Mehrere Falle mit dem gleichen Code:

INPUT "Geben Sie bitte A ein"; A
ON A SWITCH
CASE -—1:
CASE 0:
CASE 1:
Print "A ist -1, Null oder 1"
END CASE
CASE 2: CASE 3: CASE 4:
Print "A ist 2, 3 oder 4"
END CASE
CASE —5:
CASE 5:
Print "A ist 5 oder —-5"
END CASE
DEFAULT:
Print "Nichts Passendes gefunden."
END SWITCH

Verschachtelung von ON..SWITCH-Anweisungen
Die Farben deuten im Beispiel die Zugehorigkeit an.
Variablen.

A und B sind REAL-

InputBox "A und B eingeben", A,B

ON A SWITCH

CASE O:

CASE 1:
PRINT "Fall 1"
IF B = 1 THEN PRINT "B ist 1"
END CASE

CASE 2:
PRINT "Fall 2"
ON B SWITCH

CASE 1:
PRINT "B ist 1"
END CASE
DEFAULT

PRINT "B ist nicht 1"
END SWITCH

END CASE
DEFAULT

PRINT "sonstiges"
END SWITCH

PRINT "fertig."

Programmablaufsteuerung - 112

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Aus Kompatibilitdtsgriinden werden auch die folgenden Varianten unterstitzt:

ON <Ausdruck> GOTO <Liste von Zielen>
ON <Ausdruck> GOSUB <Liste von Zielen>

<List von Zielen> Sprungziele, die angesprungen werden, wenn der

<Ausdruck> die Werte 1, 2, 3, 4 usw. ergibt.

Beispiele (A sei eine numerische Variable)

ON A GOSUB L1, L2, L3

Print "Fertig"

End
LABEL L1

PRINT "A ist Eins" : Return
LABEL L2

Print "A ist Zwei" : Return
LABEL L3

Print "A ist Drei" : Return

ON A GOTO 10, 20, 30 ' Zeilennummern
ON A GOSUB L1, L2, L3 ' Labels
DIM A

Input A

Wie Sie sehen kann man mit der GOTO bzw.

unubersichtlichen Code erzeugen.

GOSUB-Anweisung sehr

Programmablaufsteuerung - 113

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

2.5.2 Schleifen

Sehr héaufig ist es erforderlich einen bestimmen Codeabschnitt mehrfach zu durch-
laufen. Ein typischer Fall ist die Ausgabe einer Tabelle oder einer Liste von
Namen. Eine solche Programmstruktur bezeichnet man als Schleife. In R-BASIC
stehen Ihnen drei Schleifentypen zur Verfligung:

Die Zahlschleife (auch als For-Next-Schleife bezeichnet) wird verwendet,
wenn man die Anzahl der Schleifendurchlaufe im Voraus kennt.

Die WHILE - WEND - Schleife wird benutzt, wenn die Anzahl der Schleifen-
durchlaufe nicht im Voraus bekannt ist und man die Abbruchbedingung am
Schleifenanfang prifen mdchte.

Die REPEAT - UNTIL - Schleife wird benutzt, wenn die Anzahl der Schleifen-

durchldufe nicht im Voraus bekannt ist und man die Abbruchbedingung am
Schleifenende prufen mdchte.

Mit den Schliisselworten CONTINUE und BREAK kann man Schleifendurch-
laufe vorzeitig beenden oder die Schleife vorzeitig verlassen.

Verwenden Sie niemals GOTO um eine Schleife zu verlassen! Schleifen
erzeugen einen Eintrag auf dem Return-Stack. GOTO raumt diesen Eintrag
nicht auf und der Stack kann Uberlaufen.

Eine Return-Anweisung innerhalb einer Schleife ist erlaubt. Return rAumt den
Stack sauber auf.

Zahl-Schleifen

Die

Zahlschleife mit FOR wird verwendet, wenn man die Anzahl der

Schleifendurchlaufe im Voraus kennt. Die FOR-Schleife wird immer mindestens
einmal durchlaufen.

Syntax: FOR <N> = startwert TO endwert [STEP schrittweite]

< Anweisungen >
NEXT <N>

<N>: numerische Variable, "Schleifenzahler"
Jeder numerische Datentyp ist zuldssig (auch WWFixed).
Aus historischen Grinden wird fir die Zahlvariable haufig N,
| oder K verwendet.

startwert: Anfangswert fur den Schleifenzahler
Der Schleifenzahler wird am Beginn mit diesem Wert belegt.

endwert: Endwert flir den Schleifenzéhler
Die Schleife wird verlassen wenn <N> den Endwert erreicht
oder Uberschritten hat.

schrittweite: (optional) Dieser Wert bestimmt, um welchen Wert der
Schleifenzé&hler nach jedem Durchlauf erhdht wird. Negative
Werte sind zuléssig, dann wird der Schleifenzéhler
vermindert. Der Standardwert flr schrittweite ist 1.

Programmablaufsteuerung - 114

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Das folgende Beispiel gibt die Zahlen von 1 bis 4 aus:

DIM N
FOR N =1 TO 4
Print N
NEXT N

Bedeutung der einzelnen Elemente:

FOR Die Anweisung "FOR N = startwert" (Fir N =..) er6ffnet die Schleife
und belegt den Schleifenzahler N mit dem Startwert.

TO Die Anweisung "TO endwert" (bis ...) legt den Endwert des
Schleifenzahlers fest.

STEP Die optionale Anweisung "STEP schritteweite" (Stufe ..) legt die
Schrittweite fest. Sie wird nach jedem Durchlauf auf den
Schleifenzéhler addiert. Negative Schrittweiten sind zuléssig. Der
Standardwert (ohne STEP) ist 1.

Es wird empfohlen, dass Startwert, endwert und Schrittweite jeweils
ganzzahlig sind.

NEXT Die Anweisung NEXT N (N&chstes N) schlieBt die Schleife. Der
Schleifenzéhler N wird erhéht (bei negativer Schrittweite vermindert)
und die Abbruchbedingung wird geprift. Die Angabe des Schleifen-
zahlers ist optional (Abwéartskompatibilitat).

NEXT bricht die Schleife ab, wenn der Wert "aktuelle Schleifenzahler +
Schrittweite" gréBer als der Endwert (bei negativer Schrittweite: kleiner
als der Endwert) ist. Ansonsten - also auch wenn der Endwert genau
erreicht ist - wird der neue Wert dem Schleifenzahler zugewiesen und
die Schleife wird erneut durchlaufen.

Beispiele:
FOR N =0 TO 10 * 11 Durchlaufe
PRINT N, NeN
NEXT N
FOR N =1 TO 10 STEP 0.5 " 20 Durchlaufe
PRINT N, NeN
NEXT N

Schleifen kénnen verschachtelt werden. Die Farben deuten die Zugehdrigkeit an.

FOR X = 10 TO 30
FOR Y = 24 TO 58
PSet X, Y
NEXT Y
NEXT X

Hinweise:
+ Der Schleifenrumpf wird in jedem Fall einmal durchlaufen, da die Abbruch-
bedingung erst am Ende der Schleife (von NEXT) gepruft wird.

Programmablaufsteuerung - 115

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

+ Eine Schleifendurchlauf kann mit BREAK oder CONTINUE vorzeitig
abgebrochen werden.

+ Der Schleifenzahler darf im Schleifenrumpf verandert werden, z.B. durch
Zuweisung eines Wertes weit Uber dem Endwert. Auch dadurch kann man
einen vorzeitigen Schleifenabbruch erzwingen.

+ Ein Unterprogramm darf aus einer Schleife heraus mit RETURN verlassen
werden.

+ Startwert, Endwert und Schrittweite sollten ganzzahlig sein, sonst kann es zu
unerwarteten Problemen kommen. Durch die interne Zahlendarstellung kann
es zu Rundungsfehlen beim standigen Aufaddieren der Schrittweite kommen,
so dass der Endwert nicht exakt erreicht wird. Im folgenden Beispiel fuhrt die
minimale Abweichung von 4.33E-19 dazu, dass die Schleife NICHT mit dem
Wert 4 durchlaufen wird.

FOR N =0 TO 4 STEP 0.4
PRINT N, NeN
NEXT N
PRINT N - 4 ’ ist NICHT Null!

In vielen Féllen kann man dieses Problem umgehen, indem man als Endwert
den gewulnschten Wert + halbe Schrittweite (hier also 4.2) angibt.
FOR N=0 TO 4.2 STEP 0.4

Aus Grunden der Abwaértskompatibilitadt sind die folgenden Syntaxvarianten fur
NEXT erlaubt:

+ Die Angabe des Schleifenzéhlers hinter Next ist optional. NEXT ohne Angabe
eines Schleifenzahlers schlieBt genau eine Schleife. Vorsicht also bei
verschachtelten Schleifen.

FOR N =0 TO 4
PRINT N, NeN

NEXT

+ Mehrere Schleifenzahler hinter NEXT sind zuléssig. Der Zahler der inneren
Schleife muss zuerst angegeben werden.

FOR X = 10 TO 30
FOR Y = 24 TO 58
PSet X, Y
NEXT Y, X

Tipp:

+ Die Variante mit NEXT ohne Schleifenzahler lauft merklich schneller, weil R-
BASIC keine Prufung ausfihren kann, ob der Schleifenzéhler korrekt ist.
Andererseits werden eventuelle Fehler in der Programmstruktur schwerer
erkannt.

Programmablaufsteuerung - 116

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Die WHILE - WEND -Schleife

Die While-Wend-Schleife wird verwendet, wenn die Anzahl der Schleifen-
durchlaufe noch nicht im Voraus feststeht. While-Wend ist abweisend, d.h. ist die
Bedingung hinter While von Anfang an FALSCH, wir die Schleife nie durchlaufen.

Syntax: WHILE <Bedingung>

< Anweisungen >
WEND

Syntax einzeilig (Doppelpunkt hinter der Bedingung beachten):
WHILE <Bedingung> : < Anweisungen >: WEND

<Bedingung>: Numerischer Ausdruck. Die Schleife wird durchlaufen, wenn
<Bedingung> einen Wert ungleich Null ergibt.

Beispiel
DIM A
Print "Geben Sie eine Zahl grdBer als Null ein."
A =-1
WHILE A <= 0
Input "Positive Zahl"; A
WEND
Print "Prima."

Bedeutung der einzelnen Elemente:
WHILE <Bedingung>

Die Anweisung WHILE (Solange) eréffnet die Schleife. Die auf WHILE
folgende Bedingung (ein numerischer Ausdruck) wird gepruft. Ergibt sie
den Wert wahr (also ungleich Null) wird der Schleifenrumpf
durchlaufen. Ergibt die Bedingung den Wert falsch (gleich Null) wird die
Schleife verlassen. Es wird mit der auf Wend folgenden Anweisung
fortgesetzt.

Die Schleife wird durchlaufen, solange die Bedingung erftillt ist.

WEND Die Anweisung WEND (Wende) schlieBt die Schleife, indem zur
WHILE-Anweisung zurlck gesprungen wird.

END WHILE kann anstelle von WEND verwendet werden. Funktionell besteht
kein Unterschied.

Hinweise:

+ Der Schleifenrumpf <Anweisungen> wird solange durchlaufen, wie die
Bedingung wabhr ist.
Ist die Bedingung von Anfang an falsch, wird der Schleifenrumpf nie
durchlaufen.

+ Zu jedem WHILE muss es genau ein WEND geben und umgekehrt. WHILE
muss im Programmcode immer vor WEND stehen.

Programmablaufsteuerung - 117

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

R-BASIC interpretiert jeden numerischen Ausdruck, der nicht Null ergibt, als

"wahr". Ergibt er Null, ist er "falsch" (FALSE).

+ Die Bedingung darf Verknlipfungen mit logischen Operatoren enthalten.

+ Ein Unterprogramm darf aus einer Schleife heraus mit RETURN verlassen
werden.

« Eine Schleifendurchlauf kann mit BREAK oder CONTINUE vorzeitig

abgebrochen werden.

Beispiele:

A= 12

B = 34

WHILE A >0 AND B > 0
A=A-1
B=B-—10
PRINT A, B

WEND

' einen Text verladngern
" Aus "Hallo Welt" wird "Hallo Welt..........
InputBox "Bitte einen Text eingeben"; C$
WHILE Len(C$) < 20

cCS$ = CS$ + "."
WEND
PRINT C$ + "1!"

' warten auf die Enter-Taste
WHILE InKey$ <> Chr$(13) : WEND ' Doppelpunkt beachten

Programmablaufsteuerung - 118

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Die REPEAT - UNTIL - Schleife

Die

Repeat-Until-Schleife wird verwendet, wenn die Anzahl der Schleifen-

durchlaufe noch nicht im Voraus feststeht. Repeat-Until ist nicht abweisend, d.h.
die Schleife wird in jedem Fall mindestens einmal durchlaufen.

Syntax: REPEAT

< Anweisungen >
UNTIL <Bedingung>

Syntax einzeilig (Doppelpunkt hinter der Bedingung beachten):

<

REPEAT < Anweisungen > : UNTIL <Bedingung>

Bedingung>: Numerischer Ausdruck. Die Schleife wird erneut durchlaufen,
solange <Bedingung> den Wert Null ergibt.

Bedeutung der einzelnen Elemente:
REPEAT

Die Anweisung REPEAT (Wiederhole) erdffnet die Schleife.

UNTIL <Bedingung>

Hinw

Die Anweisung UNTIL (bis ...) schlieBt die Schleife. Die auf UNTIL
folgende Bedingung (ein numerischer Ausdruck) wird geprift. Ergibt sie
den Wert wahr (also ungleich Null) wird die Schleife verlassen. Es wird
mit der auf UNTIL folgenden Anweisung fortgesetzt. Ergibt die
Bedingung den Wert falsch (gleich Null) wird der Schleifenrumpf erneut
durchlaufen.

Die Schleife wird solange durchlaufen bis die Bedingung erfuillt ist.

eise:

Der Schleifenrumpf <Anweisungen> wird in jedem Fall mindestens einmal
durchlaufen.

Der Schleifenrumpf wird solange durchlaufen, bis die Bedingung wabhr ist.
R-BASIC interpretiert jeden numerischen Ausdruck, der nicht Null ergibt, als
"wahr". Ergibt er Null, ist er "falsch" (FALSE).

Die Bedingung darf Verknlpfungen mit logischen Operatoren enthalten.

Zu jedem REPEAT muss es genau ein UNTIL geben und umgekehrt.
REPEAT muss im Programmcode immer vor UNTIL stehen.

Ein Unterprogramm darf aus einer Schleife heraus mit RETURN verlassen
werden.

Eine Schleifendurchlauf kann mit BREAK oder CONTINUE vorzeitig
abgebrochen werden.

Beispiele:

A

REPEAT

UNTIL A >0
PRINT A ' A ist jetzt immer positiv

=7

InputBox "Geben Sie eine positive Zahl ein", A

Programmablaufsteuerung - 119

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

A= 12
B = 34
REPEAT
A=A-1
B=B-— 10
PRINT A, B
UNTIL A <= 0 AND B <=0
'’ einen Text verlangern
'’ Aus "Hallo Welt" wird "Hallo Welt.......... "
InputBox "Bitte einen Text eingeben", C$
REPEAT
cs = ¢cs$ + "."
UNTIL Len(C$) >= 20
PRINT ">>" + C$ + "<<"

warten auf die Enter-Taste
REPEAT UNTIL InKey$ = Chr$(13)

' Doppelpunkt ist nicht notig

! Schleifenabbruch mit Enter

REPEAT
x = 1000* RND() ' Zufallszahl von 0 bis 999
Print x

UNTIL InKey$ = Chr$(13)

Print "Abbruch erfolgte bei"; x

BREAK und CONTINUE

Break und Continue beenden eine Schleifendurchlauf oder eine Schleife vorzeitig.

Syntax:
Syntax:

BREAK
CONTINUE

BREAK beendet eine Schleife (While-Wend, For-To-Next oder Repeat-Until)
vorzeitig. Die Abarbeitung wird mit dem auf die Schleife folgenden Befehl (also
hinter Wend, Next oder Until) fortgesetzt.

CONTINUE beendet einen Schleifendurchlauf einer While-Wend, For-To-Next
oder Repeat-Until Schleife vorzeitig. Die Schleifenbedingung wird erneut gepruft,
da CONTINUE zum Schleifen-End-Befehl (Wend, Next oder Until) springt.

Wichtig: Verwenden Sie niemals GOTO um eine Schleife zu verlassen! Schleifen
erzeugen einen Eintrag auf dem Return-Stack. GOTO raumt diesen Eintrag nicht
auf und der Stack kann uUberlaufen. Eine Return-Anweisung innerhalb einer

Schleife ist

hingegen erlaubt. Return rGumt den Stack sauber auf.

Programmablaufsteuerung - 120

R-BASIC - Programmierhandbuch - Vol. 2

Einfach unter PC/GEOS programmieren

Beispiele:

! Auslassen von bestimmten Zahlen in einer Schleife
FOR N =1 TO 5

IF N = 3 THEN CONTINUE

Print N
NEXT

Ausgabe:

! Vorzeitiger Abbruch einer Schleife
FOR N =1 TO 5

IF N = 3 THEN BREAK

Print N
NEXT

Ausgabe: 1

Schleifenabbruch per Zufall

REPEAT
x = 1000* RND() ' Zufallszahl von 0 bis 999
IF x > 990 THEN BREAK
Print x

UNTIL FALSE '’ Endlos-Schleife

Print "Abbruch erfolgte bei"; x

Programmablaufsteuerung - 121

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.5.3 Pause und Delay

Die Befehle Pause und Delay dienen dazu, den Programmablauf fur eine
bestimmte Zeit anzuhalten. Pause und Delay werden vor allem in klassischen
BASIC-Programmen verwendet. In objektorientierten Programmen sind Pause und
Delay zu Fehlersuche hilfreich. Ansonsten sollten Sie diese Befehle in objekt-
orientierten Programmen nicht verwenden. Stattdessen sollten Sie einen Timer
verwenden, wenn Sie einen zeitgesteuerten Programmablauf winschen. Timer
sind ausfuhrlich im Handbuch "Spezielle Themen", Kapitel 16, beschrieben.

PAUSE

Der Pause-Befehl bewirkt eine kurze Programmunterbrechung.

Syntax: PAUSE [n]
n: num. Wert, Dauer in 0,1 Sekunden-Schritten
Defaultwert ohne n: 0,1 Sekunde Pause

Beispiel:

PAUSE 2.5 ' Eine viertel Sekunde warten

DELAY

Programm-Verzégerung. Der Befehl DELAY (verzbgere) wartet, bis seit dem
letzten DELAY-Befehl eine bestimmte Zeit vergangen ist. Im Gegensatz zum
PAUSE-Befehl werden die zwischenzeitlich abgearbeiteten Befehle bericksichtigt.
Damit ist eine gezielte Steuerung der Programmablaufgeschwindigkeit moglich.
Nach Méglichkeit sollen Sie, z.B. fir Spiele, statt Delay einen Timer verwenden.

Syntax: DELAY [InitWert]
InitWert: numerischer Wert. InitWert bestimmt die Timer-Tics (1/60 s),
die DELAY mindestens warten soll. DELAY 0 schaltet die
Verzbgerung ab.

Das Programm wird erst fortgesetzt, wenn seit dem letzten DELAY-Befehl (mit
oder ohne InitWert) mindestens "InitWert" Timer-Tics vergangen sind. Ist bereits
eine langere Zeit vergangen wird das Programm sofort fortgesetzt.
Achtung! Wird ein initWert angegeben, so wartet der DELAY-Befehl nicht,
sondern stellt nur die Wartezeit fur den nachsten DELAY-Befehl ein.

Beispiel: Langsame Ausgabe eines Textes, Buchstabe fur Buchstabe

DELAY 30 '’ Eine halbe Sekunde

Input AS

FOR N = 1 To Len(a$):
PRINT MidS$(a$, N, 1); ' Einen Buchstaben ausgeben
DELAY

NEXT

Programmablaufsteuerung - 122

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.5.4 Unbedingte Spriinge

e CIFASOTHEN GOTO L3>
|

Anweisungsblock 1

Schleifen und Verzweigungen springen zu
einem anderen Programmteil, wenn
bestimmte Bedingungen erflllt sind. Ein
unbedingter Sprung hingegen wird in jedem
Fall ausgefihrt. Sie sollten die héaufige ‘ |
Verwendung des GOTO-Befehls vermeiden, Y Anweisungsblock 2
da er schnell zu sehr unubersichtlichen e — -4

Programmen (dem sogenannten Spaghetti- Anweisungsblock 3

Code, siehe Bild) fihren kann. - .
<F X<7 TH%N-GOTO&}
|

<IF A<B THEN-GOTO 11 Dpesseet

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

P

GOTO

Die Anweisung GOTO (Gehe zu) setzt den Programmablauf an der angegebenen
Stelle fort.

Syntax: GOTO <sprungZiel>

<sprungZiel> muss eine im Programm mit der Anweisung LABEL vereinbarte
Marke oder eine Zeilennummer sein.

LABEL

Die Anweisung LABEL (Marke) vereinbart ein Ansprungziel fir GOTO, GOSUB
oder RESTORE. Siehe auch Kapitel 2.11.4 (Data-Zeilen).

Beispiel:
IF A > 0 THEN GOTO MeineMarke ' Springt nach unten
<Anweisungen 1> ' Werden ausgefiihrt wenn A nicht > 0 ist
LABEL MeineMarke:
<Anweisungen 2> '’ Werden in jedem Fall ausgefiihrt

In den meisten Féllen kann man die Verwendung des GOTO-Befehls vermeiden,
wenn man das Programm anders strukturiert. Der folgende Code ist identisch mit
dem Beispiel oben. Durch das Umkehren der Bedingung in der IF-Anweisung
(IF A<= 0 statt IF A > 0) wird weder ein GOTO-Befehl noch Label bendtigt.
Zusatzlich wird das Programm ubersichtlicher.

IF A <= 0 THEN

<Anweisungen 1> ' Werden ausgefiihrt wenn A nicht > 0 ist
End IF
<Anweisungen 2> '’ Werden in jedem Fall ausgefiihrt

Programmablaufsteuerung - 123

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Im Allgemeinen kann man das "umspringen" von Code mit GOTO durch eine IF-
Anweisung ersetzen, wobei die Sprungbedingung negiert werden muss (d.h. aus
= wird <, aus < wird >= usw.). "Ruckwartsspringe" mit GOTO lassen sich meist
durch eine REPEAT-UNTIL-Schleife ersetzen, wobei die Bedingung ebenfalls
negiert werden muss.

Beispiel
' Code mit GOTO
LABEL markel

INPUT "Geben sie eine positive Zahl ein"; A
IF A <= 0 THEN GOTO markel

'’ Code mit einer Schleife

REPEAT
INPUT "Geben sie eine positive Zahl ein"; A
UNTIL A > 0

Abwartskompatibilitat

R-BASIC unterstltzt auch die in vielen BASIC-Dialekten verwendete Kombination
"GOTO Zeilennummer". Das kann die Ubertragung fremder BASIC-Programme
vereinfachen. Die "Zeilennummer" muss dabei explizit angegeben sein (z.B. "1000
CLS ...", siehe Beispiel). Sie sollten diese Variante in eigenen Programmen nicht
verwenden.

Beispiel:
GOTO 1000 ' verzweigt das Programm nach unten
cooao ' Dieser Teil wird iibersprungen
1000 CLS
' hier geht es dann weiter

Programmablaufsteuerung - 124

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

2.5.5 Vorzeitiger Programmabbruch

In den meisten Fallen wird der Nutzer das Programm regular Gber das Dateimenu
beenden. R-BASIC bietet jedoch auch die Mdoglichkeit, den Programmablauf
vorzeitig per BASIC-Befehl zu beenden.

EXIT

EXIT bricht die Programmausfihrung ab und schlieBt das Programm. Die Wirkung
ist die gleiche als ob der Nutzer den MenUeintrag "Beenden" (oder "Verlassen")
aus dem Dateimenl gewéhlt hat. EXIT kann an beliebiger Stelle im Programm
stehen, auch in Schleifen und innerhalb von Unterprogrammen oder Action-
Handlern.

Syntax: EXIT

Beispiel:
IF X < 0 THEN EXIT

END

END ist ein Befehl zur Wahrung der Abwartskompatibilitdit zu anderen BASIC-
Dialekten. In R-BASIC sollten Sie END nicht verwenden.

END bricht den laufenden Programmteil ab, das Programm wird jedoch nicht
geschlossen. END ist in klassischen BASIC-Programmen der Ubliche Weg, das
Programm vorzeitig zu beenden. In R-BASIC bleibt ein Programm nach einem
END-Befehl weiterhin funktionsfahig. END kann an beliebiger Stelle im Programm
stehen, auch in Schleifen und innerhalb von Unterprogrammen oder Action-
Handlern.

Syntax: END

Verwechseln Sie END nicht mit RETURN (siehe Kapitel 2.6, Unterprogramme).
RETURN bewirkt, dass das Unterprogramm zurtickkehrt, der auf den Aufruf des
Unterprogramms (Sub oder Function) folgende Code wird abgearbeitet. END
hingegen wurgt den laufenden Handler komplett ab.

Beispiel:
IF X >0 THEN END

Programmablaufsteuerung - 125

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

Programmablaufsteuerung - 126

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

Programmablaufsteuerung - 127

