

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 ProgrammierhandbuchProgrammierhandbuch

Volume 2
Numerische Ausdrücke, Stringausdrücke

Programmablaufsteuerung

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

2.3 Arbeit mit numerischen Ausdrücken ... 64
2.3.1 Grundlagen und Überblick ... 64
2.3.2 Mathematische Funktionen .. 67
2.3.3 Operatoren und Vergleiche .. 71
2.3.4 Bits, Bytes, Binär- und Hexadezimalzahlen 73
2.3.5 Logische und Bit-Operationen ..77

2.3.5.1 Logische Ausdrücke in Entscheidungen 77
2.3.5.2 Anwendung der logischen Operatoren auf Zahlen 79
2.3.5.3 Bit-Schiebe-Operationen ... 81
2.3.5.4 Sonderfall: Bitflags ..82

2.3.6 Schnelle Mathematik mit WWFixed ... 86
2.3.7 Exkurs: Vergleiche innerhalb numerischer Ausdrücke 91

2.4 Arbeit mit Strings .. 92
2.4.1 Bearbeiten von Strings .. 92
2.4.2 Vergleichen von Strings ... 97
2.4.3 Konvertierungsfunktionen .. 99

2.5 Programmablaufsteuerung ... 106
2.5.1 Verzweigungen .. 106
2.5.2 Schleifen .. 114
2.5.3 Pause und Delay ... 122
2.5.4 Unbedingte Sprünge ...123
2.5.5 Vorzeitiger Programmabbruch ... 125

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 64

2.3 Arbeit mit numerischen Ausdrücken

In diesem Kapitel erfahren Sie alles über die Arbeit mit mathematischen Aus-
drücken. Vorher sollten Sie das Kapitel 2.2.2 (Numerische Variablen) gelesen
haben.

2.3.1 Grundlagen und Überblick

Die Verarbeitung von Zahlen und mathematischen Funktionen gehört zu den
Kernaufgaben einer Programmiersprache. Hier finden Sie eine Zusammenstellung
der wesentlichen Dinge, die beim Verarbeiten von Zahlen mit R-BASIC zu
beachten sind.

Für Zahlen gelten die folgenden Regeln
• Einfache Zahlen sind z.B. 12 oder 4.89

Als Dezimaltrenner wird immer der Punkt ’.’ verwendet, egal was Sie in den
PC/GEOS Voreinstellungen festgelegt haben. Dadurch kann man BASIC-
Programme auf allen PC/GEOS-Rechnern sofort laufen lassen.

• Vor jede Zahl darf ein Vorzeichen (+ oder –) gesetzt werden.
• Für Zahlen mit 10er-Potenzen wird das E (oder e) verwendet.

–3,78·1012 wird also so geschrieben: –3.78E12
6,673·10–11 sieht so aus: 6.673E–11
Entsprechendes gilt auch für die Ausgabe von Zahlen durch R-BASIC.

• Leerzeichen innerhalb von Zahlen sind unzulässig.
• Zahlen können auch in binärer Schreibweise (Vorsatz &B, z.B. 5 als &B101)

und in hexadezimaler Schreibweise (Vorsatz &H, z.B. 243 als &HF3) dargestellt
werden. In diesen Fällen sind 32 Bit oder 8 Hexadezimalstellen zulässig
(Zahlenbereich DWord). Zahlen in dieser Schreibweise werden grundsätzlich
als positive Zahlen behandelt.

• Achtung!
Bei einer Zahlenbereichsüberschreitung der 1, 2 und 4-Byte Datentypen
werden intern die überschüssigen Bits ignoriert. Für die vorzeichenlosen
Datentypen (Byte, Word, DWord) entspricht das einer Modulo-Operation.
Bei vorzeichenbehafteten Werten (Integer und LongInt) führt das dazu, dass
aus einer zu großen positiven Zahl eine negative Zahl wird und umgekehrt.
Beispiel: Die Zuweisung des Wertes 257 zu einer Byte-Variable (Bereich 0 bis
255) führt dazu, dass der Wert 1 gespeichert wird (257 MOD 256 = 1).

Mathematische Operatoren und Vergleiche:

Neben den Grundrechenarten (+, –, *, /) beherrscht R-BASIC die Exponenten-
darstellung (^ , z.B. 24 = 2^4), die Modulo-Operation (MOD, Rest nach Division)
sowie die Vergleichsoperatoren =, <, > , <= , >= und <>. Das Ergebnis eines

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 65

Vergleichs ist immer wahr (TRUE, siehe unten, numerische Konstanten) oder
falsch (FALSE). Eine ausführliche Darstellung der Zusammenhänge finden Sie im
Kapitel 2.3.3 (Vergleiche und Operatoren).

Mithilfe von logischen Operatoren (NOT, AND, OR , XOR) und Bit-Operationen
(SHL(x, n), SHR(x, n), Shl32(x, n), Shr32(x, n)) können einzelne Bits manipulieren.
Mit diesem Thema beschäftigen sich das Kapitel 2.3.5.

Mathematische Funktionen

• R-BASIC verfügt über eine Vielzahl von mathematischen Funktionen. Diese
können beliebig verknüpft werden, wobei R-BASIC die üblichen Vorrangregeln
(Punktrechnung vor Strichrechnung, Klammern gehen vor usw.) beachtet.
Beispiele:

y = 4*sin(5*x) + 7
y = sqr(1 + tan(z))

• Überall dort, wo in den Beispielen Zahlen oder numerische Variablen
verwendet wurden, können auch komplexe numerische Ausdrücke stehen.

• Zu den mathematischen Funktionen gehören zum Beispiel ABS(x) (absoluter
Betrag), INT(x) (ganzzahliger Anteil), SQR(x) (Square root - Quadratwurzel)
und SIN(x) (Sinus). Eine vollständige Liste finden Sie im nächsten Abschnitt.

Numerische Konstanten

R-BASIC enthält viele vordefinierte symbolische Konstanten, die anstelle ihrer
Zahlenwerte verwendet werden können. In vielen Fällen kann dadurch die Lesbar-
keit des Programms verbessert werden. Dazu gehören zum Beispiel Konstanten
für die Farbwerte (Farbkonstanten), für Zeichensätze (Fonts) und vieles mehr.
Diese Konstanten werden im Zusammenhang mit den entsprechenden Themen
besprochen.
Zusätzlich gibt es noch einige "allgemeine" Konstante, die hier aufgeführt sind.

Konstante Wert Bedeutung
PI 3,1415... repräsentiert die Kreiszahl π

Beispiel: u = PI*d
FALSE 0 Wahrheitswert "falsch"
TRUE –1 Wahrheitswert "wahr"
YES 1 Bestätigung
NO 0 Ablehnung

Hinweise:
• Vergleichsausdrücke liefern immer TRUE (–1) oder FALSE (Null) zurück
• R-BASIC behandelt in Entscheidungssituationen (IF...THEN) alle Ausdrücke,

die Null ergeben als "falsch", alle Ausdrücke die nicht Null ergeben als "wahr".
• Mit der Anweisung CONST (siehe Kapitel 2.2.10) können Sie sich beliebige

Konstanten für eigene Zwecke definieren.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 66

Hierarchie der mathematischen Operatoren

Die mathematischen Operatoren in R-BASIC werden nach einer bestimmten
Priorität abgearbeitet. Aus der Schule kennen Sie das als "Punktrechnung geht vor
Strichrechnung".

Priorität der Operatoren, hochpriorisierte Operatoren stehen oben:
1. Klammern
2. Exponenten ^
3. Vorzeichen – , +
4. Multiplikation und Division: *, /, MOD
5. Addition, Subtraktion: +, –
6. Vergleichsoperatoren =, <, >, <=, >=, <>
7. NOT,
8. AND,
9. OR,
10. XOR

Gleichwertige Operatoren werden von links nach rechts abgearbeitet.

Beispiele
Die Prioritäten sichern ab, dass folgende Ausdrücke so abgearbeitet werden, als
wären die im Kommentar angegebenen Klammern gesetzt:

! Punktrechnung vor Strichrechnung:
4*A + 7*B ! ---> (4*A) + (7*B)

! Exponenten-Operator ^ vor den Vorzeichen:
–5^2 ! --> –(5^2)
5^–2 ! --> 5^(–2)

! Rechenoperationen vor den Vergleichsoperatoren:
IF 4•A <= B–1 THEN .. ---> IF (4•A) <= (B – 1) THEN

! Vergleichsoperatoren vor den logischen Operatoren:
IF a>4 OR B<2 THEN .. ---> IF (a>4) OR (B<2)THEN

! NOT hat die höchste Priorität unter den logischen Operationen
IF NOT A AND NOT B THEN ..

! ---> IF (NOT A) AND (NOT B) THEN ..

Anmerkung: Ausdrücke mit mehreren verschiedenen logischen Operatoren sind
sehr unübersichtlich. Außerdem kommt es sehr schnell zu Fehleinschätzungen
der Abarbeitungs-Priorität. Deswegen gibt der Compiler eine Warnung aus, wenn
Sie verschiedene logische Operatoren in der gleichen Klammerebene verwenden.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 67

2.3.2 Mathematische Funktionen

Dieses Kapitel beschreibt alle in R-BASIC verfügbaren mathematischen Funk-
tionen. Mathematische Funktionen sind BASIC-Anweisungen, die einen nume-
rischen Wert berechnen. Sie werden in der Form y = ABS(x) verwendet (Aus-
nahme: RANDOMIZE), wobei y eine numerische Variable ist. Die Grundlagen zu
numerischen Variablen finden Sie im Kapitel 2.2.2.

R-BASIC arbeitet mit REAL-Zahlen im Bereich von ± 3.9999•104931. Einige der
mathematischen Funktionen haben einen eingeschränkten Definitionsbereich, d.h.
sie sind für Argumente (x-Werte) außerhalb eines bestimmten Zahlenbereichs
nicht anwendbar. Übergibt man einen x-Wert außerhalb des Definitionsbereichs so
liefern die Funktionen einen spezielle "Fehlerwert", es kommt nicht zum
Programmabbruch! Eine Auflistung der Definitionsbereiche und Fehlerwerte finden
Sie im Anhang.

Rechnet man mit den Fehlerwerten (Fehler, Unterlauf und Überlauf) weiter, so
bleibt der Fehlerwert erhalten. Gibt man einen Fehlerwert aus (Z.B. PRINT oder
Str$(x)), so wird der entsprechende Text ("Fehler", "Überlauf", "Unterlauf"
ausgeben.

Beispiel:
PRINT SQR(-3) ! Das Wort "Fehler" erscheint

Einfache mathematische Funktionen:

Funktion Bedeutung
ABS(x) Absoluter Betrag von x: |x|
SGN(x) Signum-Funktion (Vorzeichen-Funktion)

Liefert –1 (negativ), 0 oder +1 (positiv)
INT(x) Liefert die nächst kleinere ganze Zahl, d.h. es wird nach

unten gerundet: INT(x) ≤ x
TRUNC(x) Kürzt x auf seinen ganzzahligen Anteil, d.h. es wird

Richtung Null gerundet. TRUNC(x) und INT(x) unter-
schieden sich bei negativen x.

FRAC(x) Liefert den gebrochenen Anteil von x, d.h. die Nach-
kommastellen. Das Ergebnis ist immer positiv.

ROUND(x [, n]) Rundet x auf n Stellen nach dem Komma.
Wird n weggelassen, erfolgt die Rundung auf ganze
Zahlen, (so als ob n = 0 wäre).

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 68

Beispieltabelle für die einfachen mathematischen Funktionen:

 x SGN(x) INT(x) TRUNC(x) FRAC(x) ROUND(x)
 3.8 +1 3 3 0.8 4
 3.5 +1 3 3 0.5 4
 3.1 +1 3 3 0.1 3
 0 0 0 0 0 0
- 3.2 - 1 - 4 - 3 0.2 - 3
- 3.5 - 1 - 4 - 3 0.5 - 3
- 3.7 - 1 - 4 - 3 0.7 - 4

Anmerkungen:
• ROUND verwendet bei x.5 "Gerade-Zahl-Regel". Das bedeutet, dass auf die

nächste gerade Zahl gerundet wird, auch bei negativen Zahlen. Beispiele:
ROUND(3.5) --> 4
ROUND(2.5) --> 2
ROUND(1.5) --> 2
ROUND(–2.5) --> –2

• INT(x), TRUNC(x) und FRAC(x) führen vorher keine Rundung aus, sondern
nehmen der Wert, wie er intern vorhanden ist. Beim Ausgeben eine Zahl
(Print oder Str$) wird jedoch gerundet. Das kann zu scheinbaren Wider-
sprüchen führen:
PRINT 4.999999999999 --> 5
PRINT INT(4.999999999999) --> 4
PRINT FRAC(4.999999999999) --> 1

Sollte das ein Problem sein, runden Sie den Wert vorher.

Zufalls-Zahlen:

Funktion Bedeutung
RANDOMIZE [n] Initialisiert den Zufallsgenerator.

n: Initialisierungswert (n sollte eine große Zahl sein). Bei
gleichem Initialisierungswert liefert der Zufalls-
generator immer die gleiche "zufällige" Folge.
Beispiel: RANDOMIZE 1123581321

Ohne n: Der Initialisierungswert wird aus der Systemzeit
ermittelt. Der Zufallsgenerator liefert immer
verschiedene "zufällige" Folgen.

RND() Liefert eine Zufallszahl im Bereich 0 <= x < 1

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 69

Tipps:
• Initialisieren Sie den Zufallsgenerator nur einmal im Programm, am besten

am Programmanfang:
RANDOMIZE

• Ganzzahlige Zufallszahlen im Bereich von 0...n-1 (jeweils einschließlich)
erhält man mit:

y = INT(n * RND())

• Warnung! RANDOMIZE und RND() verwenden den GEOS-internen Zufalls-
generator. Der Programmierer von R-BASIC kann daher nicht garantieren,
dass bei verschieden Systemversionen die RND() -Funktion bei gleichem
Initialisierungswert von RANDOMIZE wirklich die gleiche Zufallszahlenfolge
liefert. Diese Warnung ist z.B. für kryptografische Programme bedeutsam.
Der Programmierer übernimmt diesbezüglich keinerlei Haftung!

INCR und DECR

Die Anweisungen INCR (engl. increment, Zuwachs, Vergrößerung) und DECR
(engl. decrement, Verringerung) vergrößern oder verkleinern den Wert einer
numerischen Variablen um 1 oder um einen vorgegeben Wert n. N muss
ganzzahlig sein, im Bereich von -32768 bis +32767 liegen und zur Compilezeit
berechenbar sein. Einfache Berechnungen (+, -, *, /, Klammern, ^ (Exponent) ,
MOD (Modulo-Division), OR, AND, NOT, XOR und die Funktionen INT(), ASC(),
SQR(), FRAC(), TRUC(), SIN(), COS(), TAN(), EXP(), LN(), LOG(), LG() und
SizeOf(). sowie negative Werte sind zugelassen. Variablen und sonstige
Funktionen sind nicht erlaubt.

Funktion Bedeutung
INCR <numVar> Vergrößerung des Variablenwertes um 1
INCR <numVar> , n Vergrößerung des Variablenwertes um n (n: ganzzahlig)
DECR <numVar> Verkleinerung des Variablenwertes um 1
DECR <numVar>, n Verkleinerung des Variablenwertes um n (n: ganzzahlig)

Beispiele:
DIM x as REAL
DIM w as WORD
CONST D_X = 18

INCR x ’ entspricht x = x + 1
DECR w, 12 ’ entspricht w = w – 12
INCR w, D_X + 2 ’ entspricht w = w + 20

INCR und DECR laufen deutlich schneller als ihre Entsprechungen x = x + n bzw.
x = x - n.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 70

Transzendente Funktionen:

Funktion Bedeutung
SQR(x) Quadratwurzel aus x
EXP(x) Exponentialfunktion eX
LN(x) Natürlicher Logarithmus von x, d.h. Logarithmus zur

Basis e
LOG(x) Dekadischer Logarithmus von x, d.h. Logarithmus zur

Basis 10, log10(x)
LG(x) Logarithmus zur Basis 2, log2(x)

Trigonometrische Funktionen:

Funktion Bedeutung
SIN(x) Sinus von x, x im Bogenmaß
COS(x) Cosinus von x, x im Bogenmaß
TAN(x) Tangens von x, x im Bogenmaß
ASN(x) ArcusSinus von x - Umkehroperation zu Sinus
ACS(x) ArcusCosinus von x - Umkehroperation zu Cosinus
ATN(x) ArcusTanges von x - Umkehroperation zu Tangens

Im Bogenmaß hat ein Vollkreis nicht 360°, sondern den Wert 2π. Die Um-
rechnungsformel lautet:

wert_im_bogenmaß = wert_im_gradmaß * PI / 180

Wenn Sie das Argument im Gradmaß haben und mit einer Genauigkeit von 4
Stellen nach dem Komma auskommen können Sie statt der in der Tabelle
angegeben Funktionen auch eine der WWFixed-Funktionen FixSin, FixCos,
FixTan und FixAsn verwenden. Diese Funktionen können direkt (d.h. ohne
Konvertierungsfunktion) in Real-Ausdrücken verwendet werden und erwarten das
Argument im Gradmaß. Details zu den WWFixed-Funktionen finden Sie im Kapitel
2.3.6.

Hyperbolische Funktionen:

Funktion Bedeutung
SinH(x) Sinus Hyperbolicus von x
CosH(x) Cosinus Hyperbolicus von x
TanH(x) Tangens Hyperbolicus von x
ASNH(x) Arcus Sinus Hyperbolicus von x
ACSH(x) Arcus Cosinus Hyperbolicus von x
ATNH(x) Arcus Tangens Hyperbolicus von x

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 71

2.3.3 Operatoren und Vergleiche

R-BASIC verfügt über die im Folgenden angegebenen mathematischen
Operatoren. Eine Übersicht über die Hierarchie (Abarbeitungsreihenfolge) der
Operatoren finden Sie vorn, im Kapitel 2.3.1 (Grundlagen)

Einfache Operatoren:

 Operator Funktion
+, – Addition und Subtraktion
*, / Multiplikation und Division.

^ Exponent. z.B. 2^3 entspricht 23

MOD Modulo-Operation: Division mit Rest, wobei der Rest das
Ergebnis ist. Beispiele:
7 MOD 3 liefert 1 denn 7/3 = 2 Rest 1
3.4 MOD 1.3 liefert 0.8 denn 3.4 = 2•1.3 + 0.8

Tipp: Die Zeichen ^ (Exponent) * (Sternchen für Multiplikation) und - (Minus) sind
eventuell nicht oder nur schwer am Bildschirm zu identifizieren. R-BASIC
unterstützt daher für diese Zeichen Ersatz-Zeichen, die Sie stattdessen schreiben
können, um die Lesbarkeit Ihres Codes zu verbessern.

^ : Exponent-Ersatzzeichen : ** (zwei Sternchen)
* : Multiplikation-Ersatzzeichen : • (AltGr+Shift+8, ASCII-Code 165)
- : Minus-Ersatzzeichen : – (AltGr+Minus, ASCII-Code 208)

Vergleichsoperatoren

Vergleichsoperationen liefern Wahr (TRUE, –1) oder Falsch (FALSE, 0)

 Operator Syntax Funktion
= A = B Wahr, wenn A gleich B ist
< A < B Wahr, wenn A kleiner als B ist
> A > B Wahr, wenn A größer als B ist
<= A <= B Wahr, wenn A kleiner oder gleich B ist
>= A >= B Wahr, wenn A größer oder gleich B ist
<> A <> B Wahr, wenn A ungleich B ist

Die Vergleichsoperatoren (<, <=, >, >=, = <>) stehen auch für Zeichenketten zur
Verfügung. Für Variablen vom Typ FILE, HANDLE oder OBJECT sowie für
Strukturen stehen die Vergleichsoperatoren = und <> zur Verfügung.
Hinweis: Statt A = B kann man für Vergleich auch ein doppeltes Gleichheits-
zeichen schreiben (A == B). Das verbessert gelegentlich die Lesbarkeit.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 72

Logische Operatoren

Logische Operatoren wirken bitweise auf die Operanden. Eine ausführliche
Erklärung sowie Beispiele finden Sie im nächsten Kapitel.

 Operator Syntax Funktion
NOT NOT A Negation

Liefert immer das Gegenteil
AND A AND B Logisches UND

Liefert Wahr, wenn beide Werte wahr sind.
OR A OR B Logisches ODER

Liefert Wahr, wenn mindestens einer der Werte wahr
ist.

XOR A XOR B Logisches Exklusiv ODER
Liefert Wahr, wenn entweder der eine oder der
andere Wert wahr ist. Sind beide Werte Wahr, liefert
XOR Falsch.

Beispiele:
Da Vergleiche höher priorisiert sind benötigt man hier keine Klammern.

NOT 4 > 7 ’ liefert Wahr
3 > 7 OR 5 > –2 ’ liefert Wahr
3 > 7 AND 5 > –2 ’ liefert Falsch
3 > 7 XOR 5 > –2 ’ liefert Wahr

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 73

2.3.4 Bits, Bytes, Binär- und Hexadezimalzahlen

Als fortgeschrittener Programmierer kommt man letztlich um binär und Hexa-
dezimaldarstellungen nicht herum. Als Anfänger sollte man dieses Kapitel
zumindest überfliegen, damit man eine Vorstellung davon bekommt, was das
Ganze eigentlich soll.

Um zu verstehen, wie Computer Zahlen darstellen, müssen wir uns zunächst
darüber klar werden, wie wir das eigentlich selber im täglichen Umgang mit Zahlen
machen.

Unser "normales" Dezimalsystem hat 10 Ziffern: 0 bis 9 - damit könnten wir genau
10 Zahlen darstellen, nämlich 0 bis 9. Wenn wir größere Zahlen darstellen wollen,
setzen wir einfach weitere Ziffern davor - in 47 bedeutet die 4 eigentlich 4•10 und
in 398 bedeutet die 3 in Wirklichkeit 3•100. Das hat man so vereinbart und jeder
hält sich daran.
Da 100 = 102 ist, 10 = 101 und 1 = 100, kann man sagen, dass gilt:

398 = 3•102 + 9•101 + 8•100

Dieses Prinzip wenden wir auf alle Zahlen an, wobei die 10er-Potenzen daher
kommen, dass wir eben 10 Ziffern (0 bis 9) haben. Man beachte, dass, obwohl wir
10 Ziffern haben, bereits die Zahl 10 zweistellig ist - weil wir ja mit Null beginnen.

Computer kennen nur zwei Ziffern: 0 und 1 (entsprechend Strom an und Strom
aus). Sie sind also gezwungen bereits eine Ziffer "davor" zu setzen, wenn sie die
Zahl Zwei darstellen wollen. Die Zahlendarstellung mit nur zwei Ziffern nennen wir
"binär" (bzw. Binärsystem).

Analog zu unserer üblichen Vereinbarung, dass
40 = 4•101 + 0 •100

ist, gilt für Binärzahlen ebenfalls
10 = 1•21 + 0•20

bzw. 11 = 1•21 + 1•20

Wir verwenden Zweier-Potenzen, das wir genau zwei Ziffern (0 und 1) haben.
Dieses Prinzip kann man auf beliebig lange Binärzahlen anwenden. Eine weitere
Vereinbarung aus unserem üblichen Dezimalsystem, nämlich dass führende
Nullen zulässig sind (es ist egal ob wir 7 oder 007 schreiben), ermöglicht uns, die
folgende Tabelle aufzustellen:

 binär Zweierpotenz dezimal
0000 keine 0
0001 20 1
0010 21 2
0100 22 4
1000 23 8

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 74

Jede Zahl kann man als Summe dieser "elementaren" Zweierpotenzen darstellen,
z.B. ist

1010 = 23 + 21 = 8 + 2 = 10

In der Computertechnik wird eine einzelne Binärstelle als Bit bezeichnet. Ist der
Wert 1, sagt man, das Bit ist "gesetzt", andernfalls ist es "nicht gesetzt". Es ist
üblich, die Bits von rechts beginnend durchzunummerieren, wobei die ganz rechte
Stelle als Bit Null bezeichnet wird. Das hat für den Mathematiker den Vorteil, dass
die Bitposition gleich dem Potenzwert ist (Bit 0 : 20, Bit 1 : 21 usw.).
Im Beispiel oben (1010) sind also die Bits 1 und 3 gesetzt.

Mit einem Bit kann man 21 = 2 Zahlen darstellen, bei zwei Bit sind es bereits 22 = 4
Zahlen (00, 01, 10 und 11) und mit 4 Bit sind es 24 = 16 Zahlen. Das ist noch nicht
sehr viel. Daher fasst man 8 Bit zu einem Byte zusammen. Ein Byte enthält also
die Bits 0 bis 7:

7 6 5 4 3 2 1 0

Damit kann man 28 = 256 verschiedene Zahlen darstellen (0 bis 255). Wenn das
nicht reicht, nimmt man 16 Bit, ein sogenanntes Word. Hier kommt man auf
216 = 65536 Zahlen (0 bis 65535). Für gehobene Ansprüche gibt es noch das
DWord (Double word) mit 32 Bit, dort reicht der Zahlenbereich bis 4294967295.

Bereits bei einem Byte wird die Binärdarstellung unübersichtlich. Man erfasst den
Unterschied zwischen 10010101 (= 149) und 10101001 (=169) nicht mehr auf den
ersten Blick. Deswegen hat es sich als praktisch erwiesen, jeweils 4 Binärziffern
zusammenzufassen. Mit vier Binärziffern (4 Bit) kann man aber 16
Zahlendarstellen - die Ziffern 0 bis 9 reichen da nicht mehr. Man behilft sich daher
mit den ersten Buchstaben des Alphabets (konkret A bis F). Diese Darstellung
nennt man hexadezimal (hexa = 6, dezi = 10).

 binär hexadezimal dezimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 75

Nach einiger Übung kommt man mit dieser zunächst sehr exotisch anmutenden
Zahlendarstellung gut zurecht und wird bald die Vorteile zu schätzen wissen
Einige Beispiele:

1001 0101 = 95 (hex.) (= 149 dez.)
1010 1001 = A9 (hex.) (= 169 dez.)
1111 1111 = FF (hex.) (= 255 dez.)
1100 0111 = C7 (hex.) (= 199 dez.)

Aus der Tabelle wird ein Problem ersichtlich: ohne Kommentar kann man nicht
entscheiden, ob z.B. 1001 dezimal oder binär gemeint ist (oder sogar hexa-
dezimal?). Daher ist es in Programmiersprachen übliche, das Zahlensystem zu
kennzeichnen. In R-BASIC gilt folgende Vereinbarung:

ohne Kennung: dezimal z.B. 12
Kennung &H: hexadezimal z.B. &H95 (= 149 dez.)
Für C-Programmierer: 0x: Hexadezimal z.B. 0x95 (= &H95 = 149 dez.)
Kennung &B: binär z.B. &B1100 (= 12 dez.)

Rein formal kann man auch beim Hexadezimalsystem mit der Potenzdarstellung
arbeiten, nur dass hier die Basis 16 verwendet werden muss (beachte: 160 = 1):

&h95 = 9·161 + 5•160 = 144 + 5 = 149
&hA9 = A·161 + 9•160 = 10·161 + 9•160 = 160 + 9 = 169

Dieses Verfahren kann man verwenden, wenn man Hexadezimalzahlen "von
Hand" in Dezimalzahlen umwandeln muss. Die meisten wissenschaftlichen
Taschenrechner verfügen aber heute über entsprechende Funktionen.

R-BASIC bietet über das Menü "Extras" -> "Tools" ein kleines Programm an
(HBDConverter, © by John Howard and used by permission), mit dem man
Binär-, Dezimal- und Hexadezimalzahlen ineinander umrechnen kann. Das Pro-
gramm ist in der Standardinstallation von R-BASIC nicht enthalten, es muss
separat von der R-BASIC-Webseite heruntergeladen werden.

Außerdem gibt es die Stringfunktionen Hex$() und Bin$(), mit denen Sie Zahlen
in hexadezimaler und binärer Darstellung ausgeben können.

Was passiert eigentlich, wenn man bei einem Byte zu der größten darzustellenden
Zahl (255 = &HFF) noch Eins addiert? Eigentlich kommt ja 256 (=&H100) heraus.
Im Binärsystemsieht das so aus:

 1111 1111
+ 1

1 0000 0000
Diese Zahl hat 9 Bit und kann in einem Byte nicht mehr dargestellt werden. Man
hat festgelegt, dass in einem solchen Fall, die wir Überlauf nennen, die führenden
Bits, die nicht in das Byte passen, ignoriert werden: 255 + 1 ist also in diesem Fall
Null. "In diesem Fall" heißt, dass wir das Ergebnis in einem Byte speichern wollen.
Haben wir ein Word (16 Bit) zur Verfügung, können wir das Ergebnis sehr wohl

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 76

abspeichern und es kommt 256 heraus. Erst 65535 + 1 ergäbe 65536, was nicht
mehr in ein Word passt und daher wieder Null ergibt. Dieses Phänomen muss
man kennen, wenn man mit Bits und Bytes direkt arbeitet.

Das Problem des Überlaufs führt immer wieder zu schwer auffindbaren Fehlern. In
R-BASIC sollte daher nach Möglichkeit der Datentyp REAL (Genauigkeit 10 Byte)
verwendet werden. Da intern alle Berechnungen mit REAL-Zahlen ausgeführt
werden, ist dieser Datentyp auch fast am schnellsten. Nur WWFixed ist schneller.

Wenn Sie die "kleinen" Datentypen verwenden müssen, stehen Ihnen in R-BASIC
die Typen Byte, Word , Integer, DWord, LongInt (4 Byte, mit Vorzeichen) sowie
der Typ WWFixed zur Verfügung. Im Kapitel 2.2.2 (Numerische Datentypen und
numerische Ausdrücke) finden Sie weitere Informationen dazu.

Und nun noch die verrückten Mathematiker ... (oder: Futter für Fortgeschrittene)

Ein Mathematiker wird sich schnell beschweren, dass es keine negativen Zahlen
gibt. Aber ihm kann geholfen werden. Wie bereits mehrfach erwähnt, basiert bei
der Zahlendarstellung sehr viel auf Vereinbarungen.
Wie wir gerade gesehen haben ergibt, wenn wir ein Byte binär betrachten,

1111 1111 + 1 = 0
Also muss gelten:

0 – 1 = 1111 1111
0–1 ist aber –1. Es ergibt daher Sinn, wenn man negative Zahlen benötigt,
festzulegen, dass alle Zahlen, deren führendes Bit gesetzt ist (beim Byte also Bit
7, beim Word das Bit 15), negative Zahlen sein sollen.

0000 0000 = 0
1111 1111 = -1
1111 1110 = -2
usw. bis
1000 0000 = - 128

Man kann in einem Byte also Zahlen von –128 bis +127 darstellen - insgesamt
wieder 256 verschiedene Zahlen. Man nennt diese Darstellung "Zweierkomple-
ment".
Offensichtlich ist es nur eine Frage der Vereinbarung, ob man die Binärzahl
1111 1111 als -1 oder als + 255 auffasst. Das ist sicher anfänglich sehr verwirrend
und zum Glück benötigt man diese Informationen nur sehr selten.
Dem Computer ist das letztlich egal, denn die Rechenregeln sind so aufgestellt,
dass er immer so tun kann, als seien alle Zahlen positiv. Tun wir es ihm nach.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 77

2.3.5 Logische Operatoren und Bit-Operationen

In R-BASIC sind die folgenden bitweisen logischen Operatoren und Funktionen
definiert:

 Operator / Funktion Funktion
NOT A bitweise Negation
A AND B bitweises logisches UND
A OR B bitweises logisches ODER
A XOR B bitweises logisches Exklusiv ODER
SHL bitweises Linksschieben, 16 Bit
Shl32 bitweises Linksschieben, 32 Bit
SHR bitweises Rechtsschieben, 16 Bit
Shr32 bitweises Rechtsschieben, 32 Bit

Zur Arbeit mit den bitweisen logischen Operationen sind die folgenden Konstanten
hilfreich:

Konstante Wert Bedeutung
FALSE 0 Wahrheitswert "falsch"
TRUE –1 Wahrheitswert "wahr"

TRUE ist als -1 definiert, weil in der Binärdarstellung dann alle Bits gesetzt sind.
Das ermöglich eine einfache Zusammenarbeit von Vergleichen (sie liefern TRUE
oder FALSE) und logischen Operationen (z.B. AND oder OR).

2.3.5.1 Logische Ausdrücke in Entscheidungen

In einigen Situationen (z.B. bei den Anweisungen IF und WHILE, siehe
Kapitel 2.5) muss R-BASIC Entscheidungen treffen. Dazu wird ein numerischer
Ausdruck ausgewertet. In vielen Fällen ist das einfache Vergleichsoperation.
Beispiele:

IF A > B THEN ...
IF (A + B) > 12 THEN ...
WHILE A > 0
...
WEND

Gelegentlich müssen aber mehrere Bedingungen erfüllt sein. Zum Beispiel kann
es sein, dass A>B und C<0 gleichzeitig gelten muss. Oder es reicht aus wenn
eine der Bedingungen X>Y oder Z<0 erfüllt ist.
Natürlich kann man die Bedingungen nacheinander abfragen. Aber eleganter und
effizienter ist es, die Bedingungen durch logische Operationen zu verknüpfen.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 78

Wenn R-BASIC eine Vergleichsoperation ausführt kann das Ergebnis wahr
(TRUE) oder falsch (FALSE) sein. Für die Verknüpfung mithilfe logischer
Operatoren gilt folgendes:

• NOT A ist wahr, wenn A falsch ist und umgekehrt.
• A AND B ist wahr, wenn sowohl A als auch B wahr sind
• A OR B (logsiches ODER) ist wahr, wenn A oder B, oder beide wahr sind
• A XOR B (exklusives ODER) ist wahr, wenn entweder A oder B wahr sind.

Sind beide wahr liefert A XOR B falsch.

Die folgende Tabelle verdeutlicht das. A und B seien Ergebnisse einer Vergleichs-
operation, die wahr (W, TRUE, –1) oder falsch (F, FALSE, 0) sein können.

A B NOT A A AND B A OR B A XOR B
F F W F F F
F W W F W W
W F F F W W
W W F W W F

Beispiele
Da die Vergleichsoperatoren höher priorisiert sind als die logischen Operatoren
führt R-BASIC zuerst die Vergleiche aus und verknüpft deren Ergebnisse an-
schließend mit den logischen Operationen. Wenn Sie mehrere logische
Operatoren verwenden sollten Sie Klammern setzten.

IF A > 0 THEN ...
IF A > 0 OR Name$ = "Paul" THEN ...
IF (A >= 0 AND A <= 9) OR (A >= 100 AND A <= 109) THEN ...

REPEAT
....
UNTIL C > 0 AND D = 7

Wenn R-BASIC eine Entscheidung trifft (IF, WHILE, UNTIL) prüft es, ob der
entsprechende numerische Ausdruck Null ist oder nicht. Jeder Wert, der nicht
Null ist, wird als wahr angesehen. Folgende Formulierungen sind daher
gleichwertig:

IF A <> 0 THEN ...
IF A THEN ...

Ein Wert kann also "wahr" sein (z.B. 12) ohne TRUE (–1) zu sein. Vermeiden Sie
daher Formulierungen wie die folgende, das kann zu schwer zu findenden Fehlern
führen.

’ Möglicherweise fehlerhafter Code:
 IF A = TRUE THEN .. ’ ist nur erfüllt, wenn A den

’ Wert –1 hat

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 79

2.3.5.2 Anwendung der logischen Operatoren auf Zahlen

Achtung! Das ist ein sehr komplexes, aber auch ein sehr leistungsfähiges Thema.
Kenntnisse in Logik, der Binär- und Hexadezimal-Darstellung von Zahlen sind
hilfreich.

Intern werden die logischen Operatoren bitweise auf 16-Bit Zahlen (Datentyp
Word) angewandt. Andere Datentypen werden vorher in den Datentyp Word
konvertiert.
Dadurch können die logischen Operatoren auch auf alle Zahlen angewendet und
in numerischen Ausdrücken verwendet werden. Beispiele:

DIM A, B, Y
A = 3 ’ einfache Zuweisung
B = 7 AND A
Y = B OR 4
Y = NOT ((A + 5) AND 7)

Wichtig ist das Setzen von Klammern. Der Compiler hat zwar eine bestimmte
Hierarchie bei der Abarbeitung der logischen Operatoren, es kommt hier jedoch
sehr schnell zu Fehleinschätzungen von Seiten des Programmierers.
Insbesondere gilt, dass auch hinter NOT stets der gesamte numerische Ausdruck
ausgewertet wird. Klammern beschränken den Wirkungsbereich von NOT nicht,
weil NOT keine Funktion sondern ein Operator ist. Die Anweisung
y = NOT(4) + 1

ist deshalb identisch mit
y = NOT 5 ’ bzw y = NOT ((4) + 1)

und nicht mit
y = (NOT 4) + 1

Zum Verständnis der Wirkung von logischen Operatoren auf Zahlen muss man die
Zahlen in die Binär-Darstellung umwandeln. Binärzahlen sind im Kapitel 2.3.4
erklärt.
Bei der logischen Verknüpfung von Zahlen passiert folgendes:

- Die Operanden werden in ein 16-Bit-Bitmuster umgewandelt (Datentyp: Word)
- Die Bitmuster werden entsprechend der folgenden Tabelle bitweise
miteinander verknüpft.

Tabelle: Logische Operatoren bei Anwendung auf einzelne Bits
 A B NOT A A AND B A OR B A XOR B
0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 80

Beispiel für die Anwendung logischer Operatoren auf Zahlen. Aus Platzgründen
werden in der Binärdarstellung nur die unteren 4 Bit betrachtet. In Klammern steht
die zugehörige Dezimalzahl.

A B A AND B A OR B A XOR B
0011 (= 3) 0100 (= 4) 0000 (= 0) 0111 (= 7) 0111 (= 7)
0100 (= 4) 0111 (= 7) 0100 (= 4) 0111 (= 7) 0011 (= 3)
0111 (= 7) 0011 (= 3) 0011 (= 3) 0111 (= 7) 0100 (= 4)

Die logische Operation NOT negiert alle Bits. Die folgende Tabelle verdeutlicht
das.

A Binärdarstellung NOT A (binär) NOT A
3 0000 0000 0000 0011 1111 1111 1111 1100 65532
7 0000 0000 0000 0111 1111 1111 1111 1000 65528

TRUE (–1) 1111 1111 1111 1111 0000 0000 0000 0000 0 (FALSE)

Wenn Sie mit Hilfe der logischen Operatoren Bit-Manipulationen vornehmen,
sollten Sie Variablen vom Datentyp WORD oder BYTE verwenden, um
unerwartete Ergebnisse zu vermeiden. Insbesondere kann es passieren, dass
negative Zahlen auftreten. Dies ist kein Fehler, denn es ist auch möglich, negative
Zahlen mit logischen Operatoren zu verknüpfen. Dazu muss man folgendes
wissen:

• Logische Operatoren arbeiten gleichwertig mit vorzeichenbehafteten und mit
vorzeichenlosen 16-Bit-Zahlen.

• Eine vorzeichenbehaftete 16-Bit-Zahl ist negativ, wenn das höchstwertige Bit
(Bit 15) gesetzt ist.

• Die Zusammenarbeit von logischen Operatoren mit den Vergleichs-
operatoren funktioniert deshalb, weil in – 1 alle Bits gesetzt sind, während in
der Null kein Bit gesetzt ist. Deswegen ist TRUE als – 1 definiert

• Die bitweise Verwendung von vorzeichenbehafteten Ganzzahlen macht
selbst erfahrenen Programmieren oft Mühe.

Mann kann die logischen Verknüpfungen von Zahlen auch direkt in einer IF-
Anweisung (bzw. WHILE-WEND oder REPEAT-UNTIL-Anweisung) verwenden.
Allerdings muss man hier beachten, dass jede Zahl, die nicht Null ist, als "wahr"
interpretiert wird. Im folgenden Codefragment wird deshalb der THEN-Zweig nicht
abgearbeitet. Der Grund ist, das die logische Verknüpfung 4 AND 2 den Wert Null
liefert.

DIM A, B

A = 4
B = 2
IF A AND B THEN
....

End IF

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 81

2.3.5.3 Bit-Schiebe-Operationen

Um die in diesem Abschnitt beschriebenen Kommandos verwenden zu können
sollten Sie sich mit der Binärdarstellung von Zahlen (siehe Kapitel 2.3.4)
auskennen.

SHL, Shl32

Die Funktion SHL (Shift Left - schiebe nach links) führt eine bitweise Schiebe-
operation auf ein 16-Bit-Word aus. Shl32 führt diese Operation auf ein 32-Bit-
DWord aus. Die niederwertigen Bits werden mit Null aufgefüllt, die höchstwertig-
sten Bits gehen verloren.

Syntax: <numVar> = SHL (x, n)
<numVar> = Shl32 (x, n)

x:numerischer Ausdruck
16-Bit-Word bei SHL, 32-Bit-DWord bei Shl32

n: Anzahl der Bits, um die geschoben werden soll.
10Bit-Nr: 14 12 8 6 4 2 0

SHL

Beispiel:
y = SHL(7, 2)
’ 7 ist binär 000111, also ist y = 011100 (binär), d.h. y = 21

SHR, Shr32

Die Funktion SHR (Shift Right - schiebe nach rechts) führt eine bitweise
Schiebeoperation auf ein 16-Bit-Word aus. Shr32 führt diese Operation auf ein 32-
Bit-DWord aus. Die höchstwertigen Bits werden mit Null aufgefüllt, die nieder-
wertigsten Bits gehen verloren.

Syntax: <numVar> = SHR (x, n)
<numVar> = Shr32 (x, n)

x:numerischer Ausdruck
16-Bit-Word bei SHL, 32-Bit-DWord bei Shl32

n: Anzahl der Bits, um die geschoben werden soll.
10Bit-Nr: 14 12 8 6 4 2 0

SHR

Beispiel:
y = SHR(12, 2)
’ 12 ist binär 001100, also ist y = 000011 binär, d.h. y =

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 82

2.3.5.4 Sonderfall: Bitflags

In vielen Fällen ist es so, dass ein Wert vom Datentyp WORD so interpretiert
werden muss, dass jedes einzelne Bit eine eigene Bedeutung hat. Jedes Bit zeigt
an, ob eine bestimmte Eigenschaft vorhanden ist oder nicht. Es ist wie eine Flagge
(englisch: flag), die gesetzt sein kann (das Bit ist 1) oder nicht (das Bit ist Null). In
dieser Situation sagt man, der Wert enthält Bitflags. Alternativ wird auch der
Begriff Flagbits verwendet.

Ein Beispiel ist die globale Variable printFont.style. Die einzelnen Bits enthalten
jeweils die Information ob der Text zum Beispiel fett (Bit TS_BOLD gesetzt),
unterstrichen (TS_UNDERLINE gesetzt) oder kursiv (Bit TS_ITALIC gesetzt)
ausgegeben werden soll. Sind alle drei Bits gesetzt, so wird der Text fett kursiv
und unterstrichen ausgegeben.

Ein anderes Beispiel ist die Instancevariable csFeatures des ColorSelector-
Objekts. Sie enthält für jedes UI-Element, dass der ColorSelector darstellen kann,
ein Bit, das angibt, ob dieses UI-Element gezeigt oder verborgen werden soll.
Gerade bei Instancevariablen und UI-Objekten kommen Bitflags relativ häufig vor.

Die Herausforderung bei Bitflags besteht darin, dass einzelne Bits gesetzt,
zurückgesetzt oder angefragt werden müssen, ohne dass die anderen Bits
beeinflusst werden. Hier helfen uns die logischen Operatoren (NOT, AND, OR,
XOR) weiter.

Um ein Bit zu setzen verwenden wir die Operation OR. Das Ergebnis einer OR-
Operation ist wahr, wenn mindestens einer der Operanden wahr ist.

neueBitFlags = alteBitFlags OR bitsZuSetzen

Beispiele zum Setzen von Bits mit OR
alte BitFlags Bits zu Setzen neue Bitflags

0000 1000 1000
1000 1000 1000
1000 1001 1001
0011 1001 1011

Beispiel: Setzen des Bits TS_BOLD in der globalen Variablen printFont.style. Die
Textausgabe erfolgt anschließend fett, egal ob sie vorher schon fett erfolgte oder
nicht.

printFont.style = printFont.style OR TS_BOLD

Es ist möglich, mehrere Bits gleichzeitig zu setzen. Das folgende Codefragment
stellt sicher, dass sowohl das Bit TS_BOLD als auch das Bit TS_ITALIC gesetzt
sind.

printFont.style = printFont.style OR TS_BOLD OR TS_ITALIC

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 83

Um ein Bit zu zurückzusetzen (zu löschen) verwenden wir die Operatoren AND
und NOT. Zuerst invertiert die NOT-Operation alle zu löschenden Bits, dann setzt
die AND-Operation die zum Löschen vorgesehenen Bits auf Null.

neueBitFlags = alteBitFlags AND (NOT bitsZuLöchen)

Die Klammern sind eigentlich nicht nötig, da die NOT-Operation höher priorisiert
ist, als die AND-Operation. Es wird aber dringend empfohlen bei Verwendung von
mehreren logischen Operatoren innerhalb einer Anweisung Klammern zu setzen.
Der Compiler vertut sich niemals mit der Hierarchie, der Programmierer schon.

Beispiele zum Löschen von Bits mit AND und NOT
BitFlags Bits zu Löschen negierte Bits (nach NOT) Ergebnis

0000 0001 1110 0000
1111 0001 1110 1110
1101 1000 0111 0101
1100 1001 0110 0100
1011 1111 0000 0000

Beispiel: Löschen des Bits TS_BOLD in der globalen Variablen printFont.style. Die
Textausgabe erfolgt anschließend nicht fett, egal ob sie vorher fett erfolgte oder
nicht.

printFont.style = printFont.style AND (NOT TS_BOLD)

Es ist möglich, mehrere Bits gleichzeitig zu löschen. Dazu müssen die zu
löschenden Bits zunächst OR-Verknüpft werden. In diesem Fall ist notwendig um
die zu löschenden Bit eine Klammer zusetzen, weil OR niedriger priorisiert ist als
NOT. Der Compiler gibt daher eine Warnung aus, wenn wir die Klammern
vergessen.
Das folgende Codefragment stellt sicher, dass sowohl das Bit TS_BOLD als auch
das Bit TS_ITALIC gelöscht sind.

printFont.style = printFont.style AND \
(NOT (TS_BOLD OR TS_ITALIC))

Um ein Bit zu invertieren verwenden wir die Operation XOR. Das Ergebnis einer
XOR-Operation ist nur dann wahr, wenn genau einer der Operanden wahr ist.
Sind beide wahr ist das Ergebnis falsch.

neueBitFlags = alteBitFlags XOR bitsZuInvertieren

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 84

Beispiele zum Invertieren von Bits mit XOR
alte BitFlags Bits zu Invertieren neue Bitflags

0000 1000 1000
1000 1000 0000
1000 1001 0001
0011 1001 1010
1011 1111 0100

Beispiel: Invertieren des Bits TS_UNDERLINE in der globalen Variablen print-
Font.style. Die Textausgabe erfolgt anschließend unterstrichen, wenn sie vorher
normal erfolgte. War sie vorher unterstrichen erfolgt sie jetzt normal.

printFont.style = printFont.style XOR TS_UNDERLINE

Es ist möglich, mehrere Bits gleichzeitig zu invertieren. Dazu müssen die zu
invertierenden Bits zunächst OR-Verknüpft werden. In diesem Fall ist notwendig
um die zu löschenden Bit eine Klammer zusetzen, weil OR niedriger priorisiert ist
als NOT. Der Compiler gibt daher eine Warnung aus, wenn wir die Klammern
vergessen.
Das folgende Codefragment schaltet sowohl das Bit TS_BOLD als auch das Bit
TS_ITALIC um.

printFont.style = printFont.style XOR (TS_BOLD OR TS_ITALIC)

Um ein Bit abzufragen verwenden wir die Operation AND. Das Ergebnis einer
AND-Operation ist wahr, wenn beide Operanden wahr sind.

ergebnis = bitFlags AND bitsZuTesten

Beispiele zum Abfragen von Bits mit AND
BitFlags Bits zu Testen Ergebnis

0000 1000 0000
1000 1000 1000
0111 1000 0000
0110 1001 0000
1111 1001 1001
1100 1001 1000

In der letzten Zeile der Tabelle ist zu sehen, dass das Ergebnis ungleich Null ist,
obwohl nur eins der zu testenden Bits gesetzt ist. In einer IF-Anweisung wird aber
jeder Wert ungleich Null als wahr angesehen. Deswegen müssen wir beim Testen
von mehreren Bits unterscheiden, ob es uns reicht, dass eins der zu prüfenden
Bits gesetzt ist oder ob alle Bits gesetzt sein müssen.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 85

Beispiel: Testen, ob das Bit TS_BOLD in der globalen Variablen printFont.style
gesetzt ist. Der THEN-Zweig wird ausgeführt, wenn das Bit gesetzt ist, egal wie
die anderen Bits aussehen.

IF printFont.style AND TS_BOLD THEN
....

END IF

Abfrage von mehreren Bits

Wenn es ausreicht zu wissen, ob eins der zu prüfenden Bits gesetzt ist, reicht eine
einfache Abfrage mit AND aus (siehe auch Tabelle vorn). In der Zahl 3 sind die
Bits Null (20 = 1) und Eins (21 = 2) gesetzt. Das folgende Codefragment fragt ab,
ob in der Variablen A das Bit Null oder das Bit Eins (oder beide) gesetzt sind.

IF A AND 3 THEN
....

END IF

Beispieltabelle für das Codefragment oben
Variable A Bits zu Testen Ergebnis THEN Zweig ausführen?
0000 (= 0) 0011 0000 nein
0001 (= 1) 0011 0001 ja
0010 (= 2) 0011 0010 ja
0011 (= 3) 0011 0011 ja
0100 (= 4) 0011 0000 nein
0101 (= 5) 0011 0001 ja

Wenn wir sicherstellen wollen, dass alle zu prüfenden Bits gesetzt sind müssen
wir das Ergebnis der AND-Verknüpfung mit den zu prüfenden Bits vergleichen.
Das folgende Codefragment zeigt das wieder am Beispiel der Bits Null und Eins
(Vergleichswert: 21 + 20 = 3). Die Klammern sind erforderlich, weil Vergleiche
höher priorisiert sind als die AND-Operation!

IF (A AND 3) = 3 THEN
....

END IF

Beispieltabelle für das Codefragment oben. Beachten Sie die letzte Zeile!
Variable A Bits zu Testen A AND 3 THEN Zweig ausführen?
0000 (= 0) 0011 0000 nein
0001 (= 1) 0011 0001 nein
0010 (= 2) 0011 0010 nein
0011 (= 3) 0011 0011 ja
0100 (= 4) 0011 0000 nein
0111 (= 7) 0011 0011 ja

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 86

2.3.6 Schnelle Mathematik mit WWFixed

Der hohen Genauigkeit und dem großen Wertebereich des Zahlenbereichs REAL,
mit der R-BASIC im Normalfall rechnet, steht als Nachteil eine höhere Rechenzeit
gegenüber. R-BASIC bietet deswegen mit den Datentyp WWFixed (Word-Word-
Fixed) die Möglichkeit, von der schnelleren Ganzzahlarithmetik zu profitieren. Da
der Zeitbedarf zum Lesen und Schreiben von Variablen sowie der Analyse des
mathematischen Terms gleich bleibt hängt der erreichbare Geschwindigkeitsvorteil
etwas von der Situation ab. Reine WWFixed-Berechnungen laufen ca. 25% bis
30% schneller. Wenn Sie innerhalb eines WWFixed-Ausdrucks auf Real-Variablen
zugreifen verringert sich der Laufzeitvorteil wegen der notwendigen Konver-
tierungen geringfügig.

Im Folgenden werden "normale" numerische Ausdrücke mit den Datentypen
REAL, Byte, Word, DWord, Integer und LongInt als "Real"-Ausdrücke bezeichnet.
Hier rechnet R-BASIC immer mit 10-Byte Real-Zahlen. Im Gegensatz dazu stehen
die "WWFixed"-Ausdrücke, in denen R-BASIC die schnellere Ganzzahlarithmetik
verwendet.

Konvertierungsfunktionen

WWFixed-Werte sind nur begrenzt zuweisungskompatibel mit den anderen
numerischen Datentypen. Das ist Absicht, damit nicht durch die gemischte
Verwendung von Real- und WWFixed-Werten der Performancegewinn unab-
sichtlich aufgebraucht wird.
Wenn Sie das Ergebnis einer WWFixed-Rechnung in einem Real-Ausdruck ver-
wenden wollen oder einen Real-Wert in eine WWFixed-Rechnung einbinden
möchten müssen Sie in meistes die folgenden schnellen Konvertierungsroutinen
benutzen. Es gibt jedoch auch Ausnahmen, die weiter unten beschrieben sind.

Funktion Bedeutung
MakeFixed(x) Rechnet einen REAL-Wert in einen WWFixed-Wert um.
FixToReal(x) Rechnet einen WWFixed-Wert in einen REAL-Wert um.
FixToWord(x) Rechnet einen WWFixed-Wert in einen REAL-Wert um.

Die Zahl wird zuerst gerundet (x=ROUND(x)), das
Ergebnis wird als Word-Wert interpretiert. Negative
Zahlen werden so zu Werten größer als 32767.

Beispiele
DIM f1, f2 AS WWFixed
DIM a as REAL
f1 = MakeFixed(MyNumberObj.value)
f2 = MakeFixed(ASC("A"))
LINE 0, 0, FixToWord(f1), FixToWord (f1 + f2)
MyNumberObj.value = FixToReal (f1 * f2)
a = FixToReal (f1/f2)

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 87

Der Datentyp WWFixed besteht intern aus einem DWord. Das höherwertige Word
wird als vorzeichenbehafteter ganzzahliger Anteil interpretiert (Wertebereich:
Integer), das niederwertige Word ist der gebrochene Anteil. Ein Bit entspricht
damit einem Wert von 1,526•10–5. Daraus ergibt sich ein Wertebereich von

– 32768.0000 <= x <= 32767.99999

mit einer Genauigkeit von 4 Stellen nach dem Komma. Diese Genauigkeit ist für
viele Anwendungen völlig ausreichend.

Sie können Berechnungen mit WWFixed-Werten genau so programmieren, wie
mit jedem anderen numerischen Datentyp. Es gibt jedoch drei Ausnahmen:

• Die Verwendung von einigen mathematischen Funktionen ist nicht zulässig.
In den Tabellen unten finden Sie die zugelassenen Funktionen.

• Das Lesen von numerischen Instancevariablen ist nicht zulässig.
• Die Verwendung der Operationen MOD und ^ (x-hoch-y) ist nicht möglich.

Sie müssen in diesen Fällen die Konvertierungsfunktion MakeFixed() benutzen.

Der Compiler erwartet einen WWFixed-Ausdruck in zwei Fällen
1. Wir haben eine Zuweisung zu einer WWFixed Variablen.
2. Wir haben eine Sub oder Function, die einen WWFixed Parameter erwartet.

Zulässig für WWFixed-Ausdrücke sind:
• Zahlen (in beliebiger Schreibweise, auch mit binär, hexadezimal und mit

Exponent)
• Numerische BASIC-Konstanten (wie z.B. PI oder GREEN) und selbst

definierte Konstanten (Anweisung: CONST). Der R-BASIC Compiler rechnet
den Wert automatisch in eine WWFixed-Zahl um.

• Grundrechenarten und Klammern
• Variablen vom Typ WWFixed
• Funktionen (auch selbst definiert) mit dem Rückgabetyp WWFixed
• Logische Operatoren
• Vergleichsoperatoren

Um den extensiven Gebrauch der Konvertierungsfunktionen zu vermeiden sind
zusätzlich folgende Elemente zulässig:

• Variablen der anderen numerischen Datentypen. Die Werte werden von R-
BASIC automatisch in den Datentyp WWFixed konvertiert.

• Die in den Tabellen unten ausgewiesenen numerischen Funktionen. R-
BASIC verwendet in diesem Fall nicht den gleichen Code wie für Real-
Funktionen, sondern spezielle, für die Verwendung von WWFixed-Werten
angepasste Funktionen.

Berechnungen mit WWFixed Werten führt R-BASIC mit der schnellen 32 Bit Ganz-
zahlarithmetik durch. Es erfolgt keine Fehlerprüfung. Das bedeutet:
• Überträge werden nicht erkannt. Multipliziert oder addiert man zum Beispiel

zwei WWFixed-Zahlen und das Ergebnis ist größer als 32768, so werden die
höherwertigsten Bits abgeschnitten. Das Ergebnis ist selbst für erfahrene
Programmierer schwer vorherzusehen. Häufig entstehen sogar negative
Zahlen.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 88

• Division durch Null oder die Wurzel aus einer negativen Zahl führt nicht zu
einem Fehler, sondern zu einem zufälligen Wert.

• Zuweisung von Werten außerhalb des gültigen Wertebereichs führt häufig zu
"unerwarteten" Ergebnissen.

Prüfen Sie vor der Verwendung von WWFixed-Berechnungen unbedingt, ob
die Berechnungen den zulässigen Wertebereich nicht überschreiten können.
Die Verletzung dieser Regel kann zu schwer auffindbaren Fehlern führten!

Rechenoperationen

Innerhalb von WWFixed-Ausdrücken sind die folgenden Rechenoperationen
erlaubt:

Operationen Bedeutung
+, –, *, /, (,) Grundrechenarten, Klammern
AND, OR, XOR, NOT bitweise logische Operationen
<, <=, =, >, >=, <> Vergleiche

Die Operationen MOD (Division mit Rest) und ^ (x-hoch-y) sind innerhalb von
WWFixed-Ausdrücken nicht zulässig.

Beispiele:
DIM a, b, c AS WWFixed
CONST f = PI/2
a = 12.5
b = 180 * f * a
c = 12 *(a + b) / PI
PRINT "Ergebnis = "; FixToReal(c)

DIM a, b, c AS WWFixed
b = a OR 7
c = a AND 2

Die logischen Operationen liefern WWFixed-Werte, wenn Sie in WWFixed-
Ausdrücken verwendet werden. Auch hier müssen Sie die Konvertierungsfunktion
FixToReal benutzen, wenn Sie logische Operationen mit WWFixed-Werten
innerhalb einer Entscheidungsanweisung verwenden.

Beispiele:
DIM fa, fb AS WWFixed
fa = fb OR 4 ’ einfache Zuweisung
IF FixToReal(fa AND 2) THEN ...
WHILE FixToReal(fa AND 1)
....
WEND

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 89

Die Vergleichsoperationen liefern TRUE (numerischer Wert: –1) oder FALSE
(numerischer Wert: 0). Das Ergebnis ist ein WWFixed-Wert. Da IF-Anweisungen
(und andere Entscheidungsoperationen wie WHILE) einen Real-Ausdruck
erwarten müssen Sie hier die Konvertierungsfunktion FixToReal benutzen.

Beispiele:
DIM fa, fb AS WWFixed
IF FixToReal(fa > fb) THEN ...
WHILE FixToReal(fa < 0)
....
WEND

Einfache mathematische Funktionen:

Um den gehäuften Aufruf der Konvertierungsfunktionen zu vermeiden, können
innerhalb von WWFixed-Ausdrücken die folgenden einfachen numerischen
Funktionen verwendet werden. Der Compiler erkennt dabei, dass es sich um
einen WWFixed-Ausdruck handelt und compiliert den Aufruf einer für WWFixed
optimierten Routine. Dadurch profitieren diese Funktionen ebenfalls vom
Geschwindigkeitsvorteil der WWFixed-Mathematik. Syntaktisch unterscheidet sich
die Verwendung der Funktionen nicht von ihren Real-Versionen. Ausnahme ist die
Round-Funktion. Hier ist kein zweiter Parameter zulässig und bei x.5 wird immer
nach unten gerundet.

Funktion Bedeutung
Abs(x) Absoluter Betrag von x: |x|
Sgn(x) Signum-Funktion (Vorzeichen-Funktion)

Liefert –1 (negativ), 0 oder +1 (positiv)
Int(x) Liefert die nächst kleinere ganze Zahl, d.h. es wird nach

unten gerundet: Int(x) ≤ x
Trunc(x) Kürzt x auf seinen ganzahligen Anteil, d.h. es wird

Richtung Null gerundet. Trunc(x) und Int(x) unter-
schieden sich bei negativen x.

Frac(x) Liefert den gebrochenen Anteil von x, d.h. die Nach-
kommastellen. Das Ergebnis ist immer positiv.

Round(x) Rundet x auf die nächste ganze Zahl
SizeOf(x) Berechnet den Speicherbedarf einer Variablen oder

eines Datentyps. Der Wert wird vom Compiler ermittelt
und als Zahl gespeichert.

Beispiele:
DIM a, b, c, d as WWFixed
a = 12.3
b = INT(a)
c = FRAC(a)
d = 4 * ROUND(a) - b * SizeOf(WWFixed)

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 90

Höhere mathematische Funktionen:

Für WWFixed-Ausdrücke sind die folgenden höheren Funktionen definiert. R-
BASIC verwendet zur Berechnung dieser Funktionen die schnelle Ganzzahlarith-
metik.

Funktion Bedeutung
FixSqr(x) Quadratwurzel von x
FixSin(x) Sinus von x, x im Gradmaß
FixCos(x) Cosinus von x, x im Gradmaß
FixTan(x) Tangens von x, x im Gradmaß
FixAsn(x) ArcusSinus von x - Umkehroperation zu Sinus

Für das Argument der Winkelfunktionen sind auch Werte außerhalb des Bereichs
0 bis 360° zulässig. Das gilt auch für negative Werte.
FixAsn und FixSqr arbeiten nur für positive Argumente korrekt. Negative
Argumente führen zu fehlerhaften Ergebnissen, aber nicht zu einer Fehler-
meldung.

Alle in der Tabelle oben angegeben Funktionen sind auch innerhalb von Real-Aus-
drücken zulässig. Der R-BASIC Compiler erkennt den Aufruf dieser Fixed-
Funktionen und compiliert automatisch den Aufruf der Konvertierungsfunktion
FixToReal().

Die Winkelfunktionen für WWFixed-Ausdrücke unterscheiden sich von den
Winkelfunktionen der Real-Ausdrücke dadurch, dass sie das Argument im Grad-
maß (der Vollkreis hat 360°) erwarten. Die Real-Winkelfunktionen erwarten das
Argument dagegen im Bogenmaß (ein Vollkreis entspricht 2π). Wenn Sie das
Argument im Bogenmaß haben brauchen Sie es nicht selbst ins Gradmaß
umzurechnen. Stattdessen können Sie innerhalb von WWFixed-Ausdrücken die in
der folgenden Tabelle angegebenen Real-Winkelfunktionen direkt verwenden. R-
BASIC erkennt, dass es sich um einen WWFixed-Ausdruck handelt, rechnet das
Argument automatisch ins Bogenmaß um und ruft dann die entsprechende Fixed-
Funktion auf. Da ist sogar noch etwas schneller als die manuelle Umrechnung.

Funktion Bedeutung
SIN(x) Sinus von x, x im Bogenmaß
COS(x) Cosinus von x, x im Bogenmaß
TAN(x) Tangens von x, x im Bogenmaß
ASN(x) ArcusSinus von x - Umkehroperation zu Sinus

Beispiele:
DIM x, y AS WWFixed
y = 50 * FixSin(x) + 150 ’ x im Gradmaß
y = 1/TAN(x) ’ Cotangens, x im Bogenmaß

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit numerischen Ausdrücken - 91

2.3.7 Exkurs: Vergleiche innerhalb numerischer Ausdrücke

Achtung! Die folgenden Ausführungen richten sich an fortgeschrittene Program-
mierer. Sie sind daher möglicherweise etwas abstrakt. Ihr Verständnis kann
hilfreich sein, ist aber zur Anwendung innerhalb von Entscheidungsausdrücken
nicht unbedingt erforderlich.

Intern behandelt R-BASIC Vergleichsausdrücke und logische Ausdrücke als
Zahlen. Das hat Konsequenzen: Jeder Vergleich liefert entweder TRUE (wahr, –1)
oder FALSE (falsch, Null). Es ist deshalb möglich, das Ergebnis eines Vergleichs
in einer numerischen Variablen abzuspeichern.

Beispiele (DIM A, B, Y vorausgesetzt):

Y = A > 0

Der Compiler erkennt die Zuweisung "Y =" und berechnet den numerischen
Ausdruck auf der rechten Seite. Da "A > 0" ein gültiger numerischer Ausdruck ist,
der TRUE (–1) oder FALSE (0) liefern kann, wird Y der Wert 0 oder –1 zuge-
wiesen, je nachdem ob A größer Null ist, oder nicht.

Y = Name$ = "Paul"

Der Compiler erkennt wieder die Zuweisung "Y =" und berechnet den rechten
Ausdruck (den Vergleich Name$ = "Paul"), der wiederum TRUE (–1) oder FALSE
(0) ergeben kann.

In diesem Zusammenhang sind Vergleichsausdrücke nur spezielle numerische
Ausdrücke:

Beispiel 1:
Y = (B < 7) AND (Name$ = "Paul")

Der Compiler berechnet die Ausdrücke (B < 7) und (Name$ = "Paul"), die jeweils
TRUE (–1) oder FALSE (0) ergeben. Anschließend wird die logische Verknüpfung
AND ausgeführt. AND ist zwar eine bitweise Funktion, aber das Zusammenspiel
funktioniert, da in TRUE alle 16 Bit gesetzt sind, während in FALSE alle 16 Bit Null
sind. Y wird TRUE, wenn beide Bedingungen erfüllt sind und FALSE, wenn
mindestens eine Bedingung nicht erfüllt ist.

Beispiel 2:
Y = (A > 5) AND 7 ’ Liefert 0 oder 7, je nach A

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 92

2.4 Arbeit mit Strings

2.4.1 Bearbeiten von Strings

Zeichenketten wie z.B. "Hallo Welt" werden in BASIC als Strings bezeichnet. Die
Verarbeitung von Strings ist eine der grundlegenden Fähigkeiten von R-BASIC.
Die Grundlagen zur Verwendung von Strings und von Stringvariablen finden Sie
im Kapitel 2.2.3 (Stringtypen und Stringausdrücke).

Left$

Die Funktion Left$(A$, N) (Left - links) liefert die N ersten (linken) Zeichen des
Strings A$.

Syntax: <stringVar> = Left$(A$, N)
Parameter: A$: ein Stringausdruck

N: numerischer Ausdruck, Anzahl der Zeichen

Beispiel:
L$ = Left$("Paulchen N." , 4) ’ Entspricht L$ = "Paul"
L$ = Left$(L$, 1) ’ Macht aus "Paul" ein "P"

Right$

Die Funktion Right$(A$, N) (Right - rechts) liefert die N letzten (rechten) Zeichen
des Strings A$.

Syntax: <stringVar> = Right$(A$, N)
Parameter: A$: ein Stringausdruck

N: numerischer Ausdruck, Anzahl der Zeichen

Beispiel:
R$ = Right$("Paulchen N." , 4) ’ Entspricht R$ = "n N."
R$ = Right$ (Left$("ABCDEF" , 4) , 2) ’ liefert "CD"

Mid$

Die Funktion Mid$(A$, P, N) (Middle - Mitte) liefert N Zeichen ab der Position P in
einem String.

Formate: <stringVar> = Mid$(A$, P, N)
<stringVar>= Mid$(A$, P)

Parameter: P: Erste Zeichenposition, die kopiert werden soll
N: Anzahl der Zeichen die kopiert werden sollen
 ohne N: Alle restlichen Zeichen werden kopiert

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 93

Beispiele:
X$ = Mid$("OTTOKAR", 3, 4) ’ liefert "TOKA"
X$ = Mid$("OTTOKAR", 5) ’ liefert "KAR"

Anmerkung: Ist der String A$ zu kurz, werden entsprechen weniger Zeichen
geliefert. Ist der String A$ kürzer als der Parameter P erfordert, liefert Mid$ einen
leeren String.

Trim$

Die Funktion Trim$(A$ [,mode]) entfernt Leerzeichen und Tabs am Anfang und /
oder am Ende der Zeichenkette.

Syntax: <stringVar> = Trim$(A$ [,mode])
Parameter: mode: numerischer Ausdruck, bestimmt ob Leerzeichen und

Tabulatoren am Anfang (mode = 1), Am Ende (mode =2)
oder beiden (mode = 3, Defaultwert) entfernt werden
sollen.

A$: Stringausdruck, der bearbeitet werden soll.

Beispiel:
X$ = Trim$(" Paul ") ’ liefert "Paul"
X$ = Trim$(" Paul ", 1) ’ liefert "Paul "
X$ = Trim$(" Paul ", 2) ’ liefert " Paul"

ReplaceStr$

Die Funktion ReplaceStr$(s$, a$, b$) ersetzt jedes Auftreten des Strings a$ in s$
durch b$.

Syntax: <stringVar> = ReplaceStr$(s$, a$, b$)
<stringVar>: Stringvariable
s$: String, der durchsucht werden soll
a$: String, der ersetzt werden soll
b$: String, der a$ ersetzen soll

b$ darf genauso lang, länger oder kürzer als a$ sein.
Ist b$ ein Leerstring wird jedes Auftreten von a$ gelöscht

Beispiele:
Anweisung Ergebnis
ReplaceStr$ ("Hallo", "a", "e") "Hello"
ReplaceStr$ ("Hallo", "al", "(xyz)") "H(xyz)lo"
ReplaceStr$ ("Hallo", "ll", "") "Hao"
ReplaceStr$ ("Hallo Welt!", "l", "-X-") "Ha-X--X-o We-X-t!"
ReplaceStr$ ("12.75 Euro", ".", ",") "12,75 Euro"

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 94

String$

Die Funktion String$(N, A$) vervielfacht Zeichenkettenausdrücke.

Syntax: <stringVar> = String$(N, A$)
Parameter: N: numerischer Ausdruck, Anzahl der Vervielfachungen

A$: Stringausdruck, der vervielfacht werden soll

Beispiel:
X$ = String$(4, "X") ’ liefert "XXXX"
X$ = String$(2, Left$("KOMA", 2)) ’ liefert "KOKO"

InStr

Die Funktion InStr(A$, B$) (d.h. In-String) ermittelt die Position, ab welcher A$ in
B$ enthalten ist.

Syntax: <numVar> = InStr(A$, B$)
Parameter: A$: String-Ausdruck: der zu findende String

B$: String-Ausdruck: String, der A$ enthalten soll

Beispiel:
DIM Anz
Anz = InStr("ul", "Paula") ’ liefert 3
Anz = InStr("lala", "Paula") ’ liefert Null

Hinweise:
• Groß- und Kleinbuchstaben werden unterschieden
• Ist der String nicht oder nicht vollständig enthalten, liefert InStr den Wert Null.
• Ist einer der beiden Strings ein Leerstring (""), liefert InStr den Wert Null.

LEN

Die Funktion LEN (Length - Länge) liefert die Länge des Strings, d.h. die Anzahl
der enthaltenen Zeichen.

Syntax: <numVar> = LEN(A$)
Parameter: A$ String-Ausdruck

Beispiel:
DIM A
A = LEN("Paula") ’ liefert 5
A = LEN("") ’ liefert Null

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 95

CountStr

Die Funktion CountStr(A$, B$) zählt, wie oft A$ in B$ enthalten ist.

Syntax: <numVar> = CountStr(A$, B$)
Parameter: A$: String-Ausdruck: der zu findende String

B$: String-Ausdruck: String, der A$ enthalten soll

Beispiel:
DIM N
N = CountStr("ul", "Paula") ’ liefert 1
N = CountStr("a", "Paula") ’ liefert 2
N = CountStr("aha", "Hahaha") ’ liefert 1

Hinweise:
• Groß- und Kleinbuchstaben werden unterschieden
• Ist der String nicht oder nicht vollständig enthalten, liefert CountStr den Wert

Null.
• Ist einer der beiden Strings ein Leerstring (""), liefert CountStr den Wert Null.
• Beachten Sie Beispiel 3! Buchstaben, die bereits gefunden wurden, werden

nicht noch einmal berücksichtigt.

Stringoperation +

Die Operation + verbindet zwei Strings.

Syntax: <stringVar> = A$ + B$
Parameter: A$, B$: Beliebige Stringausdrücke

Beispiel:
A$ = "Paul" + " " + "Müller" ’ liefert "Paul Müller"
A$ = "->" + Left$("Paul", 2) + "<-" ’ liefert "->Pa<-"

Tipp:
 • Klammern, z. B. ("Paul" + " ") + "Müller", sind möglich, aber nicht erforderlich.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 96

GetTextWitdh, GetTextHeight

GetTextWidth berechnet die Breite (in Pixeln), die ein String bei Ausgabe auf den
Bildschirm benötigt. GetTextHeight berechnet die entsprechende Höhe (in Pixeln).
Die beiden Routinen sind in allen Fontmodi (Fixed-, Block- und GEOS-Font-
Modus, siehe Handbuch Spezielle Themen, Kapitel 2), anwendbar. Sie eignen
sich zum Beispiel um einen Text zentriert an eine bestimmte Position zu drucken.

Syntax: <numVar> = GetTextWidth ("Text")
<numVar> = GetTextHeight ("Text")

Beachten Sie, dass im GEOS-Font-Modus (Routine FontSetGeos, siehe
Handbuch Spezielle Themen, Kapitel 2.4) die Breite und Höhe wirklich nur den
von den Buchstaben überdeckten Bereich umfassen. Der als Texthintergrund
eingefärbte Bereich ist im Allgemeinen merklich größer. Das kann insbesondere
dann verwirrend sein, wenn Sie einen Rahmen um einen Text zeichnen wollen.

Die folgende Routine zeichnet einen Rahmen um einen Text. Im GEOS-Font-
Modus machen wir den Rahmen etwas breiter (4 Pixel) und höher (8 Pixel) und
berücksichtigen, dass der eigentliche Buchstabe immer etwas rechts unterhalb der
in Print atXY angegebenen Position gezeichnet wird. Die notwendigen Werte für
die Verschiebung und die Vergrößerung des Rahmens hängen etwas vom
eingestellten Font und der Schriftgröße ab.

SUB DrawTextFramed(t$ as String, x, y AS REAL)
DIM w, h

Print atXY x, y; t$

w = GetTextWidth(t$)
h = GetTextHeight(t$)
IF printfont.type = FT_GEOS THEN
x = x - 1
y = y + 2
w = w + 4
h = h + 8

End IF

Rectangle x-1, y-1, x+w, y+h, LIGHT_CYAN
END SUB

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 97

2.4.2 Vergleichen von Strings

Vergleichsoperatoren

Die Standard-Vergleichsoperatoren (<, <=, >, >=, =, <>) stehen auch für
Zeichenketten (Strings) zur Verfügung. Die Strings werden dabei Zeichen für
Zeichen verglichen, wobei ausschließlich die ASCII-Codes der einzelnen Zeichen
berücksichtigt werden. Das heißt z.B., dass Umlaute entsprechend ihrer Position
in der ASCII-Code-Tabelle (also noch hinter z) gewertet werden. Für lexikalisch
korrekte Vergleiche verwenden Sie bitte die unten beschriebene Funktion
CompStr.

Syntax: A$ < B$
A$ <= B$ usw.

Parameter: A$, B$ String-Ausdrücke, die verglichen werden sollen
Ergebnis: Wahr (TRUE, numerischer Wert: –1)

oder Falsch (FALSE, numerischer Wert: 0)

Beispiel:
IF A$ >= "Paul" THEN ...
IF A$ <> Left$("Paul", 2) THEN ...

Hinweis: Statt A$ = B$ kann man für Vergleich auch ein doppeltes
Gleichheitszeichen schreiben (A$ == B$). Das verbessert gelegentlich die
Lesbarkeit.

Tipp:
String-Vergleiche arbeiten auch mit den logischen Operatoren zusammen. Da
Vergleiche höher priorisiert sind, benötigt man hier meist keine Klammern.
Beispiele:

IF NAME$ = "Müller" OR NAME$ = "Meier" THEN ...
IF A$ < B$ OR A$ < C$ THEN ...

Tipp für Fortgeschrittene:
String-Vergleiche liefern als Ergebnis eine Zahl (Null oder –1), sie dürfen deshalb
innerhalb von numerischen Ausdrücken vorkommen. Beispiel (Die Klammern sind
nicht erforderlich, sie verbessern die Lesbarkeit.):
DIM A As Real
DIM Name$ as String
A = (Name$ = "Müller")

’ A wird –1 (wahr), wenn Name$ = "Müller" ist.
’ andernfalls wir A Null

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 98

CompStr

Die Funktion CompStr (Compare Strings, d.h. vergleiche Zeichenketten) vergleicht
zwei Strings entsprechend ihrer Anordnung im Wörterbuch. Dabei gelten folgende
Regeln:

• Umlaute reihen sich ein
• Großbuchstaben stehen bei ansonsten gleichen Strings vor den

Kleinbuchstaben. Beispiel: "Schwimmen" steht vor "schwimmen"
• Kürzere Strings stehen bei Gleichheit mit längeren Strings vorn. Beispiel:

"Paul" steht vor "Paula".

Syntax: <numVar> = CompStr(A$, B$)
Parameter: A$, B$ String-Ausdrücke, die verglichen werden sollen
Ergebnis: –1 wenn A$ < B$, d.h. A$ steht vor B$ im Wörterbuch
 0 wenn A$ = B$, d.h. A$ und B$ stehen an gleicher Stelle im

Wörterbuch. Dann sind beide Strings identisch.
+1 wenn A$ > B$, d.h. A$ steht nach B$ nach Wörterbuch

Beispiel:
Dim V as Real
IF CompStr(A$, B$) > 0 THEN ..
V = CompStr(A$, B$)

Achtung! Die Funktion verwendet länderspezifische Regeln. Es ist möglich, dass
auf anderen, insbesondere auf nicht deutschen PC/GEOS-Systemen, andere
Regeln bezüglich der Anordnung im Wörterbuch gelten. CompStr verwendet die
auf dem jeweiligen PC/GEOS-System geltenden Regeln.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 99

2.4.3 Konvertierungsfunktionen

Konvertierung Zahl zu String

Bin$

Die Funktion Bin$ (Binär Konvertierung) wandelt eine Ganzzahl in ihre binäre
Darstellung (zur Basis 2) um. Nichtganzzahlige Argumente x werden gerundet.
Negative Zahlen werden ebenfalls korrekt behandelt.

Syntax: <stringVar> = Bin$(x [,min [,max]])
Parameter: x: numerischer Ausdruck, Zahlenbereich DWord (32 Bit)

min: optional: Mindestanzahl auszugebender Binärziffern. Es
werden bei Bedarf führen Nullen hinzugefügt.

max: optional: Maximalzahl auszugebender Binärziffern. Führende
Stellen werden gerundet.

min und max dürfen im Bereich von 1 bis 32 liegen

Beispiel:
A$ = Bin$(5) ’ A$ = "101"
A$ = Bin$(18) ’ A$ = "10010"
A$ = Bin$(5, 4) ’ A$ = "0101"
A$ = Bin$(18, 4, 4) ’ A$ = "0010"

’ das fünfte Bit wird ignoriert

Tipp:Setzen Sie min = max für eine feste Stellenzahl (siehe letztes Beispiel)

Chr$

Die Funktion Chr$(x) (Character - Zeichen) liefert das Text-Zeichen, das zum
ASCII-Code x gehört. Chr$(0) liefert einen leeren String.

Syntax: <stringVar> = Chr$(x)
Parameter: x: numerischer Ausdruck

Beispiel:
A$ = Chr$(65 + 1) ’ Entspricht A$ = "B"

Innerhalb von Strings kann man statt der Funktion Chr$(x) auch einen Backslash,
gefolgt von bis zu drei Ziffern, verwenden. Folgende Zeilen sind daher
gleichwertig:

A$ = "a" + Chr$(180) + "b"
A$ = "a\180b"

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 100

Hex$

Die Funktion Hex$ (Hexadezimal Konvertierung) wandelt eine Ganzzahl in ihre
hexadezimale Darstellung (zur Basis 16) um. Nichtganzzahlige Argumente x
werden gerundet. Negative Zahlen werden ebenfalls korrekt behandelt.

Syntax: <stringVar> = Hex$(x [,min [,max]])
Parameter: x: numerischer Ausdruck, Zahlenbereich DWord (32 Bit d.h. 8

Hex-Stellen)
min: optional: Mindestanzahl auszugebender Hex-Ziffern. Es

werden bei Bedarf führen Nullen hinzugefügt.
max: optional: Maximalzahl auszugebender Hex-Ziffern. Führende

Stellen werden gerundet.
min und max dürfen im Bereich von 1 bis 8 liegen

Beispiele:
A$ = Hex$(11) ’ A$ = "B"
A$ = Hex$(11, 2) ’ A$ = "0B"
A$ = Hex$(764, 2) ’ A$ = "2FC"
A$ = Hex$(764, 2, 2) ’ A$ = "FC"
A$ = Hex$(764, 4, 4) ’ A$ = "02FC"

Tipp:Setzen Sie min = max für eine feste Stellenzahl (siehe letztes Beispiel)

Str$

Die Funktion Str$(x) (String - Zeichenfolge) konvertiert eine Zahl in eine
Zeichenkette, genau so, als ob Sie die Zahl mit PRINT auf den Bildschirm
ausgeben. Als Dezimaltrennzeichen wird immer der Punkt ’.’ verwendet.

Syntax: <stringVar> = Str$(x)
Parameter: x: numerischer Ausdruck

Beispiel:
A$ = Str$(12+3) ’ Entspricht A$ = " 15 "

Hinweis: Das Zahlenformt der konvertierten Zahl kann mit der System-Variablen
numberFormat beeinflusst werden.

StrLocal$

Die Funktion StrLocal$(x) (String Local) konvertiert eine Zahl in eine Zeichenkette
unter Verwendung der lokal (auf dem aktuellen Rechner) gültigen Einstellungen
für Dezimal- und Tausender-Trennzeichen. Verwenden Sie diese Konvertierungs-
Funktion, wenn Sie dem Nutzer seine "gewohnte" Zahlendarstellung präsentieren
wollen.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 101

Syntax: <stringVar> = StrLocal$(x)
Parameter: x: numerischer Ausdruck

Beispiel:
A$ = StrLocal$(9.82347E5) ’ Liefert auf den meisten

’ deutschen Computern " 98.234,7"

Achtung:
Das Ergebnis dieser Konvertierungsfunktion hängt von den Einstellungen des
aktuellen Computers ab. Sie sollten keine Annahmen über das Format der
konvertierten Zahl machen.

Hinweis:
Das Zahlenformt der konvertierten Zahl kann mit der System-Variablen
numberFormat beeinflusst werden.

Konvertierung String zu Zahl

ASC

Die Funktion ASC (von ASCII) liefert den ASCII-Code des ersten Zeichens des
Strings. ASC("") (Leerstring) liefert Null.

Syntax: <numVar> = ASC(A$)
Parameter: A$: String-Ausdruck

Beispiel:
X = ASC("Auto") ’ liefert 65, den ASCII-Code von A

VAL

Die Funktion VAL (Value - Wert) wandelt eine Zeichenkette in die entsprechende
Zahl um. Entspricht die Zeichenkette keiner Zahl, versucht VAL seine Aufgabe "so
gut wie möglich" zu erfüllen und konvertiert so viele Zeichen wie es finden kann -
findet es gar keine gültigen Zeichen, liefert es Null.

Syntax: <numVar> = VAL(A$)
Parameter: A$: String-Ausdruck

Beispiel:
X = VAL("–12.8") ’ Entspricht X = –12.8
X = VAL("Paul") ’ liefert Null.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 102

ValLocal

Die Funktion ValLocal wandelt eine Zeichenkette in die entsprechende Zahl um.
Dabei werden die lokal (auf dem aktuellen Computer) eingestellten Dezimal- und
Tausendertrennzeichen erwartet. Verwenden Sie diese Konvertierungs-Funktion,
wenn der Nutzer eine Zahl in der für ihn vertrauten Weise eingeben soll.

Syntax: <numVar> = ValLocal(A$)
Parameter: A$: String-Ausdruck

Beispiel:
X = ValLocal("12.824,2") ’ funktioniert für die meisten

’ deutschen Computer und liefert
’ Zwölftausendachthundertvierundzwanzig Komma Sieben

Achtung:
Ob die Zahl korrekt konvertiert wird, hängt von den Einstellungen des aktuellen
Computers ab.

Zeichensätze konvertieren

Convert$

GEOS verwendet einen anderen Zeichensatz als DOS oder Windows, d.h. die
ASCII-Codes für bestimmte Zeichen (ASCII-Code >= 128) unterscheiden sich und
es gibt Zeichen in jedem Zeichensatz, die in den anderen Zeichensätzen nicht
darstellbar sind. Die Funktion Convert$() übernimmt die Konvertierung zwischen
den verschiedenen Zeichensätzen und ersetzt Codes, die im neuen Zeichensatz
nicht darstellbar sind.

Syntax: <stringVar> = Convert$(A$, mode [, replace])
Parameter: A$: Stringausdruck, der konvertiert werden soll

mode: Bestimmt, zwischen welchen Zeichensätzen konvertiert
werden soll. Siehe Tabelle unten.

replace: ASCII-Code des Ersatz-Zeichens, falls ein Zeichen nicht
konvertierbar ist. ’replace’ ist optional.

- Wird ’replace’ nicht angegeben, wird das Standardzeichen
’_’ verwendet.

- Wird für ’replace’ Null angegeben, werden nicht
konvertierbare Zeichen gelöscht.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 103

Für ’mode’ stehen folgende Werte zur Verfügung:

 Wert Bezeichnung Konvertierung zwischen ...
 0 (keine) Zeichensatz nicht ändern
 1 DOS_TO_GEOS DOS nach GEOS
 2 GEOS_TO_WIN GEOS nach Windows (Codepage 1252,

ANSI)
 3 WIN_TO_GEOS Windows (Codepage 1252, ANSI) nach

GEOS
 4 GEOS_TO_DOS GEOS nach DOS (Codepage 437)
 5 HTML_TO_GEOS HTML-Codes für Umlaute und

Sonderzeichen werden durch die
entsprechenden GEOS Zeichen ersetzt.
Tags wie
 werden nicht geändert,
’replace’ wird nicht verwendet.
Zeichen mit einem Code über 127 werden
durchgereicht (nicht geändert).

 6 GEOS_TO_HTML Jedes GEOS-Zeichen mit einem Code über
127, z.B. Umlaute, werden durch den
entsprechenden HTML-Code ersetzt.
’Replace’ wird nicht verwendet.

 7 HTML_TO_GEOS_BR Wie HTML_TO_GEOS, allerdings wird
jedes der Tags <p>,
, </p> und </br>
durch ein "CarriageReturn" (CR, Code 13
bzw "\r") ersetzt.

 8 GEOS_TO_HTML_BR Wie GEOS_TO_HTML. Zusätzlich wird vor
jedem "CarriageReturn" (CR, Code 13 bzw
"\r") ein HTML-Zeilenumbruch "
"
eingefügt.

 9 UTF8_TO_GEOS UTF-8 nach GEOS
 10 GEOS_TO_UTF8 GEOS nach UTF-8

Jeder der Werte aus der Tabelle oben kann mit den folgenden Flags kombiniert
werden, indem die Werte addiert oder logisch OR kombiniert werden. Außerdem
können die Flags auch allein verwendet werden.

 Wert Bezeichnung Wirkung
 16 CRLF_TO_CR Jedes Auftreten der Codefolge CR+LF

(Codes 13 und 10) oder von LF (Code 10)
alleine wird durch ein einfaches
"CarriageReturn" (CR, Code 13 bzw. "\r")
ersetzt. Dieses Zeichen wird innerhalb von
GEOS zur Zeilentrennung verwendet.

 32 CR_TO_CRLF Jedes Auftreten eines "CarriageReturn"
(CR, Code 13 bzw. "\r") wird durch ein

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 104

"LineFeed" (LF, Code 10) ergänzt. Diese
Kombination (CR+LF) wird in DOS-Text-
Dateien als Zeilenbegrenzung verwendet.

 512 CR_TO_LF Jedes Auftreten eines "CarriageReturn"
(CR, Code 13 bzw. "\r") wird durch ein
"LineFeed" (LF, Code 10) ersetzt. Dieses
Zeichen wird in Text-Dateien unter Linux
und macOS als Zeilenbegrenzung
verwendet.

 64 DOWNCASE_CHARS Zeichen in Kleinbuchstaben umwandeln
 128 UPCASE_CHARS Zeichen in Großbuchstaben umwandeln
 256 REMOVE_HTML_TAGS Alle "Ein-Wort-HTML-Tags" wie ,

</center> usw. werden entfernt. HTML-
Tags, die Leerzeichen enthalten, wie <A
...>, oder Kommentare, werden
nicht entfernt.
Dieses Flag wird nach allen anderen
Operationen angewendet.

Beispiele
X$ = Convert$(A$, DOS_TO_GEOS)
X$ = Convert$(A$, GEOS_TO_DOS OR CR_to_CRLF)
X$ = Convert$(A$, WIN_TO_GEOS + DOWNCASE_CHARS, ASC("#"))

Alles in Großbuchstaben umwandeln:
X$ = Convert$(A$, UPCASE_CHARS)

HTML-Text in GEOS-Zeichensatz konvertieren, DOS-Zeilenumbruch (CR+LF),

 und <p> durch GEOS-Zeilenumbruch (CR) ersetzen:

X$ = Convert$(A$, HTML_TO_GEOS_BR + CRLF_TO_CR)

Hinweise:
• Die Funktionalität des Flags CRLF_TO_CR, auch einzelne LF-Zeichen zu er-

kennen, stellt sicher, dass alle Textdateien korrekt eingelesen werden können.
Dabei ist es egal, ob sie unter DOS, Windows, macOS oder Linux erstellt
wurden. Man muss die Quelle der Datei nicht kennen.

• Bei der Umwandlung zwischen Klein- und Großbuchstaben werden die lokalen
Einstellungen des Computers benutzt.

• Das Ersetzen von HTML-Tags lässt sich auch vorteilhaft mit der Funktion
RepalceStr$ erledigen.

• Wenn Sie einen HTML-Text haben, der ANSI (Codepage 1252, Latin-1) oder
UTF-8 kodiert ist (also gültige Zeichen mit einem Code > 127 enthält) müssen
sie vorher die entsprechende Konvertierungsroutine aufrufen.

B$ = Convert$(A$, WIN_TO_GEOS)
X$ = Convert$(B$, HTML_TO_GEOS)

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Stringausdrücke - 105

bzw.
B$ = Convert$(A$, UTF8_TO_GEOS)
X$ = Convert$(B$, HTML_TO_GEOS)

• Convert$ verwendet für die Konvertierung zwischen GEOS und DOS- bzw.
Windows-Zeichensatz eine Systemfunktion, die eine "Näherungskonvertierung"
durchführt. Für nicht im neuen Zeichensatz enthaltene Zeichen wird zunächst
versucht, ein "ähnlich aussehendes" Zeichen zu finden, bevor das Ersatzzeichen
verwendet wird.
Wenn Sie auf exakte Konvertierung oder weitere Codepages Wert legen, sollten
Sie die Library "CodepageTools" von der R-BASIC Webseite herunterladen.

convertError

Findet Convert$ im Modus UTF8_TO_GEOS am Ende des Strings einen
unvollständigen UTF-8-Code (also z.B. nur 2 von 3 erforderlichen Bytes) oder ein
unvollständiges HTML-Tag (z.B. "&u") so setzt es die Systemvariable convertError
auf die Anzahl der gefundenen Bytes (im Beispiel also auf 2). Andernfalls setzt es
convertError auf Null.

Syntax: <numVar> = convertError

Diese Situation kann vorkommen, wenn Sie Text blockweise statt zeilenweise aus
einer Datei lesen müssen, z.B. weil die Zeilen sonst zu lang sind. In diesem Fall
können Sie den Dateizeiger folgendermaßen auf den Anfang des unvollständig
gelesenen UTF-8-Zeichens zurücksetzen (beachten Sie das Minuszeichen!):

IF convertError THEN
FileSetPos(fileVar, –convertError, TRUE)

END IF

Hinweise:
• Sie müssen prüfen, ob Sie sich bereits am Dateiende befinden, bevor Sie den

Dateizeiger zurücksetzen. Andernfalls landen Sie in einer Endlosschleife.
• Convert$ ersetzt unvollständige UTF-8-Codes durch das Ersatzzeichen (genau

ein Zeichen), unvollständige HTML-Codes werden vollständig kopiert (Anzahl =
convertError). Diese Zeichen sollten Sie, wenn Sie nicht am Dateiende sind, aus
dem Zielstring entfernen.

• Es wird empfohlen, für das Einlesen und konvertieren größerer Textmengen ein
LargeText-Objekt zu verwenden. Dieses handelt die genannten Sonderfälle
automatisch.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 106

2.5 Programmablaufsteuerung

2.5.1 Verzweigungen

In vielen Fällen muss R-BASIC Entscheidungen treffen und je nach Situation
unterschiedliche Dinge tun. Für einfache Fallunterscheidungen stehen die Befehle
IF ... THEN ... ELSE (falls ... dann ... ansonsten) zur Verfügung.
Für die Unterscheidung von mehr als zwei Fällen gibt es die Anweisung ON ..
SWITCH.

Entscheidungen mit IF - THEN - ELSE

Die Anweisung IF prüft den auf IF folgenden numerischen Ausdruck. Ergibt dieser
einen Wert ungleich Null wird er als WAHR interpretiert und der THEN-Zweig wird
abgearbeitet. Ergibt er den Wert NULL, so wird der ELSE-Zweig abgearbeitet.

Für IF stehen zwei Formate zur Verfügung: Das Standard-Format und das Kurz-
Format. Beim Standard-Format muss THEN die letzte Anweisung in der Code-
Zeile sein, beim Kurzformat folgen auf THEN weitere Anweisungen in der gleichen
Zeile. Details dazu siehe unten.

Standard-Syntax:
IF <Bedingung> THEN

<Anweisungsfolge 1 (THEN-Zweig)>
ELSE

<Anweisungsfolge 2 (ELSE-Zweig)>
END IF

<Bedingung>
Ein numerischer Ausdruck, der WAHR (ungleich Null) oder FALSCH
(gleich Null) sein kann. Dafür stehen zur Verfügung:
• einfache numerische Ausdrücke oder Variablen
• logische Operatoren (NOT, AND, OR, XOR)
• Vergleichsoperatoren (<, <=, >, >=, =, <>, =) für Zahlen und Strings.

Vergleichsoperationen ergeben WAHR (Konstante TRUE,
numerischer Wert: –1) wenn die Bedingung erfüllt ist oder FALSCH
(Konstante FALSE, numerischer Wert Null) wenn die Bedingung
nicht erfüllt ist.

• Für Variablen vom Typ FILE, HANDLE oder OBJECT und für
Strukturen stehen die Vergleichsoperatoren = und <> zur
Verfügung.

<THEN-Zweig>
Wird abgearbeitet, wenn die Bedingung WAHR ergibt.

<ELSE-Zweig>
Wird abgearbeitet, wenn die Bedingung FALSCH ergibt.

ELSE und <Anweisungsfolge 2 (ELSE-Zweig)> können weggelassen
werden.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 107

Beispiel:
IF A > 0 THEN

PRINT "Positiv"
ELSE

PRINT "Nicht positiv"
END IF

Beispiel Standard-Format ohne ELSE-Zweig
IF X < 0 AND g$ = "m" THEN
PRINT "Ich habe gar kein Auto."

END IF

Kurzform
In vielen Fällen müssen, falls die Bedingung wahr ist, nur einer oder wenige
Befehle abgearbeitet werden. Für diesen Zweck unterstützt R-BASIC eine
Kurzform der IF-Anweisung. Dabei müssen alle Anweisungen des THEN- und des
ELSE- Zweigs in der gleichen Code-Zeile wie die IF-Anweisung stehen.

Syntax: IF < Bedingung> THEN <THEN-Zweig> : ELSE <ELSE-Zweig>
bzw.: IF < Bedingung> THEN <THEN-Zweig>

Beispiel:
IF Name$ = "Paul" THEN Print "Paul gefunden"

Hinweise:
• Hinter THEN und ELSE kann der Doppelpunkt weggelassen werden.
• in der Kurzform muss vor ELSE ein Doppelpunkt stehen.
• In der Kurzform kann END IF weggelassen werden.
• R-BASIC unterscheidet die Standard- und die Kurzform daran, ob hinter der

THEN-Anweisung noch weitere Anweisungen folgen. Ist THEN nicht die
letzte Anweisung in der Zeile, so wird die Kurzform aktiviert. Ein Doppelpunkt
zählt dabei ebenfalls als Anweisung, Kommentare sind aber zugelassen.

• Seien Sie vorsichtig, wenn Sie Strukturvergleiche verwenden. Strukturen
werden Byte für Byte verglichen, was zu Problemen führen kann, wenn sie
Strings enthalten. Die vom String nicht benutzten Bytes des String-Bereichs
können zufällige Werte enthalten.

Kompatibilität:

Aus Gründen der Kompatibilität werden in der Kurzform von IF auch die folgenden
Formate unterstützt. Sie sollten diese Formate in eigenen Programmen aber nicht
einsetzen.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 108

Syntax: IF < Bedingung> THEN <Zeilennummer>
Statt THEN GOTO <Zeilennummer>.
Funktioniert nur mit Zeilennummern, nicht mit Labels.

Syntax: IF < Bedingung> GOTO <Ziel>
Statt THEN GOTO <Ziel>
Funktioniert sowohl mit Zeilennummern, als auch mit Labels.

Beispiele zur IF-Anweisung

Für das Normale IF-Format muss THEN am Ende einer Zeile stehen. Kommentare
hinter THEN sind aber erlaubt. ELSE muss nicht allein in einer Zeile stehen. Hinter
ELSE kann man den Doppelpunkt weglassen:

IF A > B THEN ’ Ich bin ein Kommentar
A = A – 2 : B = B + 1
ELSE PRINT "Fertig" : END IF

Neben logischen Ausdrücken mit Zahlen können auch Zeichenketten verglichen
werden (Temp$, Name$ und AlterName$ seien String-Variablen)

IF Name$ > AlterName$ THEN
Temp$ = Name$ ’ Vertauschen der Namen
Name$ = AlterName$
AlterName$ = Temp$

END IF

Logische Operatoren in IF-Anweisungen sind sehr hilfreich. Bitte beachten Sie die
Hierarchie der Operatoren oder setzen Sie Klammern!

Label nochmal: ’ Rücksprungmarke
INPUT "Bitte A eingeben"; A
IF A < 0 OR A > B THEN
Print "A ist ungültig"
GOTO nochmal

END IF

Numerische Ausdrücke sind WAHR, wenn sie nicht Null sind.

IF A THEN Print "A ist nicht Null"

IF 17•A – B THEN Print "17•A ergibt nicht B"

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 109

IF-Anweisungen können ineinander verschachtelt werden. Vorsicht! Das wird sehr
schnell unübersichtlich und daher fehleranfällig. Die Farben deuten im Beispiel die
Zugehörigkeit an.

IF A > 0 THEN
PRINT "Positiv"

ELSE
IF A = 0 THEN

PRINT "Null"
ELSE
 PRINT "Negativ"
END IF

END IF

Mehrfachverzweigungen

Zur Unterscheidung von mehr als zwei Fällen steht die Anweisung ON ... SWITCH
(je nach ... schalte um) zur Verfügung.

Syntax: ON <Ausdruck> SWITCH
CASE <N1>:

<Code>
END CASE

CASE <N2>:
CASE <N3>:

<Code>
END CASE

....
DEFAULT:

<Code>
END SWITCH

Beispiel (A sei eine numerische Variable):
ON A SWITCH
CASE 0:
Print "A ist Null"
END CASE

CASE 1:
Print "A ist 1"
END CASE

DEFAULT:
Print "A nicht Null oder 1"

END SWITCH

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 110

Bedeutung der Werte:
ON ... SWITCH

ON ... SWITCH (= je nach ... schalte um) leitet die Mehrfachver-
zweigung ein.

<Ausdruck>
<Ausdruck> ist ein numerischer Ausdruck, der einen ganzzahligen Wert
(LongInt) ergeben muss.

CASE <N>
CASE (= Fall) leitet die Codesequenz ein, die abgearbeitet wird, wenn
<Ausdruck> den Wert <N> ergibt.

<N> <N> ist ein fester, ganzzahliger Wert.
Einfache Berechnungen (+, -, *, /, Klammern, ^ (Exponent) , MOD
(Modulo-Division), OR, AND, NOT, XOR und die Funktionen IINT(),
ASC(), SQR(), FRAC(), TRUC(), SIN(), COS(), TAN(), EXP(), LN(),
LOG(), LG() und SizeOf()) sowie negative Werte sind zugelassen.
Variablen und sonstige Funktionen sind nicht erlaubt.

END CASE
Beendet den entsprechenden Code-Abschnitt.

DEFAULT
DEFAULT (=Vorgabe) leitet den Codeabschnitt ein, der ausgeführt
wird, wenn keine der CASE <N> Bedingungen zutrifft. Der Default-Zeig
ist optional.

END SWITCH
Schießt die Mehrfachverzweigung ab.

Abarbeitung von ON <Ausdruck> SWITCH... CASE
• Stößt R-BASIC auf die Anweisung ON .. SWITCH, so wird zunächst der

<Ausdruck> ausgewertet.
• Daraufhin wird geprüft, welche der CASE-Bedingungen <N> zutrifft. Das geht

sehr schnell, weil der Compiler einer Tabelle erstellt hat. Gegebenenfalls wird
der entsprechende Code abgearbeitet.

• Stößt der R-BASIC auf die Anweisung END CASE, so wird die Mehrfach-
verzweigung beendet, d.h. es wird mit der auf END SWITCH folgenden
Anweisung fortgesetzt.

• Gibt es zu einem CASE kein END CASE, so wird der auf das nächste CASE
folgenden Code ebenfalls ausgeführt. Beispiel:

CASE 1:
Print "A ist 1"

CASE 2: ’ hier kein END CASE davor
Print "A ist 1 oder 2"
END CASE

• Findet R-BASIC keinen passenden CASE-Zweig, so wird der Code
abgearbeitet, der auf die Anweisung DEFAULT folgt.
Der DEFAULT-Zweig ist optional.

Hinweise:
• Der DEFAULT-Zweig kann weggelassen werden.
• Der Doppelpunkt hinter der CASE-Bedingung kann weggelassen werden, er

dient nur der Kompatibilität.
• Direkt vor END SWITCH kann END CASE weggelassen werden.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 111

• Hinter ON ... SWICTH und hinter End CASE kann die Zeile nicht mit einem
Doppelpunkt und weiteren Befehlen fortgesetzt werden.

• Die folgende Konstruktion ist nicht zugelassen. IF .. THEN END CASE führt
zu einem Compilerfehler:

CASE 1:
IF B > 0 THEN END CASE

CASE 2:
Print "A ist 1 oder 2"
END CASE

Einfache Beispiele:

INPUT "Geben Sie bitte A ein"; A
ON A SWITCH
CASE 1:
Print "A ist 1"
END CASE

CASE 2:
Print "A ist 2"
END CASE

DEFAULT:
Print "A ist weder 1 noch 2" ’ END CASE kann hier entfallen

END SWITCH

Hinter CASE sind einfache Berechnungen und die Funktionen INT(), ASC() und
SizeOf() zugelassen (siehe vorne).
DIM A$ ’ String-Variable
INPUT "Geben Sie einen Text ein"; A$
ON ASC(A$) SWITCH ’ ersten Buchstaben testen
CASE ASC("A"):
Print "Der erste Buchstabe ist ein A"
END CASE

CASE ASC("z"):
Print "Der Text beginnt mit einem kleinen z."

’ END CASE kann hier entfallen
END SWITCH

Beispiel für kurze CASE-Fälle

INPUT "Geben Sie bitte A ein"; A
ON A SWITCH
CASE 1: Print "A ist 1" : END CASE
CASE 2: Print "A ist 2" : END CASE
DEFAULT: Print "A ist weder 1 noch 2"
END SWITCH

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 112

Mehrere Fälle mit dem gleichen Code:

INPUT "Geben Sie bitte A ein"; A
ON A SWITCH
CASE –1:
CASE 0:
CASE 1:
Print "A ist -1, Null oder 1"
END CASE

CASE 2: CASE 3: CASE 4:
Print "A ist 2, 3 oder 4"
END CASE

CASE –5:
CASE 5:
Print "A ist 5 oder –5"
END CASE

DEFAULT:
Print "Nichts Passendes gefunden."

END SWITCH

Verschachtelung von ON..SWITCH-Anweisungen
Die Farben deuten im Beispiel die Zugehörigkeit an. A und B sind REAL-
Variablen.

InputBox "A und B eingeben", A,B

ON A SWITCH
CASE 0:
CASE 1:
PRINT "Fall 1"
IF B = 1 THEN PRINT "B ist 1"
END CASE

CASE 2:
PRINT "Fall 2"
ON B SWITCH

CASE 1:
PRINT "B ist 1"
END CASE

DEFAULT
PRINT "B ist nicht 1"

END SWITCH
END CASE

DEFAULT
PRINT "sonstiges"

END SWITCH

PRINT "fertig."

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 113

Aus Kompatibilitätsgründen werden auch die folgenden Varianten unterstützt:

ON <Ausdruck> GOTO <Liste von Zielen>
ON <Ausdruck> GOSUB <Liste von Zielen>
<List von Zielen> Sprungziele, die angesprungen werden, wenn der

<Ausdruck> die Werte 1, 2, 3, 4 usw. ergibt.

Beispiele (A sei eine numerische Variable)
ON A GOTO 10, 20, 30 ’ Zeilennummern

ON A GOSUB L1, L2, L3 ’ Labels

DIM A
Input A

ON A GOSUB L1, L2, L3
Print "Fertig"
End

LABEL L1
PRINT "A ist Eins" : Return

LABEL L2
Print "A ist Zwei" : Return

LABEL L3
Print "A ist Drei" : Return

Wie Sie sehen kann man mit der GOTO bzw. GOSUB-Anweisung sehr
unübersichtlichen Code erzeugen.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 114

2.5.2 Schleifen

Sehr häufig ist es erforderlich einen bestimmen Codeabschnitt mehrfach zu durch-
laufen. Ein typischer Fall ist die Ausgabe einer Tabelle oder einer Liste von
Namen. Eine solche Programmstruktur bezeichnet man als Schleife. In R-BASIC
stehen Ihnen drei Schleifentypen zur Verfügung:

• Die Zählschleife (auch als For-Next-Schleife bezeichnet) wird verwendet,
wenn man die Anzahl der Schleifendurchläufe im Voraus kennt.

• Die WHILE - WEND - Schleife wird benutzt, wenn die Anzahl der Schleifen-
durchläufe nicht im Voraus bekannt ist und man die Abbruchbedingung am
Schleifenanfang prüfen möchte.

• Die REPEAT - UNTIL - Schleife wird benutzt, wenn die Anzahl der Schleifen-
durchläufe nicht im Voraus bekannt ist und man die Abbruchbedingung am
Schleifenende prüfen möchte.

• Mit den Schlüsselworten CONTINUE und BREAK kann man Schleifendurch-
läufe vorzeitig beenden oder die Schleife vorzeitig verlassen.

• Verwenden Sie niemals GOTO um eine Schleife zu verlassen! Schleifen
erzeugen einen Eintrag auf dem Return-Stack. GOTO räumt diesen Eintrag
nicht auf und der Stack kann überlaufen.

• Eine Return-Anweisung innerhalb einer Schleife ist erlaubt. Return räumt den
Stack sauber auf.

Zähl-Schleifen

Die Zählschleife mit FOR wird verwendet, wenn man die Anzahl der
Schleifendurchläufe im Voraus kennt. Die FOR-Schleife wird immer mindestens
einmal durchlaufen.

Syntax: FOR <N> = startwert TO endwert [STEP schrittweite]
< Anweisungen >
NEXT <N>

<N>: numerische Variable, "Schleifenzähler"
Jeder numerische Datentyp ist zulässig (auch WWFixed).
Aus historischen Gründen wird für die Zählvariable häufig N,
I oder K verwendet.

startwert: Anfangswert für den Schleifenzähler
Der Schleifenzähler wird am Beginn mit diesem Wert belegt.

endwert: Endwert für den Schleifenzähler
Die Schleife wird verlassen wenn <N> den Endwert erreicht
oder überschritten hat.

schrittweite: (optional) Dieser Wert bestimmt, um welchen Wert der
Schleifenzähler nach jedem Durchlauf erhöht wird. Negative
Werte sind zulässig, dann wird der Schleifenzähler
vermindert. Der Standardwert für schrittweite ist 1.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 115

Das folgende Beispiel gibt die Zahlen von 1 bis 4 aus:
DIM N
FOR N = 1 TO 4
Print N
NEXT N

Bedeutung der einzelnen Elemente:
FOR Die Anweisung "FOR N = startwert" (Für N = ..) eröffnet die Schleife

und belegt den Schleifenzähler N mit dem Startwert.
TO Die Anweisung "TO endwert" (bis ...) legt den Endwert des

Schleifenzählers fest.
STEP Die optionale Anweisung "STEP schritteweite" (Stufe ..) legt die

Schrittweite fest. Sie wird nach jedem Durchlauf auf den
Schleifenzähler addiert. Negative Schrittweiten sind zulässig. Der
Standardwert (ohne STEP) ist 1.
Es wird empfohlen, dass Startwert, endwert und Schrittweite jeweils
ganzzahlig sind.

NEXT Die Anweisung NEXT N (Nächstes N) schließt die Schleife. Der
Schleifenzähler N wird erhöht (bei negativer Schrittweite vermindert)
und die Abbruchbedingung wird geprüft. Die Angabe des Schleifen-
zählers ist optional (Abwärtskompatibilität).
NEXT bricht die Schleife ab, wenn der Wert "aktuelle Schleifenzähler +
Schrittweite" größer als der Endwert (bei negativer Schrittweite: kleiner
als der Endwert) ist. Ansonsten - also auch wenn der Endwert genau
erreicht ist - wird der neue Wert dem Schleifenzähler zugewiesen und
die Schleife wird erneut durchlaufen.

Beispiele:
FOR N = 0 TO 10 ’ 11 Durchläufe
PRINT N, N•N

NEXT N

FOR N = 1 TO 10 STEP 0.5 ’ 20 Durchläufe
PRINT N, N•N

NEXT N

Schleifen können verschachtelt werden. Die Farben deuten die Zugehörigkeit an.
FOR X = 10 TO 30
FOR Y = 24 TO 58

PSet X, Y
NEXT Y

NEXT X

Hinweise:
• Der Schleifenrumpf wird in jedem Fall einmal durchlaufen, da die Abbruch-

bedingung erst am Ende der Schleife (von NEXT) geprüft wird.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 116

• Eine Schleifendurchlauf kann mit BREAK oder CONTINUE vorzeitig
abgebrochen werden.

• Der Schleifenzähler darf im Schleifenrumpf verändert werden, z.B. durch
Zuweisung eines Wertes weit über dem Endwert. Auch dadurch kann man
einen vorzeitigen Schleifenabbruch erzwingen.

• Ein Unterprogramm darf aus einer Schleife heraus mit RETURN verlassen
werden.

• Startwert, Endwert und Schrittweite sollten ganzzahlig sein, sonst kann es zu
unerwarteten Problemen kommen. Durch die interne Zahlendarstellung kann
es zu Rundungsfehlen beim ständigen Aufaddieren der Schrittweite kommen,
so dass der Endwert nicht exakt erreicht wird. Im folgenden Beispiel führt die
minimale Abweichung von 4.33E-19 dazu, dass die Schleife NICHT mit dem
Wert 4 durchlaufen wird.

FOR N = 0 TO 4 STEP 0.4
PRINT N, N•N

NEXT N
PRINT N - 4 ’ ist NICHT Null!

In vielen Fällen kann man dieses Problem umgehen, indem man als Endwert
den gewünschten Wert + halbe Schrittweite (hier also 4.2) angibt.

FOR N = 0 TO 4.2 STEP 0.4

Aus Gründen der Abwärtskompatibilität sind die folgenden Syntaxvarianten für
NEXT erlaubt:

• Die Angabe des Schleifenzählers hinter Next ist optional. NEXT ohne Angabe
eines Schleifenzählers schließt genau eine Schleife. Vorsicht also bei
verschachtelten Schleifen.

FOR N = 0 TO 4
PRINT N, N•N

NEXT

• Mehrere Schleifenzähler hinter NEXT sind zulässig. Der Zähler der inneren
Schleife muss zuerst angegeben werden.

FOR X = 10 TO 30
FOR Y = 24 TO 58

PSet X, Y
NEXT Y, X

Tipp:
• Die Variante mit NEXT ohne Schleifenzähler läuft merklich schneller, weil R-

BASIC keine Prüfung ausführen kann, ob der Schleifenzähler korrekt ist.
Andererseits werden eventuelle Fehler in der Programmstruktur schwerer
erkannt.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 117

Die WHILE - WEND -Schleife

Die While-Wend-Schleife wird verwendet, wenn die Anzahl der Schleifen-
durchläufe noch nicht im Voraus feststeht. While-Wend ist abweisend, d.h. ist die
Bedingung hinter While von Anfang an FALSCH, wir die Schleife nie durchlaufen.

Syntax: WHILE <Bedingung>
< Anweisungen >

WEND

Syntax einzeilig (Doppelpunkt hinter der Bedingung beachten):
WHILE <Bedingung> : < Anweisungen > : WEND

<Bedingung>: Numerischer Ausdruck. Die Schleife wird durchlaufen, wenn
<Bedingung> einen Wert ungleich Null ergibt.

Beispiel
DIM A
Print "Geben Sie eine Zahl größer als Null ein."
A = –1
WHILE A <= 0
Input "Positive Zahl"; A

WEND
Print "Prima."

Bedeutung der einzelnen Elemente:
WHILE <Bedingung>

Die Anweisung WHILE (Solange) eröffnet die Schleife. Die auf WHILE
folgende Bedingung (ein numerischer Ausdruck) wird geprüft. Ergibt sie
den Wert wahr (also ungleich Null) wird der Schleifenrumpf
durchlaufen. Ergibt die Bedingung den Wert falsch (gleich Null) wird die
Schleife verlassen. Es wird mit der auf Wend folgenden Anweisung
fortgesetzt.
Die Schleife wird durchlaufen, solange die Bedingung erfüllt ist.

WEND Die Anweisung WEND (Wende) schließt die Schleife, indem zur
WHILE-Anweisung zurück gesprungen wird.

END WHILE kann anstelle von WEND verwendet werden. Funktionell besteht
kein Unterschied.

Hinweise:
• Der Schleifenrumpf <Anweisungen> wird solange durchlaufen, wie die

Bedingung wahr ist.
• Ist die Bedingung von Anfang an falsch, wird der Schleifenrumpf nie

durchlaufen.
• Zu jedem WHILE muss es genau ein WEND geben und umgekehrt. WHILE

muss im Programmcode immer vor WEND stehen.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 118

• R-BASIC interpretiert jeden numerischen Ausdruck, der nicht Null ergibt, als
"wahr". Ergibt er Null, ist er "falsch" (FALSE).

• Die Bedingung darf Verknüpfungen mit logischen Operatoren enthalten.
• Ein Unterprogramm darf aus einer Schleife heraus mit RETURN verlassen

werden.
• Eine Schleifendurchlauf kann mit BREAK oder CONTINUE vorzeitig

abgebrochen werden.

Beispiele:
A = 12
B = 34
WHILE A > 0 AND B > 0
A = A – 1
B = B – 10
PRINT A, B

WEND

’ einen Text verlängern
’ Aus "Hallo Welt" wird "Hallo Welt.........."
InputBox "Bitte einen Text eingeben"; C$
WHILE Len(C$) < 20
C$ = C$ + "."

WEND
PRINT C$ + "!"

’ warten auf die Enter-Taste
WHILE InKey$ <> Chr$(13) : WEND ’ Doppelpunkt beachten

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 119

Die REPEAT - UNTIL - Schleife

Die Repeat-Until-Schleife wird verwendet, wenn die Anzahl der Schleifen-
durchläufe noch nicht im Voraus feststeht. Repeat-Until ist nicht abweisend, d.h.
die Schleife wird in jedem Fall mindestens einmal durchlaufen.

Syntax: REPEAT
< Anweisungen >
UNTIL <Bedingung>

Syntax einzeilig (Doppelpunkt hinter der Bedingung beachten):
REPEAT < Anweisungen > : UNTIL <Bedingung>

<Bedingung>: Numerischer Ausdruck. Die Schleife wird erneut durchlaufen,
solange <Bedingung> den Wert Null ergibt.

Bedeutung der einzelnen Elemente:
REPEAT

Die Anweisung REPEAT (Wiederhole) eröffnet die Schleife.
UNTIL <Bedingung>

Die Anweisung UNTIL (bis ...) schließt die Schleife. Die auf UNTIL
folgende Bedingung (ein numerischer Ausdruck) wird geprüft. Ergibt sie
den Wert wahr (also ungleich Null) wird die Schleife verlassen. Es wird
mit der auf UNTIL folgenden Anweisung fortgesetzt. Ergibt die
Bedingung den Wert falsch (gleich Null) wird der Schleifenrumpf erneut
durchlaufen.
Die Schleife wird solange durchlaufen bis die Bedingung erfüllt ist.

Hinweise:
• Der Schleifenrumpf <Anweisungen> wird in jedem Fall mindestens einmal

durchlaufen.
• Der Schleifenrumpf wird solange durchlaufen, bis die Bedingung wahr ist.
• R-BASIC interpretiert jeden numerischen Ausdruck, der nicht Null ergibt, als

"wahr". Ergibt er Null, ist er "falsch" (FALSE).
• Die Bedingung darf Verknüpfungen mit logischen Operatoren enthalten.
• Zu jedem REPEAT muss es genau ein UNTIL geben und umgekehrt.

REPEAT muss im Programmcode immer vor UNTIL stehen.
• Ein Unterprogramm darf aus einer Schleife heraus mit RETURN verlassen

werden.
• Eine Schleifendurchlauf kann mit BREAK oder CONTINUE vorzeitig

abgebrochen werden.

Beispiele:
A = –7
REPEAT
InputBox "Geben Sie eine positive Zahl ein", A

UNTIL A > 0
PRINT A ’ A ist jetzt immer positiv

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 120

A = 12
B = 34
REPEAT
A = A – 1
B = B – 10
PRINT A, B

UNTIL A <= 0 AND B <= 0

’ einen Text verlängern
’ Aus "Hallo Welt" wird "Hallo Welt.........."
InputBox "Bitte einen Text eingeben", C$
REPEAT
C$ = C$ + "."

UNTIL Len(C$) >= 20
PRINT ">>" + C$ + "<<"

’ warten auf die Enter-Taste
REPEAT UNTIL InKey$ = Chr$(13) ’ Doppelpunkt ist nicht nötig

! Schleifenabbruch mit Enter
REPEAT
x = 1000* RND() ’ Zufallszahl von 0 bis 999
Print x

UNTIL InKey$ = Chr$(13)
Print "Abbruch erfolgte bei"; x

BREAK und CONTINUE

Break und Continue beenden eine Schleifendurchlauf oder eine Schleife vorzeitig.

Syntax: BREAK
Syntax: CONTINUE

BREAK beendet eine Schleife (While-Wend, For-To-Next oder Repeat-Until)
vorzeitig. Die Abarbeitung wird mit dem auf die Schleife folgenden Befehl (also
hinter Wend, Next oder Until) fortgesetzt.

CONTINUE beendet einen Schleifendurchlauf einer While-Wend, For-To-Next
oder Repeat-Until Schleife vorzeitig. Die Schleifenbedingung wird erneut geprüft,
da CONTINUE zum Schleifen-End-Befehl (Wend, Next oder Until) springt.

Wichtig: Verwenden Sie niemals GOTO um eine Schleife zu verlassen! Schleifen
erzeugen einen Eintrag auf dem Return-Stack. GOTO räumt diesen Eintrag nicht
auf und der Stack kann überlaufen. Eine Return-Anweisung innerhalb einer
Schleife ist hingegen erlaubt. Return räumt den Stack sauber auf.

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 121

Beispiele:
! Auslassen von bestimmten Zahlen in einer Schleife
FOR N = 1 TO 5
IF N = 3 THEN CONTINUE
Print N

NEXT

Ausgabe: 1
2
4
5

! Vorzeitiger Abbruch einer Schleife
FOR N = 1 TO 5
IF N = 3 THEN BREAK
Print N

NEXT

Ausgabe: 1
2

! Schleifenabbruch per Zufall
REPEAT
x = 1000* RND() ’ Zufallszahl von 0 bis 999
IF x > 990 THEN BREAK
Print x

UNTIL FALSE ’ Endlos-Schleife
Print "Abbruch erfolgte bei"; x

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 122

2.5.3 Pause und Delay

Die Befehle Pause und Delay dienen dazu, den Programmablauf für eine
bestimmte Zeit anzuhalten. Pause und Delay werden vor allem in klassischen
BASIC-Programmen verwendet. In objektorientierten Programmen sind Pause und
Delay zu Fehlersuche hilfreich. Ansonsten sollten Sie diese Befehle in objekt-
orientierten Programmen nicht verwenden. Stattdessen sollten Sie einen Timer
verwenden, wenn Sie einen zeitgesteuerten Programmablauf wünschen. Timer
sind ausführlich im Handbuch "Spezielle Themen", Kapitel 16, beschrieben.

PAUSE

Der Pause-Befehl bewirkt eine kurze Programmunterbrechung.

Syntax: PAUSE [n]
n: num. Wert, Dauer in 0,1 Sekunden-Schritten

Defaultwert ohne n: 0,1 Sekunde Pause

Beispiel:
PAUSE 2.5 ’ Eine viertel Sekunde warten

DELAY

Programm-Verzögerung. Der Befehl DELAY (verzögere) wartet, bis seit dem
letzten DELAY-Befehl eine bestimmte Zeit vergangen ist. Im Gegensatz zum
PAUSE-Befehl werden die zwischenzeitlich abgearbeiteten Befehle berücksichtigt.
Damit ist eine gezielte Steuerung der Programmablaufgeschwindigkeit möglich.
Nach Möglichkeit sollen Sie, z.B. für Spiele, statt Delay einen Timer verwenden.

Syntax: DELAY [InitWert]
InitWert: numerischer Wert. InitWert bestimmt die Timer-Tics (1/60 s),

die DELAY mindestens warten soll. DELAY 0 schaltet die
Verzögerung ab.

Das Programm wird erst fortgesetzt, wenn seit dem letzten DELAY-Befehl (mit
oder ohne InitWert) mindestens "InitWert" Timer-Tics vergangen sind. Ist bereits
eine längere Zeit vergangen wird das Programm sofort fortgesetzt.
Achtung! Wird ein initWert angegeben, so wartet der DELAY-Befehl nicht,
sondern stellt nur die Wartezeit für den nächsten DELAY-Befehl ein.

Beispiel: Langsame Ausgabe eines Textes, Buchstabe für Buchstabe
DELAY 30 ’ Eine halbe Sekunde
Input A$
FOR N = 1 To Len(a$):
PRINT Mid$(a$, N, 1); ’ Einen Buchstaben ausgeben
DELAY

NEXT

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 123

2.5.4 Unbedingte Sprünge

Schleifen und Verzweigungen springen zu
einem anderen Programmteil, wenn
bestimmte Bedingungen erfüllt sind. Ein
unbedingter Sprung hingegen wird in jedem
Fall ausgeführt. Sie sollten die häufige
Verwendung des GOTO-Befehls vermeiden,
da er schnell zu sehr unübersichtlichen
Programmen (dem sogenannten Spaghetti-
Code, siehe Bild) führen kann.

GOTO IF A=B THEN GOTO L1

Anweisungsblock 1

IF A>0 THEN GOTO L3

IF B = 0 THEN GOTO L4

Anweisungsblock 2

Anweisungsblock 3

IF X < 7 THEN GOTO L2

Die Anweisung GOTO (Gehe zu) setzt den Programmablauf an der angegebenen
Stelle fort.

Syntax: GOTO <sprungZiel>

<sprungZiel> muss eine im Programm mit der Anweisung LABEL vereinbarte
Marke oder eine Zeilennummer sein.

LABEL

Die Anweisung LABEL (Marke) vereinbart ein Ansprungziel für GOTO, GOSUB
oder RESTORE. Siehe auch Kapitel 2.11.4 (Data-Zeilen).

Beispiel:
IF A > 0 THEN GOTO MeineMarke ’ Springt nach unten
<Anweisungen 1> ’ Werden ausgeführt wenn A nicht > 0 ist

LABEL MeineMarke:
<Anweisungen 2> ’ Werden in jedem Fall ausgeführt

In den meisten Fällen kann man die Verwendung des GOTO-Befehls vermeiden,
wenn man das Programm anders strukturiert. Der folgende Code ist identisch mit
dem Beispiel oben. Durch das Umkehren der Bedingung in der IF-Anweisung
(IF A <= 0 statt IF A > 0) wird weder ein GOTO-Befehl noch Label benötigt.
Zusätzlich wird das Programm übersichtlicher.

IF A <= 0 THEN
<Anweisungen 1> ’ Werden ausgeführt wenn A nicht > 0 ist
End IF

<Anweisungen 2> ’ Werden in jedem Fall ausgeführt

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 124

Im Allgemeinen kann man das "umspringen" von Code mit GOTO durch eine IF-
Anweisung ersetzen, wobei die Sprungbedingung negiert werden muss (d.h. aus
= wird <>, aus < wird >= usw.). "Rückwärtssprünge" mit GOTO lassen sich meist
durch eine REPEAT-UNTIL-Schleife ersetzen, wobei die Bedingung ebenfalls
negiert werden muss.

Beispiel
’ Code mit GOTO
LABEL marke1
INPUT "Geben sie eine positive Zahl ein"; A
IF A <= 0 THEN GOTO marke1

’ Code mit einer Schleife
REPEAT
INPUT "Geben sie eine positive Zahl ein"; A
UNTIL A > 0

Abwärtskompatibilität
R-BASIC unterstützt auch die in vielen BASIC-Dialekten verwendete Kombination
"GOTO Zeilennummer". Das kann die Übertragung fremder BASIC-Programme
vereinfachen. Die "Zeilennummer" muss dabei explizit angegeben sein (z.B. "1000
CLS ...", siehe Beispiel). Sie sollten diese Variante in eigenen Programmen nicht
verwenden.

Beispiel:
GOTO 1000 ’ verzweigt das Programm nach unten
.... ’ Dieser Teil wird übersprungen

1000 CLS
... ’ hier geht es dann weiter

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 125

2.5.5 Vorzeitiger Programmabbruch

In den meisten Fällen wird der Nutzer das Programm regulär über das Dateimenü
beenden. R-BASIC bietet jedoch auch die Möglichkeit, den Programmablauf
vorzeitig per BASIC-Befehl zu beenden.

EXIT

EXIT bricht die Programmausführung ab und schließt das Programm. Die Wirkung
ist die gleiche als ob der Nutzer den Menüeintrag "Beenden" (oder "Verlassen")
aus dem Dateimenü gewählt hat. EXIT kann an beliebiger Stelle im Programm
stehen, auch in Schleifen und innerhalb von Unterprogrammen oder Action-
Handlern.

Syntax: EXIT

Beispiel:
IF X < 0 THEN EXIT

END

END ist ein Befehl zur Wahrung der Abwärtskompatibilität zu anderen BASIC-
Dialekten. In R-BASIC sollten Sie END nicht verwenden.

END bricht den laufenden Programmteil ab, das Programm wird jedoch nicht
geschlossen. END ist in klassischen BASIC-Programmen der übliche Weg, das
Programm vorzeitig zu beenden. In R-BASIC bleibt ein Programm nach einem
END-Befehl weiterhin funktionsfähig. END kann an beliebiger Stelle im Programm
stehen, auch in Schleifen und innerhalb von Unterprogrammen oder Action-
Handlern.

Syntax: END

Verwechseln Sie END nicht mit RETURN (siehe Kapitel 2.6, Unterprogramme).
RETURN bewirkt, dass das Unterprogramm zurückkehrt, der auf den Aufruf des
Unterprogramms (Sub oder Function) folgende Code wird abgearbeitet. END
hingegen würgt den laufenden Handler komplett ab.

Beispiel:
IF X > 0 THEN END

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 126

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 2
Einfach unter PC/GEOS programmieren

Programmablaufsteuerung - 127

(Leerseite)

