R-BASIC

Einfach unter PC/GEOS programmieren

\O

ob
9&

Programmierhandbuch

Volume 3
Unterprogramme,
Eingaben durch den Nutzer, Grafik

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

2.6 UNnterprogramme ..oeeeeeesesssss s s 132
2.7 Eingaben durch den NUutzer ... 142
2.7.1 Eingabe von Text und Zahlencccooeiiiiiiiii 142
2.7.2 Direkte Abfrage der Tastaturcccccevviiiiieiie e, 144
2.7.3 MeSSAGEDOXEN ..oovvveeiiiiiciiieeiiee e 148

7 1 - || 150
2.8.1 Das Koordinatensystemccccvuviiiriiiciieiniiec e 150
2.8.2FarDen ... 151
2.8.3 Linien, Punkte und Figurenouveeiiiiiiineeieeeeeeeeen 156
2.8.4 Die Systemvariable "graphic": Mixmodes und mehr 163
2.8.5 Arbeit mit Graphic Strings «.....ccccoeviiiiiiiiii 166
2.8.6 Zeichnen von Bildern ... 173
2.8.6.1 Zeichnen von ICONSccooveiiiiiiiiiiii s 174

2.8.6.2 Verwendung der "Picture-List"cccccooiiiiiiininnnn. 175

2.8.6.3 Externe Bilddateienccooveiiiiiiiiie, 178

2.8.6.4 Bitmaps und Bitmap Handlescccoeeviiriiiininnnen. 180

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.6 Unterprogramme

Einem Programm eine Ubersichtliche Struktur zu geben ist eine wesentliche
Voraussetzung, um verzwickte und schwer zu findende Fehler zu vermeiden.

Unterprogramme (Sub-Routinen) sind in sich geschlossene Programmabschnitte,
quasi Programme innerhalb eines Programms. Die Vorteile bei der Verwendung
von Unterprogrammen sind:
+ Strukturierung: Das Programm wird wesentlich besser lesbar, da es in kleine,
voneinander unabhéngige Einheiten (Unterprogramme) zerlegt wird.
- Stabilitéat: Kleine Unterprogramme sind wesentlich einfacher fehlerfrei zu
halten als ein komplexes Riesenprogramm.
+ Kapselung: Die Verwendung lokaler Variablen garantiert, das sich die
Programmteile nicht unerwiinscht gegenseitig beeinflussen.
+ Mehrfache Verwendbarkeit: Unterprogramme koénnen so oft gerufen werden,
wie es nétig ist. Unterprogramme kénnen andere Unterprogramme aufrufen,
sie kbnnen sich sogar selbst aufrufen.

R-BASIC unterstitzt folgende Arten von Unterprogrammen:
+ Unterprogramme ohne Rickgabe von Funktionswerten (SUB)
SUB’s werden uber ihren Namen aufgerufen.

NameDerSub [< ParameterListe>]

+ Unterprogramme mit Rickgabe von Funktionswerten (FUNCTION)
Funktionen werden ebenfalls tber ihren Namen aufgerufen. In den meisten
Fallen stehen Funktionen auf der rechten Seite einer Zuweisung.

<variable> = NameDerFunction ([<Paramterliste>])

+ Action-Handler fur Objekte
Actionhandler werden automatisch von ihren Objekten aufgerufen. Sie kébnnen
nicht von anderen Teilen des Programms aus gerufen werden.

+ Aus Kompatibilitatsgrinden wird die Kombination GOSUB / RETURN unter-
stitzt. Sie sollten GOSUB in eigenen Programmen nicht verwenden.

Konzept: Lokale Variablen

Ein Unterprogramm hat vollen Zugriff auf alle global definierten Variablen, Kon-
stanten, Strukturen usw. und kann mit diesen arbeiten. Globale Variablen werden
ublicherweise im DIM & DATA Fenster vereinbart. Wenn aber alle Unter-
programme ausschlie8lich mit globalen Variablen arbeiten wird das schnell
unubersichtlich und es kann zu einer unerwlnschten gegenseitigen Beeinflussung
der Programmiteil fihren. Deswegen kann man Variablen "lokal", das hei3t nur fir
dieses eine Unterprogramm definieren. Dazu schreibt man die entsprechende
DIM-Anweisung innerhalb des Unterprogramms. Diese Variablen sind dem
Compiler nur innerhalb des Unterprogramms bekannt und kénnen auch nur
innerhalb dieses Unterprogramms benutzt werden.

Unterprogramme - 132

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

StoBt der Compiler innerhalb eines Unterprogramms auf eine Variable (z.B. A$),
sucht er zuerst, ob diese lokal definiert ist. Ist das der Fall, wird die lokale Variable
verwendet. Nur wenn sie nicht lokal definiert ist, wird die entsprechende global
definierte Variable verwendet. Diese Technik nennt man Kapselung. Das hat drei
sehr praktische Folgen:

+ Man kann die lokalen Variablen unabh&ngig von den global definierten
Variablen, Konstanten usw. benennen. Bei Namensgleichheit wird auf jeden
Fall die im Unterprogramm definierte Variable verwendet.

+ Verschiedene Unterprogramme brauchen ebenfalls keine Rucksicht aufein-
ander nehmen, auch dann nicht, wenn sie sich gegenseitig aufrufen. Damit
kann man zum Beispiel ein Unterprogramm aus einem anderen Programm
herliberkopieren und braucht sich keine Sorgen um die Benennung der lokalen
Variablen machen.

+ Ein Unterprogramm hat nur Zugriff auf seine eigenen lokalen Variablen und
auf die globalen Variablen. Ein Unterprogramm hat keinen Zugriff auf die
lokalen Variablen der Routine, von der es aufgerufen wurde.

Ein Beispiel finden Sie bei der Erklarung, was Parameter sind.
Analog wird bei Labels und Konstanten (Anweisung CONST) verfahren. Nur
Struktur-Definitionen (STRUCT-Anweisung) sind immer global.

Konzept: Parameter

In vielen Féllen muss man Werte an ein Unterprogramm Ubergeben, mit denen es
dann arbeitet. Zum Beispiel bendtigt ein Unterprogramm, das einen Namen in
einer Liste suchen soll, den Namen, nach dem es suchen soll. Man kénnte diesen
Namen in eine globale Variable schreiben und ihn so an das Unterprogramm
ubergeben. Das ist besonders fur Anfanger leicht zu handhaben, letztlich jedoch
ein schlechter und fehleranfalliger Programmierstil.

Die bessere Lésung flir dieses Problem ist, den Namen direkt an das Unterpro-
gramm zu ubergeben. Werte, die man einem Unterprogramm direkt Ubergeben
kann, werden als "Parameter" bezeichnet.

Ein einfaches Beispiel. Wir vereinbaren eine SUB, die einen Namen mehrfach
ausgeben soll:

SUB Namensschleife (name$ as String, x as real)
DIM N
For N =1 to X
Print name$
NEXT N
End SUB

Name$ und X sind die Parameter. N ist eine lokale Variable. Die For-Schleife gibt
den Namen so oft aus, wie X vorgibt. Diese Sub kdnnen wir nun beliebig oft
aufrufen.

Unterprogramme - 133

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

DIM N, T$
TS = "Willi"
N = 7
Namensschleife "Paul", 5 " 5x Paul
Namensschleife TS, N+3 " 10x Willi. N ist immer noch 7

N und T$ seien globale Variablen. Wie oben beschrieben unterscheidet der
Compiler zwischen dem globalen N und dem lokalen N in der SUB Namens-
schleife. Wie Sie sehen ist es vollig egal ob Sie als Parameter einen festen Wert,
eine Variable oder eine Berechnung Ubergeben. R-BASIC wertet den Ausdruck
zur Laufzeit aus und kopiert den Wert dann in die Parameter des Unterprogramms
(in unserem Fall name$ und X).

Intern behandelt R-BASIC die Parameter wie lokale Variablen. Der einzige
Unterschied ist, dass sie beim Aufruf des Unterprogramms mit den Ubergebenen
Werten belegt werden. Alle anderen lokalen Variablen werden beim Aufruf des
Unterprogramms geléscht (d.h. mit Nullen belegt). Das hat wieder zwei sehr
praktische Folgen:
- Sie haben die gleichen Freiheiten bei der Namensvergabe von Parametern
wie bei den lokalen Variablen.
- Sie durfen einen Parameter innerhalb eines Unterprogramms verédndern ohne
dass dies auf das Hauptprogramm zuriickwirkt. Andern Sie zum Beispiel
unsere Sub von oben wie folgt:

SUB Namensschleife (name$ as String, x as real)
DIM N
names$ "Der Name ist
For N = 1 to X
Print name$
NEXT N
End SUB

+ name$

und Ubergeben ihr dann die globale Variable T$
Namensschleife TS, N+3

so wird die globale Variabel T$ dadurch NICHT geandert.

SUB, END SUB

Die Anweisung SUB (fur Subroutine = Unterprogramm) vereinbart ein Unter-
programm. Es kdnnen Parameter an das Unterprogramm ubergeben werden und
innerhalb des Unterprogramms kénnen lokale Variablen, Konstanten und Labels
definiert werden, die nur innerhalb des Unterprogramms glltig (dem Compiler
bekannt) sind.

Mit SUB vereinbarte Unterprogramme missen mit END SUB (Ende der Sub-

routine, Leerzeichen nicht vergessen) abgeschlossen werden.
Ein vorzeitiges Verlassen des Unterprogramms mit RETURN ist mdglich.

Unterprogramme - 134

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Vereinbarung: SUB <Name> ([<Parameterliste>])
<Lokale Vereinbarungen>

<ProgrammCode>
END SUB

<Name> Bezeichner, unter dem die SUB augerufen werden kann.
<Parameterliste> Liste Parametern, die beim Aufruf an die SUB Uibergeben
werden sollen. Die Werte werden beim Aufruf der SUB in die
Parameter kopiert.
Die Parameterliste darf leer sein. Die Klammern sind erforderlich.

Aufruf: Name <Parameter>

Der Aufruf gefolgt tber die Angabe des Namens des Unterprogramms, gefolgt von
der Parameterliste. Eine Klammer um die Parameterliste ist zulassig, aber nicht
erforderlich. Die einzelnen Parameter sind durch Komma zu trennen. Existiert
keine Parameterliste, wird nur der Name angegeben.

Beispiel 1:

SUB Demo ()
Print "Ich bin ein Sub-Programm"

END SUB
Aufruf:
Print "Im Hauptprogramm"
Demo

Print "Zuriick im Hauptprogramm"

Ausgabe:

Beispiel 2:

SUB PrintTableLine (x as real) ' x ist der Parameter
DIM y, z as real " y und z sind lokale Variablen
y = X*x + 2*%x — 12
z = 12*sin(x)
Print x, y, 2z
END SUB

Aufruf:

For N = 1 To 14
PrintTableLine (N)
Next N

Unterprogramme - 135

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Ausgabe:

Beispiel 3:

SUB CheckValue (a, b as real) ' a, b: Parameter
If a = b Then Return ' Rilckkehr wenn gleich
Print "Warnung! Werte sind nicht gleich!"

END SUB

Aufruf:

CheckValue X, 17 ' Warnt, wenn X nicht 17 ist

RETURN

Die Anweisung RETURN beendet ein Unterprogramm und kehrt zu der Routine
zuriick, die das Unterprogramm aufgerufen hat. RETURN in einem Actionhandler
beendet die Abarbeitung des Actionhandlers und R-BASIC kehrt in den
Wartezustand zurtick. RETURN kann an beliebiger Stelle im Programm stehen.
Insbesondere ist es erlaubt RETURN innerhalb von Schleifen und Verzweigungen
zu verwenden.

Syntax: RETURN
Return kehrt vorzeitig aus einer SUB oder einem Actionhandler
zurulck.

Syntax RETURN <Riickgabewert>
Return mit Rickgabewert kehrt aus einer Function zurick und
Ubergibt den Rickgabewert an die aufrufende Routine.

FUNCTION - END FUNCTION

Die Anweisung FUNCTION (fur Funktion = Formel, die einen Wert berechnet)
vereinbart ein Unterprogramm, das einen Wert zuruckliefert. Es kbnnen Parameter
an die Function Ubergeben werden und innerhalb der Function kénnen lokale
Variablen, Konstanten und Labels definiert werden, die nur innerhalb des
Unterprogrammes gultig (dem Compiler bekannt) sind.

Die Vereinbarung einer FUNCTION endet mit der Anweisung END FUNCTION
(Ende der Funktion, Leerzeichen nicht vergessen).

Unterprogramme - 136

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Um eine Function zu verlassen muss die Anweisung
RETURN <Riickgabewert>

ausgeflihrt werden. Ublicher Weise steht diese Anweisung direkt vor der END
FUNCTION Anweisung. Sie kann aber auch an beliebiger Stelle innerhalb der
Function stehen. Der Ruckgabewert muss dabei den in der Vereinbarung der
Function angegebenen Typ haben.

Vereinbarung: FUNCTION <Name> (<Parameterliste>) AS <Typ>
<Lokale Vereinbarungen>
<ProgrammCode>
RETURN <Ruckgabwert>
END FUNCTION

<Name> Bezeichner, unter dem die Function aufgerufen werden kann.
<Parameterliste> Liste Parametern, die beim Aufruf an die Function Ubergeben
werden sollen. Die Werte werden beim Aufruf der Function in die
Parameter kopiert.
Die Parameterliste darf leer sein. Die Klammern sind erforderlich.
<Typ> bezeichnet den Datentyp der Funktion. Es sind alle Standard-BASIC-
Typen sowie selbst definierte Strukturen erlaubt. Der Riuckgabewert
in der RETURN-Anweisung muss diesen Typ haben.

Aufruf: <var> = Name (<Parameter>)

<var> ist eine Variable vom Typ, den die Funktion hat.
<Parameter> sind die Parameter - falls vorhanden - mit Komma getrennt. Die
Klammern sind erforderlich, auch wenn keine Parameter existieren.

Aufruf: Name (<Parameter>)
Es ist zuléssig eine Function aufzurufen, ohne den Rickgabewert zu
verwenden.

Beispiel 1:

Diese einfache Funktion berechnet die Anzahl der Pixel auf dem Bildschirm. MaxX
und MaxY sind globale Variablen, die die maximale x- und y-Koordinate enthalten.
Da die Koordinaten bei Null beginnen missen wir jeweils 1 addieren.

FUNCTION PixelsOnScreen () As Real
Return (MaxX+1l) * (MaxY+1)
END FUNCTION

Aufruf:

DIM anz as Real
anz = PixelsOnScreen()

oder
Print PixelsOnScreen()

Unterprogramme - 137

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel 2:
Diese Funktion berechnet den Funktionswert einer linearen Funktion.
FUNCTION LinFunc (x as real) As Real ' x: Parameter
DIM y as real " y: lokale Variable
y = 2*x + 1
Return y

END FUNCTION

Aufruf:

For N = —2 To 2
Print N, LinFunc(N)
Next N

Ausgabe:

Beispiel 3:
Komplexes Beispiel: Diese Funktion manipuliert eine String.
Function StringFunc(A$ as String, b as Real) AS String
IF b = 0 THEN Return "" ' Leeren String
IF b > 0 THEN
Return Left$(AS, b) ' die linken Buchstaben
ELSE
b=-0> ’ Aus Minus mach Plus
Return Right$(AS$, b) ' die rechten Buchstaben
END IF
END FUNCTION

Aufruf:
Beachten Sie, dass der Compiler den Parameter A$ von der im folgenden Beispiel
vereinbarten Variablen A$ unterscheidet.

DIM AS$, BS
AS StringFunc("Hallo Welt", 3)
BS StringFunc("Hallo Welt", -3)
Print AS$+BS

Ausgabe:

Unterprogramme - 138

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Funktionen kdénnen nur einen einzigen Wert zurickgeben. Wenn Sie mehr als
einen Wert zurickgeben wollen sollten Anfédnger auf globale Variablen
zurlickgreifen. Fortgeschrittene Programmierer sollten eine Struktur definieren, die
alle gewiinschten Werte enthalt und diese zurlickgeben. Beispiel:

STRUCT Worker

name$ As String(20)
job$ AS String(20)
tel AS DWORD

END Struct

Function InitWorker() as Worker
DIM w as Worker

w.name$ = "Pink Panther"
w.job$ = "SpaBbolzen"
w.tel = 47320800

Return w

End Function

Actionhandler

ACTION-Handler sind Unterprogramme, die von einem Objekt direkt aufgerufen
werden. Ein R-BASIC Programm besteht eigentlich aus einer Sammlung von
Actionhandlern, die zu gegebener Zeit aktiviert werden. Sie kdnnen selbst wieder
andere Unterprogramme (Sub, Function) aufrufen.

Innerhalb eines Actionhandlers kénnen wie bei jedem anderen Unterprogramm
lokale Variablen, Konstanten und Labels definiert werden, die nur innerhalb des
Handlers gultig (dem Compiler bekannt) sind. Actionhandler missen mit
END ACTION (Ende der Aktion, Leerzeichen nicht vergessen) abgeschlossen
werden.

Ein vorzeitiges Verlassen des Handlers mit RETURN ist mdglich. R-BASIC geht
dann wieder in den Wartezustand tber.

Der Typ des Handlers beschreibt, von welchen Objekten der Handler aufgerufen
werden kann.

Alle Actionhandler haben den Parameter "sender" (enthalt das Objekt, dass den
Handler aktiviert hat) sowie weitere, vom Typ des Handlers abhangige Parameter.
Bei der Vereinbarung eines Handlers werden die Parameter NICHT explizit
angegeben. Tipp: Verwenden Sie den Menlpunkt "Extras"-"Code Bausteine"-
"Action-Handler". Damit erhalten Sie neben dem Handler-Rumpf einen
Kommentarblock mit allen Parametern des Handlers.

Unterprogramme - 139

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Vereinbarung: <HANDLERTYP> <Name>
<Lokale Vereinbarungen>

<ProgrammCode>
END ACTION

<Handlertyp> Beschreibt, in welcher Situation und von welcher Objektklasse
der Handler aufgerufen wird. Die Handlertypen sind bei den Objekten
beschrieben, die sie aufrufen.

<Name> Bezeichner, der den Handler identifiziert

Beispiel

ButtonAction DemoAction
MsgBox "Button gedriickt"
END ACTION

Weitere Informationen zu Actionhandlern finden Sie im Objekt-Handbuch, Kapitel
1.5 (Vereinbarung von Action-Handlern) sowie bei der Beschreibung der einzelnen
Objekte.

Vorab-Vereinbarung mit DECL

Sie kénnen Unterprogramme (SUB, FUNCTION) erst dann verwenden, wenn
diese zuvor dem R-BASIC-Compiler mit Namen und Parametern bekannt sind.
Damit Sie die Unterprogramme nicht in der Reihenfolge ihrer Verwendung im
Quelltext anordnen muissen gibt es die DECL-Anweisung.
Die DECL-Anweisung (Declare = mache bekannt) informiert den Compiler tber
Namen und Parameterliste von Unterprogrammen, die erst weiter hinten im
Quelltext vereinbart werden. Damit kann man
- die Ubersichtlichkeit von Programmen erhéhen
+ ermdglichen, dass sich Unterprogramme gegenseitig aufrufen kénnen (A ruft B
und B ruft A), was sonst nicht mdglich wéare
+ Libraries schreiben: Die DECL-Anweisungen gehdéren dann in das EXPORT-
Fenster.

Syntax: DECL SUB <Name> (<ParameterListe>)
DECL FUNCTION <Name> (<ParameterListe>) AS <Type>
DECL <HandlerType> <Name>

Abarbeitung von Unterprogrammen

Die folgenden technischen Details beschreiben, wie R-BASIC intern den Aufruf
von Subs und Functions organisiert. Die Kenntnis dieser Details ist fur die
Verwendung von Unterprogrammen nicht unbedingt erforderlich.

Unterprogramme - 140

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

+ St6Bt R-BASIC auf eine Unterprogrammaufruf, merkt er sich die Adresse des
darauffolgenden Befehls (Rucksprungadresse) und verzweigt zum
Unterprogramm.

+ Die Rucksprungadressen werden auf einem sogenannten Stapelspeicher
(Stack) abgelegt, R-BASIC kann sich also sehr viele Adressen merken.

+ Die Anweisungen RETURN bzw. END SUB beenden die Abarbeitung des
Unterprogramms.

+ Die zuletzt auf dem Stack abgelegte Returnadresse wird von Stack geholt und
das Programm wird an dieser Stelle fortgesetzt wird. Dadurch kann
Unterprogramme verschachteln, d.h. innerhalb von Unterprogrammen wieder
andere Unterprogramme aufrufen. Die Verwendung eines Stacks stellt sicher,
dass R-BASIC dabei immer an die korrekte Stelle zurlickspringt.

Anmerkungen

+ Die Anweisung End Function sollte niemals erreicht werden, weil Functions
immer mit RETURN beendet werden mussen. Wird End Function erreicht
handelt es sich um einen Programmierfehler und es kommt zu einem
Laufzeitfehler.

* Beim Aufruf eines Actionhandlers durch ein Objekt wird ebenfalls eine
(spezielle) Ricksprungadresse auf dem Stack abgelegt. Die Anweisung End
Action beendet die Ausfuhrung eines Actionhandlers. R-BASIC erkennt die
spezielle Ricksprungadresse, holt sie vom Stack und kehrt in den Ruhe-
zustand zurtck.

Abwartskompatibilitat

GOSUB

R-BASIC unterstltzt auch die in vielen__BASIC-DiaIekten verwendete Kombination
GOSUB-RETURN Das kann die Ubertragung fremder BASIC-Programme
vereinfachen.

Die Anweisung GOSUB (Gehe zu Sub-Routine) setzt den Programmablauf an der
angegebenen Stelle fort und kehrt nach Beendigung des Unterprogramms
(Anweisung RETURN) wieder zurlck.

Diese einfache Form der Unterprogrammtechnik hat nicht die Vorteile einer SUB
oder FUNCTION (Parameteribergabe, lokale Variablen und Labels) und sollte
daher in eigenen Programmen nicht verwendet werden.

Syntax: GOSUB <sprungZiel>
<sprungZiel> muss eine im Programm mit der Anweisung LABEL vereinbarte
Marke oder eine im Programm explizit vergebene Zeilennummer sein.

Ein mit GOSUB aufgerufenes Unterprogramm muss mit RETURN
beendet werden.

Unterprogramme - 141

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.7 Eingaben durch den Nutzer

2.7.1 Eingabe von Text und Zahlen

In vielen Féllen muss der Nutzer wahrend des laufenden Programms bestimmte
Werte oder andere Daten eingeben. In einem objektorientierten BASIC-Programm
werden dazu Textobjekte (Klassen Memo, InputLine, VisText oder LargeText)
oder Objekte der Klasse Number (Anzeige und Eingabe von Zahlen) verwendet.
Diese Objekte werden ausfuhrlich im Objekthandbuch beschrieben.

Manchmal ist es jedoch gewilnscht Daten direkt auf dem Grafikbildschirm
einzugeben oder es lohnt sich nicht, wegen einer kurzen Eingabe eine Dialogbox
mit einem Textobjekt zu programmieren oder ein VisText-Objekt zu verwenden.
Fir diesen Zweck gibt es im Standard-BASIC den Befehl INPUT (Eingabe direkt
auf dem Grafikbildschirm) und in R-BASIC zusatzlich den Befehl InputBox
(Eingabe in einer Dialogbox). Wenn Sie einzelne Zeichen von der Tastatur
einlesen wollen, stehen lhnen die Funktionen InKey$, GetKey, GetKeyLP und
GetKeyState zur Verfligung, die im nachsten Abschnitt beschrieben werden.

INPUT

Der Befehl INPUT (= Eingabe) fordert vom Nutzer eine oder mehrere Werte an.
Die Eingabe erfolgt dabei direkt auf dem Schirm. Zum Editieren stehen die
Cursortasten (Pfeiltasten) links und rechts, Backspace, Pos1 und Ende zur
Verflgung.

Syntax: INPUT [infoString;] var [, var] [, var]

infoString (optional) Dieser Text wird ausgegeben. Es kann ein beliebiger
String-Ausdruck (fester Text, Variable, Konstante, Stringfunktion)
sein. Er MUSS mit einem Semikolon abgeschlossen sein. Daran
erkennt R-BASIC, dass es sich um den Info-String, und nicht
etwa eine einzugebende Variable handelt. Fehlt der infoString,
verwendet R-BASIC ein Fragezeichen "?".

var bezeichnet die einzugebenden Variablen.
Zulassig sind alle numerischen Datentypen sowie alle String-
Typen. Dazu z&hlen auch Feld- und Struktur-Elemente.

Beispiele:
INPUT A

INPUT "Bitte geben Sie Ihr Alter ein:"; A

C$S = "Was nun?"
INPUT CS$; AS ' Eingabe der Variable AS
' Auf dem Schirm erscheint "Was nun?"

Nutzereingaben - 142

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

INPUT C$, AS ' Eingabe der Variablen C$ UND AS
'’ weil hinter c$ ein Koma steht.
' Auf dem Schirm erscheint ein Fragezeichen.

Hinweise:

INPUT ist ein Befehl um die Abwértskompatibilitdt zu <eren BASIC Pro-
grammen zu gewahrleisten. Sie sollen die Verwendung von Input in eigenen
Programmen mdglichst vermeiden.

Es ist zu empfehlen, immer nur eine Variable anzufordern.

Dezimaltrennzeichen ist immer der Punkt ’.’

Werden mehrere Variablen angefordert, ist als Trennzeichen das Komma ’/’
erforderlich. Eine Eingabe von Texten, die ein Komma enthalten, ist dann nicht
moglich.

Wird die Eingabezeile leer gelassen, so behalten die einzugebenden Variablen
den Wert, den sie vorher hatten (Bestatigungsfunktion).

Sollte als aktuelle Hintergrundfarbe BG_TRANSPARENT eingestellt sein (d.h.
der Hintergrund wird bei Textausgabe nicht geléscht) so wird wéahrend der
INPUT-Anweisung ein schwarzer Hintergrund verwendet.

Ublicher Weise ist der Screen ein BitmapContent-Objekt, wenn INPUT
verwendet wird. Der Screen ist das Objekt, an das Grafik- und Textausgaben
gehen (siehe Objekthandbuch, Kapitel 2.3). Input arbeitet aber auch mit
anderen Objektklassen als Screen.

InputBox

Der Befehl InputBox (Eingabe in eine DialogBox) fordert vom Nutzer eine oder
mehrere Werte an. Die Eingabe erfolgt dabei in einer Dialog-Box. Es stehen alle
GEOS-typischen Editierfunktionen, einschlieBlich Drag & Drop (Verschieben mit
der rechten Maustaste) zur Verfliigung.

Syntax: InputBox infoString; var [, var] [, var]
infoString: Dieser Text wird ausgegeben. Es kann ein beliebiger String-
Ausdruck (fester Text, Variable, Konstante, Stringfunktion) sein.
Der Text wird in der Dialogbox angezeigt.
var bezeichnet die einzugebenden Variablen.
Zulassig sind alle numerischen Datentypen sowie alle String-
Typen. Dazu z&hlen auch Feld- und Struktur-Elemente.

Beispiel:

InputBox "Bitte geben Sie Ihr Alter ein:"; A

| namenlos 35

Bitte geben Sie Ihr RAlter ein:

|
oK

Hinweise: siehe INPUT

Nutzereingaben - 143

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.7.2 Direkte Abfrage der Tastatur

In vielen Fallen werden Sie zur Eingabe von Text oder Zahlen die entsprechenden
R-BASIC Objekte (Klassen Memo, InputLine , VisText, LargeText oder Number)
verwenden. Wenn Sie jedoch auf einzelne Zeichen, die Uber die Tastatur
eingegeben werde, reagieren wollen, sollten Sie einen Tastaturhandler
(OnKeyPressed Handler) schreiben. Tastaturhandler sind im Handbuch "Spezielle
Themen", Kapitel 14 (Arbeit mit der Tastatur) beschrieben.

Far einfache Félle und zur Wahrung der Abwartskompatibilitdt stehen Ihnen
zusétzlich die Funktionen InKey$, GetKey, GetKeyLP und GetKeyState zur
Verfigung, die im Folgenden beschrieben werden.

InKey$

Die Funktion InKey$ (Input Keyboard = Tastatureingabe) liest ein einzelnes ASCII-
Zeichen von der Tastatur ein. Bestimmte Steuerzeichen werden ebenfalls erkannt.
InKey$ verwendet einen 15 Zeichen groBen Puffer, damit moglichst keine Tasten-
driicke verloren gehen. InKey$ liefert einen Leerstring, wenn der Puffer leer ist.

Syntax: <stringVar> = InKey$

Die in der Tabelle aufgefiuihrten symbolischen Konstanten stehen zur Verfligung,
wenn die KeyCodes-Library eingebunden wird (siehe 2. Beispiel).

Erkannte Steuertasten ASCII-Code Symbolischer Konstante
Backspace 08 (&h08) ASC_BS
Tabulator 09 (&h09) ASC_TAB

Enter 13 (&h0OD) ASC_ENTER

Bild hoch 17 (&h11) ASC_PAGE_UP
Bild runter 18 (&h12) ASC_PAGE_DOWN
Ende 24 (&h14) ASC_POS_END
Pos 1 25 (&h15) ASC_POS_1

Einfg (Insert) 26 (&h16) ASC_INS

Entf (Delete) 23 (&h17) ASC_DEL

ESC 27 (&h1B) ASC_ESC
Pfeiltasten (Cursortasten)

nach unten 10 (&hOA) ASC_DOWN

nach oben 11 (&h0B) ASC_UP

nach links 14 (&hOE) ASC_LEFT

nach rechts 15 (&hOF) ASC_RIGHT
Beispiele:
Warten bis Enter gedrlckt wurde

WHILE InKey$ <> Chr$(13) : WEND

Nutzereingaben - 144

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Einbinden des KeyCodes Library und warten bis Enter gedriickt wurde
INCLUDE "KeyCodes"

WHILE InKey$ <> Chr$(ASC_ENTER) : WEND

R-BASIC flllt den Tastaturpuffer bei jedem Tastendruck auf, auch wenn der
Nutzer z.B. etwas in ein Textobjekt eingibt. Falls Sie nicht sicher sind, dass der
Tastaturpuffer keine unerwinschten Zeichen enthalt, sollten Sie den Puffer
manuell leeren, beispielsweise mit der folgenden Anweisung.

REPEAT UNTIL InKey$ = "" ' Tastaturpuffer leeren

In vielen Fallen ist das allerdings nicht nétig, da der Puffer unter anderem beim
Start eines jedes Handlers automatisch geleert wird.

GetKeyState

Um die aktuell gedrickten Modifier-Tasten (Shift, Ctrl, Alt) und den LockStatus
(ShiftLock, NumLock, ScrollLock (=Rollen)) abzufragen, bietet R-BASIC die
Funktion GetKeyState. Kenntnisse von Bit- und logischen Operationen (siehe
Kapitel 2.3.4 und 2.3.5) sind flr die Anwendung dieser Funktion erforderlich.

Syntax: <numVar> = GetKeyState
<numVar>: numerische Variable
Das héherwertige Byte enthélt den LockStatus.
Das niederwertige Byte enthalt den Shift-Status. Der Shift-Status
wird auch durch die LED’s an der Tastatur wiedergegeben.
Die Bits sind in der Tabelle unten erklart.

Tabellen: Bedeutung der Bits, die von GetKeyState geliefert werden

Konstante (Shift-State) Wert (hex.) Bedeutung
- 1 &hO01 Feuertaste 1 am Joystick
- 2 &h02 Feuertaste 2 am Joystick

KS_RSHIFT 4 &h04 Rechte Shift-Taste
KS_LSHIFT 8 &h08 Linke Shift-Taste
KS_RCTRL 16 &h10 Rechte Strg-Taste
KS_LCTRL 32 &h20 Linke Strg-Taste
KS_RALT 64 &h40 Rechte Alt-Taste
KS_LALT 128 &h80 Linke Alt-Taste

Konstante (Toggle-State) | Wert (hex.) Bedeutung

KS_SCROLL_LOCK 256 &h100 | Scroll-Lock-Taste (Rollen)
eingerastet

KS_NUM_LOCK 512 &h200 Num-Lock-Taste eingerastet

KS_CAPS_LOCK 1024 &h400 | Shift-Lock Taste eingerastet

Nutzereingaben - 145

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

Beispiele:

"Abfrage ob eine Shift-Taste gedriickt ist
IF GetKeyState AND (KS RSHIFT OR KS LSHIFT) THEN

' Abfrage ob die NUM-Lock Taste gedriickt ist
IF GetKeyState AND KS NUM LOCK THEN

shiftState = GetKeyState AND &hFF

' Ausblenden des Lock-Staus , nur Shift-Status beachten

Hinweis: Diese Informationen werden auch direkt an den OnKeyPressed Handler
von Objekten Ubergeben (als Parameter keyState). Im Handbuch "Spezielle
Themen", Kapitel 14, finden Sie ausfihrliche Informationen dazu.

GetKey

Die Funktion GetKey (= Hole Taste) fragt die Tastatur ab, ob gerade eine Taste
gedruckt ist und liefert den GEOS-Tasten-Code. Dies kann ein ASCII-Code sein.
Bei Tasten, denen kein ASCII-Zeichen zugeordnet ist (Steuertasten), ist es ein

erweiterter Code (> 255).

GetKey liefert immer die aktuell gedrickte Taste, auch wenn diese bereits
mehrfach angefragt wurde. Im Gegensatz dazu liefert InKey$ jede Taste genau
einmal, sogar dann, wenn sie zum Zeitpunkt der Abfrage bereits wieder

losgelassen wurde.

Syntax: <numVar> = GetKey

Beispiele:

WHILE GetKey = 0 : WEND

'’ Warten bis irgendeine Taste gedriickt wurde

' Verzweigen, je nach Teste

' Wir verwenden mit WHILE TRUE ... WEND eine "Endlosschleife"
' die beim Driicken der Taste '3’ verlassen wird
CLS
WHILE TRUE
On GetKey SWITCH
case ASC("0"): Print "Null": End case
case ASC("1"): Print "Eins": End case
case ASC("2"): Print "Zwei": End case
case ASC("3"): Print "ENDE.": BREAK ' Schleife verlassen
End Switch
WEND

Fir die meisten der Steuertasten stehen

symbolischen Konstanten zur

Verfugung, wenn die KeyCodes-Library eingebunden wird.

Nutzereingaben - 146

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel:

'’ Warten bis die Enter-Taste gedriickt
' und wieder losgelassen wurde
INCLUDE "KeyCodes"

CLS

Print "wait..."

While GetKey <> Key Enter : Wend
While GetKey = Key Enter : Wend

Print "Fertig."

GetKeyLP

GetKeyLP (Get Key, Last Pressed) tut weitgehend das gleiche, wie GetKey. Der
einzige Unterschied ist, dass GetKeyLP, wenn es erstmalig nach dem Loslassen
einer Taste gerufen wird, deren Tastencode noch liefert.

Das bedeutet konkret:

+ Wéhrend eine Taste gedrickt ist, sind GetKey und GetKeyLP identisch

+ Wird GetKey gerufen, nachdem die Taste losgelassen wurde, liefert es immer
NULL.

« Wird GetKeyLP erstmalig gerufen, nachdem die Taste losgelassen wurde,
liefert es den Tastencode der zuletzt gedriickten Taste.

+ Wird GetKeyLP bei losgelassener Taste weitere Male gerufen, liefert es
NULL.

Verwenden Sie GetKey, wenn Sie exakt unterscheiden wollen, ob gerade eine
Taste gedruckt ist, oder nicht.

Verwenden Sie GetKeyLP oder InKey$, wenn Sie sicherstellen wollen, dass auch
kurze Tastendriicke registriert werden sollen, selbst wenn lhr Programm
"beschéftigt" ist. Das kénnen z.B. eine umfangreiche Berechnung oder der Delay-
Befehl sein.

Syntax: <numVar> = GetKeyLP

Beispiel
DIM X
X = GetKeyLP ' Letzten Tastendruck l1dschen, falls notig
Print "Drilicken Sie eine beliebige Taste zu Beenden!"
Delay 60 ' Eine Sekunde Verzdgerungszeit
While GetKeyLP = 0
Print "*"
Delay ' Warten bis eine Sekunde vorbei ist
Wend
Print "Fertig"

Nutzereingaben - 147

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.7.3 Messageboxen
Um auf einfache Weise Meldungen auszugeben, verfugt R-BASIC uber die

Funktionen MsgBox, WarningBox, ErrorBox und QuestionBox.

MsgBox

MsgBox gibt eine einfache Meldung in einer Dialogbox aus.

Syntax: MsgBox "InfoText"

Beispiele:
MsgBox "Der Prozess ist abgeschlossen’
MsgBox A$ + " ist herausgekommen!"

WarningBox

WarningBox gibt eine einfache Warnung in einer Dialogbox aus.

Syntax: WarningBox "InfoText"

Beispiele:
WarningBox "Es konnten nicht alle Daten gesichert werden."
WarningBox A$ + " ist gefdhrlich"

ErrorBox

ErrorBox gibt eine einfache Fehlermeldung in einer Dialogbox aus.

Syntax: ErrorBox "InfoText"

Beispiele:

ErrorBox "Es ist ein Fehler aufgetreten"
ErrorBox AS$ + " ist fehlerhaft"

Nutzereingaben - 148

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

QuestionBox

QuestionBox gibt eine Frage in einer Dialogbox aus, die der User mit JA oder
NEIN beantworten kann.

Syntax: <numVar> = QuestionBox ("InfoText")
Die Klammern sind erforderlich.
Der Ruckgabewert ist Null (R-BASIC-Konstante NO), wenn der User
auf "Nein" klickt oder 1 (R-BASIC-Konstante YES), wenn der User auf
"Ja" klickt

Beispiele:
DIM x
X = QuestionBox("Sind Sie sicher?")
IF X = NO THEN Print "Dann eben nicht"

IF QuestionBox("Wollen Sie das Programm beenden?") = YES \
THEN EXIT

Nutzereingaben - 149

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8 Grafik

2.8.1 Das Koordinatensystem

Alle Grafikausgaben erfolgen in R-BASIC auf das aktuell eingestellte Screen-
Objekt. R-BASIC verwendet das originale PC/GEOS Koordinatensystem zur
Grafikausgabe. Dabei hat der Punkt links oben die Koordinaten (0; 0).

\(0;0) '

e

(MaxX; MaxY)

vy)

MaxX, MaxY

MaxX und MaxY sind globale Variablen, welche die gréBte verfuigbare x- bzw. y-
Koordinate des aktuellen Screen-Objekts enthalten. Wenn Sie zum Beispiel ein
BitmapContent-Objekt der GréBe 640x400 Pixel als aktuellen Screen haben, so
gilt MaxX = 639 und MaxY = 399.

Beispiel:
Rectangle 0, 0, MaxX, MaxY

Die Werte fiur MaxX und MaxY vom aktuell eingestellten Screen-Objekt ab.
Eventuelle Besonderheiten sind bei den entsprechenden Objekten beschrieben.

Sie haben die Méglichkeit das Koordinatensystem lhren Winschen anzupassen.
Dazu gehért zum Beispiel, dass Sie die Lage des Koordinatenursprungs und die
Skalierung der Achsen &ndern kdnnen (Befehle ScreenSetTranslation und
ScreenSetScale). Eine komplette Liste der Méglichkeiten finden Sie im
Objekthandbuch im Kapitel 2.3.4 (Anpassen des Koordinatensystems) und flr
Fortgeschrittene im Kapitel 2.3.5 (Komplexe Manipulation des Koordinaten-
systems).

Weitere Hinweise:

+ Einen kompletten Uberblick tber die in R-BASIC verfligbaren Méglichkeiten
zur Grafikausgabe finden Sie im Objekt Handbuch, Kapitel 2.2.2 (Konzepte zur
Grafikausgabe).

+ Im Kapitel 2.2.1 (Objekte zur Grafikausgabe) finden Sie eine Liste aller
Objekte, die als Screen arbeiten kdénnen, sowie die dazugehdrigen
Besonderheiten.

Grafik - 150

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8.2 Farben

Computer beschreiben Farben durch eine Zahl. Haufig wird dabei der Rot-, der
Grun- und der Blauanteil einer Farbe durch jeweils eine Zahl im Bereich von 0
(Anteil nicht vorhanden) bis 255 (Anteil mit maximaler Intensitdt vorhanden)
beschrieben. Fir diese sogenannten RGB-Farben werden 3 Byte bendtigt und es
ergeben sich 256256256 = 16.777.216 mdglich Farben.

Ein anderer haufiger Fall ist, dass nur 1 Byte verwenden will, um eine Farbe zu
beschreiben. Dann wird eine sogenannte Palette verwendet. Die Palette ist eine
Liste von bis zu 256 Eintragen zu je drei Byte - jeweils eins fur Rot, Griin und Blau.
Der "Farbwert" entspricht dann der Nummer (dem sogenannten Index) des

Eintrags in der Liste. Deshalb werden diese Farben auch als Index-Farben
bezeichnet. Die Zahlung beginnt dabei immer mit Null. Wenn keine eigene Palette
vereinbart verwendet GEOS eine Standard-Palette.

R-BASIC unterstltzt beide Moglichkeiten, die Verwendung von Indexfarben und
die Verwendung von RGB-Farben.

Die folgende Tabelle gibt einen Uberblick (iber die Befehle zur Farbverwaltung

Befehl Aufgabe

Color v, h Stellt die Vordergrund und die Hintergrundfarbe ein
Ink v Stellt nur die Vordergrundfarbe ein

Paper h Stellt nur die Hintergrundfarbe ein

RGB(r,g,b) Ermittelt den RGB-Farbewert aus den Farbanteilen
RedOf (col) Ermittelt den Rotanteil einer RGB-Farbe

GreenOf (col) Ermittelt den Grunanteil einer RGB-Farbe

BlueOf (col) Ermittelt den Blauanteil einer RGB-Farbe

GrayOf (col) Ermittelt den zu einer Farbe gehérenden Grauwert

(1) Eine weitergehende Kontrolle Uber die verwendeten Farben, Fullmuster,
Linienstile usw. haben Sie, wenn Sie die Systemvariable graphic, die im Kapitel
2.8.4 beschrieben ist, direkt verandern

Beschreibung von Farben in R-BASIC

Jeder Farbwert wird durch einen 32 Bit (dword) Wert beschrieben. Das kann
entweder ein Farb-Index aus der GEOS-System-Palette sein (Wertebereich 0 bis
255) oder es ist ein RGB-Wert. Der numerische Wert liegt dann oberhalb von
16.777.215 (hexadezimal gréBer als &hFFFFFF). Diese Werte sind so gewahlt,
dass die Farbbefehle selbstandig entscheiden kdénnen, ob es sich um eine
Indexfarbe, eine RGB-Farbe oder einen Spezialfall handelt. Verwenden Sie die
unten beschriebene Funktion RGB(), um einen RGB-Farbwert zu konstruieren.

Interne Details:
Zur Unterscheidung zwischen RGB- oder Index-Wert wird das héherwertige Byte
des dword benutzt. Erlaubte Werte sind O oder 1, andere Werte kdnnen zu

Grafik - 151

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

unerwarteten Ergebnissen fihren. Um Texte oder Blockgrafikzeichen mit trans-
parentem Hintergrund auszugeben wird fur die Hintergrundfarbe der Spezialwert
BG_TRANSPARENT (=4096) eingestellt.

Aufbau eines Farbwertes mit Index: | 0 | 0 | 0 |Index|
Aufbau eines RGB-Farbwertes: L1 b g r|
L o[ol 1] o]

Spezialwert fur Transparenz:

Farbkonstanten

Fir die ersten 16 Werte der GEOS-Farbpalette existieren symbolische Namen. In
vielen Fallen kann dadurch die Lesbarkeit des Programms verbessert werden. Es
handelt sich einfach um die englischen Bezeichnungen der Farben.

Konstante Wert Farbe

BLACK 0 Schwarz

BLUE 1 Blau

GREEN 2 Gran

CYAN 3 Turkis

RED 4 Rot

VIOLET 5 Lila

BROWN 6 Braun

LIGHT_GRAY 7 Hellgrau

DARK_GRAY 8 Dunkelgrau

LIGHT_BLUE 9 Hellblau

LIGHT_GREEN 10 Hellgriin

LIGHT_CYAN 11 Hellturkis

LIGHT_RED 12 Hellrot

LIGHT_VIOLET 13 Hell-Lila

YELLOW 14 Gelb

WHITE 15 WeiB

Sonderfall

BG_TRANSPARENT | 4096 Kein Farbwert im eigentlichen Sinne. Stellt
ein, dass Texte (oder Zeichen im
BlockGrafik-Modus) mit transparentem
Hintergrund dargestellt werden sollen.
Kann nur fir Hintergrundfarben verwendet
werden.

Info: Die hellen Farbwerte ergeben sich, indem man zum dunkleren Farbwert 8
addiert.

Grafik - 152

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

COLOR

COLOR (Farbe) stellt die Farben fur Vordergrund und Hintergrund ein. Die
Vordergrundfarbe wird fir Texte, Linien, Punkte und Flachen verwendet.

Syntax: COLOR v, h
v: neue Vordergrundfarbe
h: neue Hintergrundfarbe

Beispiele:
COLOR 7,0 " Hellgrau auf Schwarz
COLOR LIGHT GRAY,BLACK ' Hellgrau auf Schwarz
COLOR 192, 204

Hinweis: Um Texte oder Blockgrafik-Zeichen transparent auszugeben (d.h. der
Hintergrund wird nicht geldéscht) verwenden Sie als Hintergrundfarbe den Wert
BG_TRANSPARENT (=4096).

INK

INK (Tinte) stellt die Farben flr den Vordergrund ein.

Syntax: INK v
v: neue Vordergrundfarbe
Beispiel:
INK GREEN ' Griin, identisch mit INK 2
PAPER

PAPER (Papier) stellt die Farbe fir den Hintergrund ein.

Syntax: PAPER h
h: neue Hintergrundfarbe

Beispiel:
PAPER 4 ' rot

Hinweis: Um Texte oder Blockgrafik-Zeichen transparent auszugeben (d.h. der
Hintergrund wird nicht geldéscht) verwenden Sie als Hintergrundfarbe den Wert
BG_TRANSPARENT (=4096).

Grafik - 153

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

RGB

Die Funktion RGB() wandelt die Farbanteile rot, griin und blau in einen R-BASIC
Farbwert um.

Syntax: <numVar> = RGB(r, g, b)
r: Rotanteil, 0 .. 255
g: Grunanteil, 0 .. 255
b: Blauanteil, 0 .. 255

Beispiele:

PAPER RGB (50, 50, 255)
LINE 200, 300, 180, 70, RGB (50, 50, 255)

' Belegung eines Feldes der graphic-System-Variablen
graphic.textColor = RGB (200, 100, 100)

Anmerkung:

Die Funktion RGB() verwendet folgende Formel um den Farbwert zu berechnen:
farbe =r + 256 * g + 65536 * b + 16777216

bzw. gleichwertig hexadezimal
farbe =r + &h100 * g + &h10000 * b + &h1000000

RedOf, GreenOf, BlueOf

Diese Funktionen berechnen den Rot-, Griin- bzw. Blau-Anteil eines R-BASIC
Farbwertes. Der Farbwert kann ein RGB-Wert oder ein Index-Wert sein.

Syntax: r = RedOf(farbe)
g = GreenOf(farbe)
b = BlueOf(farbe)
farbe: Farbwert (RGB-Wert oder Index)
r, g, b: numerische Variablen, die den entsprechenden Wert
aufnehmen

Beispiele:
Die Systemvariable graphic ist im Kapitel 2.8.4 beschrieben.
r

g
b

RedOf (graphic.lineColor)
GreenOf (graphic.areaColor)
BlueOf(C_YELLOW)

Grafik - 154

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

GrayOf

Diese Funktion berechnet den Grauwert (d.h. die Helligkeit) zu einer Farbe. Das
unterschiedliche Helligkeitsempfinden des Auges fur den Rot-, Grin- und Blau-
Anteil wird bertcksichtigt. Der Farbwert kann ein RGB-Wert oder ein Index-Wert
sein.

Syntax: <snumVar> = GrayOf(farbe)
farbe: Farbwert (RGB-Wert oder Index)

Beispiele:
h = GrayOf(graphic.textColor)
h = GrayOf(PGet (X, y))
h = GrayOf(C_YELLOW)

Grafik - 155

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8.3 Linien, Punkte und Figuren

Die folgende Tabelle gibt eine Ubersicht (iber die in R-BASIC verfligbaren Grafik-
befehle zu Linien, Punkten und Figuren.

Befehl / Strukturtyp Aufgabe

CLS L&scht den Bildschirm

LINE x,vy, xe, ye [, f] Zeichnet eine gerade Linie

PSet x,y][,f] Zeichnet einen Punkt in der Vordergrundfarbe
PReset x,y Zeichnet einen Punkt in der Hintergrundfarbe
PGet (x,y) Liest die Farbe eines Punktes einer Bitmap aus
Circle x,y,r[,f] Zeichnet einen ungefilliten Kreis

Zeichnet eine Ellipse

Zeichnet eine geflllte Ellipse
Zeichnet ein Rechteck
Zeichnet ein gefllltes Rechteck

Ellipse x,y, xe, ye [, f]
FillEllipse x,y, xe, ye [, f]
Rectangle x,y, xe, ye [, f]
FillRect x,vy, xe, ye [, f]

PointList Strukturtyp fur Polyline, Polygon und Splines
PolyLine pl Zeichnet einen verbundenen Linienzug
Polygon pl Zeichnet einen geschlossenen Linienzug
FillPolygon pl Zeichnet ein gefulltes Polygon

Spline pl Zeichnet eine Kurve durch mehrere Punkte

Zeichnet eine geschlossene Kurve
Far Fortgeschrittene: zeichnet eine Kurve

ClosedSpline pl
BezierSpline pl

CLS

CLS (Clear Screen) l6scht den Bildschirm mit der aktuellen Hintergrundfarbe.

Syntax: CLS

LINE

Der Befehl LINE (Linie) zeichnet eine Line auf dem Schirm. StandardméaBig wird
die aktuelle Vordergrundfarbe verwendet. Wird der Parameter f angegeben, so
wird diese Farbe verwendet.

Syntax: LINE x0, y0, x1, y1 [, f]
x0, y0: Startpunkt der Linie
x1, y1: Endpunkt der Linie
f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
LINE 0, O,

100, 200, 15’ zeichnet eine weiBe Linie

Grafik - 156

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

PSet

Der Befehl PSet (Point Set = Punkt Setzen) setzt einen Punkt auf dem Schirm.
StandardmaBig wird die aktuelle Vordergrundfarbe verwendet. Wird der Parameter
f angegeben, so wird diese Farbe verwendet.

Syntax: PSet x,y [, f]
X, y: Koordinaten des Punktes
f: Punktfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
PSet 19, 200, 12 '’ setzt einen roten Punkt

PReset

Der Befehl PReset (Point Reset = Punkt Zurlcksetzen) 16scht einen Punkt auf
dem Schirm, d.h. der Punkt wird mit der Hintergrundfarbe belegt.

Syntax: PReset x,y
X, y: Koordinaten des Punktes

Beispiel:
PReset 19, 200

PGet

Die Funktion PGet (Point Get = Punkt holen) liefert den Farbcode des Bildpunktes
an den gegebenen Koordinaten. PGet ist ein Kompatibilititsbefehl, er setzt
voraus, dass der aktuelle Screen ein BitmapContent Objekt ist.

Syntax: <numVar> = PGet (x, V)
X, y: Koordinaten des Punktes

Beispiel:
DIM f
f = PGet (20, 100)

Grafik - 157

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

CIRCLE

Der Befehl CIRCLE (Kreis) zeichnet einen ungefillten Kreis auf dem Schirm. Fir

einen gefullten Kreis verwenden Sie den Befehl FillEllipse.

Syntax: CIRCLE x0, y0, r [, f]
x0, y0: Koordinaten des Mittelpunkts
r: Radius des Kreises
f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:

CIRCLE 100, 200, 50

ELLIPSE

Der Befehl ELLIPSE zeichnet eine ungeflllte Ellipse auf dem Schirm.

Syntax: ELLIPSE x0, y0, x1, y1 [, f]
Die Koordinaten beschreiben das einschlieBende Rechteck
X0, y0: eine Ecke (z.B. links unten oder links oben)
x1, y1: gegenuberliegende Ecke
f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:

ELLIPSE 0, 0, 200, 50, BLUE 'eine blaue, langliche Ellipse

RECTANGLE

Der Befenl RECTANGLE (Rechteck) zeichnet ein ungefilltes Rechteck auf dem

Schirm.

Syntax: RECTANGLE x0, y0, x1, y1 [, f]
x0, y0: eine Ecke (z.B. links unten)
x1, y1: gegenuberliegende Ecke
f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:

RECTANGLE 100, 100, 200, 200, WHITE ' ein weiBes Quadrat

Grafik - 158

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

FillEllipse

Der Befehl FillEllipse (Fulle Ellipse) zeichnet eine geflllte Ellipse auf dem Schirm.

Syntax: FillEllipse x0, y0, x1, y1 [, f]
Die Koordinaten beschreiben das einschlieBende Rechteck
x0, y0: eine Ecke (z.B. links unten)
x1, y1: gegenuberliegende Ecke
f: Flachenfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
ELLIPSE 0, 0, 200, 50, BLACK ' eine schwarze Ellipse

FillRect

Der Befehl FillRect (Fulle Rechteck) zeichnet ein gefllltes Rechteck auf dem
Schirm.

Syntax: FillRect x0, y0, x1, y1 [, f]
X0, y0: eine Ecke (z.B. links unten)
x1, y1: gegenuberliegende Ecke
f: Flachenfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
FillRect 100, 100, 200, 200, YELLOW '’ ein gelbes Quadrat

PointList

Die Struktur PointList enthalt eine Liste von Punkten um Polygone, verbundene
Linien und Splines zu zeichnen.

STRUCT PointlList

numPoints as INTEGER
x0ffset, yOffset as INTEGER
x(31) as INTEGER
y(31) as INTEGER

End Struct

Grafik - 159

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

Feld Bedeutung, gtiltige Werte

numPoints Anzahl der gultigen Koordinatenpaare in der Liste

Erlaubte Werte: 2 ... 32

xOffset, yOffset | Zusétzliches Offset fur die Zeichenposition der Figur. Diese

Werte werden zu jedem Koordinatenpaar addiert, bevor die
Figur gezeichnet wird.

x(31), y(31) Koordinatenpaare von bis zu 32 Punkten, aus denen die

Figur gebildet wird. (x(0)/y(0) bis x(31)/y(31))

PolyLine

PolyLine zeichnet einen offenen Linienzug aus mehreren
Geraden in der aktuellen Vordergrundfarbe.

Syntax: PolyLine <pl>

<pl>: Variable oder Ausdruck vom Typ PointList

Erlduterungen zur Struktur <pl>:

Das folgende Beispiel zeichnet eine PolyLine mit 3 Punkten.

Die Elemente x(0), y(0) bis x(31), y(31) enthalten die Koordinatenpaare der
Ecken des Linienzugs.

numPoints enthalt die Anzahl der gultigen Koordinatenpaare. Es werden also
numPoints - 1 Linien gezeichnet.

Die Elemente xOffset und yOffset ermdglichen es, die ganze Figur an eine
andere Stelle zu zeichnen, ohne alle Koordinaten einzeln andern zu mussen.
Dazu werden die Werte von xOffset und yOffset vor jeder Zeichenoperation
zu den einzelnen Koordinaten addiert.

"Polyline p" entspricht also der folgenden BASIC-Sequenz

LINE p.x(0)+xOffset , p.y(0)+yOffset , p.x(l)+xOffset ,
p-y(1l)+yOffset

LINE p.x(l)+xOffset , p.y(l)+yOffset , p.x(2)+xO0ffset ,
p-y(2)+tyOffset

. usw

p
p
p

Dim p as PointList

.x(0) =10 : p.y(0) = 10
.x(1) = 100 : p.y(l) = 20
.x(0) = 30 : p.y(0) = 50
numPoints = 3

p.
PolyLine p

Dieser sehr einfache Fall entspricht den folgenden BASIC Befehlen:

LINE 10, 10, 100, 20
LINE 100, 20, 30, 50

Ein weiteres Beispiel finden Sie in der Datei: R-BASIC\Beispiele\Grafik\Polygon
Demo

Grafik - 160

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Polygon

Polygon zeichnet einen geschlossenen Linienzug aus /\
mehreren Geraden in der aktuellen Vordergrundfarbe. Dazu

wird der letzte Punkt der PointList mit dem ersten Punkt der

PointList verbunden.

Syntax: Polygon <pl>
<pl>: Variable oder Ausdruck vom Typ PointList

Erlduterungen zur Struktur <pl>: Siehe PolyLine
Far ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

FillPolygon

FillPolygon zeichnet einen geflllten, geschlossenen
Linienzug aus mehreren Geraden in der aktuellen Vorder-
grundfarbe.

Syntax: FillPolygon <pl>
<pl>: Variable oder Ausdruck vom Typ PointList

Erlduterungen zur Struktur <pl>: Siehe PolyLine
Far ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

Spline
Spline zeichnet einen glatten Linienzug durch die
gegebenen Punkte in der aktuellen Vordergrundfarbe.

Syntax: Spline <pl>
<pl>: Variable oder Ausdruck vom Typ PointList

Erlduterungen zur Struktur <pl>: Siehe PolyLine
Fur ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

ClosedSpline

ClosedSpline zeichnet einen geschlossenen glatten
Linienzug durch die gegebenen Punkte in der aktuellen
Vordergrundfarbe.

Syntax: ClosedSpline <pl>
<pl>: Variable oder Ausdruck vom Typ PointList

Erlduterungen zur Struktur <pl>: Siehe PolyLine
Fur ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

Grafik - 161

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

BezierSpline

Achtung! BezierSpline ist eine Anweisung flr fortgeschrittene Programmierer!

Syntax: BezierSpline <pl>
<pl>: Variable oder Ausdruck vom Typ PointList

BezierSpline zeichnet einen Linienzug durch die gegebenen Punkte in der
aktuellen Vordergrundfarbe, wobei die einzelnen Segmente durch ihren Anfangs-
und Endpunkt sowie durch 2 Kontrollpunkte beschrieben werden. In den folgenden
Bildern sind die Kurvenpunkte durch Vierecke, die Kontrollpunkte durch graue
Kreise markiert. Beide dienen der lllustration, sie werden nicht mit gezeichnet.

Linkes Bild: Ein einzelnes Kurvensegment, bestehend aus 2

Kurvenpunkten und 2 Kontrollpunkten. Far diese Figur
mussen 4 Punkte an BezierSpline Gbergeben werden.

Rechtes Bild: Zwei Kurvensegmente und die

dazugehdrigen Kontrollpunkte. Fir diese Figur m/
mussen 7 Punkte an BezierSpline Gbergeben d

werden.

Die an BezierSpline Ubergebende PointList Struktur muss die Koordinaten der
Punkte in folgender Reihenfolge enthalten:

Kurve, control, control, Kurve, control, control, Kurve, control, control, Kurve.
Das Feld numPoints enthalt die Gesamtzahl der Ubergebenen Punkte. Diese Zahl
muss der Beziehung 3*n+1 entsprechen, wobei n die Anzahl der Kurvensegmente
ist. Die Anzahl der Punkte auf der Kurve ist damit n+1.

Hinweise:

* BezierSpline macht genau das Gleiche wie das Spline-Werkzeug - in
GeoDraw.

+ Die Anweisungen Spline und ClosedSpline nutzen intern die gleiche Funktion
wie BezierSpline. Sie berechnen sich ihre Kontrollpunkte jedoch selbst.

« Sie kénnen mit BezierSpline maximal 10 Kurvensegmente auf einmal
zeichnen. Das entspricht 31 zu Ubergebenden Punkten.

« Um eine Ecke an einem Punkt zu erzeugen kénnen Sie die Koordinaten der
beiden Kontrollpunkte links und rechts von diesem Punkt auf die gleichen
Koordinaten wie die des Eckpunktes setzen.

+ Ein einzelnes Kurvensegment nennt man Bézierkurve. GEOS benutzt kubische
Bézierkurven. Weitere Informationen zu Bézierkurven finden Sie im Internet.

+ Weitere Erlauterungen zur Struktur <pl>: Siehe PolyLine

Grafik - 162

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8.4 Die Systemvariable "graphic": Mixmodes und mehr

Alle Parameter des Grafik-Systems vom R-BASIC lassen sich uber die Felder der
Systemvariablen graphic einstellen. Die Verwendung dieser Variablen gestattet
einen wesentlich detaillierten Zugriff auf die Grafik-Eigenschaften, als die Befehle
COLOR, PAPER und INK. GEOS verwaltet getrennte Farben fur Text, Linien und
Flachen. R-BASIC speichert zusatzlich noch eine Farbe fur den Hintergrund (z.B.
von Textausgaben, sieche PAPER-Befehl).

graphic ist vom Typ GraphicDrawStruct, der folgendermaBen definiert ist:

STRUCT GraphicDrawStruct

mixMode AS Word

backColor AS DWord

lineColor AS DWord

lineDrawMask AS Word

lineWidth, lineStyle AS Word

lineEnd, lineJoin AS Word

areaColor AS DWord

areaDrawMask AS Word

textColor AS DWord

textDrawMask AS Word

drawFlags AS Word

reserve(6) AS Word ' reserviert filir zukiinftige

' Erweiterungen

END STRCUT

Die folgende Tabelle enthélt die Bedeutung der einzelnen Felder, sortiert nach der
Wichtigkeit / Haufigkeit ihrer Verwendung.

H&aufig verwendete Felder

Feld Bedeutung

areaColor Farbe flr Flachen (areaColor), Linien (lineColor) und Texte
lineColor (textColor). Die Befehle COLOR und INK setzen alle drei
textColor Farben auf den gleichen Wert.

backColor Hintergrund-Farbe fur Texte. Wird von den Befehlen PAPER

und COLOR belegt. Um Texte oder Blockgrafikzeichen mit
transparentem Hintergrund auszugeben wird der Spezialwert
BG_TRANSPARENT (=4096) verwendet.

mixMode Schreibmodus flr Flachen und Linien. Wirkt nicht auf Texte.
Beschreibt, auf welche Weise neue Grafikausgaben mit
bereits vorhandenen verknlpft werden. Standard MM_COPY,
haufig verwendet: MM_XOR und MM_INVERT.

lineWidth Liniendicke

lineStyle Linienstil, z.B. gestrichelt. In der Tabelle unten finden Sie die
zulassigen Werte und ihre Bedeutung.

Grafik - 163

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

Weniger haufig verwendete Felder

Feld

Bedeutung

areaDrawMask

Fullmuster fur Flachen. Die Flache wird mit einen Muster
hinterlegt, das von GEOS erzeugt wird. R-BASIC definiert
einige Konstanten zur Arbeit mit Fullmustern. In der Tabelle
unten finden Sie die zulassigen Wertebereiche und ihre
Bedeutung sowie ein paar Beispiele.

lineDrawMask

Fullmuster fir Linien. Details siehe areaDrawMask.

textDrawMask

Fullmuster fur Text. Details siehe areaDrawMask. Selten
verwendet, da Texte i.a. sehr klein sind.

lineEnd

Linienabschluss. Erlaubte Werte:
0: Normales Ende, 1: Halbrund, 2: Quadrat
Die Werte 1 und 2 verlangern die Linie etwas.

linedoin

Verbindung zwischen Linien bei einer Figur (Rechteck).
erlaubte Werte: 0: Normal (eckig), 1: abgerundet, 2:
abgeflacht.

drawFlags

Diverse Flags. Aktuell verfigbar:
GDF_SCALE_PSET: Bewirkt, dass die von PSet und PReset

gesetzten Punkte als Flachen gezeichnet werden. Damit
werden sie Punkte vergrdBert, wenn der Screen skaliert ist.

Hinweis: Wahrend der Ausfihrung einer PRINT-Anweisung werden einige Felder
der graphic-Variablen intern zeitweise gedndert, dann aber wieder zuriickgesetzt.
Das kann bedeutsam sein, wenn die Printliste Funktionsaufrufe enthalt.

Tabelle der Linienstile: Erlaubte Werte flr das Feld lineStyle

Wert Konstante Bedeutung

0 LS_SOLID durchgehend

1 LS_DASHED gestrichelt _— e = mm = =
2 LS_DOTTED gepunktet
3 LS_DASHDOT Strich-Punkt S —
4 LS_DASDDOT Strich-Doppelpunkt wm s = w= s & ==

Tabelle der Fullmuster: Erlaubte Werte fur die Felder areaDrawMask, lineDraw-
Mask und textDrawMask. Beispiele fir Fulllmuster finden Sie in "R-BASIC
Anhange", Abschnitt C.

Wert Konstante Bedeutung
0-24 — Von GEOS bereitgestellte Muster, siehe unten.
25 DM_100 "Normalzustand", 100% Deckung.
26 - 88 - Unterschiedliche "Transparenzgrade". GroBere
Werte entsprechen hdherer Transparenz.
89 DM_O Null % Deckung, vollstandig transparent.
128 DM_INVERSE Wird zu einem der anderen Werte addiert. Das
Muster wird invertiert.

Grafik - 164

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Der Mix-Mode

Im Normalfall geht man davon aus, dass neu gezeichnete Linien oder Flachen
vorhandene Grafiken Uberschreiben. Das muss aber nicht so sein. Mit dem Feld
graphic.mixMode kénnen Sie bestimmen, wie neu gezeichnete Linien oder
Flachen mit dem bereits vorhandenen Hintergrund verknupft werden sollen. Dabei
wird der Farbwert jedes Pixels ermittelt, indem der Farbwert des an dieser Stelle
bereits vorhandenen Pixels Uber eine logische Operation mit dem Farbwert der
Zeichenfarbe verknupft wird.

Von besonderer Bedeutung sind die Modi MM_XOR und MM_INVERT. In diesen
Modi wird z.B. eine Linie beim ersten Zeichnen erscheinen und beim nochmaligen
Zeichnen wieder geléscht. So kann man z.B. "Gummi-Linien" realisieren, ohne
den Hintergrund zu beschadigen. Im Zweifelsfall verwenden Sie MM_INVERT.

Achtung! graphic.mixMode wirkt nicht bei Textausgaben (PRINT) und bei der
Ausgabe von Bildern (Drawlmage, DrawPicture, DrawBitmap, Drawlcon).

Tabelle der Mix-Modes: Erlaubte Werte flur das Feld mixMode

Wert Konstante Bedeutung

0 MM_CLEAR Das Zeichnen einer Grafik l6scht den Uberschrie-
benen Bereich. Die Zeichenfarbe spielt keine Rolle.

1 MM_COPY Standardwert. Die neue Grafik (iberschreibt
vorhandene Grafiken.

2 MM_NOP Die Grafikausgabe wird ignoriert.

3 MM_AND Die Farben in dem Uberschriebenen Bereich werden
logisch AND mit der Zeichenfarbe verknUpft.

4 MM_ INVERT | Die Farben in dem Uberschriebenen Bereich werden

logisch invertiert. Die Zeichenfarbe spielt keine
Rolle. Dieser Modus wird h&ufig benutzt.

5 MM_XOR Die Farben in dem Uberschriebenen Bereich werden
logisch XOR mit der Zeichenfarbe verknupft. Dieser
Modus wird haufig benutzt.

6 MM_SET Das Zeichnen einer Grafik setzt den Uber-
schriebenen Bereich auf schwarz. Die Zeichenfarbe
spielt keine Rolle.

7 MM_OR Die Farben in dem Uberschriebenen Bereich werden
logisch OR mit der Zeichenfarbe verknipft.

Der Mix-Mode verwendet logische Operationen (AND, OR, XOR) zur Verknlpfung
der Farbwerte. Fur System-Farben (beschrieben durch einen Index) wirkt die
Verknupfung auf den Index. Deshalb hé&ngen die Ergebnisse einiger Mix-Modi
davon ab, welche Farbtiefe verwendet wird. Das kann insbesondere in dem
héufigen Fall, dass eine 256-Farb-Bitmap gemeinsam mit einem True-Color Bild-
schirm verwendet wird, zu unerwarteten Ergebnissen flhren (die Resultate in der
Bitmap und auf dem Bildschirm unterscheiden sich). Hier hilft nur ausprobieren, ob
das Ergebnis flr die eigenen Zwecke geeignet ist oder nicht. R-BASIC reicht an
dieser Stelle einfach das vom GEOS-System bereitgestellte Verhalten durch.

Grafik - 165

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8.5 Arbeit mit Graphic Strings

Ein Graphic String (im Folgenden kurz GString) ist eine Folge von Grafikbefehlen
oder Textausgaben, die gemeinsam gespeichert werden. Dieser GString kann
spater beliebig oft "abgespielt" werden. Dabei werden die enthaltenen grafischen
Kommandos mit hoher Geschwindigkeit ausgefuhrt, viel schneller als dies als
Folge von BASIC-Anweisungen mdglich ist. Das folgende Bild gibt einen Uberblick
uber die Moglichkeiten, die R-BASIC zur Arbeit mit GStrings bietet.

Verwaltung: Text und Grafikbefehle, z.B. Screen andere
- StartRecordGS - PRINT, COLOR Obijekt GStrings
« EndRecordGS * FontSetBLOCK, FontSetGEOS :

« GetGStringinfo * Rectangle, Line, FillEllipse

« FreeGS » Drawlmage, DrawPicture
» DrawBitmap, DrawGS

N

Zwischenablage ‘v\\\ l
N ¥
ClipboardGmt GString Handle

ClipboardPutGS .

Verwendung in Objekten:
- CaptionGString
- ItemGString

A ’°Und
ResFileLoadGString / ‘l "f%éﬁfrﬁg?{/,ﬁ% Andere Libraries
L4
: : SDK Libraries Y
Resource File VMFile oder GEOS
; ; Hintergrund-
ResourceFile Library VMFiles Library BASIC Libraries ! dagt]etij

Es gibt mehrere Mdéglichkeiten an eine GString zu kommen. In vielen Féllen wer-
den Sie ihn selbst aufzeichnen. Dazu mussen Sie zunéchst mit StartRecordGS
die Aufzeichnung starten. StartRecordGS liefert ein Handle zurlck, mit dem Sie
spater den GString wiedergeben kénnen. Intern wird der GString in einer Datei
gespeichert, die R-BASIC zur Verfigung stellt. Deswegen muissen Sie die
ungefahre Datenmenge, die der GString aufnehmen soll, angeben.

Ab diesem Zeitpunkt gehen alle Grafik- und Textausgaben, die sonst auf den
Bildschirm gehen wirden, in den GString und werden aufgezeichnet. Es sind
grundsatzlich alle Text- und Grafikbefehle erlaubt. Das schlieBt explizit die
Wiedergabe anderer GStrings ein. Die Grafikbefehle werden dabei in den neuen
GString kopiert. Mit EndRecordGS wird der Aufzeichnungsmodus beendet.

Der GString kann nun mit DrawGS ausgegeben werden. Die Routine
GetGStringinfo liefert Informationen Uber einen GString, z.B. seine
Abmessungen. Damit kénnen Sie ihn z.B. zentriert oder rechtsbindig an eine
bestimmte Position zeichnen. AuBerdem kénnen Sie GStrings mit
CaptionGString als grafische Captions fir Objekte und mit ltemGString () als
grafische Listeneintrage in DynamicList Objekten verwenden.

Statt einen GString selbst aufzuzeichnen kénnen Sie ihn mit ClipboardGetGS aus
der Zwischenablage zu holen oder mit ReadGStringFromFile aus einer GEOS
Hintergrunddatei lesen. AuBerdem bieten die R-BASIC Libraries "VMFiles" und
"ResFile" Funktionen an, einen GString in eine Datei zu schreiben bzw. ihn von

Grafik - 166

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

dort zu laden. Sie haben weiterhin die Mdoglichkeit einen GString mit
ClipboardPutGS in die Zwischenablage zu kopieren.

Wenn Sie den GString nicht mehr bendtigen miissen Sie ihn meist mit FreeGS
freigeben. Beachten Sie dazu die Dokumentation der Routine, die den GString
angelegt hat! Mit FreeGS wird der GString aus der Datei, die ihn enthélt, geldscht.
Beachten Sie, dass ein GString bei einem System Shutdown nicht automatisch
geléscht wird, das Handle auf ihn steht nach einem Systemneustart aber nicht
mehr zur Verfligung. Sie sollten deswegen alle "globale" GStrings, die von einer
Routine angelegt und von anderen verwendet werden, im OnExit-Handler des
Application-Objekts freigeben.

StartRecordGS

StartRecordGS beginnt die Aufzeichnung eines GStrings. Der GString wird als
unsichtbarer Screen gesetzt, die aktuellen Screendaten werden gesichert und
nach EndRecordGS wieder hergestellt. Alle Text- und Grafikausgaben gehen ab
sofort in den GString und werden aufgezeichnet.
Dabei gelten anfangs die folgenden Einstellungen:
+ Textfont: Es wird der Standard-Font eingestellt: Fontmode Fixed, FID_MONO,
14 Punkt.

+ Farben: Die Vordergrundfarbe wird auf Schwarz, die Hintergrundfarbe wird

auf Transparent gestellt. Texte werden also transparent ausgegeben.

+ Anderung des Fonts, der TextgroBe, der Farben und anderer Grafikeigen-
schaften wahrend der Aufzeichnung des GStrings haben keine Auswirkungen
auf andere Teile des Programms.

Die Blockfonts sind immer global. Das heiBt, dass geladene Fonts nach dem

Aufruf von FontSetBlock zur Verfigung stehen und dass diesbezlgliche

Anderungen auch nach dem Aufruf von EndRecordGS bestehen bleiben und

so andere Teile des Programms beeinflussen kénnen.

+ GStrings haben prinzipiell keine Begrenzung. Die globale Variablen MaxX
und MaxY sind ohne Bedeutung.

Syntax: <hanVar> = StartRecordGS (dataSize)
<hanVar> = StartRecordGS () ’ entspricht DS_TINY
’ die Klammern sind erforderlich!
<hanVar> Variable vom Typ HANDLE
Speichert die Referenz auf den GString

Das von StartRecordGS zurlickgegeben Handle wird fir die anderen GString-
Befehle bendtigt. Der Parameter dataSize bestimmt die ungefédhre GroéBe der
GStringdaten. Damit kann R-BASIC abschéatzen, wieviel Platz es in der Datei, die
den GString aufnehmen soll, reservieren muss. Wenn sich schon viele Daten in
der Datei befinden (z.B. Bitmaps von BitmapContent-Objekten oder andere
GStrings) kann R-BASIC gegebenen Falls eine neue Datei anlegen. Allerdings ist
der Wert nicht kritisch. Geben Sie DS_TINY an und verbrauchen trotzdem ein
Megabyte passiert im Allgemeinen nichts. Haben Sie aber viele GStrings, Bitmap-

Grafik - 167

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Objekte oder Objekte im gepufferten Modus (z.B. Canvas mit buffered = TRUE
gesetzt) gleichzeitig sollten Sie dem Wert etwas mehr Aufmerksamkeit widmen.

Der Defaultwert fur dataSize ist DS_TINY. Die folgende Tabelle enthalt die
zulassigen Werte.

Konstante Wert Zu erwartende Datenmenge
DS_TINY 0 nicht mehr als 10 .. 20 kByte
DS_SMALL nicht mehr als 50 .. 100 kByte

»
DS_MEDIUM 2 nicht mehr als 500 kByte ... 1 MB
DS_LARGE 3 nicht mehr als 5 MByte

DS_HUGE 4 mdglicherweise mehr als 5 MByte

Beispiele:

1. Normale Grafikbefehle wie Line, Rectangle, FillEllipse usw. erfordern jeweils 10
bis 15 Byte. Texte erfordern pro Zeichen 1 Byte. Fur die meisten Falle ist daher
der Defaultwert DS_TINY véllig ausreichend. Das entspricht ca. 1000
Zeichenbefehlen.

2. Block-Font Grafiken erfordern 1 Byte pro Pixel (256-Color Grafiken) oder nur 1
Byte auf 8 Pixel (monochrome Grafiken). Ein GString mit 100 Blockfont-
Grafiken der GrdBe 32x32 Pixel erfordert, wenn es sich um 256-Color Grafiken
handelt, 100x32x32 = 102400 Byte (100 kByte). Verwenden Sie DS_SMALL
oder DS_MEDIUM.

3. Eine Bitmap der Farbtiefe 8 Bit erfordert 1 Byte pro Pixel. Fir eine Bitmap der
GroBe 640x480 Pixel (=307200 Byte) verwenden Sie DS_MEDIUM.

4. True-Color-Bitmaps bendtigen 3 Byte pro Pixel. Fir eine 800x600 True-Color-
Bitmap ist DS_LARGE angebracht.

EndRecordGS

EndRecordGS beendet die Aufzeichnung eines GString. Die vor dem Aufruf von
StartRecordGS geltenden Screen- und Grafikeinstellungen werden wieder herge-
stellt. Ab sofort kann der GString verwendet werden.

Syntax: EndRecordGS <han>
<han> Handle, das von StartRecordGS geliefert wurde.

DrawGS

DrawGS zeichnet den GString an die Position x, y.

Syntax: DrawGS <han>, x,y
<han>: Handle, das von StartRecordGS geliefert wurde.
X, y: Zeichenposition in Pixeln. Die linke obere Ecke des GString
wird an diese Position gezeichnet.

Grafik - 168

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

FreeGS

FreeGS gibt das Handle und den GString wieder frei. Der vom GString belegte
Speicherplatz wird freigegeben.

Syntax: FreeGS <han>
<han> Handle, das von StartRecordGS, ClipboardGetGS oder
ReadGStringFromFile geliefert wurde.

Tipp: Um sicherzustellen, dass das System nicht crasht, falls das Handle irrtimlich
noch einmal mit DrawGS verwendet wird kénnen Sie es nach dem Freigeben
durch FreeGS () mit der Anweisung "han = NullHandle()" 16schen. R-BASIC gibt
dann bei einer irrtimlichen Verwendung mit DrawGS nur eine entsprechende
Meldung aus.

Wichtig: Wenn Sie eine Library-Routine verwenden um einen GString zu
erzeugen, lesen Sie bitte die Dokumentation der Routine sorgféltig, um zu
entschieden, ob Sie diesen GString mit FreeGS freigeben missen oder nicht!

Beispiel: Die Routine verwendet einen GString, um einem Objekt eine Grafik als
Caption zuzuweisen. Dazu verwenden wir die Instancevariable CaptionGString.
Das ist ein Ublicher Weg um einfache Grafiken, die zur Laufzeit gelegentlich
geandert werden mussen, darzustellen. Die Zeile "MyObj.CaptionGString =
gsHan" kopiert den GString in das Objekt, so dass wir ihn mit "FreeGS gsHan"
wieder freigeben kbnnen (und mussen!).

SUB SetCaption ()
DIM gsHan as HANDLE

gsHan = StartRecordGS ()
FillRect 0, 0, 48, 32, LIGHT BLUE
Rectangle 0, 0, 48, 32, BLUE
INK WHITE

Ellipse 4, 12, 14, 22
Ellipse 7, 5, 17, 15

Ellipse 22, 18, 32, 28
Ellipse 32, 14, 42, 24

Ink BLACK

printfont.style = TS BOLD
Print atxy 25,1;"ab"
EndRecordGS gsHan

ab

MyObj.CaptionGString = gsHan
FreeGS gsHan

End SUB

Grafik - 169

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel: Verwendung eines GString, dessen Handle in einer globalen Variable
gespeichert ist. Der GString wird beim SchlieBen des Programms freigegeben.

Definition der globalen Variablen
DIM globalGS AS HANDLE

Ul-Code Ausschnitt
Application DemoApplication

OnExit = ExitHandler
End Object

Anlegen des GString

SUB CreateGS ()
globalGS = StartRecordGS()
Ellipse 50, 50, 100, 100, RED

Print atxy 0, 20; "Hallo BASIC"
EndRecordGS (globalGSs)

END SUB

Hallo BASIC

Verwendung des GString Hallga;;.gt\ﬁjsm
f |__\

SUB DrawGlobalGS() S
DrawGS globalGS, 20, 30 AL)
DrawGS globalGS, 10, 60 \ ,ﬁ/‘-—-’/
DrawGS globalGS, 50, 45 —

End SUB

Zugehdriger OnExit-Handler zum freigeben des GString.
FreeGS ignoriert leere Handles. Deswegen brauchen wir globalGS NICHT auf

NullHandle() zu prafen.

SYSTEMACTION ExitHandler
FreeGS globalGSs

END ACTION

GetGStringInfo

GetGStringlInfo liest die Grafikinformationen eines Graphic String aus. Dazu wird
eine Variable vom Strukturtyp Graphiclnfo belegt. Diese Struktur ist im Abschnitt
2.8.6 (Zeichnen von Bildern) beschrieben.

Syntax: info = GetGStringInfo (gsHan)
info: Variable vom Strukturtyp Graphicinfo
gsHan: Handle auf den GString

Grafik - 170

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel:

DIM info as GraphicInfo
DIM gsHan as Handle

gsHan = StartRecordGS()
Rectangle 20, 20, 50, 100
EndRecordGS gsHan

info = GetGStringInfo (gsHan)
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"

FreeGS gsHan

Beispiel: Zeichnen eines GString (in gsHan) zentriert an die Position (50; 100)

DIM info as GraphicInfo
DIM x, y
info = GetGStringInfo (gsHan)
X = 50 — info.sizeX/2;
y = 100 — info.sizeY/2
DrawGS gsHan, x, y

ClipboardGetGS

ClipboardGetGS holt einen GString aus der Zwischenablage. Graphic Strings sind
ein universelles Grafikformat unter GEOS. Die Grafik in der Zwischenablage kann
z.B. aus GeoWrite, GeoDraw oder dem Sammelalbum kommen. Der GString kann
sofort mit DrawGS gezeichnet werden. ClipboardGetGS ist damit analog zur
Kombination StartRecordGS / EndRecordGS. Das von ClipboardGetGS gelieferte
Handle muss ebenfalls mit FreeGS wieder freigegeben werden.

Syntax: <han> = ClipboardGetGS ()

Wird kein GString im Clipboard gefunden so liefert ClipboardGetGS ein
NullHandle. ClipboardGetGS setzt die globale Variable clipboardError (Null oder
Fehlercode). Sie kénnen vorher mit ClipboardTest prifen, ob sich ein GString im
Clipboard befindet.

Beispiel:
DIM gsHan AS HANDLE
IF ClipboardTest (0, 1) THEN ! manufID = 0, format = 1
gsHan = ClipboardGetGS()
End IF
<....> z.B. DrawGS gsHan, 0, O
FreeGS g¢gsHan ’ Nicht vergessen

Grafik - 171

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

ClipboardPutGS

ClipboardPutGS kopiert einen GString in die Zwischenablage. Von dort kann er
dann z.B. in GeoDraw eingeklebt werden.

Syntax: ClipboardPutGS <han>
<han> Handle, das von StartRecordGS geliefert wurde.

Beispiel:
DIM gsHan AS HANDLE

gsHan = StartRecordGS ()

Rectangle 20, 20, 50, 100, BLACK
FillEllipse 30, 30, 40, 90, RED
EndRecordGS gsHan

ClipboardPutGS gsHan

FreeGS g¢gsHan ’ Nicht vergessen

SaveGStringAsBackground

SaveGStringAsBackground schreibt einen GString als GEOS Hintergrunddatei.
Falls die Datei bereits existiert wird sie Uberschrieben. WriteGStringToFile setzt
die globale Variable fileError (Null oder Fehlercode).

Syntax: SaveGStringAsBackground <han>, fileName$
<han> Handle, das den GString referenziert.
fleName$: Name der anzulegenden Datei (Pfadanteil erlaubt).

ReadGStringFromFile

ReadGStringFromFile liest (kopiert) einen GString aus einer Datei. Aktuell werden
nur GEOS Hintergrunddateien unterstitzt. ReadGStringFromFile liefert das
Handle auf den gelesenen GString. Das Handle muss mit FreeGString wieder
freigegeben werden. Die globale Variable fileError wird gesetzt (Null oder
Fehlercode). Im Fehlerfall liefert ReadGStringFromFile ein NullHandle.

Syntax: <han> = ReadGStringFromFile (fileName$ [, pictNum])
<han> Variable vom Typ Handle
fileName$: Name der Datei mit dem Bild (Pfadanteil erlaubt).
pictNum: Nummer des Bildes, falls die Datei mehr als ein Bild enthélt.
Wird fur GEOS Hintergrunddateien ignoriert.
Default: 1 (erstes Bild lesen)

Grafik - 172

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8.6 Zeichnen von Bildern

Dieser Abschnitt beschéftigt sich mit der Ausgabe von fertigen Grafiken, die zur
Laufzeit weder erstellt noch verandert werden mussen. Die Ausgabe erfolgt dabei
immer in das aktuelle Screen-Objekt. Dabei bezieht sich der Begriff "Picture"
immer auf Grafiken, die in der Picture-List gespeichert sind (siehe Kapitel 2.8.6.2,
Befehle DrawPicture, GetPicturelnfo)). Der Begriff "Image" bezieht sich immer
auf Grafiken, die in externen Bilddateien (z.B. JPG, PCX, ICO) vorliegen. Daftir
stehen die Befehle Drawlmage und Getlmagelnfo zur Verfigung. AuBerdem gibt
es das Image-Objekt, das diese Bilder direkt (ohne die Verwendung eines Screen-
Objekts) anzeigen kann und im Objekt-Handbuch beschrieben ist.

Die Routinen Getlmagelnfo, GetPicturelnfo GetGStringlnfo und GetBitmapinfo
ermitteln Informationen Uber eine Grafik oder eine Grafikdatei in Form der
folgenden Struktur:

STRUCT GraphicInfo
sizeX as WORD
sizeY as WORD
bitsPerPixel as WORD
numImages as WORD
End STRUCT

Bedeutung der einzelnen Felder:
sizeX und sizeY: Abmessungen der Grafik in Pixeln
bitsPerPixel: Farbtiefe
1: Bitmap, monochrom (sw/ws)
8: Bitmap, 256 Farben
24: Bitmap, True Color
0: Graphic String.
Farbtiefe je nach Inhalt. Potentiell True Color
numlmages: Anzahl der Bilder. Kann bei Dateien (z.B. ICO) gréBer als 1
sein. Im Fehlerfall: Null.

Tritt beim Aufruf der oben genannten Routinen ein Fehler auf (z.B. Datei nicht
gefunden, Bild in der Picture-List nicht vorhanden) gilt:
- numlmages ist auf Null gesetzt
- die globale Variable fileError enthélt einen Fehlercode. Im Erfolgsfall wird
fileError auf Null gesetzt.

Grafik - 173

R-BASIC - Programmierhandbuch - Vol. 3

Einfach unter PC/GEOS programmieren

Beispiel

DIM info as GraphicInfo
info = GetImageInfo (SP_TOP, "GWICON5.ICO")

IF info.numImages = 0 THEN
Print "Kein Bild gefunden. Fehlercode: ";
ErrorText$ (fileError)

ELSE
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"
Print "Bilder in der Datei:";info.numImages

IF info.bitsPerPixel = 0 THEN
Print "Typ: Graphic String"
ELSE
Print "Bitmap mit";info.bitsPerPixel;"Bit pro Pixel"
END IF
END IF

2.8.6.1 Zeichnen von lcons

Drawlcon

Drawlcon zeichnet ein Icon aus der Token-Database an die Position (X, y).

Syntax: Drawlcon "tchr" , manuflD , x , y [, flags]
"tchr": Tokenchars des Icons. Genau 4 Zeichen
manuflD: ManufacturerID des Icons. Datentyp WORD
X: x-Position der linken oberen Ecke
y: y-Position der linken oberen Ecke
flags: Ilcon-Flags. Erlaubte Werte siehe Tabelle

Default (kein Flag gesetzt): Standard-Icon zeichnen

Gultige Werte fir "flags":

Konstante Wert Bedeutung

TOOL_ICON 1 Tool-Icon (15 x 15 Pixel) verwenden.
TINY_ICON 1 Synonym fur TOOL_ICON

SMALL_ICON 2 Kleineres Icon verwenden (oft 32x20 Pixel)
BIG_ICON 4 GrdBeres Icon verwenden (oft 64x40 Pixel)
GRAY_ICON 8 Schwarz-Weif3 Icon verwenden
RGB_ICON 16 True-Color Icon verwenden

Wird keines der Flags angegeben wird das "Standard" Icon (meist 48 x 30 Pixel,

16 Farben oder 256 Farben) verwendet.

Grafik - 174

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Hinweise:

+ Ist die entsprechend den Flagbits angeforderte Kombination nicht vorhanden
sucht das System ein "mdglichst passendes" Icon aus. Das Flag "TOOL_ICON"
hat dabei Vorrang vor allen anderen Flags.

+ Sollte zum gegebenen Token ("TCHR", manufID) kein grafisches Icon
vorhanden sein wird ein Text verwendet.

+ Findet sich das Token nicht in der TokenDB zeigt R-BASIC ein Ersatzbild
("unbekanntes Icon").

+ R-BASIC Icons enthalten nur zwei Bilder: ein Standard- und ein Tool-lcon.

Beispiel: Zeichnen des GeoWrite Document Tool-Icons an die Position (100; 50)
DrawIcon "WDAT", 0, 100, 50, TOOL_ICON

Captionlcon
Captionlcon weist einem Objekt ein Icon aus der Token-Database als grafische

"Aufschrift" zu. Captionlcon ist im Kapitel 3.1 (Die Objektbeschriftung) des
Objekthandbuchs beschrieben.

2.8.6.2 Verwendung der "Picture-List"

Picture List bearbeiten

Mann

Die Picture-List ist eine komfortable Méglichkeit Grafiken im der Codedatei selbst
unterzubringen und sie zur Laufzeit zu zeichnen. Beim Erstellen lhres Programms
laden Sie Uber das R-BASIC Menl "Extras" - "Picture-List" Bilder aus einer
externen Quelle in die Picture-List. Die Bilder werden dann Uber ihren Namen
angesprochen. Sie kénnen diese Bilder mit dem Befehl DrawPicture auf den

Grafik - 175

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Screen zeichnen oder mit der Anweisung CaptionPicture (sowohl im Ul-Code als
auch zur Laufzeit) als grafische Aufschrift fir Objekte verwenden.

Als Quellen stehen lhnen zur Verfligung:

+ Externe Bilddateien (z.B. ICO, PCX, JPG).

+ Das Clipboard. Insbesondere kénnen Sie Uber diesen Weg mit GeoDraw selbst
gezeichnete Grafiken in Ihr BASIC Programm einbinden.

+ Vom Iconeditor "exportierte" Bilder. Der Iconeditor kann Icon-Bilder in eine VM-
Datei schreiben (Menu "lcon" - "Schreibe in Datei"), die von der Picture-List
eingelesen werden kdnnen.

Wenn sie viele, insbesondere grdBere Bilder in die Picture-List laden sollten Sie
der GesamtgroBe ihrer Codedatei etwas Aufmerksamkeit schenken.
ErfahrungsgemaB wird GEOS bei Dateigr6Ben von mehreren 10 Megabyte
instabil. Wenn Sie diesbezliglich Probleme haben kénnen Sie Teile ihrer Picture-
List in eine Library auslagern.

DrawPicture
DrawPicture zeichnet eine Grafik aus der Picture-List an die Koordinaten x, y.

DrawPicture setzt es die globale Variable fileError - entweder auf Null (das Bild
wurde gefunden) oder auf einen Fehlerwert (das Bild wurde nicht gefunden).

Syntax: DrawPicture "name" , x ,y
"name": Name des Bildes in der Picture-List
X: x-Position der linken oberen Ecke
y: y-Position der linken oberen Ecke

Wenn DrawPicture im Code einer Library gerufen wird bezieht sich der Name des
Bildes auf die Picture-List der Library. Das ermdglicht es unter anderem Bilder in
die Picture-List von Libraries auszulagern.

Beispiel: Zeichnen eines Bildes an die Position (50; 100)

DrawPicture "Mann", 50, 100

Tipp: Wenn der Compiler den Namen des Bildes in der Picture-List ermitteln kann
(d.h. der Name steht wie im Beispiel im Klartext da und wird nicht durch den Aufruf
von Stringfunktionen wie Left$ "berechnet") wird der Name sofort in die interne
Nummer des Bildes umgerechnet. Damit muss das Bild zur Laufzeit nicht mehr
gesucht werden und es wird viel schneller gezeichnet.

Grafik - 176

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

GetPicturelnfo

GetPicturelnfo liest die Grafikinformationen eines Bildes aus der Picture-List aus.
GetPicturelnfo setzt die globale Variable fileError (Null oder Fehlercode).

Syntax: info = GetPicturelnfo ("name")
info: Variable vom Strukturtyp Graphiclnfo
"name": Name der Grafik in der Picture-List

Beispiel:

DIM info as GraphicInfo
info = GetPictureInfo ("Down Arrow")
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"

Beispiel: Zeichnen eines Bildes zentriert an die Position (50; 100)

DIM info as GraphicInfo
DIM x, y
info = GetPictureInfo ("Down Arrow")
X = 50 — info.sizeX/2;
y = 100 — info.sizeY/2
DrawPicture "Down Arrow", X, y

CaptionPicture

CaptionPicture weist einem Objekt ein Bild aus der Picture-List als grafische
"Aufschrift" zu. CaptionPicture ist im Kapitel 3.1 (Die Objektbeschriftung) des
Objekthandbuchs beschrieben.

Grafik - 177

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8.6.3 Externe Bilddateien

Sie kdnnen Bilder aus externen Bilddateien zur Laufzeit direkt auf den Screen von
R-BASIC zeichnen. Die Routine Drawlmage lbernimmt dabei alle notwendigen
Schritte, vom Offnen der Datei Gber das Einlesen und Konvertieren in eine GEOS-
kompatibles Format bis zum Zeichnen auf den Schirm und das abschlieBende
SchlieBen der Bilddatei.

Drawlmage

Drawlmage zeichnet eine Grafik. Die Grafik wird aus einer externen Datei gelesen.
Sollte die Datei mehr als ein Bild enthalten (z.B. *.GIF, *.ICO) kénnen Sie mit dem
Parameter pictNum bestimmen, welches Bild ausgelesen wird. Das erste Bild hat
immer die Nummer Null.

Syntax: Drawlmage [stdPath,] , "Path+File" , x y, [, pictNum]
stdPath: Optional: Standardpfad Konstante, z.B. SP_TOP
"Path+File": Dateiname, Pfade sind zuldssig
X: x-Position der linken oberen Ecke
y: y-Position der linken oberen Ecke
pictNum: Optional: Nummer des Bildes in der Datei

+ Wird kein Standardpfad angegeben wird die Datei im aktuellen Verzeichnis
gesucht.

« Unterstlitzte Dateiformate: JPG, BMP, ICO, PCX, GIF, TGA, RLE, DIB, SCR
(BreadBox SplashScreen), FLC, FLI sowie GEOS Hintergrunddateien

+ Die externe Datei wird zur Laufzeit gedffnet, d.h. sie muss unbedingt in das R-
App Paket aufgenommen werden oder es muss auf andere Weise sichergestellt
sein, dass sie existiert.

+ Wird pictNum nicht angegeben so wird immer das erste Bild ausgelesen.

+ Die globale Variable fileError wird gesetzt - entweder auf Null (das Bild wurde
gefunden) oder auf einen Fehlerwert (die Datei wurde nicht gefunden oder sie
enthalt kein Bild).

Beispiele:

DrawImage SP_TOP, "GWICON5.ICO", 0, O

DrawImage "BILDER\\SUNSET.JPG", 100, 100
DrawImage SP_DOCUMENT, "R-BASIC\\BILD2.PCX" 0, 20

Grafik - 178

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Getlmagelnfo

Getlmagelnfo liest die Grafikinformationen aus einer Datei aus. Wird kein
Standardpfad angegeben wird die Datei im aktuellen Verzeichnis gesucht. Der
Dateiname darf einen Pfadanteil enthalten. Getimagelnfo setzt die globale
Variable fileError (Null oder Fehlercode).

Unterstutzte Dateiformate: Siehe Drawlmage

Syntax: info = Getlmagelnfo ([stdPath,] "Path+File")
info: Variable vom Strukturtyp Graphiclnfo
stdPath: Optional: Standardpfad Konstante, z.B. SP_TOP
"Path+File": Dateiname, Pfade sind zulassig

Beispiele:
DIM info as GraphicInfo

info = GetImageInfo (SP_TOP, "GWICON5.ICO")
info = GetImageInfo ("BILDER\\SUNSET.JPG")
info = GetImageInfo (SP_DOCUMENT, "R-BASIC\\BILD2.PCX")

Beispiel: Zeichnen eines Bildes zentriert an die Position (50; 100)

DIM info as GraphicInfo
DIM x, y
info = GetImageInfo ("BILDER\\SUNSET.JPG")
Xx = 50 — info.sizeX/2;
y = 100 — info.sizeY/2
DrawImage "BILDER\\SUNSET.JPG", x, ¥y

Captionlmage

Captionlmage weist einem Objekt ein Bild aus einer externen Bilddatei als
grafische "Aufschrift" zu. Captionlmage ist im Kapitel 3.1 (Die Objektbeschriftung)
des Objekthandbuchs beschrieben.

Grafik - 179

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

2.8.6.4 Bitmaps und Bitmap Handles

Bitmaps werden Ublicher Weise von einem BitmapContent verwaltet. Die meisten
Informationen zu Bitmaps finden Sie daher auch bei der Beschreibung des
BitmapContent-Objekts im Objekthandbuch. Es gibt jedoch auch die Mdéglichkeit
Bitmaps Uber ein Handle anzusprechen. Mit dieser Thematik beschéftigt sich
dieses Kapitel.

Das Konzept der Bitmap Handles (eine Variable vom Typ HANDLE, die eine
Bitmap referenziert) dient zum Austausch einer Bitmap-Grafik zwischen
verschiedenen Komponenten eines BASIC Programms. Insbesondere kann eine
Bitmap mit der Routine DrawBitmap in andere Objekte, z.B. eine andere Bitmap,
ein beliebiges anders Screen-Objekt oder in einen Graphic String gezeichnet
werden. Einige R-BASIC Libraries bieten die Mdglichkeit Bitmaps in einer externen
Datendatei zu speichern oder von dort zu laden. Das folgende Bild gibt eine
Ubersicht tber die Méglichkeiten.

Graphic String Screen - | BitmapContent Sonstiges:
Handle | Objekt Objekt FreeBitmap
\ P GetBitmaplnfo
i : CropBitmap
GetBitmapHandle
DrawBitmap NewBitmapFromHandle
Zwischenablage ‘V\DrawBitma CopyBitmap
ClipboardGe tm . %ReadBltmapFromFlle Irgaglal-:Dj:lggl
. . ' Bitmap Handle — > z.B. ;
ClipboardPutBitmap WriteBitmapToFile
A
SaveBitmapAsBackground
ResFileLoadBit VMLoadBitmap Ny . .GEOS
esriietoad=limap /‘Z VMStoreBitmap andere Libraries Hintergrund
Y oo Datei
Resource File VMFile SDKE)Iél;rranes
ResourceFile Library VMFiles Library BASIC Libraries

Wie im Bild zu sehen gibt es sechs Moglichkeiten an ein Bitmap-Handle zu
kommen:

1. Das BitmapContent-Objekt stellt die Methode GetBitmapHandle bereit. Diese
Methode liefert ein Handle, das direkt die Bitmap im BitmapContent-Objekt
referenziert, das heiBt die Bitmap wird nicht kopiert! Sie diirfen das Handle
nicht mit der Routine FreeBitmap freigeben!

2.Die Routine CropBitmap (siehe Kastchen "Sonstiges" im Bild oben) kopiert
einen Ausschnitt oder die gesamte Bitmap in eine neue.

3. Die Methode CopyBitmap kopiert die Bitmap eines BitmapContent Objekts und
liefert das Handle auf die Kopie. Sie muissen die Kopie mit der Routine
FreeBitmap wieder freigeben!

4.Die Routine ClipboardGetBitmap legt eine Kopie einer im Clipboard befind-
lichen Bitmap an und liefert das Handle auf diese Kopie. Sie mlssen eine so
angelegte Bitmap mit der Routine FreeBitmap wieder freigeben!

Grafik - 180

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

5.Die Routine ReadBitmapFromFile liest eine Bitmap aus einer Bilddatei. Sie
mussen eine so angelegte Bitmap mit der Routine FreeBitmap wieder
freigeben!

6. Einige Libraries sind in der Lage Bitmaps in einer Datei zu speichern. Diese
Libraries liefern Routinen mit, um auf die Bitmaps in der Datei zuzugreifen. Im
Bild oben sind die VMFiles Library (VMLoadBitmap) und die ResourceFile
Library (ResFileLoadBitmap) angegeben. Auch diese Routinen liefern eine
Referenz auf die in der Datei befindliche Bitmap, die Bitmap wird nicht kopiert.

DrawBitmap

DrawBitmap zeichnet den Bitmap Grafik an die Position x, y.

Syntax: DrawBitmap <han>, x,y [, noFix]
<han>: Handle, das die Bitmap referenziert.
X, Y: Zeichenposition in Pixeln. Die linke obere Ecke der
Bitmap wird an diese Position gezeichnet.
noFix: FALSE: 8 Bit Bitmap fix anwenden (default)
TRUE: 8 Bit Bitmap nicht fix anwenden (siehe unten)

Bugs ...
Das GEOS System (mindestens bis Version 4.1.3) crasht wenn folgende
Bedingungen gleichzeitig zutreffen:

+ der Screen ist eine 8 Bit Bitmap (mit oder ohne Transparenz)

und es soll eine Bitmap mit Maske (monochrome, 8 Bit oder 24 Bit)
gezeichnet werden

+ und die x-Koordinate ist negativ

R-BASIC I6st dieses Problem, indem es im oben genannten Fall die zu zeich-
nende Bitmap vorher beschneidet und dann so zeichnet, als gébe es dieses
Problem nicht.

Wenn Sie den Parameter noFix (TRUE) angeben, wendet R-BASIC diesen Fix
nicht an. Das kann z.B. in folgenden Situationen sinnvoll sein:

+ Sie haben ein verschobenes Koordinatensystem (siehe Anweisung Screen-
SetTranslation) und sind sicher, dass die Bitmap trotz negativer x-Koordinate
nicht Gber den linken Rand hinausragt.

+ Sie haben eine neuere GEOS-Version, die den Bug gefixt hat.

... und Features?

Wenn Sie mit DrawBitmap eine monochrome Bitmap in eine andere Bitmap
drawen ist das Ergebnis etwas seltsam. Je nach Situation wird die Bitmap bei-
spielsweise transparent gezeichnet, obwohl sie nicht gar keine Maske hat oder die
Bitmapdaten landen in der Maske der Zielbitmap. Ist das nun ein Bug oder ein
Feature?

Grafik - 181

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

CropBitmap

CropBitmap (engl. to crop: etwas zuschneiden) kopiert einen Ausschnitt einer
Bitmap. Der Ausschnitt wird durch die Ubergebenen Koordinaten bestimmt. Es ist
zuléssig, dass die Koordinaten einen Bereich beschreiben, der teilweise auBerhalb
der Bitmap liegt. CropBitmap handelt alle "Koordinatenfehler" korrekt.

CropBitmap liefert ein Handle auf die Kopie. Dieses Handle muss mit FreeBitmap
wieder freigegeben werden. Im Fehlerfall (der durch die angegeben Koordinaten
Ausschnitt liegt komplett auBerhalb der Bitmap) liefert CropBitmap ein NullHandle.
CropBitmap kann verwendet werden, um die ganze Bitmap zu kopieren. Geben
Sie dazu einen Ausschnitt an, der sicher gréBer ist, als die zu kopierende Bitmap.

Syntax: <han> = CropBitmaplInfo (bmpHan , x0, y0, x1, y1)
bmpHan: Handle auf die vorhandene Bitmap
x0, yO: linke obere Ecke des zu kopierenden Ausschnitts
x1, y1: rechte untere Ecke des zu kopierenden Ausschnitts

Die GréBe der neuen Bitmap ist (falls die Koordinaten nicht auBerhalb der Bitmap
liegen):

xSize =x1-x0 + 1

ySize =y1-y0 + 1
Liegt ein Koordinatenpaar auB3erhalb der Bitmap so ist der kopierte Ausschnitt
kleiner.

Beispiele:

'’ In den folgenden Beispielen gilt:
DIM bmpHan, newHan as HANDLE
' bmpHan soll eine Bitmap referenzieren

' Kopieren eines 50 x 150 Pixel groBen Ausschnitts
newHan = CropBitmap (bmphan, 0, 0, 49, 150)

' Negative Koordinaten sind zuldssig
' Der kopierte Ausschnitt ist 64 x 16 Pixel grof
newHan = CropBitmap (bmpHan, -7, -100, 63, 15)

' Kopieren der kompletten Bitmap.
" x1 und yl liegen sicher auBerhalb der Bitmap
newHan = CropBitmap (bmpHan, 0, 0, 1lE6, 1lE6)

Grafik - 182

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

GetBitmaplnfo

GetBitmaplinfo liest die Grafikinformationen einer Bitmap, die durch ein Bitmap-
Handle referenziert wird, aus. Die Struktur Graphiclnfo wurde weiter oben
beschrieben.

Syntax: info = GetBitmaplnfo (bmpHan)
info: Variable vom Strukturtyp Graphicinfo
bmpHan: Handle auf die Bitmap

Beispiel:

DIM info as GraphicInfo
DIM bmpHan as Handle

bmpHan = BitmapObj.GetBitmapHandle ' Bitmap wird nicht kopiert

info = GetBitmapInfo (bmpHan)
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"

ReadBitmapFromFile

ReadBitmapFromFile liest eine Bitmapgrafik aus einer Datei. Die Datei wird
gedffnet, die Bilddaten werden kopiert und anschlieBend wird die Datei wieder
geschlossen. ReadBitmapFromFile liefert das Handle auf die gelesene Bitmap.
Das Handle muss mit FreeBitmap wieder freigegeben werden. Die globale
Variable fileError wird gesetzt (Null oder Fehlercode). Im Fehlerfall liefert
ReadBitmapFromFile ein Null[Handle.

Syntax: <han> = ReadBitmapFromFile (fileName$ [, pictNum])
<han> Variable vom Typ Handle
fleName$: Name der Datei mit dem Bild (Pfadanteil erlaubt).
pictNum: Nummer des Bildes, falls die Datei mehr als ein Bild enthalt.
Default: 1 (erstes Bild lesen)

ReadBitmapFromFile unterstitzt die folgenden Dateiformate: BMP, RLE, DIB,
ICO, PCX, GIF, FLI, FLC, JPG, TGA, SCR (BreadBox SplashScreen).

Tipp: Mit Routine ReadGStringFromFile kénnen Sie das Bild aus einer GEOS
Hintergrunddatei auslesen.

Tipp: Die Routine Getlmagelnfo liefert detaillierte Informationen Uber die Bilddatei.

Der folgende Code liest eine PCX-Datei und nutzt ein BitmapContent-Objekt um
die Grafik anzuzeigen. Das BitmapContent Objekt legt sich eine Kopie der Bild-
daten an, so dass wir das Handle mit FreeBitmap wieder freigeben kénnen.

Grafik - 183

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

SUB LoadAndShowImage()

DIM h as HANDLE
h = ReadBitmapFromFile ("WOLKEN.PCX")
IF fileError THEN RETURN

MyBitmapContent.NewBitmapFromHandle h ' Kopiert die Daten
FreeBitmap h ' gibt die Bitmapdaten wieder frei.
End SUB

WriteBitmapToFile

WriteBitmapToFile schreibt eine Bitmap, die durch ein Handle referenziert wird, im
BMP-Format in eine Datei. Der Dateiname sollte deshalb auf BMP enden. Falls
die Datei bereits existiert wird sie Uberschrieben. WriteBitmapToFile setzt die
globale Variable fileError (Null oder Fehlercode).

Syntax: WriteBitmapToFile <han>, fileName$
<han> Handle, das eine Bitmap referenziert.
fleName$: Name der anzulegenden Datei (Pfadanteil erlaubt).

WriteBitmapToFile berticksichtigt eine eventuell vorhandene Maske. Transparente
Pixel werden auf die Farbe Weil3 bzw. auf den Index 255 (das entspricht in der
Standardpalette ebenfalls WeiB) gesetzt. Eine vorhandene Palette wird ebenfalls
berucksichtigt.

Der folgende Code schreibt die Bitmap eines BitmapContent Objekts in eine Datei.
Weil die Methode GetBitmapHandle nur das Handle liefert, die Daten aber nicht
kopiert durfen wir das Handle NICHT mit FreeBitmap freigeben.

SUB WriteImageToFile ()
DIM h as Handle
h = MyBitmapContent.GetBitmapHandle
WriteBitmapToFile h, "BILD1.BMP"
End SUB

Grafik - 184

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

SaveBitmapAsBackground

SaveBitmapAsBackground schreibt eine Bitmap, die durch ein Handle referenziert
wird, als GEOS Hintergrunddatei. Falls die Datei bereits existiert wird sie
Uberschrieben. WriteBitmapAsBackground setzt die globale Variable fileError (Null
oder Fehlercode).

Syntax: SaveBitmapAsBackground <han>, fileName$
<han> Handle, das eine Bitmap referenziert.
fleName$: Name der anzulegenden Datei (Pfadanteil erlaubt).

FreeBitmap

FreeBitmap gibt das Handle und die komplette Bitmap wieder frei. Der von Bitmap
belegte Speicherplatz wird freigegeben. FreeBitmap darf nur auf Handles
angewendet werden, von ClipboardGetBitmap, ReadBitmapFromFile, CropBitmap
oder der Methode CopyBitmap belegt wurden!

Syntax: FreeBitmap <han>
<han> Handle, das die Bitmap referenziert.

Tipp: Um sicherzustellen, dass das System nicht crasht, falls das Handle irrtimlich
noch einmal mit DrawBitmap verwendet wird, kbnnen Sie es nach dem Freigeben
durch FreeBitmap () mit der Anweisung "han = NullHandle()" I6schen. Draw-
Bitmap gibt dann nur eine entsprechende Fehlermeldung aus.

ClipboardGetBitmap

ClipboardGetBitmap holt eine Bitmap aus der Zwischenablage. Die Bitmap kann
sofort mit DrawBitmap gezeichnet werden. Das von ClipboardGetBitmap gelieferte
Handle muss mit FreeBitmap wieder freigegeben werden.

Syntax: <han> = ClipboardGetBitmap ()

Wird keine Bitmap im Clipboard gefunden so liefert ClipboardGetBitmap ein
NullHandle. ClipboardGetBitmap setzt die globale Variable clipboardError (Null
oder Fehlercode). Sie kénnen vorher mit ClipboardTest prifen, ob sich eine
Bitmap im Clipboard befindet.

Grafik - 185

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel:
DIM bmpHan AS HANDLE

IF ClipboardTest (0, 7) THEN ! manufID = 0, format = 7
bmpHan = ClipboardGetBitmap()
End IF
<.ooe>

z.B. DrawBitmap bmpHan, 0, 0

FreeBitmap bmpHan ' Nicht vergessen

ClipboardPutBitmap

ClipboardPutBitmap kopiert eine Bitmap, die durch ein Bitmap-Handle referenziert
wird, in die Zwischenablage. Von dort kann sie in andere Applikationen eingeklebt
oder von anderen R-BASIC Objekten gelesen werden.

Syntax: ClipboardPutBitmap <han>
<han> Handle, das eine Bitmap referenziert.

Beachten Sie, dass Sie eine Bitmap, die sich in einem BitmapContent-Objekt
befindet, auch direkt mit der Methode ClpCopy in die Zwischenablage kopiert
werden kann.

Beispiel. Wir nehmen an, dass die Routine FindABitmapHandle ein Bitmap-Handle
zurlckgibt.

DIM bmpHan AS HANDLE
bmpHan = FindABitmapHandle()
ClipboardPutBitmap bmpHan

Grafik - 186

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

(Leerseite)

Grafik - 187

