

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 ProgrammierhandbuchProgrammierhandbuch

Volume 3
Unterprogramme,

Eingaben durch den Nutzer, Grafik

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

2.6 Unterprogramme ... 132

2.7 Eingaben durch den Nutzer .. 142
2.7.1 Eingabe von Text und Zahlen .. 142
2.7.2 Direkte Abfrage der Tastatur ... 144
2.7.3 Messageboxen .. 148

2.8 Grafik .. 150
2.8.1 Das Koordinatensystem ... 150
2.8.2 Farben .. 151
2.8.3 Linien, Punkte und Figuren .. 156
2.8.4 Die Systemvariable "graphic": Mixmodes und mehr 163
2.8.5 Arbeit mit Graphic Strings .. 166
2.8.6 Zeichnen von Bildern ... 173

2.8.6.1 Zeichnen von Icons ... 174
2.8.6.2 Verwendung der "Picture-List" 175
2.8.6.3 Externe Bilddateien ... 178
2.8.6.4 Bitmaps und Bitmap Handles 180

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 132

2.6 Unterprogramme

Einem Programm eine übersichtliche Struktur zu geben ist eine wesentliche
Voraussetzung, um verzwickte und schwer zu findende Fehler zu vermeiden.

Unterprogramme (Sub-Routinen) sind in sich geschlossene Programmabschnitte,
quasi Programme innerhalb eines Programms. Die Vorteile bei der Verwendung
von Unterprogrammen sind:

• Strukturierung: Das Programm wird wesentlich besser lesbar, da es in kleine,
voneinander unabhängige Einheiten (Unterprogramme) zerlegt wird.

• Stabilität: Kleine Unterprogramme sind wesentlich einfacher fehlerfrei zu
halten als ein komplexes Riesenprogramm.

• Kapselung: Die Verwendung lokaler Variablen garantiert, das sich die
Programmteile nicht unerwünscht gegenseitig beeinflussen.

• Mehrfache Verwendbarkeit: Unterprogramme können so oft gerufen werden,
wie es nötig ist. Unterprogramme können andere Unterprogramme aufrufen,
sie können sich sogar selbst aufrufen.

R-BASIC unterstützt folgende Arten von Unterprogrammen:
• Unterprogramme ohne Rückgabe von Funktionswerten (SUB)

SUB’s werden über ihren Namen aufgerufen.
NameDerSub [< ParameterListe>]

• Unterprogramme mit Rückgabe von Funktionswerten (FUNCTION)
Funktionen werden ebenfalls über ihren Namen aufgerufen. In den meisten
Fällen stehen Funktionen auf der rechten Seite einer Zuweisung.
<variable> = NameDerFunction ([<Paramterliste>])

• Action-Handler für Objekte
Actionhandler werden automatisch von ihren Objekten aufgerufen. Sie können
nicht von anderen Teilen des Programms aus gerufen werden.

• Aus Kompatibilitätsgründen wird die Kombination GOSUB / RETURN unter-
stützt. Sie sollten GOSUB in eigenen Programmen nicht verwenden.

Konzept: Lokale Variablen

Ein Unterprogramm hat vollen Zugriff auf alle global definierten Variablen, Kon-
stanten, Strukturen usw. und kann mit diesen arbeiten. Globale Variablen werden
üblicherweise im DIM & DATA Fenster vereinbart. Wenn aber alle Unter-
programme ausschließlich mit globalen Variablen arbeiten wird das schnell
unübersichtlich und es kann zu einer unerwünschten gegenseitigen Beeinflussung
der Programmteil führen. Deswegen kann man Variablen "lokal", das heißt nur für
dieses eine Unterprogramm definieren. Dazu schreibt man die entsprechende
DIM-Anweisung innerhalb des Unterprogramms. Diese Variablen sind dem
Compiler nur innerhalb des Unterprogramms bekannt und können auch nur
innerhalb dieses Unterprogramms benutzt werden.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 133

Stößt der Compiler innerhalb eines Unterprogramms auf eine Variable (z.B. A$),
sucht er zuerst, ob diese lokal definiert ist. Ist das der Fall, wird die lokale Variable
verwendet. Nur wenn sie nicht lokal definiert ist, wird die entsprechende global
definierte Variable verwendet. Diese Technik nennt man Kapselung. Das hat drei
sehr praktische Folgen:

• Man kann die lokalen Variablen unabhängig von den global definierten
Variablen, Konstanten usw. benennen. Bei Namensgleichheit wird auf jeden
Fall die im Unterprogramm definierte Variable verwendet.

• Verschiedene Unterprogramme brauchen ebenfalls keine Rücksicht aufein-
ander nehmen, auch dann nicht, wenn sie sich gegenseitig aufrufen. Damit
kann man zum Beispiel ein Unterprogramm aus einem anderen Programm
herüberkopieren und braucht sich keine Sorgen um die Benennung der lokalen
Variablen machen.

• Ein Unterprogramm hat nur Zugriff auf seine eigenen lokalen Variablen und
auf die globalen Variablen. Ein Unterprogramm hat keinen Zugriff auf die
lokalen Variablen der Routine, von der es aufgerufen wurde.

Ein Beispiel finden Sie bei der Erklärung, was Parameter sind.
Analog wird bei Labels und Konstanten (Anweisung CONST) verfahren. Nur
Struktur-Definitionen (STRUCT-Anweisung) sind immer global.

Konzept: Parameter

In vielen Fällen muss man Werte an ein Unterprogramm übergeben, mit denen es
dann arbeitet. Zum Beispiel benötigt ein Unterprogramm, das einen Namen in
einer Liste suchen soll, den Namen, nach dem es suchen soll. Man könnte diesen
Namen in eine globale Variable schreiben und ihn so an das Unterprogramm
übergeben. Das ist besonders für Anfänger leicht zu handhaben, letztlich jedoch
ein schlechter und fehleranfälliger Programmierstil.
Die bessere Lösung für dieses Problem ist, den Namen direkt an das Unterpro-
gramm zu übergeben. Werte, die man einem Unterprogramm direkt übergeben
kann, werden als "Parameter" bezeichnet.

Ein einfaches Beispiel. Wir vereinbaren eine SUB, die einen Namen mehrfach
ausgeben soll:
SUB Namensschleife (name$ as String, x as real)
DIM N
For N = 1 to X
Print name$

NEXT N
End SUB

Name$ und X sind die Parameter. N ist eine lokale Variable. Die For-Schleife gibt
den Namen so oft aus, wie X vorgibt. Diese Sub können wir nun beliebig oft
aufrufen.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 134

DIM N, T$
T$ = "Willi"
N = 7
Namensschleife "Paul", 5 ’ 5x Paul
Namensschleife T$, N+3 ’ 10x Willi. N ist immer noch 7

N und T$ seien globale Variablen. Wie oben beschrieben unterscheidet der
Compiler zwischen dem globalen N und dem lokalen N in der SUB Namens-
schleife. Wie Sie sehen ist es völlig egal ob Sie als Parameter einen festen Wert,
eine Variable oder eine Berechnung übergeben. R-BASIC wertet den Ausdruck
zur Laufzeit aus und kopiert den Wert dann in die Parameter des Unterprogramms
(in unserem Fall name$ und X).

Intern behandelt R-BASIC die Parameter wie lokale Variablen. Der einzige
Unterschied ist, dass sie beim Aufruf des Unterprogramms mit den übergebenen
Werten belegt werden. Alle anderen lokalen Variablen werden beim Aufruf des
Unterprogramms gelöscht (d.h. mit Nullen belegt). Das hat wieder zwei sehr
praktische Folgen:

• Sie haben die gleichen Freiheiten bei der Namensvergabe von Parametern
wie bei den lokalen Variablen.

• Sie dürfen einen Parameter innerhalb eines Unterprogramms verändern ohne
dass dies auf das Hauptprogramm zurückwirkt. Ändern Sie zum Beispiel
unsere Sub von oben wie folgt:
SUB Namensschleife (name$ as String, x as real)
DIM N
name$ = "Der Name ist " + name$
For N = 1 to X

Print name$
NEXT N

End SUB

und übergeben ihr dann die globale Variable T$
Namensschleife T$, N+3

so wird die globale Variabel T$ dadurch NICHT geändert.

SUB, END SUB

Die Anweisung SUB (für Subroutine = Unterprogramm) vereinbart ein Unter-
programm. Es können Parameter an das Unterprogramm übergeben werden und
innerhalb des Unterprogramms können lokale Variablen, Konstanten und Labels
definiert werden, die nur innerhalb des Unterprogramms gültig (dem Compiler
bekannt) sind.

Mit SUB vereinbarte Unterprogramme müssen mit END SUB (Ende der Sub-
routine, Leerzeichen nicht vergessen) abgeschlossen werden.
Ein vorzeitiges Verlassen des Unterprogramms mit RETURN ist möglich.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 135

 Vereinbarung: SUB <Name> ([<Parameterliste>])
<Lokale Vereinbarungen>
<ProgrammCode>

END SUB

<Name> Bezeichner, unter dem die SUB augerufen werden kann.
<Parameterliste> Liste Parametern, die beim Aufruf an die SUB übergeben

werden sollen. Die Werte werden beim Aufruf der SUB in die
Parameter kopiert.
Die Parameterliste darf leer sein. Die Klammern sind erforderlich.

Aufruf: Name <Parameter>

Der Aufruf gefolgt über die Angabe des Namens des Unterprogramms, gefolgt von
der Parameterliste. Eine Klammer um die Parameterliste ist zulässig, aber nicht
erforderlich. Die einzelnen Parameter sind durch Komma zu trennen. Existiert
keine Parameterliste, wird nur der Name angegeben.

Beispiel 1:
SUB Demo ()

Print "Ich bin ein Sub-Programm"
END SUB

Aufruf:
Print "Im Hauptprogramm"
Demo
Print "Zurück im Hauptprogramm"

Ausgabe:
Im Hauptprogramm
Ich bin ein Sub-Programm
Zurück im Hauptprogramm

Beispiel 2:
SUB PrintTableLine (x as real) ’ x ist der Parameter
DIM y, z as real ’ y und z sind lokale Variablen

y = x*x + 2*x – 12
z = 12*sin(x)
Print x, y, z

END SUB

Aufruf:
For N = 1 To 14

PrintTableLine (N)
Next N

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 136

Ausgabe:
1 -9 10.098
2 -4 10.912
3 3 1.6934
4 12 -9.0816
usw.

Beispiel 3:
SUB CheckValue (a, b as real) ’ a, b: Parameter

If a = b Then Return ’ Rückkehr wenn gleich
Print "Warnung! Werte sind nicht gleich!"

END SUB

Aufruf:
CheckValue X, 17 ’ Warnt, wenn X nicht 17 ist

RETURN

Die Anweisung RETURN beendet ein Unterprogramm und kehrt zu der Routine
zurück, die das Unterprogramm aufgerufen hat. RETURN in einem Actionhandler
beendet die Abarbeitung des Actionhandlers und R-BASIC kehrt in den
Wartezustand zurück. RETURN kann an beliebiger Stelle im Programm stehen.
Insbesondere ist es erlaubt RETURN innerhalb von Schleifen und Verzweigungen
zu verwenden.

Syntax: RETURN
Return kehrt vorzeitig aus einer SUB oder einem Actionhandler
zurück.

Syntax RETURN <Rückgabewert>
Return mit Rückgabewert kehrt aus einer Function zurück und
übergibt den Rückgabewert an die aufrufende Routine.

FUNCTION - END FUNCTION

Die Anweisung FUNCTION (für Funktion = Formel, die einen Wert berechnet)
vereinbart ein Unterprogramm, das einen Wert zurückliefert. Es können Parameter
an die Function übergeben werden und innerhalb der Function können lokale
Variablen, Konstanten und Labels definiert werden, die nur innerhalb des
Unterprogramms gültig (dem Compiler bekannt) sind.
Die Vereinbarung einer FUNCTION endet mit der Anweisung END FUNCTION
(Ende der Funktion, Leerzeichen nicht vergessen).

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 137

Um eine Function zu verlassen muss die Anweisung
RETURN <Rückgabewert>

ausgeführt werden. Üblicher Weise steht diese Anweisung direkt vor der END
FUNCTION Anweisung. Sie kann aber auch an beliebiger Stelle innerhalb der
Function stehen. Der Rückgabewert muss dabei den in der Vereinbarung der
Function angegebenen Typ haben.

 Vereinbarung: FUNCTION <Name> (<Parameterliste>) AS <Typ>
<Lokale Vereinbarungen>
<ProgrammCode>
RETURN <Rückgabwert>
END FUNCTION

<Name> Bezeichner, unter dem die Function aufgerufen werden kann.
<Parameterliste> Liste Parametern, die beim Aufruf an die Function übergeben

werden sollen. Die Werte werden beim Aufruf der Function in die
Parameter kopiert.
Die Parameterliste darf leer sein. Die Klammern sind erforderlich.

<Typ> bezeichnet den Datentyp der Funktion. Es sind alle Standard-BASIC-
Typen sowie selbst definierte Strukturen erlaubt. Der Rückgabewert
in der RETURN-Anweisung muss diesen Typ haben.

Aufruf: <var> = Name (<Parameter>)

 <var> ist eine Variable vom Typ, den die Funktion hat.
 <Parameter> sind die Parameter - falls vorhanden - mit Komma getrennt. Die

Klammern sind erforderlich, auch wenn keine Parameter existieren.

Aufruf: Name (<Parameter>)
Es ist zulässig eine Function aufzurufen, ohne den Rückgabewert zu
verwenden.

Beispiel 1:
Diese einfache Funktion berechnet die Anzahl der Pixel auf dem Bildschirm. MaxX
und MaxY sind globale Variablen, die die maximale x- und y-Koordinate enthalten.
Da die Koordinaten bei Null beginnen müssen wir jeweils 1 addieren.

FUNCTION PixelsOnScreen () As Real
Return (MaxX+1) * (MaxY+1)

END FUNCTION

Aufruf:
DIM anz as Real
anz = PixelsOnScreen()

oder
Print PixelsOnScreen()

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 138

Beispiel 2:
Diese Funktion berechnet den Funktionswert einer linearen Funktion.
FUNCTION LinFunc (x as real) As Real ’ x: Parameter

DIM y as real ’ y: lokale Variable
y = 2*x + 1
Return y

END FUNCTION

Aufruf:
For N = –2 To 2

Print N, LinFunc(N)
Next N

Ausgabe:
-2 -3
-1 -1
 0 1
 1 3
 2 5

Beispiel 3:
Komplexes Beispiel: Diese Funktion manipuliert eine String.
Function StringFunc(A$ as String, b as Real) AS String
IF b = 0 THEN Return "" ’ Leeren String
IF b > 0 THEN

Return Left$(A$, b) ’ die linken Buchstaben
ELSE

b = – b ’ Aus Minus mach Plus
Return Right$(A$, b) ’ die rechten Buchstaben

END IF
END FUNCTION

Aufruf:
Beachten Sie, dass der Compiler den Parameter A$ von der im folgenden Beispiel
vereinbarten Variablen A$ unterscheidet.
DIM A$, B$
A$ = StringFunc("Hallo Welt", 3)
B$ = StringFunc("Hallo Welt", -3)
Print A$+B$

Ausgabe:
Halelt

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 139

Funktionen können nur einen einzigen Wert zurückgeben. Wenn Sie mehr als
einen Wert zurückgeben wollen sollten Anfänger auf globale Variablen
zurückgreifen. Fortgeschrittene Programmierer sollten eine Struktur definieren, die
alle gewünschten Werte enthält und diese zurückgeben. Beispiel:

STRUCT Worker
name$ As String(20)
job$ AS String(20)
tel AS DWORD

END Struct

Function InitWorker() as Worker
DIM w as Worker
w.name$ = "Pink Panther"
w.job$ = "Spaßbolzen"
w.tel = 47320800
Return w

End Function

Actionhandler

ACTION-Handler sind Unterprogramme, die von einem Objekt direkt aufgerufen
werden. Ein R-BASIC Programm besteht eigentlich aus einer Sammlung von
Actionhandlern, die zu gegebener Zeit aktiviert werden. Sie können selbst wieder
andere Unterprogramme (Sub, Function) aufrufen.

Innerhalb eines Actionhandlers können wie bei jedem anderen Unterprogramm
lokale Variablen, Konstanten und Labels definiert werden, die nur innerhalb des
Handlers gültig (dem Compiler bekannt) sind. Actionhandler müssen mit
END ACTION (Ende der Aktion, Leerzeichen nicht vergessen) abgeschlossen
werden.
Ein vorzeitiges Verlassen des Handlers mit RETURN ist möglich. R-BASIC geht
dann wieder in den Wartezustand über.

Der Typ des Handlers beschreibt, von welchen Objekten der Handler aufgerufen
werden kann.
Alle Actionhandler haben den Parameter "sender" (enthält das Objekt, dass den
Handler aktiviert hat) sowie weitere, vom Typ des Handlers abhängige Parameter.
Bei der Vereinbarung eines Handlers werden die Parameter NICHT explizit
angegeben. Tipp: Verwenden Sie den Menüpunkt "Extras"-"Code Bausteine"-
"Action-Handler". Damit erhalten Sie neben dem Handler-Rumpf einen
Kommentarblock mit allen Parametern des Handlers.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 140

 Vereinbarung: <HANDLERTYP> <Name>
<Lokale Vereinbarungen>
<ProgrammCode>
END ACTION

<Handlertyp> Beschreibt, in welcher Situation und von welcher Objektklasse
der Handler aufgerufen wird. Die Handlertypen sind bei den Objekten
beschrieben, die sie aufrufen.

<Name> Bezeichner, der den Handler identifiziert

Beispiel
ButtonAction DemoAction
MsgBox "Button gedrückt"

END ACTION

Weitere Informationen zu Actionhandlern finden Sie im Objekt-Handbuch, Kapitel
1.5 (Vereinbarung von Action-Handlern) sowie bei der Beschreibung der einzelnen
Objekte.

Vorab-Vereinbarung mit DECL

Sie können Unterprogramme (SUB, FUNCTION) erst dann verwenden, wenn
diese zuvor dem R-BASIC-Compiler mit Namen und Parametern bekannt sind.
Damit Sie die Unterprogramme nicht in der Reihenfolge ihrer Verwendung im
Quelltext anordnen müssen gibt es die DECL-Anweisung.
Die DECL-Anweisung (Declare = mache bekannt) informiert den Compiler über
Namen und Parameterliste von Unterprogrammen, die erst weiter hinten im
Quelltext vereinbart werden. Damit kann man

• die Übersichtlichkeit von Programmen erhöhen
• ermöglichen, dass sich Unterprogramme gegenseitig aufrufen können (A ruft B

und B ruft A), was sonst nicht möglich wäre
• Libraries schreiben: Die DECL-Anweisungen gehören dann in das EXPORT-

Fenster.

Syntax: DECL SUB <Name> (<ParameterListe>)
DECL FUNCTION <Name> (<ParameterListe>) AS <Type>
DECL <HandlerType> <Name>

Abarbeitung von Unterprogrammen

Die folgenden technischen Details beschreiben, wie R-BASIC intern den Aufruf
von Subs und Functions organisiert. Die Kenntnis dieser Details ist für die
Verwendung von Unterprogrammen nicht unbedingt erforderlich.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Unterprogramme - 141

• Stößt R-BASIC auf eine Unterprogrammaufruf, merkt er sich die Adresse des
darauffolgenden Befehls (Rücksprungadresse) und verzweigt zum
Unterprogramm.

• Die Rücksprungadressen werden auf einem sogenannten Stapelspeicher
(Stack) abgelegt, R-BASIC kann sich also sehr viele Adressen merken.

• Die Anweisungen RETURN bzw. END SUB beenden die Abarbeitung des
Unterprogramms.

• Die zuletzt auf dem Stack abgelegte Returnadresse wird von Stack geholt und
das Programm wird an dieser Stelle fortgesetzt wird. Dadurch kann
Unterprogramme verschachteln, d.h. innerhalb von Unterprogrammen wieder
andere Unterprogramme aufrufen. Die Verwendung eines Stacks stellt sicher,
dass R-BASIC dabei immer an die korrekte Stelle zurückspringt.

Anmerkungen
• Die Anweisung End Function sollte niemals erreicht werden, weil Functions

immer mit RETURN beendet werden müssen. Wird End Function erreicht
handelt es sich um einen Programmierfehler und es kommt zu einem
Laufzeitfehler.

• Beim Aufruf eines Actionhandlers durch ein Objekt wird ebenfalls eine
(spezielle) Rücksprungadresse auf dem Stack abgelegt. Die Anweisung End
Action beendet die Ausführung eines Actionhandlers. R-BASIC erkennt die
spezielle Rücksprungadresse, holt sie vom Stack und kehrt in den Ruhe-
zustand zurück.

Abwärtskompatibilität

GOSUB

R-BASIC unterstützt auch die in vielen BASIC-Dialekten verwendete Kombination
GOSUB-RETURN Das kann die Übertragung fremder BASIC-Programme
vereinfachen.

Die Anweisung GOSUB (Gehe zu Sub-Routine) setzt den Programmablauf an der
angegebenen Stelle fort und kehrt nach Beendigung des Unterprogramms
(Anweisung RETURN) wieder zurück.

Diese einfache Form der Unterprogrammtechnik hat nicht die Vorteile einer SUB
oder FUNCTION (Parameterübergabe, lokale Variablen und Labels) und sollte
daher in eigenen Programmen nicht verwendet werden.

Syntax: GOSUB <sprungZiel>
<sprungZiel> muss eine im Programm mit der Anweisung LABEL vereinbarte

Marke oder eine im Programm explizit vergebene Zeilennummer sein.

Ein mit GOSUB aufgerufenes Unterprogramm muss mit RETURN
beendet werden.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 142

2.7 Eingaben durch den Nutzer

2.7.1 Eingabe von Text und Zahlen

In vielen Fällen muss der Nutzer während des laufenden Programms bestimmte
Werte oder andere Daten eingeben. In einem objektorientierten BASIC-Programm
werden dazu Textobjekte (Klassen Memo, InputLine, VisText oder LargeText)
oder Objekte der Klasse Number (Anzeige und Eingabe von Zahlen) verwendet.
Diese Objekte werden ausführlich im Objekthandbuch beschrieben.

Manchmal ist es jedoch gewünscht Daten direkt auf dem Grafikbildschirm
einzugeben oder es lohnt sich nicht, wegen einer kurzen Eingabe eine Dialogbox
mit einem Textobjekt zu programmieren oder ein VisText-Objekt zu verwenden.
Für diesen Zweck gibt es im Standard-BASIC den Befehl INPUT (Eingabe direkt
auf dem Grafikbildschirm) und in R-BASIC zusätzlich den Befehl InputBox
(Eingabe in einer Dialogbox). Wenn Sie einzelne Zeichen von der Tastatur
einlesen wollen, stehen Ihnen die Funktionen InKey$, GetKey, GetKeyLP und
GetKeyState zur Verfügung, die im nächsten Abschnitt beschrieben werden.

INPUT

Der Befehl INPUT (= Eingabe) fordert vom Nutzer eine oder mehrere Werte an.
Die Eingabe erfolgt dabei direkt auf dem Schirm. Zum Editieren stehen die
Cursortasten (Pfeiltasten) links und rechts, Backspace, Pos1 und Ende zur
Verfügung.

Syntax: INPUT [infoString;] var [, var] [, var]
infoString (optional) Dieser Text wird ausgegeben. Es kann ein beliebiger

String-Ausdruck (fester Text, Variable, Konstante, Stringfunktion)
sein. Er MUSS mit einem Semikolon abgeschlossen sein. Daran
erkennt R-BASIC, dass es sich um den Info-String, und nicht
etwa eine einzugebende Variable handelt. Fehlt der infoString,
verwendet R-BASIC ein Fragezeichen "?".

var bezeichnet die einzugebenden Variablen.
Zulässig sind alle numerischen Datentypen sowie alle String-
Typen. Dazu zählen auch Feld- und Struktur-Elemente.

Beispiele:
INPUT A

INPUT "Bitte geben Sie Ihr Alter ein:"; A

C$ = "Was nun?"
INPUT C$; A$ ’ Eingabe der Variable A$

’ Auf dem Schirm erscheint "Was nun?"

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 143

INPUT C$, A$ ’ Eingabe der Variablen C$ UND A$
’ weil hinter c$ ein Koma steht.
’ Auf dem Schirm erscheint ein Fragezeichen.

Hinweise:
• INPUT ist ein Befehl um die Abwärtskompatibilität zu älteren BASIC Pro-

grammen zu gewährleisten. Sie sollen die Verwendung von Input in eigenen
Programmen möglichst vermeiden.

• Es ist zu empfehlen, immer nur eine Variable anzufordern.
• Dezimaltrennzeichen ist immer der Punkt ’.’
• Werden mehrere Variablen angefordert, ist als Trennzeichen das Komma ’,’

erforderlich. Eine Eingabe von Texten, die ein Komma enthalten, ist dann nicht
möglich.

• Wird die Eingabezeile leer gelassen, so behalten die einzugebenden Variablen
den Wert, den sie vorher hatten (Bestätigungsfunktion).

• Sollte als aktuelle Hintergrundfarbe BG_TRANSPARENT eingestellt sein (d.h.
der Hintergrund wird bei Textausgabe nicht gelöscht) so wird während der
INPUT-Anweisung ein schwarzer Hintergrund verwendet.

• Üblicher Weise ist der Screen ein BitmapContent-Objekt, wenn INPUT
verwendet wird. Der Screen ist das Objekt, an das Grafik- und Textausgaben
gehen (siehe Objekthandbuch, Kapitel 2.3). Input arbeitet aber auch mit
anderen Objektklassen als Screen.

InputBox

Der Befehl InputBox (Eingabe in eine DialogBox) fordert vom Nutzer eine oder
mehrere Werte an. Die Eingabe erfolgt dabei in einer Dialog-Box. Es stehen alle
GEOS-typischen Editierfunktionen, einschließlich Drag & Drop (Verschieben mit
der rechten Maustaste) zur Verfügung.

Syntax: InputBox infoString; var [, var] [, var]
infoString: Dieser Text wird ausgegeben. Es kann ein beliebiger String-

Ausdruck (fester Text, Variable, Konstante, Stringfunktion) sein.
Der Text wird in der Dialogbox angezeigt.

var bezeichnet die einzugebenden Variablen.
Zulässig sind alle numerischen Datentypen sowie alle String-
Typen. Dazu zählen auch Feld- und Struktur-Elemente.

Beispiel:
InputBox "Bitte geben Sie Ihr Alter ein:"; A

Hinweise: siehe INPUT

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 144

2.7.2 Direkte Abfrage der Tastatur

In vielen Fällen werden Sie zur Eingabe von Text oder Zahlen die entsprechenden
R-BASIC Objekte (Klassen Memo, InputLine , VisText, LargeText oder Number)
verwenden. Wenn Sie jedoch auf einzelne Zeichen, die über die Tastatur
eingegeben werde, reagieren wollen, sollten Sie einen Tastaturhandler
(OnKeyPressed Handler) schreiben. Tastaturhandler sind im Handbuch "Spezielle
Themen", Kapitel 14 (Arbeit mit der Tastatur) beschrieben.
Für einfache Fälle und zur Wahrung der Abwärtskompatibilität stehen Ihnen
zusätzlich die Funktionen InKey$, GetKey, GetKeyLP und GetKeyState zur
Verfügung, die im Folgenden beschrieben werden.

InKey$

Die Funktion InKey$ (Input Keyboard = Tastatureingabe) liest ein einzelnes ASCII-
Zeichen von der Tastatur ein. Bestimmte Steuerzeichen werden ebenfalls erkannt.
InKey$ verwendet einen 15 Zeichen großen Puffer, damit möglichst keine Tasten-
drücke verloren gehen. InKey$ liefert einen Leerstring, wenn der Puffer leer ist.

Syntax: <stringVar> = InKey$

Die in der Tabelle aufgeführten symbolischen Konstanten stehen zur Verfügung,
wenn die KeyCodes-Library eingebunden wird (siehe 2. Beispiel).

Erkannte Steuertasten ASCII-Code Symbolischer Konstante
Backspace 08 (&h08) ASC_BS
Tabulator 09 (&h09) ASC_TAB
Enter 13 (&h0D) ASC_ENTER
Bild hoch 17 (&h11) ASC_PAGE_UP
Bild runter 18 (&h12) ASC_PAGE_DOWN
Ende 24 (&h14) ASC_POS_END
Pos 1 25 (&h15) ASC_POS_1
Einfg (Insert) 26 (&h16) ASC_INS
Entf (Delete) 23 (&h17) ASC_DEL
ESC 27 (&h1B) ASC_ESC
Pfeiltasten (Cursortasten)
nach unten 10 (&h0A) ASC_DOWN
nach oben 11 (&h0B) ASC_UP
nach links 14 (&h0E) ASC_LEFT
nach rechts 15 (&h0F) ASC_RIGHT

Beispiele:
Warten bis Enter gedrückt wurde

WHILE InKey$ <> Chr$(13) : WEND

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 145

Einbinden des KeyCodes Library und warten bis Enter gedrückt wurde
INCLUDE "KeyCodes"
....
WHILE InKey$ <> Chr$(ASC_ENTER) : WEND

R-BASIC füllt den Tastaturpuffer bei jedem Tastendruck auf, auch wenn der
Nutzer z.B. etwas in ein Textobjekt eingibt. Falls Sie nicht sicher sind, dass der
Tastaturpuffer keine unerwünschten Zeichen enthält, sollten Sie den Puffer
manuell leeren, beispielsweise mit der folgenden Anweisung.

REPEAT UNTIL InKey$ = "" ’ Tastaturpuffer leeren

In vielen Fällen ist das allerdings nicht nötig, da der Puffer unter anderem beim
Start eines jedes Handlers automatisch geleert wird.

GetKeyState

Um die aktuell gedrückten Modifier-Tasten (Shift, Ctrl, Alt) und den LockStatus
(ShiftLock, NumLock, ScrollLock (=Rollen)) abzufragen, bietet R-BASIC die
Funktion GetKeyState. Kenntnisse von Bit- und logischen Operationen (siehe
Kapitel 2.3.4 und 2.3.5) sind für die Anwendung dieser Funktion erforderlich.

Syntax: <numVar> = GetKeyState
<numVar>: numerische Variable

Das höherwertige Byte enthält den LockStatus.
Das niederwertige Byte enthält den Shift-Status. Der Shift-Status
wird auch durch die LED’s an der Tastatur wiedergegeben.
Die Bits sind in der Tabelle unten erklärt.

Tabellen: Bedeutung der Bits, die von GetKeyState geliefert werden

Konstante (Shift-State) Wert (hex.) Bedeutung
– 1 &h01 Feuertaste 1 am Joystick
– 2 &h02 Feuertaste 2 am Joystick
KS_RSHIFT 4 &h04 Rechte Shift-Taste
KS_LSHIFT 8 &h08 Linke Shift-Taste
KS_RCTRL 16 &h10 Rechte Strg-Taste
KS_LCTRL 32 &h20 Linke Strg-Taste
KS_RALT 64 &h40 Rechte Alt-Taste
KS_LALT 128 &h80 Linke Alt-Taste

Konstante (Toggle-State) Wert (hex.) Bedeutung
KS_SCROLL_LOCK 256 &h100 Scroll-Lock-Taste (Rollen)

eingerastet
KS_NUM_LOCK 512 &h200 Num-Lock-Taste eingerastet
KS_CAPS_LOCK 1024 &h400 Shift-Lock Taste eingerastet

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 146

Beispiele:
’Abfrage ob eine Shift-Taste gedrückt ist
IF GetKeyState AND (KS_RSHIFT OR KS_LSHIFT) THEN

’ Abfrage ob die NUM-Lock Taste gedrückt ist
IF GetKeyState AND KS_NUM_LOCK THEN

’ Ausblenden des Lock-Staus , nur Shift-Status beachten
shiftState = GetKeyState AND &hFF

Hinweis: Diese Informationen werden auch direkt an den OnKeyPressed Handler
von Objekten übergeben (als Parameter keyState). Im Handbuch "Spezielle
Themen", Kapitel 14, finden Sie ausführliche Informationen dazu.

GetKey

Die Funktion GetKey (= Hole Taste) fragt die Tastatur ab, ob gerade eine Taste
gedrückt ist und liefert den GEOS-Tasten-Code. Dies kann ein ASCII-Code sein.
Bei Tasten, denen kein ASCII-Zeichen zugeordnet ist (Steuertasten), ist es ein
erweiterter Code (> 255).

GetKey liefert immer die aktuell gedrückte Taste, auch wenn diese bereits
mehrfach angefragt wurde. Im Gegensatz dazu liefert InKey$ jede Taste genau
einmal, sogar dann, wenn sie zum Zeitpunkt der Abfrage bereits wieder
losgelassen wurde.

Syntax: <numVar> = GetKey

Beispiele:
’ Warten bis irgendeine Taste gedrückt wurde
WHILE GetKey = 0 : WEND

’ Verzweigen, je nach Teste
’ Wir verwenden mit WHILE TRUE ... WEND eine "Endlosschleife"
’ die beim Drücken der Taste ’3’ verlassen wird
CLS
WHILE TRUE
On GetKey SWITCH
case ASC("0"): Print "Null": End case
case ASC("1"): Print "Eins": End case
case ASC("2"): Print "Zwei": End case
case ASC("3"): Print "ENDE.": BREAK ’ Schleife verlassen
End Switch

WEND

Für die meisten der Steuertasten stehen symbolischen Konstanten zur
Verfügung, wenn die KeyCodes-Library eingebunden wird.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 147

Beispiel:
’ Warten bis die Enter-Taste gedrückt
’ und wieder losgelassen wurde
INCLUDE "KeyCodes"
CLS
Print "wait..."
While GetKey <> Key_Enter : Wend
While GetKey = Key_Enter : Wend
Print "Fertig."
...

GetKeyLP

GetKeyLP (Get Key, Last Pressed) tut weitgehend das gleiche, wie GetKey. Der
einzige Unterschied ist, dass GetKeyLP, wenn es erstmalig nach dem Loslassen
einer Taste gerufen wird, deren Tastencode noch liefert.

Das bedeutet konkret:
• Während eine Taste gedrückt ist, sind GetKey und GetKeyLP identisch
• Wird GetKey gerufen, nachdem die Taste losgelassen wurde, liefert es immer

NULL.
• Wird GetKeyLP erstmalig gerufen, nachdem die Taste losgelassen wurde,

liefert es den Tastencode der zuletzt gedrückten Taste.
• Wird GetKeyLP bei losgelassener Taste weitere Male gerufen, liefert es

NULL.

Verwenden Sie GetKey, wenn Sie exakt unterscheiden wollen, ob gerade eine
Taste gedrückt ist, oder nicht.

Verwenden Sie GetKeyLP oder InKey$, wenn Sie sicherstellen wollen, dass auch
kurze Tastendrücke registriert werden sollen, selbst wenn Ihr Programm
"beschäftigt" ist. Das können z.B. eine umfangreiche Berechnung oder der Delay-
Befehl sein.

Syntax: <numVar> = GetKeyLP

Beispiel
DIM x
x = GetKeyLP ’ Letzten Tastendruck löschen, falls nötig
Print "Drücken Sie eine beliebige Taste zu Beenden!"
Delay 60 ’ Eine Sekunde Verzögerungszeit
While GetKeyLP = 0

 Print "*"
 Delay ’ Warten bis eine Sekunde vorbei ist
 Wend
Print "Fertig"

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 148

2.7.3 Messageboxen

Um auf einfache Weise Meldungen auszugeben, verfügt R-BASIC über die
Funktionen MsgBox, WarningBox, ErrorBox und QuestionBox.

MsgBox

MsgBox gibt eine einfache Meldung in einer Dialogbox aus.

Syntax: MsgBox "InfoText"

Beispiele:
MsgBox "Der Prozess ist abgeschlossen"
MsgBox A$ + " ist herausgekommen!"

WarningBox

WarningBox gibt eine einfache Warnung in einer Dialogbox aus.

Syntax: WarningBox "InfoText"

Beispiele:
WarningBox "Es konnten nicht alle Daten gesichert werden."
WarningBox A$ + " ist gefährlich"

ErrorBox

ErrorBox gibt eine einfache Fehlermeldung in einer Dialogbox aus.

Syntax: ErrorBox "InfoText"

Beispiele:
ErrorBox "Es ist ein Fehler aufgetreten"
ErrorBox A$ + " ist fehlerhaft"

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Nutzereingaben - 149

QuestionBox

QuestionBox gibt eine Frage in einer Dialogbox aus, die der User mit JA oder
NEIN beantworten kann.

Syntax: <numVar> = QuestionBox ("InfoText")
Die Klammern sind erforderlich.
Der Rückgabewert ist Null (R-BASIC-Konstante NO), wenn der User
auf "Nein" klickt oder 1 (R-BASIC-Konstante YES), wenn der User auf
"Ja" klickt

Beispiele:
DIM x
x = QuestionBox("Sind Sie sicher?")
IF x = NO THEN Print "Dann eben nicht"

IF QuestionBox("Wollen Sie das Programm beenden?") = YES \
THEN EXIT

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 150

2.8 Grafik

2.8.1 Das Koordinatensystem

Alle Grafikausgaben erfolgen in R-BASIC auf das aktuell eingestellte Screen-
Objekt. R-BASIC verwendet das originale PC/GEOS Koordinatensystem zur
Grafikausgabe. Dabei hat der Punkt links oben die Koordinaten (0; 0).

(MaxX; MaxY)

(0; 0)
x

y

MaxX, MaxY

MaxX und MaxY sind globale Variablen, welche die größte verfügbare x- bzw. y-
Koordinate des aktuellen Screen-Objekts enthalten. Wenn Sie zum Beispiel ein
BitmapContent-Objekt der Größe 640x400 Pixel als aktuellen Screen haben, so
gilt MaxX = 639 und MaxY = 399.

Beispiel:
Rectangle 0, 0, MaxX, MaxY

Die Werte für MaxX und MaxY vom aktuell eingestellten Screen-Objekt ab.
Eventuelle Besonderheiten sind bei den entsprechenden Objekten beschrieben.

Sie haben die Möglichkeit das Koordinatensystem Ihren Wünschen anzupassen.
Dazu gehört zum Beispiel, dass Sie die Lage des Koordinatenursprungs und die
Skalierung der Achsen ändern können (Befehle ScreenSetTranslation und
ScreenSetScale). Eine komplette Liste der Möglichkeiten finden Sie im
Objekthandbuch im Kapitel 2.3.4 (Anpassen des Koordinatensystems) und für
Fortgeschrittene im Kapitel 2.3.5 (Komplexe Manipulation des Koordinaten-
systems).

Weitere Hinweise:
• Einen kompletten Überblick über die in R-BASIC verfügbaren Möglichkeiten

zur Grafikausgabe finden Sie im Objekt Handbuch, Kapitel 2.2.2 (Konzepte zur
Grafikausgabe).

• Im Kapitel 2.2.1 (Objekte zur Grafikausgabe) finden Sie eine Liste aller
Objekte, die als Screen arbeiten können, sowie die dazugehörigen
Besonderheiten.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 151

2.8.2 Farben

Computer beschreiben Farben durch eine Zahl. Häufig wird dabei der Rot-, der
Grün- und der Blauanteil einer Farbe durch jeweils eine Zahl im Bereich von 0
(Anteil nicht vorhanden) bis 255 (Anteil mit maximaler Intensität vorhanden)
beschrieben. Für diese sogenannten RGB-Farben werden 3 Byte benötigt und es
ergeben sich 256*256*256 = 16.777.216 möglich Farben.
Ein anderer häufiger Fall ist, dass nur 1 Byte verwenden will, um eine Farbe zu
beschreiben. Dann wird eine sogenannte Palette verwendet. Die Palette ist eine
Liste von bis zu 256 Einträgen zu je drei Byte - jeweils eins für Rot, Grün und Blau.
Der "Farbwert" entspricht dann der Nummer (dem sogenannten Index) des
Eintrags in der Liste. Deshalb werden diese Farben auch als Index-Farben
bezeichnet. Die Zählung beginnt dabei immer mit Null. Wenn keine eigene Palette
vereinbart verwendet GEOS eine Standard-Palette.

R-BASIC unterstützt beide Möglichkeiten, die Verwendung von Indexfarben und
die Verwendung von RGB-Farben.

Die folgende Tabelle gibt einen Überblick über die Befehle zur Farbverwaltung
Befehl Aufgabe
Color v, h Stellt die Vordergrund und die Hintergrundfarbe ein (1)

Ink v Stellt nur die Vordergrundfarbe ein (1)

Paper h Stellt nur die Hintergrundfarbe ein (1)

RGB (r, g, b) Ermittelt den RGB-Farbewert aus den Farbanteilen
RedOf (col) Ermittelt den Rotanteil einer RGB-Farbe
GreenOf (col) Ermittelt den Grünanteil einer RGB-Farbe
BlueOf (col) Ermittelt den Blauanteil einer RGB-Farbe
GrayOf (col) Ermittelt den zu einer Farbe gehörenden Grauwert

(1) Eine weitergehende Kontrolle über die verwendeten Farben, Füllmuster,
Linienstile usw. haben Sie, wenn Sie die Systemvariable graphic, die im Kapitel
2.8.4 beschrieben ist, direkt verändern

Beschreibung von Farben in R-BASIC

Jeder Farbwert wird durch einen 32 Bit (dword) Wert beschrieben. Das kann
entweder ein Farb-Index aus der GEOS-System-Palette sein (Wertebereich 0 bis
255) oder es ist ein RGB-Wert. Der numerische Wert liegt dann oberhalb von
16.777.215 (hexadezimal größer als &hFFFFFF). Diese Werte sind so gewählt,
dass die Farbbefehle selbständig entscheiden können, ob es sich um eine
Indexfarbe, eine RGB-Farbe oder einen Spezialfall handelt. Verwenden Sie die
unten beschriebene Funktion RGB(), um einen RGB-Farbwert zu konstruieren.

Interne Details:
Zur Unterscheidung zwischen RGB- oder Index-Wert wird das höherwertige Byte
des dword benutzt. Erlaubte Werte sind 0 oder 1, andere Werte können zu

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 152

unerwarteten Ergebnissen führen. Um Texte oder Blockgrafikzeichen mit trans-
parentem Hintergrund auszugeben wird für die Hintergrundfarbe der Spezialwert
BG_TRANSPARENT (=4096) eingestellt.

Aufbau eines Farbwertes mit Index: 0 0 0 Index

Aufbau eines RGB-Farbwertes: 1 b g r

Spezialwert für Transparenz: 0 0 1 016

Farbkonstanten

Für die ersten 16 Werte der GEOS-Farbpalette existieren symbolische Namen. In
vielen Fällen kann dadurch die Lesbarkeit des Programms verbessert werden. Es
handelt sich einfach um die englischen Bezeichnungen der Farben.

Konstante Wert Farbe
BLACK 0 Schwarz
BLUE 1 Blau
GREEN 2 Grün
CYAN 3 Türkis
RED 4 Rot
VIOLET 5 Lila
BROWN 6 Braun
LIGHT_GRAY 7 Hellgrau
DARK_GRAY 8 Dunkelgrau
LIGHT_BLUE 9 Hellblau
LIGHT_GREEN 10 Hellgrün
LIGHT_CYAN 11 Helltürkis
LIGHT_RED 12 Hellrot
LIGHT_VIOLET 13 Hell-Lila
YELLOW 14 Gelb
WHITE 15 Weiß
Sonderfall
BG_TRANSPARENT 4096 Kein Farbwert im eigentlichen Sinne. Stellt

ein, dass Texte (oder Zeichen im
BlockGrafik-Modus) mit transparentem
Hintergrund dargestellt werden sollen.
Kann nur für Hintergrundfarben verwendet
werden.

Info: Die hellen Farbwerte ergeben sich, indem man zum dunkleren Farbwert 8
addiert.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 153

COLOR

COLOR (Farbe) stellt die Farben für Vordergrund und Hintergrund ein. Die
Vordergrundfarbe wird für Texte, Linien, Punkte und Flächen verwendet.

Syntax: COLOR v, h
v: neue Vordergrundfarbe
h: neue Hintergrundfarbe

Beispiele:
COLOR 7,0 ’ Hellgrau auf Schwarz
COLOR LIGHT_GRAY,BLACK ’ Hellgrau auf Schwarz
COLOR 192, 204

Hinweis: Um Texte oder Blockgrafik-Zeichen transparent auszugeben (d.h. der
Hintergrund wird nicht gelöscht) verwenden Sie als Hintergrundfarbe den Wert
BG_TRANSPARENT (=4096).

INK

INK (Tinte) stellt die Farben für den Vordergrund ein.

Syntax: INK v
v: neue Vordergrundfarbe

Beispiel:
INK GREEN ’ Grün, identisch mit INK 2

PAPER

PAPER (Papier) stellt die Farbe für den Hintergrund ein.

Syntax: PAPER h
h: neue Hintergrundfarbe

Beispiel:
PAPER 4 ’ rot

Hinweis: Um Texte oder Blockgrafik-Zeichen transparent auszugeben (d.h. der
Hintergrund wird nicht gelöscht) verwenden Sie als Hintergrundfarbe den Wert
BG_TRANSPARENT (=4096).

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 154

RGB

Die Funktion RGB() wandelt die Farbanteile rot, grün und blau in einen R-BASIC
Farbwert um.

Syntax: <numVar> = RGB(r, g, b)
r: Rotanteil, 0 .. 255
g: Grünanteil, 0 .. 255
b: Blauanteil, 0 .. 255

Beispiele:
PAPER RGB (50, 50, 255)
LINE 200, 300, 180, 70, RGB (50, 50, 255)

’ Belegung eines Feldes der graphic-System-Variablen
graphic.textColor = RGB (200, 100, 100)

Anmerkung:
Die Funktion RGB() verwendet folgende Formel um den Farbwert zu berechnen:

farbe = r + 256 * g + 65536 * b + 16777216
bzw. gleichwertig hexadezimal

farbe = r + &h100 * g + &h10000 * b + &h1000000

RedOf, GreenOf, BlueOf

Diese Funktionen berechnen den Rot-, Grün- bzw. Blau-Anteil eines R-BASIC
Farbwertes. Der Farbwert kann ein RGB-Wert oder ein Index-Wert sein.

Syntax: r = RedOf(farbe)
g = GreenOf(farbe)
b = BlueOf(farbe)
 farbe: Farbwert (RGB-Wert oder Index)
 r, g, b: numerische Variablen, die den entsprechenden Wert

aufnehmen

Beispiele:
Die Systemvariable graphic ist im Kapitel 2.8.4 beschrieben.

r = RedOf(graphic.lineColor)
g = GreenOf(graphic.areaColor)
b = BlueOf(C_YELLOW)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 155

GrayOf

Diese Funktion berechnet den Grauwert (d.h. die Helligkeit) zu einer Farbe. Das
unterschiedliche Helligkeitsempfinden des Auges für den Rot-, Grün- und Blau-
Anteil wird berücksichtigt. Der Farbwert kann ein RGB-Wert oder ein Index-Wert
sein.

Syntax: <numVar> = GrayOf(farbe)
farbe: Farbwert (RGB-Wert oder Index)

Beispiele:
h = GrayOf(graphic.textColor)
h = GrayOf(PGet (x, y))
h = GrayOf(C_YELLOW)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 156

2.8.3 Linien, Punkte und Figuren

Die folgende Tabelle gibt eine Übersicht über die in R-BASIC verfügbaren Grafik-
befehle zu Linien, Punkten und Figuren.

Befehl / Strukturtyp Aufgabe
CLS Löscht den Bildschirm
LINE x, y, xe, ye [, f] Zeichnet eine gerade Linie
PSet x, y [, f] Zeichnet einen Punkt in der Vordergrundfarbe
PReset x, y Zeichnet einen Punkt in der Hintergrundfarbe
PGet (x, y) Liest die Farbe eines Punktes einer Bitmap aus
Circle x, y, r [, f] Zeichnet einen ungefüllten Kreis
Ellipse x, y, xe, ye [, f] Zeichnet eine Ellipse
FillEllipse x, y, xe, ye [, f] Zeichnet eine gefüllte Ellipse
Rectangle x, y, xe, ye [, f] Zeichnet ein Rechteck
FillRect x, y, xe, ye [, f] Zeichnet ein gefülltes Rechteck
PointList Strukturtyp für Polyline, Polygon und Splines
PolyLine pl Zeichnet einen verbundenen Linienzug
Polygon pl Zeichnet einen geschlossenen Linienzug
FillPolygon pl Zeichnet ein gefülltes Polygon
Spline pl Zeichnet eine Kurve durch mehrere Punkte
ClosedSpline pl Zeichnet eine geschlossene Kurve
BezierSpline pl Für Fortgeschrittene: zeichnet eine Kurve

CLS

CLS (Clear Screen) löscht den Bildschirm mit der aktuellen Hintergrundfarbe.

Syntax: CLS

LINE

Der Befehl LINE (Linie) zeichnet eine Line auf dem Schirm. Standardmäßig wird
die aktuelle Vordergrundfarbe verwendet. Wird der Parameter f angegeben, so
wird diese Farbe verwendet.

Syntax: LINE x0, y0, x1, y1 [, f]
x0, y0: Startpunkt der Linie
x1, y1: Endpunkt der Linie
f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
LINE 0, 0, 100, 200, 15 ’ zeichnet eine weiße Linie

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 157

PSet

Der Befehl PSet (Point Set = Punkt Setzen) setzt einen Punkt auf dem Schirm.
Standardmäßig wird die aktuelle Vordergrundfarbe verwendet. Wird der Parameter
f angegeben, so wird diese Farbe verwendet.

Syntax: PSet x, y [, f]
x, y: Koordinaten des Punktes
f: Punktfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
PSet 19, 200, 12 ’ setzt einen roten Punkt

PReset

Der Befehl PReset (Point Reset = Punkt Zurücksetzen) löscht einen Punkt auf
dem Schirm, d.h. der Punkt wird mit der Hintergrundfarbe belegt.

Syntax: PReset x, y
x, y: Koordinaten des Punktes

Beispiel:
PReset 19, 200

PGet

Die Funktion PGet (Point Get = Punkt holen) liefert den Farbcode des Bildpunktes
an den gegebenen Koordinaten. PGet ist ein Kompatibilitätsbefehl, er setzt
voraus, dass der aktuelle Screen ein BitmapContent Objekt ist.

Syntax: <numVar> = PGet (x, y)
x, y: Koordinaten des Punktes

Beispiel:
DIM f
f = PGet (20, 100)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 158

CIRCLE

Der Befehl CIRCLE (Kreis) zeichnet einen ungefüllten Kreis auf dem Schirm. Für
einen gefüllten Kreis verwenden Sie den Befehl FillEllipse.

Syntax: CIRCLE x0, y0, r [, f]
x0, y0: Koordinaten des Mittelpunkts
 r: Radius des Kreises

f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
CIRCLE 100, 200, 50

ELLIPSE

Der Befehl ELLIPSE zeichnet eine ungefüllte Ellipse auf dem Schirm.

Syntax: ELLIPSE x0, y0, x1, y1 [, f]
Die Koordinaten beschreiben das einschließende Rechteck
x0, y0: eine Ecke (z.B. links unten oder links oben)
x1, y1: gegenüberliegende Ecke
f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
ELLIPSE 0, 0, 200, 50, BLUE ’eine blaue, längliche Ellipse

RECTANGLE

Der Befehl RECTANGLE (Rechteck) zeichnet ein ungefülltes Rechteck auf dem
Schirm.

Syntax: RECTANGLE x0, y0, x1, y1 [, f]
x0, y0: eine Ecke (z.B. links unten)
x1, y1: gegenüberliegende Ecke
f: Linienfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
RECTANGLE 100, 100, 200, 200, WHITE ’ ein weißes Quadrat

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 159

FillEllipse

Der Befehl FillEllipse (Fülle Ellipse) zeichnet eine gefüllte Ellipse auf dem Schirm.

Syntax: FillEllipse x0, y0, x1, y1 [, f]
Die Koordinaten beschreiben das einschließende Rechteck
x0, y0: eine Ecke (z.B. links unten)
x1, y1: gegenüberliegende Ecke
f: Flächenfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
ELLIPSE 0, 0, 200, 50, BLACK ’ eine schwarze Ellipse

FillRect

Der Befehl FillRect (Fülle Rechteck) zeichnet ein gefülltes Rechteck auf dem
Schirm.

Syntax: FillRect x0, y0, x1, y1 [, f]
x0, y0: eine Ecke (z.B. links unten)
x1, y1: gegenüberliegende Ecke
f: Flächenfarbe (optional, Indexfarbe oder RGB-Farbe)

Beispiel:
FillRect 100, 100, 200, 200, YELLOW ’ ein gelbes Quadrat

PointList

Die Struktur PointList enthält eine Liste von Punkten um Polygone, verbundene
Linien und Splines zu zeichnen.

STRUCT PointList
numPoints as INTEGER
xOffset, yOffset as INTEGER
x(31) as INTEGER
y(31) as INTEGER
End Struct

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 160

Feld Bedeutung, gültige Werte
numPoints Anzahl der gültigen Koordinatenpaare in der Liste

 Erlaubte Werte: 2 ... 32
xOffset, yOffset Zusätzliches Offset für die Zeichenposition der Figur. Diese

Werte werden zu jedem Koordinatenpaar addiert, bevor die
Figur gezeichnet wird.

x(31), y(31) Koordinatenpaare von bis zu 32 Punkten, aus denen die
Figur gebildet wird. (x(0)/y(0) bis x(31)/y(31))

PolyLine

PolyLine zeichnet einen offenen Linienzug aus mehreren
Geraden in der aktuellen Vordergrundfarbe.

Syntax: PolyLine <pl>

 <pl>: Variable oder Ausdruck vom Typ PointList

Erläuterungen zur Struktur <pl>:
• Die Elemente x(0), y(0) bis x(31), y(31) enthalten die Koordinatenpaare der

Ecken des Linienzugs.
• numPoints enthält die Anzahl der gültigen Koordinatenpaare. Es werden also

numPoints - 1 Linien gezeichnet.
• Die Elemente xOffset und yOffset ermöglichen es, die ganze Figur an eine

andere Stelle zu zeichnen, ohne alle Koordinaten einzeln ändern zu müssen.
Dazu werden die Werte von xOffset und yOffset vor jeder Zeichenoperation
zu den einzelnen Koordinaten addiert.
"Polyline p" entspricht also der folgenden BASIC-Sequenz

LINE p.x(0)+xOffset , p.y(0)+yOffset , p.x(1)+xOffset ,
p.y(1)+yOffset
LINE p.x(1)+xOffset , p.y(1)+yOffset , p.x(2)+xOffset ,
p.y(2)+yOffset

.. usw

Das folgende Beispiel zeichnet eine PolyLine mit 3 Punkten.
Dim p as PointList
p.x(0) = 10 : p.y(0) = 10
p.x(1) = 100 : p.y(1) = 20
p.x(0) = 30 : p.y(0) = 50
p.numPoints = 3
PolyLine p

Dieser sehr einfache Fall entspricht den folgenden BASIC Befehlen:
LINE 10, 10, 100, 20
LINE 100, 20, 30, 50

Ein weiteres Beispiel finden Sie in der Datei: R-BASIC\Beispiele\Grafik\Polygon
Demo

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 161

Polygon

Polygon zeichnet einen geschlossenen Linienzug aus
mehreren Geraden in der aktuellen Vordergrundfarbe. Dazu
wird der letzte Punkt der PointList mit dem ersten Punkt der
PointList verbunden.

Syntax: Polygon <pl>
 <pl>: Variable oder Ausdruck vom Typ PointList

Erläuterungen zur Struktur <pl>: Siehe PolyLine
Für ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

FillPolygon

FillPolygon zeichnet einen gefüllten, geschlossenen
Linienzug aus mehreren Geraden in der aktuellen Vorder-
grundfarbe.

Syntax: FillPolygon <pl>
 <pl>: Variable oder Ausdruck vom Typ PointList

Erläuterungen zur Struktur <pl>: Siehe PolyLine
Für ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

Spline

Spline zeichnet einen glatten Linienzug durch die
gegebenen Punkte in der aktuellen Vordergrundfarbe.

Syntax: Spline <pl>
 <pl>: Variable oder Ausdruck vom Typ PointList

Erläuterungen zur Struktur <pl>: Siehe PolyLine
Für ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

ClosedSpline

ClosedSpline zeichnet einen geschlossenen glatten
Linienzug durch die gegebenen Punkte in der aktuellen
Vordergrundfarbe.

Syntax: ClosedSpline <pl>
 <pl>: Variable oder Ausdruck vom Typ PointList

Erläuterungen zur Struktur <pl>: Siehe PolyLine
Für ein Beispiel siehe Datei: R-BASIC\Beispiele\Grafik\Polygon Demo

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 162

BezierSpline

Achtung! BezierSpline ist eine Anweisung für fortgeschrittene Programmierer!

Syntax: BezierSpline <pl>
 <pl>: Variable oder Ausdruck vom Typ PointList

BezierSpline zeichnet einen Linienzug durch die gegebenen Punkte in der
aktuellen Vordergrundfarbe, wobei die einzelnen Segmente durch ihren Anfangs-
und Endpunkt sowie durch 2 Kontrollpunkte beschrieben werden. In den folgenden
Bildern sind die Kurvenpunkte durch Vierecke, die Kontrollpunkte durch graue
Kreise markiert. Beide dienen der Illustration, sie werden nicht mit gezeichnet.

Linkes Bild: Ein einzelnes Kurvensegment, bestehend aus 2
Kurvenpunkten und 2 Kontrollpunkten. Für diese Figur
müssen 4 Punkte an BezierSpline übergeben werden.

Rechtes Bild: Zwei Kurvensegmente und die
dazugehörigen Kontrollpunkte. Für diese Figur
müssen 7 Punkte an BezierSpline übergeben
werden.
Die an BezierSpline übergebende PointList Struktur muss die Koordinaten der
Punkte in folgender Reihenfolge enthalten:
Kurve, control, control, Kurve, control, control, Kurve, control, control, Kurve.
Das Feld numPoints enthält die Gesamtzahl der übergebenen Punkte. Diese Zahl
muss der Beziehung 3*n+1 entsprechen, wobei n die Anzahl der Kurvensegmente
ist. Die Anzahl der Punkte auf der Kurve ist damit n+1.

Hinweise:
• BezierSpline macht genau das Gleiche wie das Spline-Werkzeug in

GeoDraw.
• Die Anweisungen Spline und ClosedSpline nutzen intern die gleiche Funktion

wie BezierSpline. Sie berechnen sich ihre Kontrollpunkte jedoch selbst.
• Sie können mit BezierSpline maximal 10 Kurvensegmente auf einmal

zeichnen. Das entspricht 31 zu übergebenden Punkten.
• Um eine Ecke an einem Punkt zu erzeugen können Sie die Koordinaten der

beiden Kontrollpunkte links und rechts von diesem Punkt auf die gleichen
Koordinaten wie die des Eckpunktes setzen.

• Ein einzelnes Kurvensegment nennt man Bézierkurve. GEOS benutzt kubische
Bézierkurven. Weitere Informationen zu Bézierkurven finden Sie im Internet.

• Weitere Erläuterungen zur Struktur <pl>: Siehe PolyLine

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 163

2.8.4 Die Systemvariable "graphic": Mixmodes und mehr

Alle Parameter des Grafik-Systems vom R-BASIC lassen sich über die Felder der
Systemvariablen graphic einstellen. Die Verwendung dieser Variablen gestattet
einen wesentlich detaillierten Zugriff auf die Grafik-Eigenschaften, als die Befehle
COLOR, PAPER und INK. GEOS verwaltet getrennte Farben für Text, Linien und
Flächen. R-BASIC speichert zusätzlich noch eine Farbe für den Hintergrund (z.B.
von Textausgaben, siehe PAPER-Befehl).
graphic ist vom Typ GraphicDrawStruct, der folgendermaßen definiert ist:

STRUCT GraphicDrawStruct
mixMode AS Word
backColor AS DWord
lineColor AS DWord
lineDrawMask AS Word
lineWidth, lineStyle AS Word
lineEnd, lineJoin AS Word
areaColor AS DWord
areaDrawMask AS Word
textColor AS DWord
textDrawMask AS Word
drawFlags AS Word

 reserve(6) AS Word ’ reserviert für zukünftige
’ Erweiterungen

END STRCUT

Die folgende Tabelle enthält die Bedeutung der einzelnen Felder, sortiert nach der
Wichtigkeit / Häufigkeit ihrer Verwendung.

Häufig verwendete Felder
Feld Bedeutung
areaColor Farbe für Flächen (areaColor), Linien (lineColor) und Texte
lineColor (textColor). Die Befehle COLOR und INK setzen alle drei
textColor Farben auf den gleichen Wert.
backColor Hintergrund-Farbe für Texte. Wird von den Befehlen PAPER

und COLOR belegt. Um Texte oder Blockgrafikzeichen mit
transparentem Hintergrund auszugeben wird der Spezialwert
BG_TRANSPARENT (=4096) verwendet.

mixMode Schreibmodus für Flächen und Linien. Wirkt nicht auf Texte.
Beschreibt, auf welche Weise neue Grafikausgaben mit
bereits vorhandenen verknüpft werden. Standard MM_COPY,
häufig verwendet: MM_XOR und MM_INVERT.

lineWidth Liniendicke
lineStyle Linienstil, z.B. gestrichelt. In der Tabelle unten finden Sie die

zulässigen Werte und ihre Bedeutung.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 164

Weniger häufig verwendete Felder
Feld Bedeutung
areaDrawMask Füllmuster für Flächen. Die Fläche wird mit einen Muster

hinterlegt, das von GEOS erzeugt wird. R-BASIC definiert
einige Konstanten zur Arbeit mit Füllmustern. In der Tabelle
unten finden Sie die zulässigen Wertebereiche und ihre
Bedeutung sowie ein paar Beispiele.

lineDrawMask Füllmuster für Linien. Details siehe areaDrawMask.
textDrawMask Füllmuster für Text. Details siehe areaDrawMask. Selten

verwendet, da Texte i.a. sehr klein sind.
lineEnd Linienabschluss. Erlaubte Werte:

0: Normales Ende, 1: Halbrund, 2: Quadrat
Die Werte 1 und 2 verlängern die Linie etwas.

lineJoin Verbindung zwischen Linien bei einer Figur (Rechteck).
erlaubte Werte: 0: Normal (eckig), 1: abgerundet, 2:
abgeflacht.

drawFlags Diverse Flags. Aktuell verfügbar:
GDF_SCALE_PSET: Bewirkt, dass die von PSet und PReset
gesetzten Punkte als Flächen gezeichnet werden. Damit
werden sie Punkte vergrößert, wenn der Screen skaliert ist.

Hinweis: Während der Ausführung einer PRINT-Anweisung werden einige Felder
der graphic-Variablen intern zeitweise geändert, dann aber wieder zurückgesetzt.
Das kann bedeutsam sein, wenn die Printliste Funktionsaufrufe enthält.

Tabelle der Linienstile: Erlaubte Werte für das Feld lineStyle
Wert Konstante Bedeutung
 0 LS_SOLID durchgehend
 1 LS_DASHED gestrichelt
 2 LS_DOTTED gepunktet
 3 LS_DASHDOT Strich-Punkt
 4 LS_DASDDOT Strich-Doppelpunkt

Tabelle der Füllmuster: Erlaubte Werte für die Felder areaDrawMask, lineDraw-
Mask und textDrawMask. Beispiele für Füllmuster finden Sie in "R-BASIC
Anhänge", Abschnitt C.

Wert Konstante Bedeutung
 0 - 24 – Von GEOS bereitgestellte Muster, siehe unten.

25 DM_100 "Normalzustand", 100% Deckung.
26 - 88 – Unterschiedliche "Transparenzgrade". Größere

Werte entsprechen höherer Transparenz.
89 DM_0 Null % Deckung, vollständig transparent.

128 DM_INVERSE Wird zu einem der anderen Werte addiert. Das
Muster wird invertiert.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 165

Der Mix-Mode

Im Normalfall geht man davon aus, dass neu gezeichnete Linien oder Flächen
vorhandene Grafiken überschreiben. Das muss aber nicht so sein. Mit dem Feld
graphic.mixMode können Sie bestimmen, wie neu gezeichnete Linien oder
Flächen mit dem bereits vorhandenen Hintergrund verknüpft werden sollen. Dabei
wird der Farbwert jedes Pixels ermittelt, indem der Farbwert des an dieser Stelle
bereits vorhandenen Pixels über eine logische Operation mit dem Farbwert der
Zeichenfarbe verknüpft wird.

Von besonderer Bedeutung sind die Modi MM_XOR und MM_INVERT. In diesen
Modi wird z.B. eine Linie beim ersten Zeichnen erscheinen und beim nochmaligen
Zeichnen wieder gelöscht. So kann man z.B. "Gummi-Linien" realisieren, ohne
den Hintergrund zu beschädigen. Im Zweifelsfall verwenden Sie MM_INVERT.

Achtung! graphic.mixMode wirkt nicht bei Textausgaben (PRINT) und bei der
Ausgabe von Bildern (DrawImage, DrawPicture, DrawBitmap, DrawIcon).

Tabelle der Mix-Modes: Erlaubte Werte für das Feld mixMode
Wert Konstante Bedeutung

0 MM_CLEAR Das Zeichnen einer Grafik löscht den überschrie-
benen Bereich. Die Zeichenfarbe spielt keine Rolle.

1 MM_COPY Standardwert. Die neue Grafik überschreibt
vorhandene Grafiken.

2 MM_NOP Die Grafikausgabe wird ignoriert.
3 MM_AND Die Farben in dem überschriebenen Bereich werden

logisch AND mit der Zeichenfarbe verknüpft.
4 MM_ INVERT Die Farben in dem überschriebenen Bereich werden

logisch invertiert. Die Zeichenfarbe spielt keine
Rolle. Dieser Modus wird häufig benutzt.

5 MM_XOR Die Farben in dem überschriebenen Bereich werden
logisch XOR mit der Zeichenfarbe verknüpft. Dieser
Modus wird häufig benutzt.

6 MM_SET Das Zeichnen einer Grafik setzt den über-
schriebenen Bereich auf schwarz. Die Zeichenfarbe
spielt keine Rolle.

7 MM_OR Die Farben in dem überschriebenen Bereich werden
logisch OR mit der Zeichenfarbe verknüpft.

Der Mix-Mode verwendet logische Operationen (AND, OR, XOR) zur Verknüpfung
der Farbwerte. Für System-Farben (beschrieben durch einen Index) wirkt die
Verknüpfung auf den Index. Deshalb hängen die Ergebnisse einiger Mix-Modi
davon ab, welche Farbtiefe verwendet wird. Das kann insbesondere in dem
häufigen Fall, dass eine 256-Farb-Bitmap gemeinsam mit einem True-Color Bild-
schirm verwendet wird, zu unerwarteten Ergebnissen führen (die Resultate in der
Bitmap und auf dem Bildschirm unterscheiden sich). Hier hilft nur ausprobieren, ob
das Ergebnis für die eigenen Zwecke geeignet ist oder nicht. R-BASIC reicht an
dieser Stelle einfach das vom GEOS-System bereitgestellte Verhalten durch.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 166

2.8.5 Arbeit mit Graphic Strings

Ein Graphic String (im Folgenden kurz GString) ist eine Folge von Grafikbefehlen
oder Textausgaben, die gemeinsam gespeichert werden. Dieser GString kann
später beliebig oft "abgespielt" werden. Dabei werden die enthaltenen grafischen
Kommandos mit hoher Geschwindigkeit ausgeführt, viel schneller als dies als
Folge von BASIC-Anweisungen möglich ist. Das folgende Bild gibt einen Überblick
über die Möglichkeiten, die R-BASIC zur Arbeit mit GStrings bietet.

Andere Libraries

SDK Libraries
oder

BASIC Libraries

VMLoadGString

VMFile

VMFiles Library

VMStoreGString

ResourceFile Library

Resource File

ResFileLoadGString

GString HandleClipboardGetGS
ClipboardPutGS

DrawGS

andere
GStrings

Verwaltung:
 • StartRecordGS
 • EndRecordGS
 • GetGStringInfo
 • FreeGS

Verwendung in Objekten:
 • CaptionGString
 • ItemGString

Zwischenablage

Text und Grafikbefehle, z.B.
 • PRINT, COLOR
 • FontSetBLOCK, FontSetGEOS
 • Rectangle, Line, FillEllipse
 • DrawImage, DrawPicture
 • DrawBitmap, DrawGS

Screen
Objekt

GEOS
Hintergrund-

datei

SaveGStringAsBackground

ReadGStringfromFile

Es gibt mehrere Möglichkeiten an eine GString zu kommen. In vielen Fällen wer-
den Sie ihn selbst aufzeichnen. Dazu müssen Sie zunächst mit StartRecordGS
die Aufzeichnung starten. StartRecordGS liefert ein Handle zurück, mit dem Sie
später den GString wiedergeben können. Intern wird der GString in einer Datei
gespeichert, die R-BASIC zur Verfügung stellt. Deswegen müssen Sie die
ungefähre Datenmenge, die der GString aufnehmen soll, angeben.

Ab diesem Zeitpunkt gehen alle Grafik- und Textausgaben, die sonst auf den
Bildschirm gehen würden, in den GString und werden aufgezeichnet. Es sind
grundsätzlich alle Text- und Grafikbefehle erlaubt. Das schließt explizit die
Wiedergabe anderer GStrings ein. Die Grafikbefehle werden dabei in den neuen
GString kopiert. Mit EndRecordGS wird der Aufzeichnungsmodus beendet.

Der GString kann nun mit DrawGS ausgegeben werden. Die Routine
GetGStringInfo liefert Informationen über einen GString, z.B. seine
Abmessungen. Damit können Sie ihn z.B. zentriert oder rechtsbündig an eine
bestimmte Position zeichnen. Außerdem können Sie GStrings mit
CaptionGString als grafische Captions für Objekte und mit ItemGString () als
grafische Listeneinträge in DynamicList Objekten verwenden.

Statt einen GString selbst aufzuzeichnen können Sie ihn mit ClipboardGetGS aus
der Zwischenablage zu holen oder mit ReadGStringFromFile aus einer GEOS
Hintergrunddatei lesen. Außerdem bieten die R-BASIC Libraries "VMFiles" und
"ResFile" Funktionen an, einen GString in eine Datei zu schreiben bzw. ihn von

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 167

dort zu laden. Sie haben weiterhin die Möglichkeit einen GString mit
ClipboardPutGS in die Zwischenablage zu kopieren.

Wenn Sie den GString nicht mehr benötigen müssen Sie ihn meist mit FreeGS
freigeben. Beachten Sie dazu die Dokumentation der Routine, die den GString
angelegt hat! Mit FreeGS wird der GString aus der Datei, die ihn enthält, gelöscht.
Beachten Sie, dass ein GString bei einem System Shutdown nicht automatisch
gelöscht wird, das Handle auf ihn steht nach einem Systemneustart aber nicht
mehr zur Verfügung. Sie sollten deswegen alle "globale" GStrings, die von einer
Routine angelegt und von anderen verwendet werden, im OnExit-Handler des
Application-Objekts freigeben.

StartRecordGS

StartRecordGS beginnt die Aufzeichnung eines GStrings. Der GString wird als
unsichtbarer Screen gesetzt, die aktuellen Screendaten werden gesichert und
nach EndRecordGS wieder hergestellt. Alle Text- und Grafikausgaben gehen ab
sofort in den GString und werden aufgezeichnet.
Dabei gelten anfangs die folgenden Einstellungen:

• Textfont: Es wird der Standard-Font eingestellt: Fontmode Fixed, FID_MONO,
14 Punkt.

• Farben: Die Vordergrundfarbe wird auf Schwarz, die Hintergrundfarbe wird
auf Transparent gestellt. Texte werden also transparent ausgegeben.

• Änderung des Fonts, der Textgröße, der Farben und anderer Grafikeigen-
schaften während der Aufzeichnung des GStrings haben keine Auswirkungen
auf andere Teile des Programms.

• Die Blockfonts sind immer global. Das heißt, dass geladene Fonts nach dem
Aufruf von FontSetBlock zur Verfügung stehen und dass diesbezügliche
Änderungen auch nach dem Aufruf von EndRecordGS bestehen bleiben und
so andere Teile des Programms beeinflussen können.

• GStrings haben prinzipiell keine Begrenzung. Die globale Variablen MaxX
und MaxY sind ohne Bedeutung.

Syntax: <hanVar> = StartRecordGS (dataSize)
<hanVar> = StartRecordGS () ’ entspricht DS_TINY

’ die Klammern sind erforderlich!
<hanVar> Variable vom Typ HANDLE

Speichert die Referenz auf den GString

Das von StartRecordGS zurückgegeben Handle wird für die anderen GString-
Befehle benötigt. Der Parameter dataSize bestimmt die ungefähre Größe der
GStringdaten. Damit kann R-BASIC abschätzen, wieviel Platz es in der Datei, die
den GString aufnehmen soll, reservieren muss. Wenn sich schon viele Daten in
der Datei befinden (z.B. Bitmaps von BitmapContent-Objekten oder andere
GStrings) kann R-BASIC gegebenen Falls eine neue Datei anlegen. Allerdings ist
der Wert nicht kritisch. Geben Sie DS_TINY an und verbrauchen trotzdem ein
Megabyte passiert im Allgemeinen nichts. Haben Sie aber viele GStrings, Bitmap-

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 168

Objekte oder Objekte im gepufferten Modus (z.B. Canvas mit buffered = TRUE
gesetzt) gleichzeitig sollten Sie dem Wert etwas mehr Aufmerksamkeit widmen.

Der Defaultwert für dataSize ist DS_TINY. Die folgende Tabelle enthält die
zulässigen Werte.

Konstante Wert Zu erwartende Datenmenge
DS_TINY 0 nicht mehr als 10 .. 20 kByte
DS_SMALL 1 nicht mehr als 50 .. 100 kByte
DS_MEDIUM 2 nicht mehr als 500 kByte ... 1 MB
DS_LARGE 3 nicht mehr als 5 MByte
DS_HUGE 4 möglicherweise mehr als 5 MByte

Beispiele:
1. Normale Grafikbefehle wie Line, Rectangle, FillEllipse usw. erfordern jeweils 10

bis 15 Byte. Texte erfordern pro Zeichen 1 Byte. Für die meisten Fälle ist daher
der Defaultwert DS_TINY völlig ausreichend. Das entspricht ca. 1000
Zeichenbefehlen.

2. Block-Font Grafiken erfordern 1 Byte pro Pixel (256-Color Grafiken) oder nur 1
Byte auf 8 Pixel (monochrome Grafiken). Ein GString mit 100 Blockfont-
Grafiken der Größe 32x32 Pixel erfordert, wenn es sich um 256-Color Grafiken
handelt, 100x32x32 = 102400 Byte (100 kByte). Verwenden Sie DS_SMALL
oder DS_MEDIUM.

3. Eine Bitmap der Farbtiefe 8 Bit erfordert 1 Byte pro Pixel. Für eine Bitmap der
Größe 640x480 Pixel (=307200 Byte) verwenden Sie DS_MEDIUM.

4. True-Color-Bitmaps benötigen 3 Byte pro Pixel. Für eine 800x600 True-Color-
Bitmap ist DS_LARGE angebracht.

EndRecordGS

EndRecordGS beendet die Aufzeichnung eines GString. Die vor dem Aufruf von
StartRecordGS geltenden Screen- und Grafikeinstellungen werden wieder herge-
stellt. Ab sofort kann der GString verwendet werden.

Syntax: EndRecordGS <han>
<han> Handle, das von StartRecordGS geliefert wurde.

DrawGS

DrawGS zeichnet den GString an die Position x, y.

Syntax: DrawGS <han> , x , y
<han>: Handle, das von StartRecordGS geliefert wurde.
x, y: Zeichenposition in Pixeln. Die linke obere Ecke des GString

wird an diese Position gezeichnet.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 169

FreeGS

FreeGS gibt das Handle und den GString wieder frei. Der vom GString belegte
Speicherplatz wird freigegeben.

Syntax: FreeGS <han>
<han> Handle, das von StartRecordGS, ClipboardGetGS oder

ReadGStringFromFile geliefert wurde.

Tipp: Um sicherzustellen, dass das System nicht crasht, falls das Handle irrtümlich
noch einmal mit DrawGS verwendet wird können Sie es nach dem Freigeben
durch FreeGS () mit der Anweisung "han = NullHandle()" löschen. R-BASIC gibt
dann bei einer irrtümlichen Verwendung mit DrawGS nur eine entsprechende
Meldung aus.

Wichtig: Wenn Sie eine Library-Routine verwenden um einen GString zu
erzeugen, lesen Sie bitte die Dokumentation der Routine sorgfältig, um zu
entschieden, ob Sie diesen GString mit FreeGS freigeben müssen oder nicht!

Beispiel: Die Routine verwendet einen GString, um einem Objekt eine Grafik als
Caption zuzuweisen. Dazu verwenden wir die Instancevariable CaptionGString.
Das ist ein üblicher Weg um einfache Grafiken, die zur Laufzeit gelegentlich
geändert werden müssen, darzustellen. Die Zeile "MyObj.CaptionGString =
gsHan" kopiert den GString in das Objekt, so dass wir ihn mit "FreeGS gsHan"
wieder freigeben können (und müssen!).

SUB SetCaption ()
DIM gsHan as HANDLE

gsHan = StartRecordGS ()
FillRect 0, 0, 48, 32, LIGHT_BLUE
Rectangle 0, 0, 48, 32, BLUE
INK WHITE
Ellipse 4, 12, 14, 22
Ellipse 7, 5, 17, 15
Ellipse 22, 18, 32, 28
Ellipse 32, 14, 42, 24
Ink BLACK
printfont.style = TS_BOLD
Print atxy 25,1;"ab"
EndRecordGS gsHan

MyObj.CaptionGString = gsHan

FreeGS gsHan

End SUB

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 170

Beispiel: Verwendung eines GString, dessen Handle in einer globalen Variable
gespeichert ist. Der GString wird beim Schließen des Programms freigegeben.

Definition der globalen Variablen
DIM globalGS AS HANDLE

UI-Code Ausschnitt
Application DemoApplication
<.....>
OnExit = ExitHandler

End Object

Anlegen des GString
SUB CreateGS ()
globalGS = StartRecordGS()
Ellipse 50, 50, 100, 100, RED
Print atxy 0, 20; "Hallo BASIC"
EndRecordGS (globalGS)

END SUB

Verwendung des GString
SUB DrawGlobalGS()
DrawGS globalGS, 20, 30
DrawGS globalGS, 10, 60
DrawGS globalGS, 50, 45

End SUB

Zugehöriger OnExit-Handler zum freigeben des GString.
FreeGS ignoriert leere Handles. Deswegen brauchen wir globalGS NICHT auf
NullHandle() zu prüfen.

SYSTEMACTION ExitHandler
FreeGS globalGS

END ACTION

GetGStringInfo

GetGStringInfo liest die Grafikinformationen eines Graphic String aus. Dazu wird
eine Variable vom Strukturtyp GraphicInfo belegt. Diese Struktur ist im Abschnitt
2.8.6 (Zeichnen von Bildern) beschrieben.

Syntax: info = GetGStringInfo (gsHan)
info: Variable vom Strukturtyp GraphicInfo
gsHan: Handle auf den GString

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 171

Beispiel:
DIM info as GraphicInfo
DIM gsHan as Handle

gsHan = StartRecordGS()
Rectangle 20, 20, 50, 100
EndRecordGS gsHan

info = GetGStringInfo (gsHan)
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"

FreeGS gsHan

Beispiel: Zeichnen eines GString (in gsHan) zentriert an die Position (50; 100)
DIM info as GraphicInfo
DIM x, y
info = GetGStringInfo (gsHan)
x = 50 – info.sizeX/2;
y = 100 – info.sizeY/2
DrawGS gsHan, x, y

ClipboardGetGS

ClipboardGetGS holt einen GString aus der Zwischenablage. Graphic Strings sind
ein universelles Grafikformat unter GEOS. Die Grafik in der Zwischenablage kann
z.B. aus GeoWrite, GeoDraw oder dem Sammelalbum kommen. Der GString kann
sofort mit DrawGS gezeichnet werden. ClipboardGetGS ist damit analog zur
Kombination StartRecordGS / EndRecordGS. Das von ClipboardGetGS gelieferte
Handle muss ebenfalls mit FreeGS wieder freigegeben werden.

Syntax: <han> = ClipboardGetGS ()

Wird kein GString im Clipboard gefunden so liefert ClipboardGetGS ein
NullHandle. ClipboardGetGS setzt die globale Variable clipboardError (Null oder
Fehlercode). Sie können vorher mit ClipboardTest prüfen, ob sich ein GString im
Clipboard befindet.

Beispiel:
DIM gsHan AS HANDLE
IF ClipboardTest (0, 1) THEN ! manufID = 0, format = 1
gsHan = ClipboardGetGS()
End IF

<....> z.B. DrawGS gsHan, 0, 0
FreeGS gsHan ’ Nicht vergessen

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 172

ClipboardPutGS

ClipboardPutGS kopiert einen GString in die Zwischenablage. Von dort kann er
dann z.B. in GeoDraw eingeklebt werden.

Syntax: ClipboardPutGS <han>
<han> Handle, das von StartRecordGS geliefert wurde.

Beispiel:
DIM gsHan AS HANDLE

gsHan = StartRecordGS ()
Rectangle 20, 20, 50, 100, BLACK
FillEllipse 30, 30, 40, 90, RED
EndRecordGS gsHan
ClipboardPutGS gsHan
FreeGS gsHan ’ Nicht vergessen

SaveGStringAsBackground

SaveGStringAsBackground schreibt einen GString als GEOS Hintergrunddatei.
Falls die Datei bereits existiert wird sie überschrieben. WriteGStringToFile setzt
die globale Variable fileError (Null oder Fehlercode).

Syntax: SaveGStringAsBackground <han> , fileName$
<han> Handle, das den GString referenziert.
fileName$: Name der anzulegenden Datei (Pfadanteil erlaubt).

ReadGStringFromFile

ReadGStringFromFile liest (kopiert) einen GString aus einer Datei. Aktuell werden
nur GEOS Hintergrunddateien unterstützt. ReadGStringFromFile liefert das
Handle auf den gelesenen GString. Das Handle muss mit FreeGString wieder
freigegeben werden. Die globale Variable fileError wird gesetzt (Null oder
Fehlercode). Im Fehlerfall liefert ReadGStringFromFile ein NullHandle.

Syntax: <han> = ReadGStringFromFile (fileName$ [, pictNum])
<han> Variable vom Typ Handle
fileName$: Name der Datei mit dem Bild (Pfadanteil erlaubt).
pictNum: Nummer des Bildes, falls die Datei mehr als ein Bild enthält.

Wird für GEOS Hintergrunddateien ignoriert.
Default: 1 (erstes Bild lesen)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 173

2.8.6 Zeichnen von Bildern

Dieser Abschnitt beschäftigt sich mit der Ausgabe von fertigen Grafiken, die zur
Laufzeit weder erstellt noch verändert werden müssen. Die Ausgabe erfolgt dabei
immer in das aktuelle Screen-Objekt. Dabei bezieht sich der Begriff "Picture"
immer auf Grafiken, die in der Picture-List gespeichert sind (siehe Kapitel 2.8.6.2,
Befehle DrawPicture, GetPictureInfo)). Der Begriff "Image" bezieht sich immer
auf Grafiken, die in externen Bilddateien (z.B. JPG, PCX, ICO) vorliegen. Dafür
stehen die Befehle DrawImage und GetImageInfo zur Verfügung. Außerdem gibt
es das Image-Objekt, das diese Bilder direkt (ohne die Verwendung eines Screen-
Objekts) anzeigen kann und im Objekt-Handbuch beschrieben ist.

Die Routinen GetImageInfo, GetPictureInfo GetGStringInfo und GetBitmapInfo
ermitteln Informationen über eine Grafik oder eine Grafikdatei in Form der
folgenden Struktur:

STRUCT GraphicInfo
sizeX as WORD
sizeY as WORD
bitsPerPixel as WORD
numImages as WORD

End STRUCT

Bedeutung der einzelnen Felder:
sizeX und sizeY: Abmessungen der Grafik in Pixeln
bitsPerPixel: Farbtiefe

1: Bitmap, monochrom (sw/ws)
8: Bitmap, 256 Farben
24: Bitmap, True Color
0: Graphic String.

Farbtiefe je nach Inhalt. Potentiell True Color
numImages: Anzahl der Bilder. Kann bei Dateien (z.B. ICO) größer als 1

sein. Im Fehlerfall: Null.

Tritt beim Aufruf der oben genannten Routinen ein Fehler auf (z.B. Datei nicht
gefunden, Bild in der Picture-List nicht vorhanden) gilt:

- numImages ist auf Null gesetzt
- die globale Variable fileError enthält einen Fehlercode. Im Erfolgsfall wird

fileError auf Null gesetzt.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 174

Beispiel
DIM info as GraphicInfo

info = GetImageInfo (SP_TOP, "GWICON5.ICO")

IF info.numImages = 0 THEN
Print "Kein Bild gefunden. Fehlercode: ";

ErrorText$(fileError)
ELSE
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"
Print "Bilder in der Datei:";info.numImages
IF info.bitsPerPixel = 0 THEN
Print "Typ: Graphic String"

ELSE
Print "Bitmap mit";info.bitsPerPixel;"Bit pro Pixel"

END IF
END IF

2.8.6.1 Zeichnen von Icons

DrawIcon

DrawIcon zeichnet ein Icon aus der Token-Database an die Position (x, y).

Syntax: DrawIcon "tchr" , manufID , x , y [, flags]
"tchr": Tokenchars des Icons. Genau 4 Zeichen
manufID: ManufacturerID des Icons. Datentyp WORD
x: x-Position der linken oberen Ecke
y: y-Position der linken oberen Ecke
flags: Icon-Flags. Erlaubte Werte siehe Tabelle

Default (kein Flag gesetzt): Standard-Icon zeichnen

Gültige Werte für "flags":

Konstante Wert Bedeutung
TOOL_ICON 1 Tool-Icon (15 x 15 Pixel) verwenden.
TINY_ICON 1 Synonym für TOOL_ICON
SMALL_ICON 2 Kleineres Icon verwenden (oft 32x20 Pixel)
BIG_ICON 4 Größeres Icon verwenden (oft 64x40 Pixel)
GRAY_ICON 8 Schwarz-Weiß Icon verwenden
RGB_ICON 16 True-Color Icon verwenden

Wird keines der Flags angegeben wird das "Standard" Icon (meist 48 x 30 Pixel,
16 Farben oder 256 Farben) verwendet.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 175

Hinweise:
 • Ist die entsprechend den Flagbits angeforderte Kombination nicht vorhanden

sucht das System ein "möglichst passendes" Icon aus. Das Flag "TOOL_ICON"
hat dabei Vorrang vor allen anderen Flags.

 • Sollte zum gegebenen Token ("TCHR", manufID) kein grafisches Icon
vorhanden sein wird ein Text verwendet.

 • Findet sich das Token nicht in der TokenDB zeigt R-BASIC ein Ersatzbild
("unbekanntes Icon").

 • R-BASIC Icons enthalten nur zwei Bilder: ein Standard- und ein Tool-Icon.

Beispiel: Zeichnen des GeoWrite Document Tool-Icons an die Position (100; 50)
DrawIcon "WDAT", 0, 100, 50, TOOL_ICON

CaptionIcon

CaptionIcon weist einem Objekt ein Icon aus der Token-Database als grafische
"Aufschrift" zu. CaptionIcon ist im Kapitel 3.1 (Die Objektbeschriftung) des
Objekthandbuchs beschrieben.

2.8.6.2 Verwendung der "Picture-List"

Die Picture-List ist eine komfortable Möglichkeit Grafiken im der Codedatei selbst
unterzubringen und sie zur Laufzeit zu zeichnen. Beim Erstellen Ihres Programms
laden Sie über das R-BASIC Menü "Extras" - "Picture-List" Bilder aus einer
externen Quelle in die Picture-List. Die Bilder werden dann über ihren Namen
angesprochen. Sie können diese Bilder mit dem Befehl DrawPicture auf den

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 176

Screen zeichnen oder mit der Anweisung CaptionPicture (sowohl im UI-Code als
auch zur Laufzeit) als grafische Aufschrift für Objekte verwenden.

Als Quellen stehen Ihnen zur Verfügung:
• Externe Bilddateien (z.B. ICO, PCX, JPG).
• Das Clipboard. Insbesondere können Sie über diesen Weg mit GeoDraw selbst

gezeichnete Grafiken in Ihr BASIC Programm einbinden.
• Vom Iconeditor "exportierte" Bilder. Der Iconeditor kann Icon-Bilder in eine VM-

Datei schreiben (Menü "Icon" - "Schreibe in Datei"), die von der Picture-List
eingelesen werden können.

Wenn sie viele, insbesondere größere Bilder in die Picture-List laden sollten Sie
der Gesamtgröße ihrer Codedatei etwas Aufmerksamkeit schenken.
Erfahrungsgemäß wird GEOS bei Dateigrößen von mehreren 10 Megabyte
instabil. Wenn Sie diesbezüglich Probleme haben können Sie Teile ihrer Picture-
List in eine Library auslagern.

DrawPicture

DrawPicture zeichnet eine Grafik aus der Picture-List an die Koordinaten x, y.
DrawPicture setzt es die globale Variable fileError - entweder auf Null (das Bild
wurde gefunden) oder auf einen Fehlerwert (das Bild wurde nicht gefunden).

Syntax: DrawPicture "name" , x , y
"name": Name des Bildes in der Picture-List
x: x-Position der linken oberen Ecke
y: y-Position der linken oberen Ecke

Wenn DrawPicture im Code einer Library gerufen wird bezieht sich der Name des
Bildes auf die Picture-List der Library. Das ermöglicht es unter anderem Bilder in
die Picture-List von Libraries auszulagern.

Beispiel: Zeichnen eines Bildes an die Position (50; 100)
DrawPicture "Mann", 50, 100

Tipp: Wenn der Compiler den Namen des Bildes in der Picture-List ermitteln kann
(d.h. der Name steht wie im Beispiel im Klartext da und wird nicht durch den Aufruf
von Stringfunktionen wie Left$ "berechnet") wird der Name sofort in die interne
Nummer des Bildes umgerechnet. Damit muss das Bild zur Laufzeit nicht mehr
gesucht werden und es wird viel schneller gezeichnet.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 177

GetPictureInfo

GetPictureInfo liest die Grafikinformationen eines Bildes aus der Picture-List aus.
GetPictureInfo setzt die globale Variable fileError (Null oder Fehlercode).

Syntax: info = GetPictureInfo ("name")
info: Variable vom Strukturtyp GraphicInfo
"name": Name der Grafik in der Picture-List

Beispiel:
DIM info as GraphicInfo
info = GetPictureInfo ("Down Arrow")
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"

Beispiel: Zeichnen eines Bildes zentriert an die Position (50; 100)
DIM info as GraphicInfo
DIM x, y
info = GetPictureInfo ("Down Arrow")
x = 50 – info.sizeX/2;
y = 100 – info.sizeY/2
DrawPicture "Down Arrow", x, y

CaptionPicture

CaptionPicture weist einem Objekt ein Bild aus der Picture-List als grafische
"Aufschrift" zu. CaptionPicture ist im Kapitel 3.1 (Die Objektbeschriftung) des
Objekthandbuchs beschrieben.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 178

2.8.6.3 Externe Bilddateien

Sie können Bilder aus externen Bilddateien zur Laufzeit direkt auf den Screen von
R-BASIC zeichnen. Die Routine DrawImage übernimmt dabei alle notwendigen
Schritte, vom Öffnen der Datei über das Einlesen und Konvertieren in eine GEOS-
kompatibles Format bis zum Zeichnen auf den Schirm und das abschließende
Schließen der Bilddatei.

DrawImage

DrawImage zeichnet eine Grafik. Die Grafik wird aus einer externen Datei gelesen.
Sollte die Datei mehr als ein Bild enthalten (z.B. *.GIF, *.ICO) können Sie mit dem
Parameter pictNum bestimmen, welches Bild ausgelesen wird. Das erste Bild hat
immer die Nummer Null.

Syntax: DrawImage [stdPath,] , "Path+File" , x y , [, pictNum]
stdPath: Optional: Standardpfad Konstante, z.B. SP_TOP
"Path+File": Dateiname, Pfade sind zulässig
x: x-Position der linken oberen Ecke
y: y-Position der linken oberen Ecke
pictNum: Optional: Nummer des Bildes in der Datei

• Wird kein Standardpfad angegeben wird die Datei im aktuellen Verzeichnis
gesucht.

• Unterstützte Dateiformate: JPG, BMP, ICO, PCX, GIF, TGA, RLE, DIB, SCR
(BreadBox SplashScreen), FLC, FLI sowie GEOS Hintergrunddateien

• Die externe Datei wird zur Laufzeit geöffnet, d.h. sie muss unbedingt in das R-
App Paket aufgenommen werden oder es muss auf andere Weise sichergestellt
sein, dass sie existiert.

• Wird pictNum nicht angegeben so wird immer das erste Bild ausgelesen.
• Die globale Variable fileError wird gesetzt - entweder auf Null (das Bild wurde

gefunden) oder auf einen Fehlerwert (die Datei wurde nicht gefunden oder sie
enthält kein Bild).

Beispiele:
DrawImage SP_TOP, "GWICON5.ICO", 0, 0
DrawImage "BILDER\\SUNSET.JPG", 100, 100
DrawImage SP_DOCUMENT, "R-BASIC\\BILD2.PCX" 0, 20

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 179

GetImageInfo

GetImageInfo liest die Grafikinformationen aus einer Datei aus. Wird kein
Standardpfad angegeben wird die Datei im aktuellen Verzeichnis gesucht. Der
Dateiname darf einen Pfadanteil enthalten. GetImageInfo setzt die globale
Variable fileError (Null oder Fehlercode).
Unterstützte Dateiformate: Siehe DrawImage

Syntax: info = GetImageInfo ([stdPath,] "Path+File")
info: Variable vom Strukturtyp GraphicInfo
stdPath: Optional: Standardpfad Konstante, z.B. SP_TOP
"Path+File": Dateiname, Pfade sind zulässig

Beispiele:
DIM info as GraphicInfo

info = GetImageInfo (SP_TOP, "GWICON5.ICO")
info = GetImageInfo ("BILDER\\SUNSET.JPG")
info = GetImageInfo (SP_DOCUMENT, "R-BASIC\\BILD2.PCX")

Beispiel: Zeichnen eines Bildes zentriert an die Position (50; 100)
DIM info as GraphicInfo
DIM x, y
info = GetImageInfo ("BILDER\\SUNSET.JPG")
x = 50 – info.sizeX/2;
y = 100 – info.sizeY/2
DrawImage "BILDER\\SUNSET.JPG", x, y

CaptionImage

CaptionImage weist einem Objekt ein Bild aus einer externen Bilddatei als
grafische "Aufschrift" zu. CaptionImage ist im Kapitel 3.1 (Die Objektbeschriftung)
des Objekthandbuchs beschrieben.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 180

2.8.6.4 Bitmaps und Bitmap Handles

Bitmaps werden üblicher Weise von einem BitmapContent verwaltet. Die meisten
Informationen zu Bitmaps finden Sie daher auch bei der Beschreibung des
BitmapContent-Objekts im Objekthandbuch. Es gibt jedoch auch die Möglichkeit
Bitmaps über ein Handle anzusprechen. Mit dieser Thematik beschäftigt sich
dieses Kapitel.

Das Konzept der Bitmap Handles (eine Variable vom Typ HANDLE, die eine
Bitmap referenziert) dient zum Austausch einer Bitmap-Grafik zwischen
verschiedenen Komponenten eines BASIC Programms. Insbesondere kann eine
Bitmap mit der Routine DrawBitmap in andere Objekte, z.B. eine andere Bitmap,
ein beliebiges anders Screen-Objekt oder in einen Graphic String gezeichnet
werden. Einige R-BASIC Libraries bieten die Möglichkeit Bitmaps in einer externen
Datendatei zu speichern oder von dort zu laden. Das folgende Bild gibt eine
Übersicht über die Möglichkeiten.

andere Libraries

SDK-Libraries
oder

BASIC Libraries

Screen
Objekt

VMLoadBitmap

VMFile

VMFiles Library

VMStoreBitmap

ReadBitmapFromFile

GetBitmapHandle
NewBitmapFromHandle

ClipboardGetBitmap Bitmap HandleClipboardPutBitmap

Zwischenablage

BitmapContent
Objekt

Image-Datei
z.B. BMP, JPG

Graphic String
Handle

ResourceFile Library

Resource File

ResFileLoadBitmap

DrawBitmap

DrawBitmap

Sonstiges:
FreeBitmap
GetBitmapInfo
CropBitmap

WriteBitmapToFile

GEOS
Hintergrund

Datei

SaveBitmapAsBackground

CopyBitmap

Wie im Bild zu sehen gibt es sechs Möglichkeiten an ein Bitmap-Handle zu
kommen:

1. Das BitmapContent-Objekt stellt die Methode GetBitmapHandle bereit. Diese
Methode liefert ein Handle, das direkt die Bitmap im BitmapContent-Objekt
referenziert, das heißt die Bitmap wird nicht kopiert! Sie dürfen das Handle
nicht mit der Routine FreeBitmap freigeben!

2. Die Routine CropBitmap (siehe Kästchen "Sonstiges" im Bild oben) kopiert
einen Ausschnitt oder die gesamte Bitmap in eine neue.

3. Die Methode CopyBitmap kopiert die Bitmap eines BitmapContent Objekts und
liefert das Handle auf die Kopie. Sie müssen die Kopie mit der Routine
FreeBitmap wieder freigeben!

4. Die Routine ClipboardGetBitmap legt eine Kopie einer im Clipboard befind-
lichen Bitmap an und liefert das Handle auf diese Kopie. Sie müssen eine so
angelegte Bitmap mit der Routine FreeBitmap wieder freigeben!

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 181

5. Die Routine ReadBitmapFromFile liest eine Bitmap aus einer Bilddatei. Sie
müssen eine so angelegte Bitmap mit der Routine FreeBitmap wieder
freigeben!

6. Einige Libraries sind in der Lage Bitmaps in einer Datei zu speichern. Diese
Libraries liefern Routinen mit, um auf die Bitmaps in der Datei zuzugreifen. Im
Bild oben sind die VMFiles Library (VMLoadBitmap) und die ResourceFile
Library (ResFileLoadBitmap) angegeben. Auch diese Routinen liefern eine
Referenz auf die in der Datei befindliche Bitmap, die Bitmap wird nicht kopiert.

DrawBitmap

DrawBitmap zeichnet den Bitmap Grafik an die Position x, y.

Syntax: DrawBitmap <han> , x , y [, noFix]
<han>: Handle, das die Bitmap referenziert.
x, y: Zeichenposition in Pixeln. Die linke obere Ecke der

Bitmap wird an diese Position gezeichnet.
noFix: FALSE: 8 Bit Bitmap fix anwenden (default)

TRUE: 8 Bit Bitmap nicht fix anwenden (siehe unten)

Bugs ...
Das GEOS System (mindestens bis Version 4.1.3) crasht wenn folgende
Bedingungen gleichzeitig zutreffen:

• der Screen ist eine 8 Bit Bitmap (mit oder ohne Transparenz)
• und es soll eine Bitmap mit Maske (monochrome, 8 Bit oder 24 Bit)

gezeichnet werden
• und die x-Koordinate ist negativ

R-BASIC löst dieses Problem, indem es im oben genannten Fall die zu zeich-
nende Bitmap vorher beschneidet und dann so zeichnet, als gäbe es dieses
Problem nicht.
Wenn Sie den Parameter noFix (TRUE) angeben, wendet R-BASIC diesen Fix
nicht an. Das kann z.B. in folgenden Situationen sinnvoll sein:

• Sie haben ein verschobenes Koordinatensystem (siehe Anweisung Screen-
SetTranslation) und sind sicher, dass die Bitmap trotz negativer x-Koordinate
nicht über den linken Rand hinausragt.

• Sie haben eine neuere GEOS-Version, die den Bug gefixt hat.

... und Features?
Wenn Sie mit DrawBitmap eine monochrome Bitmap in eine andere Bitmap
drawen ist das Ergebnis etwas seltsam. Je nach Situation wird die Bitmap bei-
spielsweise transparent gezeichnet, obwohl sie nicht gar keine Maske hat oder die
Bitmapdaten landen in der Maske der Zielbitmap. Ist das nun ein Bug oder ein
Feature?

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 182

CropBitmap

CropBitmap (engl. to crop: etwas zuschneiden) kopiert einen Ausschnitt einer
Bitmap. Der Ausschnitt wird durch die übergebenen Koordinaten bestimmt. Es ist
zulässig, dass die Koordinaten einen Bereich beschreiben, der teilweise außerhalb
der Bitmap liegt. CropBitmap handelt alle "Koordinatenfehler" korrekt.
CropBitmap liefert ein Handle auf die Kopie. Dieses Handle muss mit FreeBitmap
wieder freigegeben werden. Im Fehlerfall (der durch die angegeben Koordinaten
Ausschnitt liegt komplett außerhalb der Bitmap) liefert CropBitmap ein NullHandle.
CropBitmap kann verwendet werden, um die ganze Bitmap zu kopieren. Geben
Sie dazu einen Ausschnitt an, der sicher größer ist, als die zu kopierende Bitmap.

Syntax: <han> = CropBitmapInfo (bmpHan , x0, y0, x1, y1)
bmpHan: Handle auf die vorhandene Bitmap
x0, y0: linke obere Ecke des zu kopierenden Ausschnitts
x1, y1: rechte untere Ecke des zu kopierenden Ausschnitts

Die Größe der neuen Bitmap ist (falls die Koordinaten nicht außerhalb der Bitmap
liegen):

xSize = x1 - x0 + 1
ySize = y1 - y0 + 1

Liegt ein Koordinatenpaar außerhalb der Bitmap so ist der kopierte Ausschnitt
kleiner.

Beispiele:
’ In den folgenden Beispielen gilt:
DIM bmpHan, newHan as HANDLE
’ bmpHan soll eine Bitmap referenzieren

’ Kopieren eines 50 x 150 Pixel großen Ausschnitts
newHan = CropBitmap (bmphan, 0, 0, 49, 150)

’ Negative Koordinaten sind zulässig
’ Der kopierte Ausschnitt ist 64 x 16 Pixel groß
newHan = CropBitmap (bmpHan, -7, -100, 63, 15)

’ Kopieren der kompletten Bitmap.
’ x1 und y1 liegen sicher außerhalb der Bitmap
newHan = CropBitmap (bmpHan, 0, 0, 1E6, 1E6)

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 183

GetBitmapInfo

GetBitmapInfo liest die Grafikinformationen einer Bitmap, die durch ein Bitmap-
Handle referenziert wird, aus. Die Struktur GraphicInfo wurde weiter oben
beschrieben.

Syntax: info = GetBitmapInfo (bmpHan)
info: Variable vom Strukturtyp GraphicInfo
bmpHan: Handle auf die Bitmap

Beispiel:
DIM info as GraphicInfo
DIM bmpHan as Handle

bmpHan = BitmapObj.GetBitmapHandle ’ Bitmap wird nicht kopiert

info = GetBitmapInfo (bmpHan)
Print "Abmessungen: ";info.sizeX;"x";info.sizeY;"Pixel"

ReadBitmapFromFile

ReadBitmapFromFile liest eine Bitmapgrafik aus einer Datei. Die Datei wird
geöffnet, die Bilddaten werden kopiert und anschließend wird die Datei wieder
geschlossen. ReadBitmapFromFile liefert das Handle auf die gelesene Bitmap.
Das Handle muss mit FreeBitmap wieder freigegeben werden. Die globale
Variable fileError wird gesetzt (Null oder Fehlercode). Im Fehlerfall liefert
ReadBitmapFromFile ein NullHandle.

Syntax: <han> = ReadBitmapFromFile (fileName$ [, pictNum])
<han> Variable vom Typ Handle
fileName$: Name der Datei mit dem Bild (Pfadanteil erlaubt).
pictNum: Nummer des Bildes, falls die Datei mehr als ein Bild enthält.

Default: 1 (erstes Bild lesen)

ReadBitmapFromFile unterstützt die folgenden Dateiformate: BMP, RLE, DIB,
ICO, PCX, GIF, FLI, FLC, JPG, TGA, SCR (BreadBox SplashScreen).
Tipp: Mit Routine ReadGStringFromFile können Sie das Bild aus einer GEOS
Hintergrunddatei auslesen.
Tipp: Die Routine GetImageInfo liefert detaillierte Informationen über die Bilddatei.

Der folgende Code liest eine PCX-Datei und nutzt ein BitmapContent-Objekt um
die Grafik anzuzeigen. Das BitmapContent Objekt legt sich eine Kopie der Bild-
daten an, so dass wir das Handle mit FreeBitmap wieder freigeben können.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 184

SUB LoadAndShowImage()
DIM h as HANDLE
h = ReadBitmapFromFile ("WOLKEN.PCX")
IF fileError THEN RETURN
MyBitmapContent.NewBitmapFromHandle h ’ Kopiert die Daten
FreeBitmap h ’ gibt die Bitmapdaten wieder frei.

End SUB

WriteBitmapToFile

WriteBitmapToFile schreibt eine Bitmap, die durch ein Handle referenziert wird, im
BMP-Format in eine Datei. Der Dateiname sollte deshalb auf BMP enden. Falls
die Datei bereits existiert wird sie überschrieben. WriteBitmapToFile setzt die
globale Variable fileError (Null oder Fehlercode).

Syntax: WriteBitmapToFile <han> , fileName$
<han> Handle, das eine Bitmap referenziert.
fileName$: Name der anzulegenden Datei (Pfadanteil erlaubt).

WriteBitmapToFile berücksichtigt eine eventuell vorhandene Maske. Transparente
Pixel werden auf die Farbe Weiß bzw. auf den Index 255 (das entspricht in der
Standardpalette ebenfalls Weiß) gesetzt. Eine vorhandene Palette wird ebenfalls
berücksichtigt.
Der folgende Code schreibt die Bitmap eines BitmapContent Objekts in eine Datei.
Weil die Methode GetBitmapHandle nur das Handle liefert, die Daten aber nicht
kopiert dürfen wir das Handle NICHT mit FreeBitmap freigeben.

SUB WriteImageToFile ()
DIM h as Handle
h = MyBitmapContent.GetBitmapHandle
WriteBitmapToFile h, "BILD1.BMP"

End SUB

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 185

SaveBitmapAsBackground

SaveBitmapAsBackground schreibt eine Bitmap, die durch ein Handle referenziert
wird, als GEOS Hintergrunddatei. Falls die Datei bereits existiert wird sie
überschrieben. WriteBitmapAsBackground setzt die globale Variable fileError (Null
oder Fehlercode).

Syntax: SaveBitmapAsBackground <han> , fileName$
<han> Handle, das eine Bitmap referenziert.
fileName$: Name der anzulegenden Datei (Pfadanteil erlaubt).

FreeBitmap

FreeBitmap gibt das Handle und die komplette Bitmap wieder frei. Der von Bitmap
belegte Speicherplatz wird freigegeben. FreeBitmap darf nur auf Handles
angewendet werden, von ClipboardGetBitmap, ReadBitmapFromFile, CropBitmap
oder der Methode CopyBitmap belegt wurden!

Syntax: FreeBitmap <han>
<han> Handle, das die Bitmap referenziert.

Tipp: Um sicherzustellen, dass das System nicht crasht, falls das Handle irrtümlich
noch einmal mit DrawBitmap verwendet wird, können Sie es nach dem Freigeben
durch FreeBitmap () mit der Anweisung "han = NullHandle()" löschen. Draw-
Bitmap gibt dann nur eine entsprechende Fehlermeldung aus.

ClipboardGetBitmap

ClipboardGetBitmap holt eine Bitmap aus der Zwischenablage. Die Bitmap kann
sofort mit DrawBitmap gezeichnet werden. Das von ClipboardGetBitmap gelieferte
Handle muss mit FreeBitmap wieder freigegeben werden.

Syntax: <han> = ClipboardGetBitmap ()

Wird keine Bitmap im Clipboard gefunden so liefert ClipboardGetBitmap ein
NullHandle. ClipboardGetBitmap setzt die globale Variable clipboardError (Null
oder Fehlercode). Sie können vorher mit ClipboardTest prüfen, ob sich eine
Bitmap im Clipboard befindet.

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 186

Beispiel:
DIM bmpHan AS HANDLE

IF ClipboardTest (0, 7) THEN ! manufID = 0, format = 7
bmpHan = ClipboardGetBitmap()
End IF

<....>
z.B. DrawBitmap bmpHan, 0, 0

FreeBitmap bmpHan ’ Nicht vergessen

ClipboardPutBitmap

ClipboardPutBitmap kopiert eine Bitmap, die durch ein Bitmap-Handle referenziert
wird, in die Zwischenablage. Von dort kann sie in andere Applikationen eingeklebt
oder von anderen R-BASIC Objekten gelesen werden.

Syntax: ClipboardPutBitmap <han>
<han> Handle, das eine Bitmap referenziert.

Beachten Sie, dass Sie eine Bitmap, die sich in einem BitmapContent-Objekt
befindet, auch direkt mit der Methode ClpCopy in die Zwischenablage kopiert
werden kann.
Beispiel. Wir nehmen an, dass die Routine FindABitmapHandle ein Bitmap-Handle
zurückgibt.

DIM bmpHan AS HANDLE
bmpHan = FindABitmapHandle()
ClipboardPutBitmap bmpHan

R-BASIC - Programmierhandbuch - Vol. 3
Einfach unter PC/GEOS programmieren

Grafik - 187

(Leerseite)

