

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 ProgrammierhandbuchProgrammierhandbuch

Volume 4
Textausgabe, Sound

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

2.9 Textausgabe ... 192
2.9.1 Überblick ... 192
2.9.2 Der Print-Befehl .. 194
2.9.3 Der Textbildschirm .. 196

2.9.3.1 Aufbau des Textbildschirms .. 196
2.9.3.2 Positionierung von Text .. 199
2.9.3.3 Ermitteln der Cursorposition ... 201

2.9.4 Steuerzeichen: Scrollmode, Pagemode und Layoutmode 203
2.9.5 Farben und Schriften .. 206
2.9.6 Formatierung von Zahlen .. 207

2.10 Musik und Sound ... 210
2.10.1 Einfache Töne und Tonfolgen ... 210
2.10.2 Abspielen von WAV-Dateien .. 214
2.10.3 Ausgabe von FM-Sounds ... 219

2.10.3.1 Beschreibung von Instrumenten und Noten 219
2.10.3.2 Spielen von einzelnen Noten .. 224
2.10.3.3 Ausgabe von FM-Musik .. 228

2.10.4 Konfiguration der Soundlibrary .. 234

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 192

2.9 Textausgabe

Um in R-BASIC Texte auszugeben gibt es prinzipiell zwei Möglichkeiten: Die
Verwendung eines Textobjekts (Memo, InputLine, VisText bzw. LargeText) oder
die Verwendung des PRINT-Befehls. Die Textobjekte werden ausführlich im
Objekthandbuch beschrieben. Die folgenden Kapitel beschäftigen sich mit dem
PRINT-Befehl. Dabei wird vorausgesetzt, dass ein Screen existiert. Sehr häufig ist
das ein BitmapContent Objekt, das die Anweisung defaultScreen im UI-Code hat.

2.9.1 Überblick

PRINT ist die zentrale Anweisung, um Text oder Zahlen auf dem Bildschirm
darzustellen. Die Möglichkeiten von PRINT sind sehr vielfältig. Hier finden Sie
deshalb einen Überblick.

Tabelle: Überblick über die PRINT Funktion
<Ausgabeliste> enthält numerische Ausdrücke, String-Ausdrücke oder
Steueranweisungen (INK, PAPER, SPC usw.), getrennt durch Komma (tabulierte
Ausgabe) oder Semikolon (fortlaufende Ausgabe).

Format Bedeutung
PRINT <Ausgabeliste> PRINT-Standardformat
PRINT Cursor in die nächste Zeile setzen
PRINT INK (v); <Ausgabeliste> Ausgabe mit Vordergrundfarbe v
PRINT PAPER (h); <Ausgabeliste> Ausgabe mit Hintergrundfarbe h
PRINT COLOR (v, h); <Ausgabeliste> Farben für diese Ausgabe festlegen
PRINT TAB (n); <Ausgabeliste> Ausgabe auf Tabulatorposition n.

Siehe auch tabWidth-Systemvariable
PRINT SPC (n); <Ausgabeliste> Ausgabe von n Leerzeichen.
Sonderfunktionen
PRINT Chr$(n) Ausgabe von Steuerzeichen.

Bestimmte Zeichen mit n < 32 führen
Sonderfunktionen aus.

PRINT AT (z, s); <Ausgabeliste> Ausgabe an Cursorposition Zeile (z)
und Spalte (s)

PRINT ATXY (x,y); <Ausgabeliste> Freie Positionierung an Grafik-
koordinaten x, y

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 193

Tabelle: Befehle im Zusammenhang mit Textausgaben
Befehl Bedeutung
LOCATE z, s Positionierung des Cursors
WINDOW za, ze, sa, se Text-Fenster einstellen
CsrLin(n) Abfrage der Cursor-Zeile
CsrPos(n) Abfrage der Cursor-Spalte
VGet$ Abfrage des Zeichens an der aktuellen Cursor-

Position (Kompatibilitätsbefehl)

Der Cursor
Damit Textausgaben fortlaufend auf dem Bildschirm erfolgen können, verwaltet R-
BASIC intern, wohin die nächste Textausgabe erfolgt. Diese Position wird als
Cursor-Position bezeichnet. Man sagt z.B. der Cursor steht in Zeile 7 und Spalte
4. Sie können die Cursorposition manuell mit dem Befehl LOCATE verändern.

Farben und Position
Innerhalb einer Print-Anweisung können die Text-Farbe und die Ausgabe-Position
geändert werden. Diese Änderungen sind nur für diese eine Print-Anweisung
gültig.
Standardmäßig wird der Texthintergrund mit der aktuelle Hintergrundfarbe ge-
löscht. Wenn Sie Texte transparent ausgeben wollen müssen Sie als
Hintergrundfarbe den Spezialwert BG_TRANSPARENT einstellen.

Steuerzeichen
Innerhalb einer Print-Anweisung kann nicht nur Text, sondern auch sogenannte
Steuerzeichen ausgegeben werden. Diese Zeichen mit einem ASCII Code unter
32 führen Sonderaufgaben aus. Sie sind weiter unten, in Kapitel 2.9.4
(Steuerzeichen) beschrieben. Insbesondere sei hier auf die Einstellung des
Bildschirmmodus (Page-Mode, Scroll-Mode und Layout-Mode) hingewiesen, der
sich nur über den Printbefehl ändern lässt.

Volle Kontrolle
Das Verhalten der Print-Anweisung wird über die globale Systemvariable
printFont gesteuert. Sie enthält alle für die Textausgabe relevanten Daten. Das
Feld printFont.style enthält die Text-Stile (fett, kursiv usw.). Näheres dazu
erfahren Sie weiter unten, im Kapitel 2.9.5 (Farben und Schriften) sowie im
Handbuch "Spezielle Themen", Kapitel 2.
Die Formatierung von Zahlen wird über die globale Systemvariable number-
Format kontrolliert. Auch hierzu erfahren Sie Näheres weiter unten, im Kapitel
2.9.6 (Formatierung von Zahlen) sowie im Handbuch "Spezielle Themen",
Kapitel 1.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 194

2.9.2 Der PRINT-Befehl

PRINT ist die zentrale Anweisung, um Text oder Zahlen auf dem Bildschirm
darzustellen.

PRINT

Syntax 1: PRINT
Der Cursor wird an den Anfang der nächsten Zeile gesetzt.

Syntax 2: PRINT <Ausgabeliste>
<Ausgabeliste> enthält die auszugebenen Daten, jeweils getrennt durch ein

Trennzeichen (Komma oder ein Semikolon). Die Liste kann mit
einem Trennzeichen abgeschlossen werden.

Elemente der Ausgabeliste können sein:
• numerische Ausdrücke (Zahlen, Variablen, Berechnungen, ...)
• String-Ausdrücke (Variablen, Stringfunktionen, ...)

Innerhalb von Stringausdrücken können mit der Funktion Chr$() auch
Steuerzeichen an den Bildschirm gesendet werden. Eine Liste der
Steuerzeichen und ihre Wirkung finden Sie weiter unten.

• Eines der Positionierungs-Kommandos AT, TAB, SPC, ATXY
• Eine Farbanweisung (INK, PAPER, COLOR)

Trennzeichen können sein:
• Ein Komma. Es erfolgt eine tabulierte Ausgabe, d.h. der Cursor wird an die

nächste Tabulator-Position gesetzt. Die Tabulatorschrittweite wird von der
Systemvariablen tabWidth bestimmt.

• Ein Semikolon. Es erfolgt eine fortlaufende Ausgabe ohne zusätzliche
Zwischenräume.

Beispiele:
PRINT "Hallo", "Welt" ’ tabuliert
PRINT "Hallo"; "Welt" ’ hintereinander

Ausgabe:
Hallo Welt
HalloWelt

Steht am Ende einer PRINT-Anweisung eines der Trennzeichen (Komma oder
Semikolon), so bleibt der Cursor an der durch das Trennzeichen bestimmten
Stelle. Steht kein Trennzeichen am Ende wird der Cursor nach der Ausgabe an
den Anfang der nächsten Zeile gesetzt.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 195

Beispiele:
A = 100: N = 17
PRINT A, 2*A, sqr(a); ’ keine Zeilenschaltung
PRINT " Otto ist"; N; " Jahre alt"

Ausgabe:
100 200 10 Otto ist 17 Jahre alt

A$ = "Ottokar isst Wurst"
PRINT A$; ’ keine Zeilenschaltung!
PRINT Left$(A$, 7); Right$(A$, 6)

Ausgabe:
Ottokar isst Wurst Ottokar Wurst

PRINT AT(0,0); "Ganz links oben" ’ Positionierung unabhängig
’ vom eingestellten Fenster

PRINT COLOR(BLACK, WHITE); " OK " ’ Farbe nur für diese
’ Ausgabe

Die Farb- und Positionierungsanweisungen innerhalb des Print-Befehls können
beliebig miteinander kombiniert werden.

Beispiel:
Print AT(2,2);Paper 0;"Hallo";AT (3,2);Ink 15;"Welt"

Beachten Sie, dass in diesem Beispiel die Anweisung PAPER auch auf das Wort
"Welt" wirkt. "Welt" erscheint also weiß (15) auf Schwarz (0).

PRINT positioniert den Text immer relativ zum aktuell (mit WINDOW) eingestellten
Text-Fenster. Ausnahmen sind die Funktionen PRINT AT und PRINT ATXY. Sie
beziehen sich immer auf das maximale Textfenster.
Wurde kein WINDOW-Befehl ausgeführt, ist das maximale Fenster voreingestellt.

Geht der mit Print ausgegebene Text über das Text-Fenster hinaus, so hängt die
Reaktion vom eingestellten Modus (PAGE-Mode, SCROLL-Mode oder LAYOUT-
Mode) ab. Im LAYOUT-Modus werden Fensterbegrenzungen ignoriert, der Text
geht rechts und unten über das Fenster hinaus. Im PAGE- und SCROLL-Mode
wird beim Überschreiten der rechten Fensterseite eine neue Zeile eröffnet. Das
Überschreiten des unteren Fensterrandes führt im PAGE-Mode dazu, dass der
Cursor nach links oben gesetzt wird. Im Scrollmodus wird der Fensterinhalt nach
oben geschoben (Scrolling). Dieser Modus steht nur zur Verfügung, wenn der
Screen ein BitmapContent-Objekt ist.
Per Default ist für BitmapContent-Objekte der Scroll-Modus voreingestellt. Für alle
anderen Objekte ist der Layout-Modus voreingestellt.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 196

2.9.3 Der Textbildschirm

2.9.3.1 Aufbau des Textbildschirms

Der Bildschirm gliedert sich für die Textausgabe in Zeilen und Spalten.
Entsprechend der bei Computern üblichen Zählweise beginnen sowohl die
Zeilennummern als auch die Spaltennummern bei Null.

LOCATE

Der Befehl PRINT beginnt seine Textausgabe an der aktuellen Cursorposition. Mit
der Anweisung LOCATE können Sie diese Position verändern.

Syntax: LOCATE zeile, spalte
zeile: Zeilenposition für die nächste RPINT-Anweisung
spalte: Spaltenposition für die nächste RPINT-Anweisung

0 2 4 6 8 10
0

2

4

6

8

Ze
ile

Zeichenposition (Spalte)

10

12

H A L L O

Zeilen und Spalten beginnen
bei Null. Das "H" befindet sich
in Zeile 4 und der Spalte 8

Locate 7, 2
positioniert den Cursor für die
nächste PRINT-Ausgabe an
dieser Stelle

Hinweise:
• Ein Standard-Zeichen ist 16 Pixel hoch und 10 Pixel breit. Wenn Sie zum

Beispiel ein Ausgabefenster der Größe 640x400 Pixel haben, so fasst der
Bildschirm 25 Zeilen zu 64 Zeichen.

• Setzen Sie einen anderen Font (siehe FontSetFixed, FontSetGeos,
FontSetBlock), so ändern sich die Werte für Zeichenbreite und Zeilenab-
stand. Dabei kann es passieren, dass rechts und/oder unten ein Rand bleibt.
Der Befehl WINDOW (ohne Parameter) wird beim Aufruf dieser Routinen
automatisch ausgeführt und aktiviert das komplette Ausgabefenster (mit
Rand, falls erforderlich). Der Rand wird nicht von Text beschrieben, von CLS
aber gelöscht.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 197

• Im GEOS-Font-Modus (aktiviert mit FontSetGeos) haben die Zeichen meist
keine feste Breite (die meisten GEOS-Fonts sind sog. Proportional-Fonts).
Eine feste Zuordnung zwischen Zeichen und Bildschirmposition ist hier nicht
sinnvoll. Die Befehle WINDOW und LOCATE rechnen daher mit einer
durchschnittlichen Breite von 60% der Zeichenhöhe. Bei Bedarf lässt sich
dieser Wert über die System-Variable printFont.charWidth einstellen
(Achtung! Profi-Funktion!).

WINDOW

Der Befehl WINDOW (Fenster) schränkt die Textausgabe auf einen bestimmten
Bereich des Bildschirms ein. Die Einschränkung gilt nur für Textein- und ausgaben
(PRINT, INPUT, CLS, LOCATE einschließlich der darauf wirkenden Farb-Befehle),
nicht jedoch für Grafikbefehle.

Syntax 1: WINDOW za, ze, sa, se
za: erste Zeile
ze: letzte Zeile
sa: erste Spalte
se: letzte Spalte
Die Zählung für Zeilen und Spalten beginnt bei Null.

Syntax 2: WINDOW
Es wird das maximal mögliche Ausgabefenster eingestellt.

Beispiel:
Die Textausgabe wird auf die Zeilen 10 bis 15 innerhalb der Spalten 20 bis 30
eingeschränkt.
WINDOW 10, 15, 20, 30

Der Befehl LOCATE bezieht sich immer auf das eingestellte Fenster.
Beispiel:
WINDOW 2, 9, 4, 15
LOCATE 2, 4
PRINT "Hallo"

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 198

0 2 4 6 8 10
0

2

4

6

8

10

12

Zeile

Spalte

H A L L O

Window 2, 9, 4, 15
stellt dieses
Ausgabefenster ein

Locate 2, 4
plaziert den Cursor
an dieser Stelle

Print "HALLO"
Das Wort Hallo
erscheint und der
Cursor steht an
dieser Stelle

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 199

2.9.3.2 Positionierung von Text

Die tabWidth - Systemvariable

Werden bei Print die Argumente mit einem Komma getrennt, erfolgt eine tabulierte
Ausgabe. Die Systemvariable tabWidth bestimmt dabei die Position der
Tabulatoren. Gültige Werte sind ganze Zahlen im Bereich von 1 bis 1024.
tabWidth kann gelesen und geschrieben werden.

Beispiel: Tabulator auslesen und neu setzen
Print "Tabulator", "=", tabWidth ’ Standardwert: 16
tabWidth = 23
Print "Tabulator", "=", tabWidth ’ 23 erscheint
tabWidth = tabWidth / 2
Print "Tabulator", "=", tabWidth ’ 11 erscheint (ganzzahlig)

Positionierung innerhalb von Print

Innerhalb einer PRINT-Anweisung kann man nicht nur Text ausgeben, sondern
auch Positionierungsaufgaben wahrnehmen, damit die Ausgabe ordentlich
aussieht. Dafür stehen die Funktionen SPC, TAB, AT und ATXY zur Verfügung.

SPC und TAB

Die Funktion SPC (Spaces) erzeugt eine bestimmte Anzahl von Leerzeichen und
gibt diese aus.
Die Funktion TAB (Tabulator, Tabelle) positioniert den Cursor an der
angegebenen Spalte in der Zeile, indem so viele Leerzeichen, wie dafür nötig sind,
erzeugt und ausgegeben werden.

Syntax: PRINT SPC(n); <Ausgabeliste>
n: Anzahl der auszugebenden Leerzeichen
<Ausgabeliste> : Liste von Werten, die ausgegeben werden sollen.

Syntax: PRINT TAB(n); <Ausgabeliste>
n: Position (Spalte), an der der Cursor stehen soll

TAB verwendet nicht die globale Variable tabWidth, sondern
erwartet direkt die Spalte, relativ zum aktuellen Window.

<Ausgabeliste> : Liste von Werten, die ausgegeben werden sollen.

Beispiele:
A = 3
PRINT "Alfa"; SPC(12);"Beta" ’ 12 Leerzeichen
PRINT "Alfa"; TAB(12);"Beta" ’ an Position 12
PRINT A; TAB(8); A*A; TAB(24); A*A*A

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 200

Ausgabe
Alfa Beta
Alfa Beta
 3 9 27

AT und ATXY

Die Funktion AT (’at’ heißt ’an’) positioniert den Cursor an der angegebenen Stelle
(Zeile, Spalte). Die Funktion ATXY positioniert den Cursor an der angegebenen
Grafik-Position (x, y) in Pixeln. Damit ist eine Text-Positionierung unabhängig vom
Zeichen-Raster aus Zeilen und Spalten möglich.
Beide Funktionen beziehen sich NICHT auf das aktuelle Text-Window, sondern
schreiben den Text bezüglich des maximalen Fensters.

Syntax: PRINT AT(zeile, spalte); <Ausgabeliste>
zeile: Zeichen-Zeile, in die die Ausgabe erfolgen soll
spalte: Zeichen-Spalte, in die die Ausgabe erfolgen soll

Zeile und spalte beziehen sich auf das maximale Text-Fenster.
<Ausgabeliste> : Liste von Werten, die ausgegeben werden sollen.

Syntax: PRINT ATXY(x, y); <Ausgabeliste>
x, y: Koordinaten, an der der Text erscheinen soll

Die linke obere Ecke des ersten Text-Zeichens erscheint an dieser
Stelle. Beachten Sie, dass hier die Grafik-Konventionen für die
Koordinaten gelten, d.h. es folgt zuerst die x-Koordinate
(entsprechend der Spalte) und dann die y-Koordinate
(entsprechend der Zeile). Bei PRINT AT() und LOCATE ist es
andersherum (erst die Zeile und dann die Spalte).

<Ausgabeliste> : Liste von Werten, die ausgegeben werden sollen.

Beispiele:
PRINT AT(0,7); "****************"
’ Ausgabe untereinander:
PRINT AT(3,10); "A";AT(4,10); "B";AT(5,10); "C";
PRINT ATXY(0,300);"xyz" ’ links, unten (!)

Hinweise:
• Hinter SPC, TAB, AT und ATXY sollte immer ein Semikolon (kein Komma)

folgen, da ein Komma die Cursorposition wieder ändern kann (Anwahl der
nächsten Tabulator-Position).

• Die Klammern um die Argumente sind optional.
PRINT SPC 7, "sieben Leerzeichen"

• Diese Anweisungen können beliebig mit den Farb-Anweisungen kombiniert
werden.

• Sie sollten AT bzw. ATXY nicht mit TAB oder VGet$ kombinieren. Die
Ergebnisse sind häufig unerwartet.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 201

2.9.3.3 Ermitteln der Cursorposition

Sie können in R-BASIC sowohl die aktuelle Cursor-Position ermitteln (CsrLin,
CsrPos) als auch das auf der Cursor-Position stehende Zeichen lesen (VGet$).

CsrLin

Die Funktion CsrLin (d.h. Cursor Line, Zeile des Cursors) liefert die Zeile, in der
sich der Cursor gerade befindet. Der Parameter n bestimmt, worauf sich CsrLin
beziehen soll.

Syntax: <numVar> = CsrLin (n)
n > 0: Zeilennummer bezüglich des aktuellen Text-Fensters
n = 0: Zeilennummer bezüglich des maximalen Fensters
n < 0: Sonderfunktion: Anzahl der Zeilen im aktuellen Fenster

Beispiel:
WINDOW 5, 10, 8, 45
Color 7, 0: CLS
Print CsrLin(1); CsrLin(0)
Print "Das Fenster hat"; CsrLin(–1); "Zeilen"

CsrPos

Die Funktion CsrPos (d.h. Cursor Position, Spalte des Cursors) liefert die Spalte,
in der sich der Cursor gerade befindet. Der Parameter n bestimmt, worauf sich
CsrPos beziehen soll.

Syntax: <numVar> = CsrPos (n)
n > 0: Spaltennummer bezüglich des aktuellen Text-Fensters
n = 0: Spaltennummer bezüglich des maximalen Fensters
n < 0: Sonderfunktion: Anzahl der Spalten im aktuellen Fenster

Beispiel:
WINDOW 5, 10, 8, 45
Color 7, 0: CLS
Print CsrPos(1)
Print CsrPos(0)
Print "Das Fenster hat"; CsrPos(–1); "Spalten"

Hinweis:
Die Funktionen AT und ATXY aktivieren intern kurzzeitig das maximale
Textfenster. Verwenden Sie CsrLin, CsrPos und VGet$ deswegen nicht als
Argumente einer PRINT-Anweisung, die auch AT oder ATXY enthält.

Fehlerhaft:
Print AT (10, 9); CsrPos(–1)

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 202

Korrekt:
A = CsrPos(–1)
Print AT (10, 9); A

VGet$

Die Funktion VGet$ (d.h. Video Get - Hole von der Grafikkarte) liefert das Zeichen,
das sich an der aktuellen Cursor-Position befindet.
VGet$ ist ein Kompatibilitätsbefehl für ältere BASIC Programme, die für einen
echten Textmodus geschrieben wurden.

Syntax: C$ = VGet$

Anmerkung:
• Nachdem der Bildschirm mit CLS gelöscht wurde, liefert VGet$ an unbe-

schriebenen Positionen Null-Zeichen (Leerstrings). ASC(VGet$) liefert Null.
• Ein Aufruf der Funktionen FontSetFixed oder FontSetBlock löscht den von

VGet$ verwendeten Speicherbereich. VGet$ liefert an nicht erneut beschrie-
benen Positionen Leerstrings.

• VGet$ steht im GEOS-Font-Modus (nach FontSetGeos) nicht zur Verfügung.
• Für nicht unterstützte Screenobjekte oder wenn der Screen mehr als 8000

Zeichen enthalten kann liefert VGet$ immer ein Null-Zeichen (Leerstring)
• VGet$ steht im LAYOUT-Modus nicht zur Verfügung.

Beispiel:
Dim a$
WINDOW
Color 7, 0: CLS
Print "Hallo BASIC"
Locate 0, 7
a$ = VGet$
Print AT(2, 7); a$

Hinweis: Die Funktionen AT und ATXY aktivieren intern kurzzeitig das maximale
Textfenster. VGet$ deswegen nicht als Argument einer PRINT-Anweisung, die
auch AT oder ATXY enthält.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 203

2.9.4 Steuerzeichen: Scrollmode, Pagemode und Layoutmode

ASCII-Codes im Bereich von Null bis 31 ist kein Buchstabe, sondern eine
Steuerfunktion zugeordnet. Einige dieser Codes können von R-BASIC in der
PRINT-Anweisung ausgewertet werden. Im Folgenden finden Sie eine
Zusammenstellung der verfügbaren Steuerzeichen. Besondere Bedeutung kommt
dabei dem PAGE-Mode, dem SCROLL-Mode und dem LAYOUT-Mode zu, da
diese nur über die Steuerzeichen und PRINT eingestellt werden können.

SCROLL-Mode

Am Zeilenende wird in die nächste Zeile gewechselt. Wenn das untere Ende des
Text-Fensters erreicht wird, schiebt R-BASIC den Fensterinhalt um eine Zeile
nach oben. Am unteren Fensterrand entsteht eine Leerzeile. Der Scrollmode steht
nur zur Verfügung, wenn der Screen ein BitmapContent-Objekt ist.

PAGE-Mode

Am Zeilenende wird in die nächste Zeile gewechselt. Wenn das untere Ende des
Text-Fensters erreicht wird setzt R-BASIC den Cursor wieder nach links oben.

LAYOUT-Mode

Es gibt weder einen automatischen Zeilenumbruch noch eine Begrenzung auf das
Textfenster. Der Cursor kann frei positioniert werden, auch mit negativen
Koordinaten (links oder oberhalb des Textfensters). Texte können über das
Fenster hinausragen (und damit auch unsichtbar werden).

Um ein Steuerzeichen auszugeben verwenden Sie innerhalb einer Print-An-
weisung die Stringfunktion Chr$() oder einen Backslash ’\’, gefolgt vom entsprech-
enden ASCII-Code.

Syntax: PRINT Chr$(code); ’ z.B. Print Chr$(19);
PRINT "\code"; ’ z.B. Print "\19";
code: das auszuführende Steuerzeichen

Hinweise:
• Nicht unterstützte (d.h. nicht in der Tabelle aufgeführte) Steuercodes werden

ignoriert.
• Nach Chr$(code) sollte ein Semikolon folgen.
• Ist code > 31, erzeugt Chr$() das entsprechende ASCII-Zeichen.
• Im GEOS-Font-Modus arbeiten die meisten Steuercodes nur eingeschränkt

(siehe Beschreibung in der Tabelle)
• Im GEOS-Font-Modus existieren keine festen Zeichen-Positionen, da die

meisten Buchstaben verschieden breit sind. Die Steuerzeichen arbeiten daher

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 204

mit einer "durchschnittlichen" Zeichenbreite. Ob die Funktion für Ihre Zwecke
brauchbar ist, müssen Sie ausprobieren.
Grundsätzlich NICHT korrekt arbeiten Codes, die einzelne Zeichen löschen
oder einfügen (ASC_CLEAR, ASC_BACKSPACE, ASC_DEL, ASC_INS).

• Mit der Ausnahme der Codes 9 (ASC_TAB) und 13 (ASC_ENTER) können
Textobjekte keine Steuerzeichen verarbeiten. In einigen Fällen kann es sogar
zum Crash kommen, wenn Sie andere Steuerzeichen an ein Textobjekt
übergeben.

Um die symbolischen Namen (z.B. ASC_UP) verwenden zu können, müssen Sie
die KeyCodes-Library einbinden.

Include "KeyCodes" ! Groß-/Kleinschreibung beachten

Tabelle: ASCII Steuercodes
InKey$-Taste: Gedrückte Taste, damit InKey$ diesen Code zurückgibt.
Bedeutung in Print: Funktion, die mit Print Chr$(code) ausgeführt wird.

ASCII-Code Konstanten-Name InKey$ Bedeutung in Print
dez. hex. (KeyCodes-Library) Taste
01 (&H01) ASC_CLEAR - Zeichen löschen, Cursor

an nach links
02 (&H02) ASC_CLEAR_LINE - Zeile löschen, Cursor an

Zeilenanfang
03 (&H03) - - -
04 (&H04) - - -
05 (&H05) - - -
06 (&H06) - - -
07 (&H07) ASC_BEEP - Signalton (Beep)
08 (&H08) ASC_BACKSPACE Backsp. Rückwärtsschritt. Zeichen

auf Cursorposition
löschen und Cursor nach
links

09 (&H09) ASC_TAB TAB Anwahl der nächsten
Tabulatorposition

10 (&H0A) ASC_DOWN Cursor 1 Zeile tiefer
11 (&H0B) ASC_UP Cursor 1 Zeile höher

12 (&H0C) ASC_CLS - Bildschirm löschen
13 (&H0D) ASC_ENTER Enter Cursor an den Anfang der

nächsten Zeile
14 (&H0E) ASC_LEFT Cursor 1 Zeichen nach

links

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 205

15 (&H0F) ASC_RIGHT Cursor 1 Zeichen nach
rechts

16 (&H10) ASC_HOME - Cursor nach links oben
17 (&H11) ASC_PAGE_MODE PAGE-Mode einstellen

ASC_PAGE_UP Bild
18 (&H12) ASC_SCROLL_MODE SCROLL-Mode einstellen

ASC_PAGE_DOWN Bild
19 (&H13) ASC_LAYOUT_MODE - LAYOUT-Mode einstellen
20 (&H14) ASC_POS_END Ende -
21 (&H15) ASC_POS_1 Pos 1 Cursor an Zeilenanfang
22 (&H16) ASC_INS Einfg ein Zeichen an der

Cursorposition einfügen
23 (&H17) ASC_DEL Entf ein Zeichen an der

Cursorposition löschen
24 (&H18) - - -
25 (&H19) - - -
26 (&H1A) - - -
27 (&H1B) ASC_ESC ESC -
28 (&H1C) - - -
29 (&H1D) - - -
30 (&H1E) - - -
31 (&H1F) - - -

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 206

2.9.5 Farben und Schriften

Standardmäßig verwendet Print die aktuelle Vorder- und Hintergrundfarbe, die mit
einem der Befehle INK, PAPER oder COLOR eingestellt wurden. Sie können die
Farben jedoch für eine einzelne Print-Anweisung ändern, indem Sie die
Funktionen INK, PAPER oder COLOR innerhalb der Print-Anweisung angeben.
Diese Farbwerte gelten dann nur für diese eine Print-Anweisung.

INK, PAPER, COLOR

Syntax: PRINT INK(v); <Ausgabeliste>
PRINT PAPER(h); <Ausgabeliste>
PRINT COLOR(v, h); <Ausgabeliste>
v: Vordergrund (Text-) Farbe
h: Hintergrundfarbe
<Ausgabeliste> : Liste von Werten, die ausgegeben werden sollen.

Hinweis:
Um Texte oder Blockgrafik-Zeichen transparent auszugeben (d.h. der Hintergrund
wird nicht gelöscht) verwenden Sie als Hintergrundfarbe die spezielle Konstante
BG_TRANSPARENT (numerischer Wert: 4096).
BG_TRANSPARENT kann sowohl innerhalb der Print-Anweisung als auch mit den
BASIC-Befehlen PAPER und COLOR verwendet werden.

Beispiel:
PRINT AT (7, 12); COLOR (BLACK, WHITE); " ACHTUNG! "
PRINT AT (7, 12); PAPER (BG_TRANSPARENT); " ACHTUNG! "

Hinweise:
• Die Farbanweisungen können beliebig mit den Positionierungsanweisungen

AT und ATXY kombiniert werden.
• Hinter den Farbanweisungen sollte immer ein Semikolon folgen, damit die

Cursorposition nicht verändert wird.

Verwendung von Schriften

Print verwendet immer die aktuell eingestellte Schriftart und Schriftgöße. Die
folgende Tabelle enthält die wesentlichen Befehle zum Einstellen von Schriftart
und Schriftgröße. Eine ausführliche Beschreibung sowie weitere Befehle zur
Verwaltung von Schriften finden Sie im Handbuch "Spezielle Themen", Kapitel 2
(Verwendung von Schriften) und Kapitel 4 (Verwendung des Block-Grafik-Modus).
Der Block-Grafik-Modus erlaubt die Ausgabe von selbst erstellten Grafikzeichen
mit dem Print-Befehl.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 207

Befehl / Variable Aufgabe
FontSetFixed (fontID, size [,lineHeight])

Einstellen einer Schrift mit fester Zeichenbreite
FontSetGeos(fontID, size [,lineHeight])

Einstellen einer beliebigen GEOS-Schriftart
FontSetBlock(sizex, sizey [, colored])

Einstellen des Block-Grafik-Modus
printFont Systemvariable, enthält alle für die Textausgabe

relevanten Daten. Das Feld printFont.style enthält die
Text-Stile (fett, kursiv usw.).

printFontStruct Datentyp der globalen Systemvariablen printFont

Printfont.style enthält Bitflags. Die Arbeit mit Bitflags ist im Kapitel 2.3.5.4 (Sonder-
fall: Bitflags) erläutert.

Beispiele:
’Setzen des Stils "unterstrichen", auch wenn er schon gesetzt ist
printFont.style = printFont.style OR TS_UNDERLINE

’ Rücksetzen des Stils "kursiv", auch wenn er nicht gesetzt war
printFont.style = printFont.style AND NOT TS_ITALIC

2.9.6 Formatierung von Zahlen

Wenn Sie mit dem Print-Befehl eine Zahl ausgeben gibt R-BASIC Vor- und
Nachkommastellen aus oder wechselt in die Exponentialdarstellung, je nachdem
in welchem Bereich die Zahl liegt.
Zur Einstellung des Zahlenformats stehen in R-BASIC die folgenden Befehle und
Variablen zur Verfügung. Sie sind ausführlich im Kapitel 1 des Handbuchs "Spe-
zielle Themen" beschrieben. Wenn Sie zum Beispiel selbst festlegen wollen, wie
viele Nachkommastellen ausgegeben werden, können Sie die Systemvariable
numberFormat manuell ändern.

Befehl / Variable Bedeutung
numberFormat Systemvariable. Enthält alle für die Zahlen-

formatierung relevanten Informationen.
NumberFormatStruct Typ der globalen Systemvariablen numberFormat.
SetNumberFormat Einstellen eines Standard-Formats

Für viele Zwecke reichen die R-BASIC Standard-Zahlenformate aus, so dass Sie
sich meistens nicht mit der komplexen Belegung der numberFormat-Variable

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 208

beschäftigen müssen. Im Folgenden finden Sie eine Kurzbeschreibung der
Anweisung SetNumberFormat. Eine vollständige Beschreibung sowie weitere
Syntaxvarianten finden Sie im Kapitel 1 des Handbuchs "Spezielle Themen".

SetNumberFormat

Stellt das Zahlenformat für die Anzeige von Zahlen ein.

Syntax: SetNumberFormat (format)
Die Systemvariable numberFormat wird belegt.

format: einzustellendes Format (ein numerischer Wert, siehe Tabelle)

Für ’format’ stehen folgende Werte zur Verfügung:

 Wert Konstante Wirkung
 0 NF_NORMAL Standardeinstellung von R-BASIC. Auto-

matische Umschaltung in die Exponential-
darstellung.

 1 NF_CURRENCY Währungstypische Darstellung mit 2
Nachkommastellen.

 2 NF_MAX_PREC Maximale Genauigkeit mit 15 Stellen.
 3 NF_SCI_3 Wissenschaftliche Darstellung mit 3 Stellen

z.B. 34.8E+06
 4 NF_SCI_4 Wissenschaftliche Darstellung mit 4 Stellen

z.B. 34.82E+06
 5 NF_INTEGER Ganzzahlige Darstellung
 6 NF_FIXED_3 Immer 3 Nachkommastellen
 7 NF_FIXED_4 Immer 4 Nachkommastellen

Beispiele:
SetNumberFormat (NF_NORMAL)
SetNumberFormat (NF_SCI_4)

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Thema - 209

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 210

2.10 Musik und Sound

Unter R-BASIC gibt es folgende Möglichkeiten Töne auszugeben:

• Ausgabe einfacher Töne oder Tonfolgen (Befehle Beep, StandardSound,
Sound und KCSound)

• Abspielen von WAV-Dateien
- PlayWav spielt eine WAV-Datei im Vordergrund ab.
- PlayWavBG spielt eine WAV-Datei im Hintergrund ab, wobei eine

Warteschlange für mehrere WAV-Dateien organisiert wird.
• Ausgabe vom FM-Sound (einzelne Töne und komplexe Melodien)

- PlayNote spielt eine einzelne Note.
- PlayNoteHan spielt eine einzelne Note, wobei Sie die Tonausgabe vorzeitig

stoppen können.
- PlayMusic spielt ein FM-Musikstück.
- PlayMusicBG spielt ein FM-Musikstück im Hintergrund, wobei eine Warte-

schlange für mehrere Musikstücke organisiert wird.
- PlayMusicHan spielt ein FM-Musikstück, wobei Sie die Tonausgabe

vorzeitig stoppen können.

Beachten Sie, dass die Soundausgabe in den Voreinstellungen aktiviert sein
muss, damit R-BASIC Töne ausgeben kann. R-BASIC hat weder die Möglichkeit,
das zu prüfen, noch die Einstellungen zu verändern.

Beispiele zur Verwendung der Sound- und Musik-Befehle finden Sie im Ordner "R-
BASIC\Beispiel\Sound".

2.10.1 Einfache Töne und Tonfolgen

BEEP

Gibt einen oder mehrere kurze Töne aus. Tonhöhe und Länge können nicht
verändert werden.

Syntax: BEEP [n]
n: num. Wert, Anzahl der Töne
ohne n: 1 Ton

Beispiel:
BEEP 3 ’ Drei kurze Töne

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 211

StandardSound

Gibt einen der sechs GEOS Standardtöne aus.

Syntax: StandardSound n
n: num. Wert, wählt den Standardton aus (siehe Tabelle)

Konstante Wert Verwendet für
SS_ERROR 0 Fehler
SS_WARNING 1 Warnung
SS_NOTIFY 2 Information
SS_NO_INPUT 3 Keine Eingabe möglich
SS_KEY_CLICK 4 Tastenanschlag
SS_ALARM 5 Alarm

Beispiel:
StandardSound SS_ALARM

Sound

Die Anweisung SOUND spielt eine Tonfolge mit bis zu 11 Tönen. Die Töne
werden dabei durch ihre Frequenz und die Tondauer bestimmt. Außerdem können
Sie die Lautstärke und die verwendeten Instrumente auswählen und Sie können
entscheiden, ob die Tonfolge im Vordergrund oder im Hintergrund gespielt wird.
"Im Vordergrund" bedeutet, dass R-BASIC so lange wartet, bis die Tonfolge
beendet ist.
"Im Hintergrund" bedeutet, dass R-BASIC weiterarbeitet, noch während die
Tonfolge gespielt wird. Dabei können Sie festlegen, dass eine Warteschlange
verwendet wird. Das bedeutet, dass die nächste Sound-Tonfolge erst gespielt
wird, wenn alle vorher angegebenen Sound-Tonfolgen fertig sind.
Wenn Sie festlegen, dass keine Warteschlange verwendet werden soll, dann
werden allen nacheinander angegebenen Sound-Tonfolgen sofort - und damit
faktisch gleichzeitig - abgespielt, vorausgesetzt die Sound-Hardware lässt das zu.

Syntax: Sound "control", <parameterList>
"control" Zeichenkette, bestehend aus einem der Buchstaben ’q’, ’b’ oder

’f’ sowie einer Zahl.
’q’: ("queue") Spielen im Hintergrund mit Warteschlange
’b’: ("background") Spielen im Hintergrund ohne Warteschlange
’f’: ("foreground") Spielen im Vordergrund
Die Zahl gibt die Lautstärke an. Erlaubte Werte 0 (Stille) bis 100
(maximale Lautstärke)
Wird kein Buchstabe angegeben wird ’f’ angenommen
Wird keine Zahl angegeben wird 100 angenommen.
d.h.: Leerstring bedeutet: volle Lautstärke im Vordergrund

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 212

<parameterList> Liste von bis zu 22 numerischen Werten n mit folgender
Bedeutung:
n < 0: Der Wert bezeichnet ein Instrument. Siehe unten.
n = 0: Pause. Es folgt eine die Dauer der Pause in Sekunden.
n > 0: Tonfrequenz. Es folgt die Tondauer in Sekunden.

Um die Klangfarbe der Töne zu ändern können Sie jederzeit ein anderes
Instrument auswählen. Dazu geben Sie die Nummer des Instruments (siehe
nächstes Kapitel) als negative Zahl an. Startwert für jeden Sound-Befehl ist das
Instrument 19 (IP_CHURCH_ORGAN).
Tipps:
• Um das Instrument Null (IP_GRAND_PIANO) auszuwählen verwende Sie den

Wert -0.2.
• Der Sound-Befehl verwendet die gleiche Hintergrundwarteschlange wie der

Befehl PlayMusicBG (Kapitel 2.10.3.3). Sie können also z.B. den Befehl
StopMusicBG (siehe Kapitel 2.10.3.3) verwenden, um die Warteschlange für
Sound-Befehle zu leeren.

Beispiel Morsecode des Buchstaben M (Lang - Pause - Lang) in voller Lautstärke
im Vordergrund. Tonfrequenz: 1000 Hz.
Sound "", 1000, 0.3, 0, 0.1, 1000, 0.3

Beispiel Morsecode der Buchstaben "MMS" im Vordergrund
Sound "", 1000, 0.3, 0, 0.1, 1000, 0.3 ’ M
Sound "", 0, 0.3 ’ Pause
Sound "", 1000, 0.3, 0, 0.1, 1000, 0.3 ’ M
Sound "", 0, 0.3 ’ Pause
Sound "", 1000, 0.1, 0, 0.1, 1000, 0.1, 0, 0.1, 1000, 0.1 ’ S

Beispiel Morsecode der Buchstaben "MMS" im Hintergrund. Durch die Angabe
des Steuerzeichens "q" (Warteschlange) werden die Töne nacheinander gespielt.
Sound "q", 1000, 0.3, 0, 0.1, 1000, 0.3 ’ M
Sound "q", 0, 0.3 ’ Pause
Sound "q", 1000, 0.3, 0, 0.1, 1000, 0.3 ’ M
Sound "q", 0, 0.3 ’ Pause
Sound "q", 1000, 0.1, 0, 0.1, 1000, 0.1, 0, 0.1, 1000, 0.1 ’ S

Beispiel mit einem anderen Instrument
Sound "", 440, 0.2, 0, 0.1, 440, 0.2, 0, 0.1,\

 -12, \
 440, 0.2, 0, 0.1, 440, 0.2, 0, 0.1, 660, 0.2

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 213

KCSound

KCSound ist ein Kompatibilitätsbefehl. Er ersetzt den Sound-Befehl des KC85-
Homecomputers. Im Original steuert der Befehl die Hardware des Computers (die
CTC-Einheit) an. Die CTC teilt die Taktfrequenz dieses Computers (1,75 MHz)
herunter und erzeugt so einen hörbaren Ton. Dabei stehen zwei Kanäle zur
Verfügung. Jeder Kanal hat einen Vorteiler (erlaubte Werte: 0 und 1) und einen
Zähler (erlaubte Werte 0 bis 255). Wird der Zähler auf Null gesetzt, erfolgt keine
Tonausgabe auf diesem Kanal.
Die ausgegebene Frequenz berechnet sich aus dem Vorteiler v und dem Zähler z
folgendermaßen:

Vorteiler v = 0: f = 1.75E6/(32*z)
Vorteiler v = 1: f = 1.75E6/(512*z)

Syntax: KCSound z1, v1, z2, v2 [, laut [, time]]
v1, z1: Vorteiler und Zähler für Kanal 1
v2, z2: Vorteiler und Zähler für Kanal 2

Erlaubte Werte: v1, v2: 0 oder 1
z1, z2: 0 .. 255 (nur ganzzahlig)

Ist z = 0 erfolgt keine Tonausgabe auf diesem Kanal.
laut: Lautstärke (für beide Kanäle), erlaubte Werte: 0 .. 31
time: Zeitdauer (für beide Kanäle), erlaubte Werte: 0 .. 255

Die Zeitbasis ist 1/50s (=20 ms)
time = 0 erzeugt einen Dauerton bis zum nächsten KCSound
Befehl (aber maximal 18 Minuten).

Werden "laut" und/oder "time" nicht angegeben, so bleiben die zuletzt
verwendeten Werte erhalten.

Hinweise:
• Unter R-BASIC sind für z und time auch größere Werte zulässig.
• Zur Berechnung des Zählers für eine bestimmte Frequenz f kann man folgende

Formeln verwenden:
Vorteiler v = 0 z = 54687.5 / f
Vorteiler v = 1 z = 3418 / f

• Der Klang kann nicht verändert werden.

Beispiel: Gleichzeitige Ausgabe der Frequenzen 220 Hz (tiefes a) und 330 Hz in
voller Lautstärke für 1 Sekunde.

KCSound 249, 0, 166, 0, 31, 50

Beispiele zur Verwendung der Befehle Sound und KCSound finden Sie in der
Beispieldatei "R-BASIC\Beispiel\Sound\Sound Demo".

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 214

2.10.2 Abspielen von WAV-Dateien

GEOS verfügt über die Möglichkeit WAV-Dateien (*.WAV") abzuspielen. GEOS
selbst kann nur Dateien mit dem Format "8 Bit Mono" abspielen. R-BASIC umgeht
dieses Problem, indem es andere Formate (z.B. "16 Bit Stereo") vorher nach 8 Bit
Mono konvertiert. Da das WAV Format ein sehr einfaches Datenformat ist und die
WAV-Dateien meist nicht sehr groß sind führt das in den meisten Fällen zu keiner
hörbaren Verzögerung.
Unter GEOS kann immer nur eine WAV-Datei gleichzeitig abgespielt werden. R-
BASIC organisiert eine "Warteschlange", wenn Sie versuchen, mehrere WAV-
Sounds gleichzeitig abzuspielen. Sie werden dann nacheinander abgespielt.
GEOS verfügt aktuell nicht über die Möglichkeit, in das Abspielen von WAV-
Dateien einzugreifen. So hat man z.B. nicht die Möglichkeit die Lautstärke zu
ändern oder das Abspielen abzubrechen. Dieses Problem kann R-BASIC nicht
umgehen.

Überblick
Anweisung Aufgabe
PlayWav "file" Spielt eine WAV-Datei ab
PlayWavBG "file" [, Handler] Spielt eine WAV-Datei im Hintergrund

ab. Kann anschließend einen Action-
Handler aufrufen.

<numVar> = GetWavBGCount() Liest die Anzahl der WAV-Dateien in
der Hintergrundwarteschlange

StopWavBG Leert die Hintergrundwarteschlange für
WAV-Dateien

<numVar> = GetWavInfo ("file", info) Liest Informationen aus einer
WAV-Datei aus.

ConvertWav "srcFile", "destFile" Konvertiert eine WAV-Datei in das
Format 8 Bit Mono

PlayWav

PlayWav spielt eine WAV-Datei ("*.wav") ab. Falls erforderlich wird die Datei
vorher in das Format "8 Bit Mono" konvertiert. Dazu wird eine temporäre Kopie
erstellt, die Originaldatei wird nicht verändert. Der nächste R-BASIC-Befehl wird
erst abgearbeitet, wenn die WAV-Datei vollständig abgespielt wurde.
PlayWav setzt die globale Variable "fileError".
Hinweis: GEOS kann nur eine WAV-Datei gleichzeitig abspielen. Die WAV-Datei
wird daher nicht abgespielt, wenn bereits eine WAV-Datei im Hintergrund
abgespielt wird. Verwenden Sie PlayWavBG um die Datei in die Warteschlange zu
stellen.

Syntax: PlayWav "filename.wav"
filename.wav: Name der abzuspielenden Datei. Sie muss sich im

aktuellen Ordner befinden. Pfadangaben sind zugelassen.
Zur Sicherheit sollten Sie Großbuchstaben verwenden.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 215

Beispiele:
PlayWav "TATA.WAV"
Print "Fertig"

DIM t$
t$ = "TATA.WAV"
PlayWav "C:\\MUSIC\\CHORD1.WAV"
PlayWav t$
Print "Fertig"

Die Print-Anweisung wird jeweils ausgeführt nachdem der letzte Ton der Datei
"TATA.WAV" verklungen ist.

PlayWavBG

PlayWavBG spielt eine WAV-Datei ("*.wav") im Hintergrund (background) ab. R-
BASIC arbeitet weiter während die Datei im Hintergrund abgespielt wird. Sollte
bereits eine WAV-Datei im Hintergrund gespielt werden so wird die neue Datei auf
die "Warteliste" gesetzt und erst abgespielt, sobald die anderen Dateien auf der
Liste abgespielt wurden.
Sie können PlayWavBG den Namen eines Action-Handlers übergeben. Dieser
Handler wird automatisch aufgerufen, sobald die Datei vollständig abgespielt
wurde. Er muss als TimerAction oder als ButtonAction deklariert sein. Ihr
Programm kann so auf dem Laufenden bleiben, ob im Hintergrund noch WAV-
Sounds spielen oder nicht.
Der Handler wird auch gerufen, wenn die Datei nicht abgespielt werden konnte. Im
Parameter actionData finden Sie einen Fehlercode bzw. Null, wenn die Datei
korrekt abgespielt wurde. Eine Liste der Fehlercodes finden Sie im Anhang B.
Verwenden Sie die Funktion ErrorText$, um den Fehlercode in einen
anschaulichen Text zu konvertieren.
Falls erforderlich wird die Datei vor der Ausgabe in das Format "8 Bit Mono"
konvertiert. Dazu wird eine temporäre Kopie erstellt, die Originaldatei wird nicht
verändert.
PlayWavBG setzt die globale Variable "fileError".

Syntax: PlayWavBG "filename.wav" [, HandlerName]
filename.wav: Name der abzuspielenden Datei. Sie muss sich im

aktuellen Ordner befinden. Pfadangaben sind zugelassen.
Zur Sicherheit sollten Sie Großbuchstaben verwenden.

HandlerName: Optional: Action-Handler, der aufgerufen wird, wenn die
Datei abgespielt wurde. Er muss als TimerAction oder als
ButtonAction deklariert sein.

Beispiele:
PlayWavBG "TRUMPET.WAV"
Print "Fertig"

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 216

PlayWavBG "TRUMPET.WAV"
PlayWavBG "C:\\MUSIC\\CHORD1.WAV", ZwischenHandler
PlayWavBG "TATA.WAV", FinishHandler
Print "Fertig"

Die Print-Anweisung wird jeweils ausgeführt noch während die Datei
"TRUMPET.WAV" abgespielt wird. Im zweiten Beispiel werden die Handler
"ZwischenHandler" und "FinishHandler" aufgerufen, nachdem die entsprechenden
Dateien abgespielt wurden.

TIMERACTION ZwischenHandler
Print "Jetzt spielt ’TATA’ "
End ACTION

TIMERACTION FinishHandler
Print "Nun ist Ruhe."
Print ErrorText$(actionData) ’ ggf Fehlercode ausgeben
End ACTION

GetWavBGCount

Diese Funktion liefert die Anzahl der WAV-Dateien, die in der Wartschlange sind.
Dabei wird die aktuell spielende Datei mitgezählt. Der Rückgabewert 1 bedeutet
also, dass gerade eine WAV-Datei im Hintergrund spielt, die Warteschlange aber
leer ist.

Syntax: <numVar> = GetWavBGCount ()

StopWavBG

StopWavBG löscht die Warteschlange der für die WAV-Ausgabe verantwortlichen
Library. Der aktuell im Hintergrund spielende WAV-Sound wird nicht abgebrochen
(das wird vom System nicht unterstützt). StopWavBG darf auch gerufen werden,
wenn gerade kein WAV-Sound spielt. Es wird empfohlen, StopWavBG im OnExit-
Handler zu rufen, wenn man sich sicher ist, ob noch WAV-Sounds in der
Warteschlange sind.

Syntax: StopWavBG

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 217

Beispiel:
PlayWavBG "TATA.WAV"
PlayWavBG "CHORD.WAV"
PlayWavBG "TRUMPET.WAV"
PlayWavBG "PIANO.WAV"
StopWavBG
PlayWavBG "BOING.WAV"

Beim Aufruf von StopWavBG spielt die Datei TATA.WAV im Hintergrund.
CHORD.WAV, TRUMPET.WAV und PIANO.WAV werden aus der Warteschlange
entfernt. TATA.WAV wird zu Ende gespielt, danach wird BOING.WAV gespielt.

GetWavInfo

Mit GetWavInfo können Sie verschiedene Informationen über eine WAV-Datei
erhalten. GetWavInfo liefert Null wenn die übergebene Datei keine WAV-Datei ist
oder nicht geöffnet werden kann. Im ersten Fall enthält die globale Variable
fileError den Wert Null, im anderen Fall einen Fehlercode.

Syntax: <numVar> = GetWavInfo ("fileName", info)
"fileName" Name der zu untersuchenden WAV-Datei. Pfadangaben sind

zulässig.
info: Numerische Konstante entsprechend der Tabelle unten

Konstante Wert Information
WI_FORMAT 0 WAV-Format. Unterstützte Formate:

1: PCM
6: A-LAW

WI_CHANNELS 1 Anzahl der Kanäle (1=Mono, 2=Stereo)
WI_SAMPLE_DEEPTH 2 Bytes pro Sample (1: 8 Bit Mono, 2: 8 Bit

Stereo oder 16 Bit Mono ...)
WI_SAMPLING_RATE 3 Anzahl Samples pro Sekunde

(Samplingfrequenz in Hz)
WI_PLAY_TIME 4 Spielzeit in Sekunden

ConvertWav

ConvertWav fertigt eine Kopie einer Wav-Datei an und konvertiert sie dabei ins
Format 8 Bit Mono. Nur dieses Format kann von GEOS abgespielt werden. Es ist
daher sinnvoll alle WAV-Dateien, die Sie in ein Installationspaket packen wollen,
vorher nach 8 Bit Mono zu konvertieren. ConvertWav erspart Ihnen die
Verwendung eines Fremdprogramms. Es kopiert auch 8 Bit-Mono-Dateien.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 218

Prüfen Sie die globale Variable "fileError" bzw. spielen Sie die Kopie ab, um zu
sehen, ob das Konvertieren erfolgreich war.

Syntax: ConvertWav "source.wav", "dest.wav"
"source.wav" Zu konvertierende Datei. Pfadangaben sind zulässig.
"dest.wav" Zieldatei. Pfadangaben sind zulässig. Falls die Datei schon

existiert wird sie ohne Warnung überschrieben.

Hinweis: Es ist nicht sinnvoll, vor jedem Abspielen einer WAV-Datei ihr Format zu
prüfen und falls notwendig ConvertWav zu rufen. Die PlayWav-Routinen rufen
ConvertWav selbständig, falls es erforderlich ist. Und sie sind dabei wesentlich
effizienter als jeder BASIC Code.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 219

2.10.3 Ausgabe von FM-Sounds

Neben der Ausgabe von gesampelter Musik (z.B. der Ausgabe von WAV-Dateien)
können Computer auch Musikinstrumente simulieren. Das dazu häufig verwendete
Verfahren heißt Frequenz-Modulation (kurz: FM). Die so erzeugten Töne oder
Tonfolgen werden daher auch als FM-Sounds bezeichnet. Berühmt wurde dieses
Verfahren, weil es in den erfolgreichen SoundBlaster™ Soundkarten verwendet
wurde.

2.10.3.1 Beschreibung von Instrumenten und Noten

Dieser Abschnitt enthält die Grundlagen für die folgenden Kapitel (Spielen von
einzelnen Noten und Spielen von FM-Musik).

Instrumente

Wie Sie wissen klingt ein bestimmter Ton, z.B. ein tiefes C, auf jedem Instrument
anders. Das liegt im Wesentlichen an zwei Dingen:
Einerseits spielen die Anzahl und Amplitude der Oberwellen eine Rolle. Neben der
Grundfrequenz enthält jeder Ton noch die doppelte, dreifache, vierfache usw.
Frequenz. Je nachdem, wie stark diese Oberwellen sind, klingt der Ton anders.
Der zweite Aspekt ist der Amplitudenverlauf. Zum Beispiel erreicht der Ton eines
Saiteninstruments sehr schnell seine volle Lautstärke um dann sofort mehr oder
weniger langsam abzuklingen. Bei einem Blasinstrument kann hingegen die volle
Lautstärke des Tons über längere Zeit gehalten werden. Hört der Musiker auf zu
blasen so klingt der Ton sehr schnell ab. So hat jedes Musikinstrument seine
eigene Charakteristik.

Computer simulieren diese Eigenschaften häufig mit einem Verfahren, dass man
Frequenzmodulation (FM) nennt. Die so erzeugten Töne oder Tonfolgen
bezeichnet man deshalb als FM-Sounds. Dabei wird die Grundfrequenz des
Tones in einem bestimmten (sehr schellen) Rhythmus verändert. Dadurch
entstehen - je nach Stärke und Geschwindigkeit der Änderung - unterschiedlich
viele und unterschiedlich starke Oberwellen. Zusätzlich kann man den
Amplitudenverlauf simulieren. Auf diese Weise gibt es extrem viele Möglichkeiten
ein Instrument zu simulieren.

Geos bietet Ihnen 175 vordefinierte Instrumente an. Jedes Instrument wird dabei
durch eine Zahl (im Bereich von Null bis 174) beschrieben. In der R-BASIC Library
"MusicValues" sind entsprechende Konstanten definiert. Sie finden diese auch im
R-BASIC Anhang, Kapitel G. Die Namen der Konstanten sind direkt dem
PC/GEOS SDK entnommen und sind an die englischen Bezeichnungen der
Instrumente angelehnt.
R-BASIC selbst definiert die folgenden Konstanten. Diese Werte sind Kopien der
Werte aus der Library, so dass Sie in vielen Fällen ohne das Einbinden der Library
auskommen.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 220

Instrument-Konstante Wert Instrument-Konstante Wert
IP_GRAND_PIANO 0 IP_ACOUSTIC_BASS 32
IP_ELECTRIC_PIANO_1 4 IP_ORCHESTRA_HIT 55
IP_MARIMBA 12 IP_PAD_METALLIC 93
IP_DRAWBAR_ORGAN 16 IP_KALIMBA 108
IP_REED_ORGAN 20 IP_TAIKO_DRUM 116

Das Beispiel "R-BASIC\Beispiel\Sound\Instrument Demo" erlaubt Ihnen, die
Instrumente auf einfache Weise auszuprobieren.

Die Instrumente mit den Nummern 0 bis 127 sind "normale" Instrumente, die jeden
Ton spielen können. Die Instrumente mit den Nummern 128 bis 174 hingegen sind
Percussion-Instrumente. Laut Dokumentation sollten Sie mit einer genau auf das
Instrument angestimmten Frequenz gespielt werden, damit sie so klingen wie
gewünscht. Konstanten für die entsprechenden Frequenzen finden Sie ebenfalls in
der Library "MusicValues" sowie im Anhang G.
Die Erfahrung zeigt aber, dass viele Percussion-Instrumente auch gut klingen,
wenn sie mit anderen Noten gespielt werden. Das oben genannte Beispiel macht
davon Gebrauch. Folgende Konstanten sind auch im R-BASIC Kern definiert:

Percussion-Instrument-Konstante Wert Standard-Frequenz bzw. Note

IP_ACOUSTIC_BASS_DRUM 128 247 Hz, Note h (engl. B3)
IP_HI_BONGO 153 131 Hz, Note c (engl. C3)
IP_HI_TIMBALE 158 131 Hz, Note c (engl. C3)
IP_OPEN_TRIANGLE 174 698 Hz, Note f’’ (engl. F5)

Da das Aufsuchen der Standard-Frequenz zu einem Percussioninstrument
mühsam und fehleranfällig ist, kann man den Routinen PlayNote und
AllocNoteHan (siehe nächstes Kapitel) den Frequenzwert Null übergeben. Die
Routinen suchen dann selbst den passenden Frequenzwert heraus. Das Gleiche
gilt für die Routinen PlayMusic, PlayMusicBG und AllocMusicHan.

GEOS und damit R-BASIC kann einzelne Töne oder ganze Tonfolgen auf diese
Weise abspielen. Wie das gemacht wird ist in den folgenden Kapiteln beschrieben.

Hinweis: Der Klang der der 174 vordefinierten Instrumente unterscheidet sich in
älteren PC/GEOS Versionen (bis Version 4.x) von den aktuellen (besseren)
Instrumenten. Das gilt insbesondere für die Drums und die dazugehörigen Stan-
dardfrequenzen.

Die Tonhöhe

Die Tonhöhe einer Note wird durch ihre Frequenz festgelegt. Dabei gelten die
folgenden Regeln:
• Der Kammerton ’a’ hat eine Frequenz von genau 440 Hz.
• Eine Oktave entspricht einem Frequenzfaktor von genau 2. Das heißt, das hohe

C hat genau die doppelte Frequenz wie das mittlere C. Das hohe A hat also
eine Frequenz von 880 Hz.

• Benachbarte Halbtöne unterscheiden sich in ihrer Frequenz um den Faktor 212
.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 221

Damit erreicht man bei 12 Halbtonschritten genau einen Faktor von 2, nämlich
eine Oktave.

Die zu den einzelnen Tönen gehörenden Frequenzen finden Sie im R-BASIC
Anhang G. Da die FM-Sound-Routinen ganze Zahlen erwarten, sind die Werte
gerundet. Außerdem sind in der R-BASIC Library "MusicValues" entsprechende
Konstanten definiert.

Weil es sehr mühsam und auch nicht üblich ist, Musikstücke durch die Aufzählung
der Frequenzen der Töne zu beschreiben, bietet R-BASIC die Routinen
PlayMusic, PlayMusicBG und AllocMusicHan, denen man nur die Noten als String
(z.B. "cdefgggg") übergeben muss.

Der Notenwert

Dieser Begriff beschreibt, ob es sich z.B. um eine viertel, eine achtel oder eine
ganze Note handelt.

Das Tempo

Neben der Tonhöhe und dem Instrument, mit dem eine Note gespielt werden soll,
müssen Sie auch angeben, wie lang die Note ist. Dabei geht R-BASIC folgenden
Weg:
• Wenn Sie eine einzelne Note spielen (Anweisungen PlayNote und

AllocNoteHan) geben Sie die Dauer in Sekunden an. Für eine viertel Sekunde
verwenden Sie also den Wert 0.25.

• Bei Musikfolgen (Anweisungen PlayMusic, PlayMusicBG und AllocMusicHan)
geben Sie bei der Definition der Musikfolge an, ob es sich z.B. um Achtel-,
Viertel oder ganze Noten handelt. Beim Anspielen des Musikstücks legen Sie
fest, wie schnell das Stück gespielt werden soll, d.h. wie viele Millisekunden
eine 1/128 Note lang ist. So können Sie das gleiche Musikstück unterschiedlich
schnell abspielen.

• Beim Befehl SOUND ist die Zeiteinheit der Einzeltöne wieder Sekunden, wobei
Bruchteile von Sekunden (z.B. 0.1) erlaubt sind.

• Der Kompatibilitätsbefehl KCSound verwendet als Zeiteinheit 1/50 Sekunde.

Die Lautstärke

Töne oder Musikfolgen können in unterschiedlicher Lautstärke abgespielt werden.
Die Lautstärke wird in R-BASIC grundsätzlich als Prozentwert von der
Maximallautstärke, also im Bereich von 0 bis 100, angegeben. R-BASIC simuliert
das physiologische Lautstärkeempfinden. Das heißt, mit dem Wert 50 klingt jede
Note nur etwa halb so laut wie mit dem Wert 100. Das genaue Resultat hängt
jedoch auch vom gewählten Instrument ab. Außerdem kann es sein, das bei
einem Lautstärkewert von Null der Ton trotzdem ganz leise zu hören ist.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 222

FM-Musik

Der Parameter musicString für die Befehle PlayMusic, PlayMusicBG und
AllocMusicHan ist eine Zeichenkette, die genau beschreibt, welche Note, wie
lange und mit welchem Instrument gespielt werden soll. Dabei gelten folgende
Grundregeln:
• Defaultwert für das zu spielende Instrument ist die Nummer 13 (Xylophon).
• Der Default-Notenwert ist 1/4 Note.
• Die Groß- bzw. Kleinschreibung der Zeichen wird berücksichtigt!
• Zeichen, die nicht in der untenstehenden Tabelle vorkommen, werden ignoriert.

Sie können Sie zur Strukturierung Ihres Notenstrings einsetzen. Insbesondere
gilt das für Leerzeichen - sie bewirken keine Pause!

Die folgenden Zeichen können in einem Musicstring vorkommen. Ein X hinter
einem Zeichen bedeutet, dass hier eine Zahl (1 bis 3 Ziffern) folgen muss. Vor
oder innerhalb dieser Zahlen sind keine Leerzeichen zugelassen.

Zeichen Bedeutung
c, d, e, f, g, a, h Noten in der normalen Tonhöhe
C, D, E, F, G, A H Noten, eine Oktave tiefer
+, –, ’, ., ~ Modifier-Zeichen, die hinter eine Note gesetzt werden

können. Es sind mehrere Modifier erlaubt und sie können
auch mehrfach auftreten.
+ Note einen halben Ton höher spielen.
– Note einen halben Ton tiefer spielen.
’ Note eine Oktave höher spielen
. Note um den halben Notenwert verlängern
~ Note Staccato spielen. (1)

#X Explizite Angabe der zu spielenden Frequenz. Als
Modifierzeichen sind "." und "~" erlaubt. (2)

o+, o–, o= Oktave höher (o+) oder niedriger (o–) anwählen. Alle
folgenden Noten werde eine Oktave höher bzw. tiefer
gespielt. o= wechselt in die Standard-Oktave.

iX Auswahl des Instruments. Defaultwert ist i13 (Xylophon).
Sie können hier nicht die IP_-Konstanten verwenden,
sondern müssen die Nummer explizit angeben.

iX~ Der Modifier ~ (z.B. "i16~") bewirkt, dass alle Noten für
dieses Instrument Staccato gespielt werden (1).

%X Ändert den Notenwert. Erlaubte Werte sind %1 (Ganze
Note) bis %128 (1/128 Note). Defaultwert ist %4 (1/4
Note).

_ Der Unterstrich _ erzeugt eine Pause. Die Länge der
Pause entspricht dem aktuellen Notenwert. Als Modifier
ist ’.’ erlaubt.

vX, VX Volume. Ändert die Lautstärke, in der das Stück gespielt
wird. Erlaube Werte sind v0 (0%, lautlos) bis v100 (100%,
maximale Lautstärke).

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 223

* Das Sternchen * ist der Marker für die 2. Stimme
(Hintergrundstimme).

*vX Ändert die Lautstärke der Hintergrundstimme. Erlaube
Werte sind v0 bis v100.

*iX Ändert das Instrument für die Hintergrundstimme.
Defaultwert ist i128 (Acoustic Bass Drum).

*c, *d , Note für die Hintergrundstimme. Als Modifier-Zeichen
sind +, – und ’ erlaubt. (3)

*C, *D , Note für die Hintergrundstimme, eine Oktave tiefer. Als
Modifier-Zeichen sind +, – und ’ erlaubt. (3)

*#X Explizite Angabe der zu spielenden Frequenz für die
Hintergrundstimme. (2), (3)

*o+, *o-, *o= Oktave höher (o+) oder niedriger (o–) für die
Hintergrundstimme anwählen. o= wechselt in die
Standard-Oktave.

*X Legt fest, über wie viele Noten der Vordergrundstimme
die Hintergrund-Noten gespielt werden sollen. Der
Standardwert ist "*1". (4)

Anmerkungen
(1)Staccato: Die Note wird deutlich verkürzt gespielt. Es folgt eine kurze Pause, so

dass der Notenwert (Zeit zum Spielen einer Note) insgesamt nicht geändert
wird.

(2)Um Percussion-Instrumente automatisch mit der für sie korrekten Frequenz zu
spielen können Sie den Frequenzwert Null angeben ("#0").

(3)Eine mit einem Sternchen eingeleitete Hintergrundnote (oder explizite
Frequenzangabe) wird nicht sofort, sondern gemeinsam mit der nächsten
Vordergrundnote, Frequenzangabe oder Pause gespielt. Die Hintergrundnote
wird dabei genauso lange wie die Vordergrundnote gespielt.

(4)Wenn Sie hier z.B. den Wert 3 angeben ("*3"), so werden im Gegensatz zu
Anmerkung (3) alle folgenden Hintergrundnoten so lange gespielt, wie 3
Vordergrundnoten dauern.
Tipp: Damit Sie den Unterschied hören, müssen Sie für den Hintergrund ein
Instrument verwenden, das den Ton hält (z.B. die Instrumente 16 bis 20).

Beispiele:
PlayMusic "cde_f~g~h~c’.", 7

PlayMusic "i20 c.f~ e%2f_ %4d~g.", 7

Beispiel mit Hintergrundnoten:
Die Hintergrundnoten c und f werden gemeinsam mit den Vordergrundnoten e und
h gespielt. Vorher wird das Instrument Nr. 3 als Hintergrundinstrument ausge-
wählt.

PlayMusic "*i3 *cedc *fhag", 10

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 224

2.10.3.2 Spielen von einzelnen Noten

Bevor Sie diesen Abschnitt lesen, sollten die das vorherige Kapitel (Beschreibung
von Noten und Instrumenten) gelesen haben.

Um eine Note zu spielen müssen Sie folgendes angeben:
• Das Instrument, mit die die Note gespielt werden soll. GEOS bieten Ihnen 175

Instrumente, davon sind 47 Percussions. In der R-BASIC Library "MusicValues"
sind entsprechende Konstanten definiert. Eine entsprechende Liste finden Sie
im Anhang G.

• Die Note, die gespielt werden soll. Noten werden durch ihre Frequenz bestimmt.
In der R-BASIC Library "MusicValues" sind entsprechende Konstanten definiert.
Eine entsprechende Liste finden Sie im Anhang G.

• Die Länge der Note. Das ist die Zeit, für die die Note "gespielt" werden soll. Für
einzelne Noten muss unter R-BASIC die Zeit in Sekunden angegeben werden.
Eine mit moderatem Tempo gespielte Viertelnote dauert etwa 0.5 s.

• Die Lautstärke. Unter R-BASIC wird die Lautstärke im Bereich von Null bis 100
angegeben. Ein Lautstärkewert von 50 bis 70 ist oft eine gute Wahl.

• Soll die Note im Hintergrund gespielt werden (R-BASIC arbeitet weiter während
die Note erklingt) oder soll R-BASIC Warten, bis die Note verklungen ist, bevor
das Programm weiterarbeitet.

Intern passiert beim Spielen einer Note folgendes:
- Es wird eine Datenstruktur angelegt, in der die Informationen über die zu

spielende Note gespeichert sind.
- Die Note wird gespielt. Das kann auch mehrfach geschehen.
- Die Datenstruktur wird wieder freigegeben. Dazu muss das Spielen der Note

vorher sicher beendet sein. Notfalls muss das Spielen der Note abgebrochen
werden. R-BASIC erledigt dies automatisch.

Moderne Hardware kann meist mehr als eine Note (oder FM-Musikstück)
gleichzeitig spielen. Wenn Sie mehrere Noten im Hintergrund spielen, werden
diese wirklich gleichzeitig gespielt. Eine Warteschlange, wie bei WAV-Sounds,
existiert nicht.

Zum Spielen einzelner Noten stehen Ihnen die folgenden Befehle zur Verfügung:

Anweisung Aufgabe
PlayNote instr, freq, time, laut [, delay] Spielt eine einzelne Note im

Vordergrund oder im Hintergrund ab
han = AllocNoteHan (instr, freq, laut) Speichert die Daten einer Note und

liefert ein Handle darauf
PlayNoteHan han , time [, delay] Spielt eine einzelne Note im

Vordergrund oder im Hintergrund ab
StopNoteHan han Stoppt das Abspielen einer mit

PlayNoteHan im Hintergrund
gespielten Note

FreeNoteHan han Gibt die von AllocNoteHan angelegte
Datenstruktur frei

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 225

Die Anweisung PlayNote spielt eine einzelne Note. Der Parameter "delay" (engl:
Verzögerung) bestimmt dabei, wie die Note gespielt werden soll. Wird Delay nicht
angegeben so wird die Note im Hintergrund abgespielt.

Wert von Delay Wirkung
delay < 0 Die Note wird im Hintergrund abgespielt.
delay = 0 Die Note wird im "Vordergrund" gespielt. Das heißt, R-

BASIC wartet genau die Zeit, die durch den Parameter
"time" bestimmt wird, dann wird die Wiedergabe der Note
beendet und R-BASIC arbeitet weiter.

delay > 0 Die Note wird im "Vordergrund" gespielt. R-BASIC wartet
um die durch "delay" angegebene Zeit (in Sekunden) länger,
als durch "time" angegeben, bevor die Wiedergabe der Note
abgebrochen wird. Dadurch können die Noten "ausklingen",
was bei vielen Instrumenten sinnvoll ist.

PlayNote ist sehr einfach zu benutzen. Allerdings müssen Sie vorher wissen, wie
lange die Note gespielt werden soll, denn Sie haben nicht die Möglichkeit, das
Spielen der Note vorzeitig abzubrechen. Wenn Sie z.B. ein Piano programmieren
wollen ist jedoch genau das nötig. Die Note soll beim Drücken einer Taste
erklingen und beim Loslassen wieder enden.
Deswegen bietet R-BASIC die Kommandos AllocNoteHan, PlayNoteHan,
StopNoteHan und FreeNoteHan. AllocNoteHan legt die notwendige Daten-
struktur an und liefert ein Handle darauf. Für ein Piano-Programm könnten Sie
z.B. folgendes tun: Wenn der Nutzer eine Taste drückt rufen Sie PlayNoteHan und
der Ton erklingt. Den Parameter "time" setzen Sie z.B. auf 600 (10 Minuten),
damit der Ton nicht "von allein" aufhört. Lässt der Nutzer die Taste wieder los so
rufen Sie StopNoteHan. Wenn Sie die Note sicher nicht mehr brauchen, müssen
Sie FreeNoteHan rufen, um die Datenstruktur wieder freizugeben.

PlayNote

Spielt eine einzelne Note im Vordergrund oder im Hintergrund ab.

Syntax: PlayNote instr, freq, time, laut [, delay]

instr: Numerischer Wert im Bereich von 0 bis 174, der das Instrument
beschreibt. Die Werte 0 bis 127 sind "normale" Instrumente, die
Werte 128 bis 174 sind Percussions.

freq: Frequenz der zu spielenden Note
Empfehlung: Verwenden Sie den Wert Null für die Frequenz um
Percussions automatisch mit der korrekten Frequenz zu spielen.

time: Länge der Note in Sekunden. Der Maximalwert für time ist 65 000,
das entspricht ca. 18 Stunden.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 226

laut: Lautstärke der Note im Bereich von 0 bis 100. R-BASIC simuliert
das physiologische Lautstärkeempfinden. Das heißt, mit dem Wert
50 klingt die Note nur etwa halb so laut wie mit dem Wert 100. Das
genaue Resultat hängt jedoch auch vom gewählten Instrument ab.

delay: Bestimmt, wie die Note gespielt wird.
delay < 0: (Defaultwert) Die Note wird im Hintergrund gespielt.
delay >= 0: R-BASIC wartet bis die Note gespielt wurde.

Die Wartezeit beträgt "time+delay" Sekunden, wobei
Bruchteile von Sekunden (z.B. 0.2 s) zugelassen sind.
Verwenden Sie delay > 0 um die Note ausklingen zu
lassen.

Beispiele:
PlayNote IP_MARIMBA, 262, 0.7, 100

Die Note ’c’ (262 Hz) wird auf dem Instrument MARIMBA für 0.7 Sekunden mit
100% Lautstärke im Hintergrund gespielt. Das heißt, R-BASIC führt den nächsten
Befehl aus, noch während die Note erklingt.

PlayNote IP_REED_ORGAN, 440, 0.6, 80, 0.4

Die Note ’a’ (440 Hz) wird auf dem Instrument REED_ORGAN für 0.6 Sekunden
mit 80% Lautstärke gespielt. R-BASIC wartet eine Sekunde (0.6 + 0.4 = 1) bevor
der nächste Befehl abgearbeitet wird.

PlayNote IP_ACOUSTIC_BASS_DRUM, 0, 0.2, 100

Das Percussion-Instrument IP_ACOUSTIC_BASS_DRUM wird mit der passenden
Frequenz (automatische Auswahl durch den Frequenzwert Null) für 0,2 Sekunden
mit voller Lautstärke im Hintergrund gespielt.

AllocNoteHan

Speichert die Daten einer Note in einer internen Datenstruktur und liefert ein
Handle darauf.

Syntax: <hanVar> = AllocNoteHan (instr, freq, laut)
<hanVar>: Variable vom Typ Handle. Das Handle kann an

PlayNoteHan, StopNoteHan und FreeNoteHan übergeben
werden. Sie müssen das Handle nach Gebrauch mit
FreeNoteHan wieder freigegeben.

instr, freq, laut: Siehe PlayNote
Beachten Sie, dass hier keine Zeit angegeben wird. Die Zeit,
wie lange die Note erklingen soll, wird an PlayNoteHan
übergeben.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 227

PlayNoteHan

Spielt eine einzelne Note im Vordergrund oder im Hintergrund ab. Die Note wird
durch ein Handle beschrieben, das von AllocNoteHan geliefert wurde.

Syntax: PlayNoteHan han , time, [, delay]
han: Handle, das von AllocNoteHan geliefert wurde.
time: Länge der Note in Sekunden. Der Maximalwert für time ist

650, das entspricht knapp 11 Minuten.
delay: Siehe PlayNote

Defaultwert für delay: -1 (Note im Hintergrund abspielen)

StopNoteHan

Stoppt das Abspielen einer mit PlayNoteHan im Hintergrund gespielten Note.
StopNoteHan darf auch gerufen werden, wenn die durch "han" spezifizierte Note
nicht oder nicht mehr spielt.

Syntax: StopNoteHan han
han: Handle, das von AllocNoteHan geliefert wurde.

FreeNoteHan

Gibt die von AllocNoteHan angelegte Datenstruktur frei.

Syntax: FreeNoteHan han
han: Handle, das von AllocNoteHan geliefert wurde.

Beispiel:
Dim h as HANDLE
h = AllocNoteHan (IP_REED_ORGAN, 550, 100)
PlayNoteHan h, 600 ’ Ton an (10 min.)
Pause 20 ’ 2 Sekunden
StopNoteHan h ’ Ton vorzeitig aus

Pause 10 ’ 1 Sekunde

PlayNoteHan h, 2, 0 ’ Ton an (2 Sekunden, im Vordergrund)
StopNoteHan h ’ Ton aus. Zur Sicherheit
FreeNoteHan h ’ Fertig

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 228

2.10.3.3 Ausgabe von FM-Musik

Bevor Sie diesen Abschnitt lesen, sollten die das Kapitel 2.10.3.1 (Beschreibung
von Noten und Instrumenten) gelesen haben.
In der Datei "R-BASIC\Beispiel\Sound\FM Musik Demo" finden Sie mehrere
Beispiele zur Verwendung der FM-Musik-Routinen.

Zum Spielen eines FM-Musikstücks stehen Ihnen die folgenden Befehle zur
Verfügung:

Anweisung Aufgabe
PlayMusic "noten", tempo [, delay] Spielt ein FM-Musikstück im

Vordergrund oder im Hintergrund ab.
PlayMusicBG "noten", tempo Spielt ein FM-Musikstück im Hinter-

grund ab, wobei eine Warteschlange
organisiert wird.

<numVar> = GetMusicBGCount() Liest die Anzahl der FM-Musikstücke in
der Hintergrundwarteschlange

StopMusicBG Leert die Hintergrundwarteschlange für
FM-Musikstücke

<hanVar> = AllocMusicHan ("noten") Speichert die Daten eines FM-
Musikstücks und liefert ein Handle
darauf.

PlayMusicHan han , tempo [, delay] Spielt ein FM-Musikstück im
Vordergrund oder im Hintergrund ab

StopMusicHan han Stoppt das Abspielen eines mit
PlayMusicHan im Hintergrund
gespielten FM-Musikstücks.

<numVar> = GetMusicTime (han) Ermittelt die Spielzeit für ein FM-Musik-
stück.

FreeMusicHan han Gibt die von AllocMusicHan angelegte
Datenstruktur frei.

PlayMusic ist sehr einfach zu benutzen. Allerdings haben Sie nicht die
Möglichkeit, das FM-Musikstück vorher abzubrechen oder mehrere Musikstücke
nacheinander im Hintergrund zu spielen.
Die Kommandos AllocMusicHan, PlayMusicHan, StopMusicHan und
FreeMusicHan lösen das erste Problem. AllocMusicHan legt die notwendige
Datenstruktur an und liefert ein Handle darauf. Zum Spielen des FM-Musikstücks
rufen Sie PlayMusicHan, um das Spielen vorzeitig abzubrechen, rufen Sie
StopMusicHan. Mit FreeMusicHan geben Sie die von AllocMusicHan belegten
Datenstrukturen wieder frei.
Um mehrere FM-Musikstücke im Hintergrund nacheinander zu spielen rufen Sie
mehrfach hintereinander PlayMusicBG. R-BASIC organisiert automatisch eine
Warteschlange, so dass die FM-Musikstücke automatisch nacheinander
angespielt werden. Mit GetMusicBGCount und StopMusicBG haben Sie Zugriff
auf diese Warteschlange.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 229

PlayMusic

Spielt ein FM-Musikstück im Vordergrund oder im Hintergrund ab.

Syntax: PlayMusic "musicString" , tempo [, delay]

"musicString": Zeichenfolge die angibt, welche Töne gespielt werden und
welche Instrumente verwendet werden sollen.
Beschreibung siehe Kapitel 2.10.3.1.

tempo: Bestimmt die Geschwindigkeit, mit der das Musikstück gespielt wird.
Tempo gibt an, wie viele Millisekunden eine 1/128 Note dauert. Ein
guter Startwert für eigene Musikstücke ist 15. Das entspricht etwa
der Metronomeinstellung "120 Schläge pro Minute".

delay: Bestimmt, wie das Musikstück gespielt wird.
delay < 0: (Defaultwert) Das Musikstück wird im Hintergrund

gespielt.
delay >= 0: R-BASIC wartet bis das Musikstück gespielt wurde. Die

Wartezeit ist um "delay" Sekunden größer, als das
Musikstück selbst dauert, wobei Bruchteile von
Sekunden (z.B. 0.2 s) zugelassen sind.
Verwenden Sie delay > 0 um die letzten Töne
ausklingen zu lassen.

Beispiele:
PlayMusic "cdefgahc’", 15

’ Tonleiter im Hintergrund spielen

PlayMusic "cdefgahc’", 15, 0 ’ Im Vordergrund spielen

PlayMusic "i0c i4c i32c i108c", 15, 0
’ Mehrfach Note c spielen

Beispiel: Für Percussion-Instrumente (Instrumentennummer >= 128) kann man die
"Standard"-Frequenz automatisch auswählen lassen, wenn man als Frequenz den
Wert Null übergibt.

PlayMusic "i128#0 i158#0_ i128#0#0", 14

Hinweis: Die Erfahrung zeigt, dass andere Noten als die "Standard-Frequenz" bei
Percussion-Instrumenten ebenfalls gut klingen. Im Einzelfall sollten Sie das
ausprobieren. Das Beispiel "R-BASIC\Beispiel\Sound\FM Musik Demo" macht für
die Hintergrundstimme davon Gebrauch. Auch das Beispiel "R-BASIC\
Beispiel\Sound\Instrument Demo" verwendet diese Variante.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 230

PlayMusicBG

Spielt ein FM-Musikstück im Hintergrund ab, wobei eine Warteschalge organisiert
wird. Die an PlayMusicBG übergebene Musikfolge wir erst gespielt, wenn alle
vorher an PlayMusicBG übergebene Musikstücke abgespielt wurden.
Hinweis: Der Sound-Befehl (Kapitel 2.10.1) verwendet die gleiche Hintergrund-
warteschlange.

Syntax: PlayMusicBG "musicString" , tempo

"musicString": Zeichenfolge die angibt, welche Töne gespielt werden und
welche Instrumente verwendet werden sollen.
Beschreibung siehe Kapitel 2.10.3.1.

tempo: Bestimmt die Geschwindigkeit, mit der das Musikstück gespielt wird.
Tempo gibt an, wie viele Millisekunden eine 1/128 Note dauert. Ein
guter Startwert für eigene Musikstücke ist 15. Das entspricht etwa
der Metronomeinstellung "120 Schläge pro Minute".

Beispiel.
Zuerst wird die Tonfolge "cdef" und dann, mit geringerer Geschwindigkeit, die
Tonfolge "gahc’ " abgespielt. Der Text "Musik spielt" erscheint noch während die
Tonfolgen zu hören sind.

PlayMusicBG "cdef", 12
PlayMusicBG "gahc’", 20
Print "Musik spielt"

GetMusicBGCount

Diese Funktion liefert die Anzahl der FM-Tonfolgen, die in der Wartschlange sind.
Dabei wird die aktuell spielende FM-Tonfolge mitgezählt. Der Rückgabewert 1
bedeutet also, dass gerade eine FM-Tonfolge im Hintergrund spielt, die
Warteschlange aber leer ist.

Syntax: <numVar> = GetMusicBGCount ()

Hinweis: Der Sound-Befehl (Kapitel 2.10.1) verwendet die gleiche Hintergrund-
warteschlange wie der Befehl PlayMusicBG. GetMusicBGCount zählt also auch
Sound-Anweisungen, die in der Warteschlange sind.

StopMusicBG

StopMusicBG löscht die Warteschlange der für Ausgabe von FM-Tonfolgen
verantwortlichen Library. Der aktuell im Hintergrund spielende FM-Tonfolge wird
nicht abgebrochen. StopMusicBG darf auch gerufen werden, wenn gerade keine
FM-Tonfolge spielt. Es wird empfohlen, StopMusicBG im OnExit-Handler zu rufen,
wenn man sich sicher ist, ob noch FM-Tonfolgen in der Warteschlange sind.

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 231

Syntax: StopMusicBG

Hinweis: Der Sound-Befehl (Kapitel 2.10.1) verwendet die gleiche Hintergrund-
warteschlange wie der Befehl PlayMusicBG. Sie können also den Befehl
StopMusicBG auch verwenden, um die Warteschlange für Sound-Befehle zu
leeren.

Beispiel:
PlayMusicBG "cdefgahc’_", 7
PlayMusicBG "cdefgahc’_", 7
StopMusicBG
PlayMusicBG "c~c~c~d~e~c~", 7

Beim Aufruf von StopMusicBG spielt die erste Tonleiter. Sie spielt zuende. Die
zweite Tonleiter wird aus der Warteschlange entfernt. Stattdessen spielt sofort die
Tonfolge "c~c~c~d~e~c~".

AllocMusicHan

Speichert die Daten eines FM-Musikstücks in einer internen Datenstruktur und
liefert ein Handle darauf. Das Musikstück kann später mit PlayMusicHan
abgespielt werden. Sie müssen das Handle nach Gebrauch mit FreeMusicHan
wieder freigegeben.

Syntax: <hanVar> = AllocMusicHan ("musicString")
<hanVar>: Variable vom Typ Handle. Das Handle kann an

PlayMusicHan, StopMusicHan und FreeMusicHan
übergeben werden.

"musicString": Siehe PlayMusic
Beachten Sie, dass hier kein Tempo angegeben wird. Das
tempo wird bei PlayMusicHan angegeben.

PlayMusicHan

Spielt ein Musikstück im Vordergrund oder im Hintergrund ab. Das Musikstück
wird durch ein Handle beschrieben, das von AllocMusicHan geliefert wurde.

Syntax: PlayMusicHan han , tempo, [, delay]
han: Handle, das von AllocMusicHan geliefert wurde.
tempo: Siehe PlayMusic
delay: Siehe PlayMusic

Defaultwert für delay: -1 (Musik im Hintergrund abspielen)

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 232

StopMusicHan

Stoppt das Abspielen einer mit PlayMusicHan im Hintergrund gespielten Musik.
StopMusicHan darf auch gerufen werden, wenn das durch "han" spezifizierte
Musikstück nicht oder nicht mehr spielt.

Syntax: StopMusicHan han
han: Handle, das von AllocMusicHan geliefert wurde.

FreeMusicHan

Gibt die von AllocMusicHan angelegte Datenstruktur frei.

Syntax: FreeMusicHan han
han: Handle, das von AllocMusicHan geliefert wurde.

Beispiel:
Die Tonfolge "eefggfed_" wird mehrfach, aber mit verschiedener Geschwindigkeit,
im Vordergrund abgespielt. Als Musikinstrument wird "Grand Piano" (Nummer 0)
verwendet.
DIM th1$
DIM h as handle

th1$ = "eefggfed_"
h = AllocMusicHan ("i0" + th1$)
PlayMusicHan h, 14, 0
PlayMusicHan h, 10, 0
PlayMusicHan h, 5, 0
StopMusicHan h
FreeMusicHan h

GetMusicTime

GetMusicTime ermittelt die Spielzeit eines FM-Musikstücks in Sekunden, wenn es
mit dem angegebenen Tempo-Wert gespielt wird.
Die Funktion GetMusicTime liefert immer die Zeit, die das Musikstück insgesamt
spielt. Es ist egal, ob das Musikstück bereits zur Hälfte gespielt ist oder ob es
überhaupt schon spielt.

Syntax: <numVar> = GetMusicTime (han, tempo)
han: Handle, das vom AllocMusicHan geliefert wurde.
tempo: Siehe PlayMusic / PlayMusicHan

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 233

DIM mh as Handle
DIM longMusic$, t

longMusic$ = ’ sehr viel Musik
mh = AllocMusicHan (longMusic$)
PlayMusicHan mh, 14
PRINT "Sie hören jetzt "; GetMusicTime(mh); " Sekunden Musik."

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 234

2.10.4 Konfiguration der Soundlibrary

Die Ausgabe von WAV- und FM-Sound wird von einer Library, der RabeSoft-
Audio-Library, übernommen. Je nach Systemversion und nach installiertem
Sound-Treiber kann die WAV- und FM-Sound Ausgabe möglich sein oder nicht.
Zum Beispiel spielt die Sound.geo von GEOS 3.2 Wav-Dateien hörbar zu kurz ab.
Die RS-Audio-Library verfügt sowohl über die Möglichkeit, diesen Fehler
auszugleichen, als auch (durch Befragen des Nutzers) zu testen, ob dieser
Ausgleich nötig ist. Deshalb bietet R-BASIC an, den entsprechenden
Konfigurations-Dialog aufzurufen als auch den Konfigurationsstatus abzufragen.

Sie können mithilfe der hier beschriebenen Befehle herausbekommen, ob auf dem
System des Nutzers z.B. keine WAV-Dateien abgespielt werden können. Sie
können dann stattdessen einen FM-Sound abspielen.

Hinweise:
• Es ist nicht zwingend erforderlich, dass Sie die hier beschrieben Kommandos

DoAudioConfig und GetAudioConfig in ihrem Programm verwenden.
• Wenn Sie die Soundausgabe auf einem System verwenden, dass keine

Soundausgabe unterstützt, so wird eben kein Sound gespielt. Systemabstürze
sind nicht zu erwarten.

• Der Nutzer kann durch eine (fehlerhafte) Konfiguration der Library nicht
verhindern, dass Sounds abgespielt werden.

DoAudioConfig

DoAudioConfig ruft den Konfigurationsdialog der RS-Audio-Library auf. Der User
hat hier die Möglichkeit, zu testen, ob die WAV und die FM-Ausgabe funktioniert.
Die Library merkt sich die Einstellungen in der GEOS.INI unter [Rabe-Soft
diverses] "Audio".

Syntax: DoAudioConfig forceDialog
forceDialog: FALSE: Der Dialog wird nur aufgerufen, wenn die Library

noch nicht oder noch nicht vollständig konfiguriert ist.
TRUE: Der Dialog wird in jedem Fall aufgerufen.

Hinweis: Durch die Konfiguration der Library kann der User nicht verhindern, dass
Sounds abgespielt werden. Er kann dem Programm nur mitteilen, ob bestimmte
Sounds auf seinem System hörbar sind. Das bedeutet folgendes:
• Sollte der User in der Konfiguration z.B. angegeben haben, dass das System

keine Wav-Ausgabe unterstützt, obwohl das System es tut, so wird PlayWav die
Wav-Datei trotzdem abspielen. Das Gleiche gilt für FM-Sounds. Dieser Fall
kann z.B. eintreten, wenn der Nutzer einen neuen, besseren Soundtreiber
aktiviert.

• Wenn Sie die vom User eingestellte Konfiguration berücksichtigen wollen, so
müssen Sie die Funktion GetAudioConfig aufrufen.

• Die Wav-Befehle berücksichtigen in jedem Fall, ob der Nutzer angegeben hat,
dass zu kurz gespielte Wav-Dateien verlängert werden sollen. Das bedeutet: hat

R-BASIC - Programmierhandbuch - Vol. 4
Einfach unter PC/GEOS programmieren

Musik und Sound - 235

der User angegeben, dass Wav-Dateien zu verlängern sind, obwohl dies nicht
nötig ist, entsteht eine (kurze) Pause am Ende jeder Wav-Datei.

Empfehlung (siehe auch Beispieldatei "Beispiel\Sound\KeyClick Demo"):
Wenn Sie in Ihrem Programm die Ausgabe von WAV und/oder FM-Sound
verwenden sollten Sie im OnStartup-Handler folgende Zeile einbauen:

DoAudioConfig FALSE

Sie bewirkt, dass der Konfigurations-Dialog der RS-Audio-Library aufgerufen wird,
falls die Library nicht oder nicht vollständig konfiguriert ist.
Außerdem sollten Sie einen Menüpunkt "Audio-Library konfigurieren" anbieten,
dessen Actionhandler folgendermaßen aussieht:
Buttonaction ConfigureAudioLib
DoAudioConfig TRUE

End Action

Damit hat der Nutzer die Möglichkeit, die Konfiguration der RS-Audio-Library
nachträglich zu verändern, z.B. wenn er einen neuen Sound-Treiber ausprobiert.

GetAudioConfig

Die Funktion GetAudioConfig liefert die vom Nutzer angegebenen Konfigurations-
daten, d.h. ob das System Wav- und FM-Sound unterstützt und ob die RS-Audio-
Library vollständig konfiguriert ist. Sollte die RS-Audio-Library nicht oder nicht
vollständig konfiguriert sein, so nimmt GetAudioConfig an, dass die nicht
konfigurierten / getesteten Funktionen unterstützt werden.
Sie können GetAudioConfig z.B. verwenden, um einen FM-Sound abzuspielen,
falls die Wav-Ausgabe auf dem System des Users nicht unterstützt wird.

Syntax: <numVar> = GetAudioConfig ()

Der Rückgabewert von GetAudioConfig sind Bitflags. Die folgenden Werte sind
definiert. Hier nicht aufgeführte Bits sind reserviert!

Konstante Wert hex Bedeutung
SC_WAV_SUPPORTED 1 &h01 Wav-Ausgabe wird unterstützt
SC_FM_SUPPORTED 2 &h02 FM-Sound wird unterstützt
SC_NEED_CONFIG 16 &h10 Die RS-Audio-Library ist nicht

oder nicht vollständig konfiguriert.
SC_SOUND_IS_OFF 32 &h32 Die Tonausgabe ist in den

Voreinstellungen deaktiviert

Hinweis:
• GetAudioConfig liefert die Konfigurationsdaten der RS-Audio-Library. Es führt

selbst keinen Prüfungen durch.

