R-BASIC

Einfach unter PC/GEOS programmieren

\O

ob
9&

Programmierhandbuch

Volume 5
Weitere Funktionen, Libraries

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis
2.11 Weitere FUNKEIONEN - ieeiieeiiieiieireer i s resssss s s sms s smn s smn s s mnsma s nmnnes 240
2.11.1 VerSIONSNUMIMIEIN ovuniittieeteeetee e e et e et e e e e e et e et e e ean e e s e eaeeaanns 240
2.11.2 DAtum UNA ZEiIt ...ceeeieeeeeeeeeeee e e 244
2.11.3 Speicherzugriffovveeeei e 251
I I R Y N Y11= o N 253
2.11.5 SySteMSErVICES .. uuuumniiiiiiiiiiiiiiii 256
2.12 Verwendung von Librariescccccceemmmmnnniissnmssssnnsssssssssnnnnanes 258
2.12.1 KONZEPLONEIIES ..o 258

2.12.2 UI-Objekte in LIDrariescccueeeeiiiiiiiiiees e 264

R-BASIC - Programmierhandbuch - Vol. 5

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

2.11 Weitere Funktionen

2.11.1 Versionsnummern

Da sowohl die R-BASIC IDE als auch ein R-BASIC Programm aus verschiedenen
Komponenten bestehen gibt es verschiedene Arten von Versionsnummern.

+ Das BASIC-Programm selbst hat eine Versionsnummer. Sie kann mir dem
Befehl Version$ abgefragt werden.

+ Jede GEOS-Datei hat eine Protocol- und eine Release-Nummer. Diese kénnen
abgefragt und auch geandert werden.

+ Die Versionsnummer der R-BASIC IDE, mit der ein Programm erstellt wurde
kann mit dem BASIC Befehl BasicVersion$ abgefragt werden.

Version$

Jedes Programm und jede Library besitzt eine Versionsnummer, mit deren Hilfe
man verschiedene Programmversionen identifizieren kann. Man kann sie Uber die
globale Variable Version$ ermitteln. Rufen Sie Version$ aus einer Library heraus
auf so erhalten Sie die Versionsnummer der Library.

Syntax <stringVar> = Version$

Der Aufbau von Version$ ist folgender:
Major.Minor.Change

Die beiden ersten Werte (Major und Minor) werden vom Programmierer festgelegt
und sind insbesondere bei Libraries von groBer Bedeutung (siehe unten). Der
dritte Wert (Change) wird bei jedem Compilerlauf automatisch hochgezahit.
Anderungen des Major- oder des Minor-Wertes setzen den Change-Wert wieder
auf Null.

Verwechseln Sie Version$ nicht mit der Variablen BasicVersion$, welche die
Versionsnummer der BASIC-IDE enthélt, die das aktuelle Programm compiliert
hat.

Die Werte fur Major und Minor kbnnen im MenuUpunkt "Programm" geandert
werden. Der Major-Wert sollte geéndert (vergroBert) werden, wenn wesentliche
neue Funktionen dazugekommen sind, ein neuer Wert fir Minor sollte Bugfixes
oder kleinere Anderungen anzeigen.

* Version eines Programms
Sie sind in der Wahl der Versionsnummer voéllig frei.

Versionsnummern - 240

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

* Version einer Library
Wenn Sie eine BASIC-Library schreiben, die nur fir genau ein spezielles
BASIC-Programm gedacht ist, spielt die Versionsnummer keine groBBe Rolle. Sie
lassen die Versionsnummer bei 0.0, dann gibt es keine Probleme.

Wenn Sie eine BASIC-Library schreiben, die von verschiedenen Programmen
verwendet werden soll, missen Sie der Versionsnummer eine gewisse
Aufmerksamkeit schenken. Beim Compilieren eines Programms, das ihre
Library benutzt, wird die aktuelle Versionsnummer der Library mit abgespeichert,
damit das Programm spater entscheiden kann, ob es mit der aktuell
vorhandenen Library-Version zusammenarbeiten kann oder nicht. Dazu werden
der Major und der Minor-Wert herangezogen. Der Change-Wert wird ignoriert.
Ein Programm, das mit einer Library-Version 2.3 compiliert wurde, arbeitet mit
spateren Versionen der Library (z.B. Version 2.5 oder 3.1) zusammen. Es wird
aber weder mit der Version 2.1 noch mit der Version 1.9 der Library
zusammenarbeiten.

Tipps:

+ Wahrend der Entwicklungsphase einer Library oder eines Programms sollten
Sie die Versionsnummer nicht &ndern, egal was Sie tun.

+ Haufig ist es so, dass wéhrend der Entwicklung der Major-Wert auf Null bleibt.
Bei der ersten Veroéffentlichung der Library oder des Programms setzt man die
Versionsnummer auf 1.0.

+ Jedes Mal wenn eine neue Version einer Library veréffentlicht wird sollten Sie
die Versionsnummer andern.

Release- und Protokollnummer

Auf GEOS Systemebene werden die Protokoll- und Releasenummer verwendet,
um zu prufen, ob Dateien, Libraries und Programme zueinander kompatibel sind.

Eine komplette Beschreibung der Befehle zur Arbeit mit Protocol- und
Releasenummern finden Sie im Handbuch "Sp"ezielle Themen", Kapitel 9.2
(Dateiattribute). Die folgende Tabelle enthalt einen Uberblick.

Befehl / Struktur Aufgabe / Bedeutung

FileGetRelease GEOS Releasenummer auslesen

FileSetRelease GEOS Releasenummer andern

FileGetProtocol GEOS Protokollnummer auslesen

FileSetProtocol GEOS Protokollnummer dndern

ReleaseNumber Struktur zum Speichern einer Protocol- oder Release-
nummer

Versionsnummern - 241

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

BasicVersion$

Sie kénnen die Versionsnummer der BASIC-IDE, die das aktuelle Programm
compiliert hat, mit der Systemvariablen BasicVersion$ abfragen. Nicht zu
verwechseln mit der Variablen Version$, die die Versionsnummer des aktuell
ausgefuhrten Programms enthélt.

Syntax <stringVar> = BasicVersion$

BasicVersion$ liefert einen String der Form:
Major.Minor.Change-Engeneering
z.B. 1.0.1-17
Dieser Wert ist der gleiche, wie er im Menu "Datei-Information" angezeigt wird, es

handelt sich um die Release-Nummer der R-BASIC IDE.

Interne Details

Der folgende Abschnitt enthalt Hintergrundinformationen, die zur taglichen Arbeit
mit R-BASIC nicht unbedingt benétigt werden.

Die Releasenummer enthélt die "Version" eines Programms oder einer Library.
Sie wird angezeigt, wenn Sie im GeoManager die Tastenkombination Strg-G
eingeben bzw. den Menupunkt "Datei" -> "Info & Attribute" anklicken.

Die Protokollnummer beschreibt die "Fahigkeiten" eines Programms oder einer
Library bzw. die "innere Struktur" einer Datei. Sie wird zur Versionsprifung auf
Systemebene verwendet. Wenn die Protokollnummer nicht passt ist die Datei
(Dokument, Library, Programm) nicht kompatibel. Zum Beispiel verwendet die R-
BASIC IDE die Protokollnummer um zu entscheiden ob R-BASIC die Datei 6ffnen
und bearbeiten kann.

R-BASIC verwendet die Releasenummer zur Versionsprifung. Aus Sicht des
GEOS-Systems sind sowohl die R-BASIC Codedatei als auch die BIN-Datei
Dokumente. Das gilt auch far R-BASIC Libraries. Das GEOS-System ignoriert die
Releasenummer von Dokumenten, deshalb kann R-BASIC sie benutzen.

Der R-BASIC Compiler setzt beim Compilieren die ersten drei Felder der
Releasenummer der BIN-Datei entsprechend der Versionsnummer des Pro-
gramms bzw. der Library. Das hat folgende Konsequenzen:

+ Der Wert kann mit dem BASIC Befehl Version$ ausgelesen werden.

* Uni-Installer ab Version 1.2 verwendet die Releasenummer von R-BASIC
Dateien um zu entscheiden ob eine Datei neuer ist als eine andere Datei mit
gleichem Namen. Dadurch kann verhindert werden, dass altere Versionen
eines R-BASIC-Programms oder einer R-BASIC Library eine neuere Version
Uberschreiben.

Versionsnummern - 242

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

* Bei R-BASIC Libraries wird die Releasenummer (und damit die Versions-
nummer der Library) verwendet um zu entscheiden, ob ein BASIC Programm
mit dieser Library zusammenarbeiten kann.

Beim Anlegen eines eigensténdigen Programms (R-App) wird die Releasenummer
des Launchers auf die Versionsnummer des Programms gesetzt. Dadurch kann
der Nutzer die Versionsnummer des Programms im GeoManager mit der
Tastenkombination Strg-G erfahren.

Versionsnummern - 243

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

2.11.2 Arbeit mit Datum und Zeit

R-BASIC unterstltzt die Grundfunktionen zum Zugriff auf das Systemdatum sowie
elementare Funktionen zur Anzeige von Datum und Uhrzeit. AuBerdem wird die
Arbeit mit dem Julianischen Datum unterstitzt.

Alle Zeitfunktionen, einschlieB8lich der Funktionen zum Zugriff auf das Dateidatum
benutzen eine Struktur, die DateAndTime heif3t.

STRUCT DateAndTime
year, month, day AS INTEGER
hour, minute, second AS INTEGER
END STRUCT

year, month, day enthalten das Jahr (z.B. 2014), den Monat (1...12) und den Tag
(1...31).

hour, minute, second enthalten die Stunde (0..23), die Minute (0...59) und die
Sekunde (0...59).

Zugriff auf Datum und Zeit

SysGetTime

SysGetTime liefert das aktuelle Systemdatum und die Systemzeit.

Syntax: <time> = SysGetTime()
<time>: Variable vom Typ DateAndTime.

Beispiel:

DIM time AS DateAndTime

time = SysGetTime()

Print "Das Weltall. Unendliche Weiten. \
Wir schreiben das Jahr ";time.year

SysGetCount

SysGetCount liefert die Anzahl der "Tics" (1/60 s) seit dem letzten Systemstart.

Syntax: <numVar> = SysGetCount()
<numVar>: numerische Variable

Datum und Zeit -244

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Formatierung von Datum und Zeit

Da man Uber die DateAndTime-Struktur direkten Zugriff auf das Jahr, den Monat,
die Stunde usw. als Zahl hat, ist es nicht kompliziert einen formatierten String zu
erzeugen, der Datum oder Zeit enthélt. Zum Beispiel erzeugt der Code

s$ = "Jahr: " + Str$(time.year)

einen String, der das Jahr als Text enthalt.
Aber manchmal braucht man einen einfachen Weg Datums- oder Zeitangaben zu
formatieren. Die folgenden Routinen erledigen das.

FormatDate$

FormatDate$ gibt das Datum in der Form "24.03.2010" oder in der Form
"2010/03/24" aus. Die lokalen Einstellungen des Computers werden dabei nicht
berucksichtigt.

Syntax: <stringVar> = FormatDate$(time [, flag])
time: Variable (oder Funktion) vom Typ DateAndTime.
flag (optional): TRUE: Das Format "2010/03/24" benutzen
FALSE (default): Das Format "24.03.2010" benutzen

Beispiel:

DIM time AS DateAndTime

time = SysGetTime()

Print "Aktuelles Datum: "; FormatDate$ (time)

FormatTime$

FormatTime$ gibt die Uhrzeit im 24-Stunden-Format aus. Die lokalen Ein-
stellungen des Computers werden dabei nicht berlcksichtigt.

Syntax: <stringVar> = FormatTime$(time [, flag])
time: Variable (oder Funktion) vom Typ DateAndTime.
flag (optional): TRUE (default): Sekunden anzeigen (17:34:54)
FALSE: Sekunden nicht anzeigen (17:34)

Beispiel:
DIM time AS DateAndTime

time = SysGetTime()
Print "Aktuelle Uhrzeit: "; FormatTime$ (time)

Datum und Zeit -245

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Weekday$, DayOfWeek

Weekday$ gibt den Wochentag in Textform aus, wobei die lokalen Einstellungen
(Sprache) des Computers berucksichtigt werden. DayOfWeek liefert eine Zahl
(0..6) die dem Wochentag entspricht. Der Sonntag hat den Wert Null.

Syntax: <stringVar> = Weekday$(time)
Syntax: <numVar> = DayOfWeek(time)
time: Variable (oder Funktion) vom Typ DateAndTime.

Beispiel:

DIM time AS DateAndTime

time = SysGetTime()

Print "Heute ist "; Weekday$(time)

Print "Das ist der"; DayOfWeek(time) + 1 ; ". Tag der Woche."

LocalFormatDateAndTime$

LocalFormatDateAndTime$ greift auf die Systemeinstellung fir die Darstellung
von Datum und Zeit zu und formatiert Datums- und Zeitangaben entsprechend
diesen Einstellungen. Dadurch erscheinen die Datums- und Zeitangaben in dem
vom Nutzer eingestellten Format. Das kann allerdings auf verschiedenen
Systemen véllig unterschiedlich sein.

Syntax: <stringVar> = LocalFormatDateAndTime$(time, format)
time: Variable (oder Funktion) vom Typ DateAndTime.
format: Eine DateAndTimeFormat (DTF-) Konstanten aus der

aus der Tabelle unten.

Die folgende Tabelle zeigt das Ausgabeformat von LocalFormatDateAndTime$ fir
die Standardeinstellungen auf einem deutschen PC/GEOS System. Auf anderen
Systemen, insbesondere auf fremdsprachigen Systemen, kann das
Ausgabeformat véllig anders aussehen.

Datum und Zeit -246

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Konstante Wert | Ausgabe
DTF_LONG 0 Sonntag, 28. Februar 2010
DTF_LONG_CONDENSED 1 So, 28. Feb. 2010
DTF_LONG_NO_WEEKDAY 2 28. Februar 2010
DTF_LONG_NO_WEEKDAY_CONDENSED 3 28. Feb. 2010
DTF_SHORT 4 28.02.10
DTF_ZERO_PADDED_SHORT 5 28.02.10
DTF_MD_LONG 6 Sonntag, 28. Februar
DTF_MD_LONG_NO_WEEKDAY 7 28. Februar
DTF_MD_SHORT 8 28.02.
DTF_MY_LONG 9 Februar 2010
DTF_MY_SHORT 10 02.10
DTF_YEAR 11 2010
DTF_MONTH 12 Februar
DTF_DAY 13 28.
DTF_WEEKDAY 14 Sonntag
DTF_HMS 15 23:48:52
DTF_HM 16 23:48
DTF_H 17 23
DTF_MS 18 48:52
DTF_HMS_24HOUR 19 23:48:52
DTF_HM_24HOUR 20 23:48

Julianisches Datum

Das Julianische Datum ist eine Zahl, die der Anzahl der Tage seit dem 1.1.4713
vor Christus, 12 Uhr mittags entspricht. Man beginnt 12 Uhr mittags damit bei
astronomischen Beobachtungen wéahrend der Nacht kein Datumswechsel auftritt.
Die Nachkommastellen entsprechen der Uhrzeit (bezogen auf 12 Uhr mittags).

Das Julianische Datum ist fortlaufend. UnregelméaBigkeiten wie unterschiedliche
Monatsldngen, Monats und Jahreswechsel oder auch Schaltjahre werden
automatisch berlcksichtigt. Damit lassen sich Fragen wie "Wie viele Tage liegen
zwischen dem 28.04.2016 und dem 17.07.1962?" einfach durch die Differenz der
beiden zugehdrigen Julianischen Datumszahlen beantworten. Der Vergleich von
zwei Zeitpunkten (einschlieBlich der Frage, welcher friher liegt) reduziert sich auf
den Vergleich von zwei Real-Zahlen.

Far das Julianische Datum wird allgemein die Abklrzung JD verwendet.

Datum und Zeit -247

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

JDFromDAT

Die Funktion JDFromDAT ermittelt den julianischen Datumswert (JD) aus einer
DateAndTime Struktur (DAT).

Syntax: <numVar> = JDFromDAT (<dat>)
<numVar>: numerische Variable, empfohlener Datentyp: Real
<dat>: Variable oder Ausdruck vom Datentyp DateAndTime

DATFromdD

Die Funktion DATFromJD rechnet einen julianischen Datumswert (JD) in eine
DateAndTime Struktur um.

Syntax: <var> = DATFromdJD (<jd>)
<jd>: numerischer Ausdruck. Julianisches Datum
<var>: Variable vom Datentyp DateAndTime

Das folgende Beispiel gibt aus, welches Datum wir in 100 Tagen, gerechnet ab
heute, haben.

DIM jetzt, dann AS DateAndTime
DIM jd as Real

jetzt = SysGetTime()

jd = JDFromDAT (jetzt)

dann = DATFromJD (jd + 100)

(]

Print "In 100 Tagen ist der ";FormatDate$(dann)

Wir wollen wissen in wie vielen Tagen Weihnachten ist.

DIM zeit as DateAndTime
DIM ist, soll, count as Real
zeit = SysGetTime()
ist = JDFromDAT (zeit) ' aktuelles Julianisches Datum

zeit.day = 24
zeit.month = 12
soll = JDFromDAT(zeit) " Julianisches Datum vom Weihnachten

count = soll - ist
Print "In";count;"Tagen ist Weihnachten."

JDDeltaFromMinutes

Die Funktion JDDeltaFromMinutes berechnet, wie groB die Differenz zweier
Julianischer Daten ist, die sie sich um die gegebene Anzahl von Minuten

Datum und Zeit -248

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

unterscheiden. Damit kann man Daten und Uhrzeiten ermitteln, die um eine
gegebene Zeitdifferenz vor oder nach einem bekannten Zeitpunkt liegen.

Syntax: <snumVar> = JDDeltaFromMinutes (<n>)
<numVar>: numerische Variable, empfohlender Datentyp: Real
<n>: Zeitdifferenz in Minuten. Negative Zahlen und Dezimalzahlen

sind zuléassig.
Beispiel: 1 min, 30 sek.: time=1.5

Beispiele:
Wir wollen wissen wie spat es in 73,5 Minuten ist

DIM zeit as DateAndTime
DIM ist, soll, count as Real
zeit = SysGetTime()

ist = JDFromDAT (zeit) ' aktuelles Julianisches Datum
soll = ist + JDDeltaFromMinutes(73.5)
zeit = DATFromJD(soll) ' DateAndTime-Struktur bilden

Print "In 73,5 min ist es ";FormatTime$(zeit);" Uhr"

Die folgende Function liefert TRUE, wenn sich zwei Daten um mehr als 1 Stunde
unterscheiden. Als Vergleichswert wahlen wir 60.001 Minuten (ca. 1/10 Sekunde
mehr als 1 h) weil es durch die interne Zahlendarstellung zu minimalen Ab-
weichungen kommen kann.

FUNCTION CompareTime(datl, dat2 AS DateAndTime) as Real
DIM jdl, jd2, diff as Real
jd1l = JDFromDAT (datl)
jd2 = JDFromDAT (dat2)
if (jdl > jd2) THEN
diff = jdl - jd2
ELSE
diff = jd2 - jdl ' diff immer positiv
END IF
IF diff > JDDeltaFromMinutes(60.01) THEN RETURN TRUE

Return FALSE

End Function

Unsere Schicht endet um 16 Uhr 15 Minuten. Wir wollen wissen wie viele Minuten
wir noch arbeiten mussen.

DIM zeit as DateAndTime
DIM ist, soll, count as Real
zeit = SysGetTime()
ist = JDFromDAT (zeit) ' aktuelles Julianisches Datum

zeit.hour = 20

zeit.minute = 15

zeit.second = 0

soll = JDFromDAT(zeit) ' Julianisches Datum vom Feierabend

Datum und Zeit -249

R-BASIC - Programmierhandbuch - Vol. 5

Einfach unter PC/GEOS programmieren

IF ist > soll THEN

count = (ist-soll)/JDDeltaFromMinutes (1)

Print "Du hast schon seit "; count; " Minuten Feierabend!"
ELSE

count = (soll-ist)/JDDeltaFromMinutes (1)

Print "Du musst noch "; count; " Minuten arbeiten."
END IF

Interne Details. Diese Informationen kénnen hilfreich sein, werden aber zur Arbeit
mit dem Julianischen Datum nicht unbedingt benétigt.

JDFromDAT und DATFromJD verwenden fur Daten nach der Kalenderreform
(d.h. ab dem 15.10.1582) den heute gultigen Gregorianischen Kalender. Dieser
verwendet die erweiterte Schaltjahresregel, fur Daten bis zum 04.10.1582 wird
der julianische Kalender verwendet (einfache Schaltjahresregel).

Historisch folgte in den damals fihrenden L&ndern auf den 04.10.1582 sofort
der 15.10.1582. Die dazwischen liegenden Daten existieren nicht. JDFromDAT
und DATFromJD berucksichtigen das. Sie berucksichtigen aber nicht, dass
viele Lander die Kalenderreform erst viel spater durchfihrten.

Historisch gab es vor Einfuhrung des Julianischen Kalenders im Jahr 46 vor
Christus keine Schaltjahre. Bei der Berechnung des Julianischen Datums wird
das nicht berucksichtigt.

Historisch existiert das Jahr Null nicht. Dem Jahr 1 vor Christus folgte sofort
das Jahr 1 der christlichen Zeitrechnung. Bei kalendarischen Berechnungen
wird das Jahr 1 vor Christus deshalb als Null gezahlt, -1 entspricht dem Jahr 2
vor Christus usw.

JDFromDAT ist tolerant gegenuber fehlerhaften Daten. Fir den nicht existier-
enden 29.Februar 1999 wird beispielsweise das Julianische Datum des 1.Marz
1999 berechnet. Ein beliebiges Datum mit dem "nullten" des Monats (z.B.
0.3.1999) liefert das Julianische Datum des letzten Tags des Vormonats (im
Beispiel den 28. Februar 1999).

Die Nachkommastellen im Julianischen Datum entsprechen der Uhrzeit, wobei
die Formel

std/24 + min/1440 + sek/86400

verwendet wird. Std, min und sek entsprechen dabei der Zeit, die seit 12 Uhr
mittags vergangen ist. Fur 14 Uhr gilt also: std = 2.
Beispiele:

17.03.2016, 12 Uhr mittags JD = 2457465

17.03.2016, 22 Uhr abends JD =2457465.41666667

18.03.2016, Null Uhr (morgens) JD = 2457465.5

18.03.2016, 8 Uhr morgens JD =2457465.83333333
Im Allgemeinen ist es nicht notwendig die Zahlenwerte zu kennen, wenn man
mit dem Julianischen Datum arbeiten will.

JDDeltaFromMinutes(x) entspricht entsprechend der obigen Formel dem Term
x/1440. JDDeltaFromMinutes(24*60) liefert den Wert 1 (=1 Tag).

Die Funktionen DayOfWeek() und Weekday$() verwenden das Julianische
Datum. Damit berlcksichtigen sie automatisch den Gregorianischen und den
Julianischen Kalender.

Datum und Zeit -250

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

2.11.3 Speicherzugriff

Gelegentlich benétigt man einfach eine bestimmte Menge Speicher, die man nach
den eigenen Vorstellungen organisieren kann. R-BASIC ermoglicht zwar keinen
direkten Zugriff auf den Hauptspeicher des Computers (das ware zu unsicher),
stellt dem Programmierer aber 64 kByte "geschitzten" (virtuellen) Speicher zur
Verfugung, der aus Sicht des Programms als 64 kByte fortlaufender Speicher tber
die Adressen 0 bis 65635 (hexadezimal &hO bis &hFFFF) angesprochen werden
kann. Der Zugriff auf diesen Speicher erfolgt schreibend tber diverse Poke- und
lesend Uber die passenden Peek-Befehle (siehe Tabelle).

Befehl Wirkung
POKE <adr>, wert Schreibt ein Byte
DOKE <adr>, wert Schreibt einen Integer- oder Word-Wert (2 Byte)

POKES$ <adr>, <string> Schreibt eine String. Am Ende des Strings wird
eine binare Null als Ende-Kennung geschrieben.
Es werden also LEN(<string>)+1 Bytes
geschrieben.

SPOKE<adr>, <struktur> | Schreibt eine Struktur. Die Anzahl der
geschriebenen Bytes hangt von der Struktur ab
und betrégt sizeof(<struktur>) Bytes.

<nVar> = PEEK (<adr>) Liest ein Byte

<nVar> = DEEK (<adr>) Liest einen Word oder Integer-Wert (2 Byte).
<sVar$> = PEEK$ (<adr>) | Liest einen String. Das Stringende ist durch eine
bindre Null gekennzeichnet. Es werden maximal
1024 Zeichen gelesen.

<stVar> = SPEEK (<adr>) | Liest eine Struktur. Die Anzahl der gelesenen
Bytes héngt von der Struktur ab und betragt
sizeof(<stVar>) Bytes.

VPOKE <adr>, wert Kompatibilitatsbefehl fur KC-85 Kompatibilitat.
Beschreibt den Video-RAM des KC-85. Siehe
Hinweise unten.

<nVar> = VPEEK (<adr>) | Kompatibilititsbefehl fir KC-85 Kompatibilitat.
Liest aus dem Video-RAM des KC-85. Siehe
Hinweise unten.

<adr> numerischer Ausdruck, der einen Wert von 0 bis 65635 liefert. Liegt
der Wert auBerhalb dieses Bereichs, wird MOD 65636 gerechnet, d.h.
es wird einfach wieder von vorne begonnen.

<string> Ein Stringausdruck.

<struktur> Eine Strukturvariable oder eine Funktion, die eine Struktur liefert. Es
sind sowohl R-BASIC Strukturen als auch selbst definierte Strukturen
zulassig.

<nVar> numerische Variable.

<sVar$> String-Variable.

<stVar> Strukturvariable.

Speicherzugriff - 251

R-BASIC - Programmierhandbuch - Vol. 5

Einfach unter PC/GEOS programmieren

Hinweise:

R-BASIC verwaltet den Speicher in Blécken zu 8 kByte, die erst
angefordert werden, wenn sie bendtigt werden.

Dieser Speicherbereich wird auch an Libraries Ubergeben, die im
PC/GEOS-SDK-Mode geschrieben sind. AuBerdem wird er von einigen
Objekten (z.B. BitmapContent) benutzt um groBe Datenmengen zu
transferieren.

Wollen Sie andere Datentypen (FILE, HANDLE, DWORD etc.) schreiben,
mussen Sie sie in einer Struktur kapseln.

R-BASIC kontrolliert nicht, ob die gelesenen Daten glltig sind, d.h. zum
gelesenen Datentyp passen.

Eine ausfuhrliche Beschreibung der Befehle VPOKE und VPEEK finden
Sie im Handbuch "Spezielle Themen", Vol. 3, Kapitel 18.3 (Kompatibilitat
mit dem KC-85-BASIC). Eine Beschreibung des KC-Video-RAM finden
Sie im Anhang.

Speicherzugriff - 252

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

2.11.4 DATA-Zeilen

Die DATA-Anweisung dient dazu, feste Werte im Programm zu abzulegen, auf die
zum gegebenen Zeitpunkt - bei Bedarf auch mehrfach - zugegriffen werden kann.
Mit Hilfe der READ-Anweisung werden die Werte aus den DATA-Zeilen gelesen.
RESTORE wird verwendet, um eine bestimmte DATA-Zeile anzuwdahlen. Dazu
muss mit der Anweisung LABEL eine Codezeile markiert werden, auf die Restore
verweisen kann.

DATA-Zeilen sind der klassische Weg um Daten (Zahlen und Strings) in einem
BASIC-Programm unterzubringen. Die Verwendung von DATA-Zeilen ist ein ver-
alteter Programmierstil und sie verbrauchen sehr viel Speicher im Programmcode.
Far gr6Bere Datenmengen kénnen Sie zum Beispiel externe Dateien verwenden,
far Bilder kdnnen Sie auch die Picture-List (MenUpunkt: Extras) benutzen.
Manchmal, insbesondere wenn Sie nur kleine Datenmengen haben, sind DATA-
Zeilen trotzdem sehr nutzlich.

Sie kdnnen die Anweisungen DATA, READ, und RESTORE auch innerhalb einer
Library verwenden. R-BASIC verwaltet die Werte fir das Hauptprogramm und
jede eingebundene Library getrennt, so dass eine gegenseitige Beeinflussung
ausgeschlossen ist. Sie kénnen also auch nicht vom Hauptprogramm aus mit
READ auf die DATA-Werte einer Library zugreifen.

DATA

Syntax: DATA Wert [, Wert [, Wert] ...
Wert: jeweils eine Konstante vom Typ REAL oder STRING, Variablen
sind nicht zulassig.

Beispiele:

DATA 12, 144, 13, 169
DATA "Paul", "Miller", "Malocher"

READ

Syntax: READ <var> [, <var>] [, <var>] ...
<var> bezeichnet die zu belegenden Variablen.

Hinweise:
+ Zulassig fur <var> sind alle numerischen Datentypen sowie alle String-Typen.
Dazu z&hlen auch Feld- und Struktur-Elemente.
* Der Typ der Variablen muss kompatibel zum jeweiligen Wert in der DATA-
Zeile sein, sonst kommt es zu einem Laufzeitfehler und das Programm wird
beendet.

DATA-Zeilen - 253

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Beispiele:
Der folgende Code liest die Werte aus den DATA-Zeilen aus dem Beispiel zum
Befehl DATA (oben).

READ A, B, C, D
READ Vorname$, Name$, Job$

RESTORE

Syntax: RESTORE
RESTORE <label>
<label> ist ein im Programm definiertes Label.

Hinweise:

+ Wird kein Parameter (<label>) angegeben, so wird die erste DATA-Zeile des
Programms angewéhlt.

+ Existiert das Label nicht, kommt es zu einem Compilerfehler.

+ Weist das Label nicht direkt auf eine DATA-Zeile, so wird die nachste im
Programm vorkommende DATA-Zeile angewahlt.

+ Weist das Label hinter die letzte DATA-Zeile, so kommt es bei der nachsten
READ-Anweisung zu einem Laufzeitfehler

Beispiele:

DATA 1,2,3,4,5,6,7,8
LABEL Listel
DATA ||a||,||b||,|lc|l,|ldll,llell,llfll

RESTORE ' zur ersten DATA-Zeile
RESTORE Listel ' zur DATA-Zeile ab Listel

Allgemeine Hinweise:

+ Sind mehr Werte in einer DATA-Zeile, als Variablen gelesen werden, so setzt
die nachste READ-Anweisung mit dem n&chsten Wert in dieser Zeile fort.

+ Sollen mehr Werte gelesen werden, als Werte in einer DATA-Zeile sind, so
wird mit der nédchsten DATA-Zeile fortgesetzt.

+ StdBt der Interpreter beim Programmablauf auf eine DATA-Zeile, wird diese
Ubersprungen.

+ Versucht das Programm mehr Werte zu lesen, als durch DATA-Zeilen definiert
sind, kommt es zu einem Laufzeitfehler und das Programm wird beendet.

Tipps:
- Verwenden Sie in einer DATA-Zeile nach Mdbglichkeit nur einen Typ von
Werten (z.B. nur Zahlen oder nur Strings)

- Fassen Sie die DATA-Zeilen zu einem Block im Programm zusammen. Es
bietet sich hier das DIM & DATA-Fenster an.

DATA-Zeilen - 254

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Beispiel:
LABEL Listel
DATA 10, 12, 19, 20
DATA 10.8, 7.06, 51.2, 8.13
' Beachten: Punkt als Dezimaltrennzeichen

RESTORE Listel ' DATA-Zeiger setzen
READ a, b, c, d ' liest die Werte 10, 12, 19, 20
READ e, £, g, h ' liest die Werte 10.8, 7.06, 51.2, 8.13

RESTORE Listel
READ e, £, g, h " liest wieder die Werte 10, 12, 19, 20

Kompatibilitat

R-BASIC unterstitzt auch die in vielen BASIC-Interpretern verwendete
Kombination "RESTORE Zeilennummer". Das kann die Ubertragung fremder
BASIC-Programme vereinfachen. Die "Zeilennummer" muss dabei explizit
angegeben sein (z.B. "1000 DATA ..."). Sie sollten diese Variante in eigenen
Programmen nicht verwenden.

LABEL

Die Anweisung LABEL (Marke) vereinbart ein Ansprungziel fir GOTO, RESTORE
oder GOTO.

Syntax: LABEL <sprungZiel>
<sprungZiel>: Name, unter dem die Stelle erreicht werden kann.

Beispiel:
GOTO keinFehler ' verzweigt das Programm nach unten
0oa ' hier passiert etwas anderes
LABEL keinFehler
' hier geht es dann weiter

Hinweise:

+ Ein Sprung-Ziel (Label) muss noch nicht definiert sein, bevor es das erste Mal
verwendet wird. Eine Verwendung definiert das Label vorldufig. So auch im
Beispiel oben.

+ Wird ein Sprung-Ziel verwendet, ohne es spater mit LABEL endglltig zu
definieren, kommt es zu einem Compilerfehler.

+ Die Verwendung von GOSUB ist veraltet und wird nur noch aus Kompa-
tibilitatsgrinden unterstitzt. Sie sollten GOSUB in eigenen Programmen nicht
verwenden.

DATA-Zeilen - 255

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

2.11.5 System Services

Hier finden Sie eine Liste der wichtigsten Systemservices, die von R-BASIC aus
benutzt werden kdnnen, sowie Informationen, wo sie beschrieben werden. Die
meisten dieser Services werden von GEOS-Objekten bereitgestellt.

Tastatur

Die meisten Objekte unterstiitzen die Tastatur automatisch, ohne weiteres Zutun
des Programmierers. Zum direkten Zugriff auf die Tastatur stehen lhnen folgende
Méglichkeiten zur Verfigung:

* Flr einfache Félle stehen Ihnen die Funktionen InKey$, GetKey, GetKeyLP
und GetKeyState zur Verflgung, die im Kapitel 2.7.2 des Programmier-
handbuchs beschrieben werden.

+ Sie kénnen einen Tastaturhandler schreiben. Tastaturhandler werden auto-
matisch aufgerufen, wenn der Nutzer eine Taste betétigt. Sie werden im
Handbuch "Spezielle Themen", Kapitel 14 (Arbeit mit der Tastatur) beschrieben.

Maus

Die meisten Objekte unterstiitzen die Maus automatisch, ohne weiteres Zutun des
Programmierers. Wenn Sie selbst direkt auf Mausereignisse reagieren wollen
muissen Sie einen Maushandler schreiben. Maushandler werden automatisch
aufgerufen, wenn der Nutzer die Maus bewegt oder eine der Maustasten betétigt.
Sie werden im Handbuch "Spezielle Themen", Kapitel 17 (Arbeit mit der Maus)
beschrieben.

Drucken

Um aus einem R-BASIC Programm heraus drucken zu kénnen mussen Sie ein
Objekt der Klasse PrintControl einbinden. Dieses Objekt wird im Objekt-
Handbuch, Kapitel 4.14, beschrieben. Eventuell bendtigen Sie noch ein Objekt der
Klasse PageSizeControl. Dieses Objekt wird im Kapitel 4.15 des Objekt-
Handbuchs beschrieben.

Clipboard
Uber die Zwischenablage (Clipboard) kénnen R-BASIC Programme Daten (z.B.
Texte oder Grafiken) mit anderen Programmen austauschen. Die Arbeit mit der

Zwischenablage wird im Handbuch "Spezielle Themen", Kapitel 5 (Arbeit mit der
Zwischenablage) beschrieben.

System Services - 256

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Hilfedateien
R-BASIC stellt Ihnen das GEOS-weite Hilfesystem zur Verfligung. Im Kapitel 4

des Handbuchs "Spezielle Themen" (Einbinden von Hilfedateien) ist beschrieben,
wie man das Hilfesystem einsetzt.

Timer

Ein Timer stellt eine Routine bereit, die in regelmaBigen Abstdnden automatisch
aufgerufen wird. Timer sind im Kapitel 16 des Handbuchs "Spezielle Themen"
(Timer) ist beschrieben.

Dateiarbeit

R-BASIC unterstitzt die Arbeit mit DOS- und GEOS-Dateien. Sie kénnen sowohl
Binar- als auch Text-Dateien lesen und schreiben. Die Arbeit mit Dateien ist in
folgenden Kapiteln des Handbuchs "Spezielle Themen" beschrieben.

+ Kapitel 6: Das Dateisystem

+ Kapitel 7: Arbeit mit Pfaden und Ordnern

+ Kapitel 8: Verwaltung von Dateien

+ Kapitel 9: Arbeit mit Dateien

+ Kapitel 10: Arbeit mit Laufwerken und Datentragern

Um in den Genuss der Vorteile von GEOS-VM-Dateien zu kommen mussen Sie
die Library "VMFiles" einbinden. Diese Library muss separat von der R-BASIC
Webseite heruntergeladen werden.

Dokumente

Im Kapitel 15 des Handbuchs "Spezielle Themen" (Implementieren eines
Dokument-Interfaces) finden Sie eine ausfihrliche Anleitung, wie man unter R-
BASIC die Funktionen des "Datei" Menus implementiert. Einen groBen Teil der
Funktionen Ubernimmt dabei ein Objekt der Klasse DocumentGuardian. Diese
Objekte arbeiten mit der Library "DocumentTools" zusammen und sind im Objekt-
Handbuch, Kapitel 4.13, beschrieben.

Automatisches Geometriemanagement

Eine der wesentlichen Eigenschaften des GEOS Systems ist seine Fahigkeit, die
Objekte automatisch so anzuordnen, dass sie alle gut sichtbar sind ohne sich zu
uberlappen. Diese Fahigkeit ist auf elementarer Systemebene implementiert und
im Objekt-Handbuch, Kapitel 3.3 (Geometriemanagement) beschrieben.

System Services - 257

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

2.12 Verwendung von Libraries

2.12.1 Konzeptionelles

Libraries (deutsch: Bibliotheken) sind Sammlungen von Funktionen, SUBs,
Konstanten und Struktur-Typen, die von anderen Programmen und Libraries
verwendet werden kbénnen. Libraries koénnen keine statischen Ul-Objekte
enthalten, aber Ul-Objekte kénnen zur Laufzeit erzeugt werden (siehe unten).

Libraries bieten folgende Vorteile:

« Verwendung von gepriftem Code. Die Routinen einer Library sind meist sehr
grundlich getestet. Bugfixes in einer Library wirken sich sofort auf alle
Programme aus, die diese Library verwenden, ohne dass das Programm neu
compiliert werden muss.

+ Schneller Programmentwicklung. Routinen aus einer Library muss man nicht
selbst oder noch einmal schreiben.

- Mehrere BASIC-Programme koénnen die gleiche Library gleichzeitig verwenden.
Sie kénnen Library-Routinen also so verwenden, als gehorten sie ausschlieB3lich
zu Ihrem Programm.

Sie kénnen eine Library fur R-BASIC sowohl mit R-BASIC als auch mit dem
PC/GEOS SDK schreiben. Eine mit dem SDK geschriebene Library kann R-
BASIC um Funktionen erweitern, die im urspriinglichen Konzept nicht vorgesehen
sind. Um eine R-BASIC-Library mit dem SDK zu schreiben missen Sie das "SDK
Library Kit" von der R-BASIC Webseite herunterladen und der dort enthaltenen
Anleitung folgen.

Um eine Library mit R-BASIC zu schreiben, gehen Sie folgendermaBen vor:

1. Offnen Sie ein neues R-BASIC Programm

2. Wahlen Sie aus dem Menli "Extras" den Punkt "In BASIC Library
umwandeln". Es wird ein neues Codefenster "Exports" aktiv. Das Fenster "Ul-
Objekte" wird deaktiviert, weil R-BASIC Libraries keine statischen Ul-Objekte
enthalten kbnnen.

3. Speichern Sie die Library unter einem aussagekraftigen Namen. Dieser Name
wird spater zum Einbinden der Library verwendet. Der Ort, an dem Sie die
Library speichern, spielt keine Rolle.

4. Schreiben Sie den BASIC Code genau so als ob Sie ein Programm erstellen.
Vereinbarungen (Anweisungen: DIM, DECL, CONST, STRUCT), die von der
Library far andere Programme bereitgestellt werden sollen, missen in das
"Exports" Fenster. Library-interne Vereinbarungen, die nicht exportiert (fir
andere Programme bereitgestellt werden) werden sollen, sollten Sie im DIM &
DATA-Fenster unterbringen.

5. Compilieren Sie Ihre Library. R-BASIC speichert den compilierten Code im
Ordner Userdata\R-BASIC\Library\Bin. Dort kénnen ihn alle BASIC-
Programme finden.

Um den Librarycode zu testen missen Sie
+ die Library compilieren
+ ein Programm schreiben, das die Library einbindet (Anweisung: Include
"Name der Library") und dort die Library-Routinen aufrufen.

Libraries -258

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Include

Die Anweisung Include bindet eine Library ein. Jedes Programm kann bis zu 32
Libraries einbinden, wobei auch die Libraries z&hlen, die von eingebundenen
Libraries verwendet werden.

Include erwartet den GEOS Namen der Library, das heiBt, die GroB- und
Kleinschreibung als auch eventuelle Leerzeichen im Namen mussen beachtet
werden.

Syntax: INCLUDE "LibraryName"

Beispiel:
INCLUDE "Demo Library"

customError

Die numerische Systemvariable customError (Datentyp INTEGER) kann benutzt
werden um eine selbstdefinierte Fehlernummer zu speichern. Sie kann
geschrieben und gelesen werden. Das ist insbesondere flr Libraries, auch fur
SDK-Libraries, interessant. R-BASIC selber verwendet diesen Wert nicht.

Beispiel

customError = 12

IF customError = 4 THEN Print "Fehler 4 aufgetreten."

Beispiel:

Wir wollen eine Library schreiben, die 2 Routinen und zwei Konstanten exportiert.
Die Funktion Schummel soll eine Zahl von 1 bis 6 liefern, wobei die 6 aber
héufiger vorkommt. Die Sub Meldung soll in Abhangigkeit von einer Zahl, die der
Routine Ubergeben wird, zwei unterschiedliche Meldungen ausgeben. Dazu
brauchen wir die beiden Konstanten.

Den kompletten Code fur dieses Beispiel finden Sie im Ordner "Beispiel\Library",
Dateien "Library einfach" und "Library einfach Test Programm®.

Im Exports-Fenster vereinbaren wir:

CONST STATE WIN =1

CONST STATE LOSE = 2

DECL FUNCTION Schummel() AS Real
DECL SUB Meldung(state as Real)

Libraries -259

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Den Code fir die beiden Routinen schreiben wir im BASIC-Code Fenster:
FUNCTION Schummel() AS Real

DIM X
x = 10*Rnd() "0 9.9999999
x = Int(x)+1 1 ... 10
IF x > 6 THEN X = 6
Return x

END Function

SUB Meldung(state as Real)
IF state = STATE WIN THEN

MsgBox "Wow, du hast gewonnen. " \
+ "Das hatte ich dir gar nicht zugetraut."

ELSE
WarningBox "Du hast ja so mies gespielt! " \
+ "Kein Wunder, dass du verloren hast."
END IF
End SUB

Wir speichern die Library unter einem aussagekraftigen Namen, z.B. "Test Lib"
und compilieren sie dann. Der Name wird fur die Include-Anweisung bendtigt.

Unser Testprogramm kdnnte so aussehen:

Include "Test Lib"
ClassicCode
DIM x
X = schummel ()
Print x
IF x > 4 THEN
Meldung(state win)
ELSE
Meldung(state lose)
End IF

Die Anweisung ClassicCode bewirkt, dass R-BASIC automatisch einige Ul-
Objekte anlegt (ein Primary mit einem View und einem BitmapContent), so dass
die Print-Anweisung verwendbar ist und auBerdem der Code beim Programmstart
automatisch abgearbeitet wird (sogenannter klassischer BASIC Modus).

Wenn wir jetzt eine Anderung an der Library in der Library vornehmen missen wir
sie neu compilieren. Beim né&chsten Start unseres Testprogramms wird die
geanderte Library verwendet. Es ist dazu nicht nétig (aber trotzdem sinnvoll), die
Library zu speichern.

Libraries -260

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Beim Schreiben einer Library kénnen Sie alles tun, was sie auch beim Schreiben
eines normalen Programms tun kdnnen. Es ist aber ist folgendes zu beachten:

+ Eine Library kann nicht "gestartet" werden. Es gibt kein "Hauptprogramm", nur
eine Sammlung von Unterprogrammen.

* Bezeichner, die von der Library anderen Programmen zur Verfligung gestellt
werden sollen (man sagt: sie sollen "exportiert" werden), muissen im
EXPORTS-Fenster vereinbart werden.

+ Exportiert werden kénnen:

- SUB’s
- FUNCTION’s
- ACTION-Handler
- STRUCT’s
- Konstanten (CONST-Anweisung)
- Variablen aller Typen (DIM-Anweisung). Diese Variablen werden vom
Programm, dass die Library benutzt, als globale Variablen verwendet. Sie
kénnen zum Beispiel benutzt werden um Daten zwischen dem Programm
und der Library auszutauschen.
Hinweis: Globale Variablen einer Library (egal ob exportiert oder nicht)
werden im globalen Variablenspeicher des aufrufenden Programms
abgelegt. Wenn mehrere Programme eine Library gleichzeitig verwenden,
so wird fur jedes Programm ein eigener Satz dieser Variablen angelegt.
Library und Programm verwenden diese Variablen so, als ob sie allein im
System sind. Eine gegenseitige Beeinflussung verschiedener Programme ist
ausgeschlossen.

* Nicht exportiert werden kbnnen LABEL’s.

+ Libraries kénnen keine Ul-Objekte enthalten. Das UI-Objekte Fenster ist
gesperrt. Weiter unten ist beschrieben, wie Sie trotzdem Objekte in Libraries
verwenden kdnnen.

+ Eine Library kann eine eigene PictureList haben (siehe Kapitel 2.8.6.2: Ver-
wendung der "Picture-List"). Auf diese PictureList kann nur innerhalb der
Library zugegriffen werden. Wenn Sie Bilder aus einer Library-PictureList
verwenden wollen mussen Sie eine Library-Routine schreiben, die auf die
PictureList der Library zugreift.

* DATA Zeilen innerhalb einer Library sind zuldssig. Auch hier gilt: Auf diese
DATA-Zeilen kann nur von innerhalb der Library zugegriffen werden. DATA
Zeilen sollten deshalb im DIM & DATA Fenster stehen.

Wichtig!

Wenn ein Programm eine Routine (Sub, Function, Actionhandler) aus einer Library
verwendet so wird die Routine Uber eine Nummer identifiziert. Diese Nummer
entspricht der Position in der Liste der exportierten Routinen. Dabei z&hlen nur
Routinen. Vereinfacht gesagt zahlt R-BASIC die DECL-Anweisungen im
EXPORTS Fenster. Das bedeutet konkret:

* Wenn Sie die Reihenfolge der exportierten Routinen &ndern wird die Library
inkompatibel. Alle Programme, die diese Library benutzen missen dann neu
compiliert werden.

* Wenn Sie neue Routinen vor den bereits vorhandenen Routinen einfligen wird
die Library ebenfalls inkompatibel. Sie durfen neue Routinen im EXPORT-
Fenster nur nach allen bereits vorhandenen Routinen einfigen.

Libraries -261

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

« Fir den Export von Structs, Konstanten und Variablen gelten diese Ein-
schrankungen nicht. Hier kénnen Sie beliebig schieben oder hinzufligen.

+ Die genannten Einschrankungen gelten nur fir exportierte Routinen. Routinen,
die im DIM & DATA Fenster deklariert sind, unterliegen diesen Ein-
schrankungen nicht.

Naturlich wird eine Library auch inkompatibel, wenn Sie die Parameter einer
Routine &ndern, Konstanten einen anderen Wert geben oder dergleichen.

Beispiel. Das urspriingliche EXPORT-Fenster sieht so aus:

CONST ZAHL 1 = 12

CONST TEXT 1 = "Hallo Welt"

DECL SUB Routinel ()

DECL FUNCTION Routine2(x as REAL) as REAL

Inkompatible Anderung: Reihenfolge vertauscht

CONST ZAHL_ 1 = 12

CONST TEXT 1 = "Hallo Welt"
DECL FUNCTION Routine2(x as REAL) as REAL

DECL SUB Routinel ()

Inkompatible Anderung: Neue Routine eingeschoben

CONST ZAHL_ 1 = 12

CONST TEXT 1 = "Hallo Welt"

DECL SUB Routine3 (z as INTEGER)

DECL. SUB Routinel ()

DECL FUNCTION Routine2(x as REAL) as REAL

Kompatible Anderung: Neue Routine angefiigt

CONST ZAHL 1 = 12

CONST TEXT 1 = "Hallo Welt"

DECL. SUB Routinel ()

DECL FUNCTION Routine2(x as REAL) as REAL

Kompatible Anderungen: Konstanten hinzugefiigt und verschoben
CONST ZAHL 1 = 12

DECL. SUB Routinel ()
DECL FUNCTION Routine2(x as REAL) as REAL

DECL SUB Routine3 (z as INTEGER)
CONST TEXT 1 = "Hallo Welt" ’ verschieben ist OK

Libraries -262

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Die Library-Versionsnummer

Jedes Mal, wenn eine neue Version einer Library verdffentlicht wird sollten Sie die
Versionsnummer andern.

Die Werte fir Major und Minor kénnen im Menlpunkt "Programm" geéndert
werden. Der Major-Wert sollte geéndert (vergroBert) werden, wenn wesentliche
neue Funktionen dazugekommen sind. Ein neuer Wert fir Minor sollte Bugfixes
oder kleinere Anderungen anzeigen. Insbesondere wenn Sie neue Routinen
hinzugefliigt haben sollen Sie die Versionsnummer (Major oder Minor) vergréBern.
Programme werden mit neueren Versionen einer Library problemlos
zusammenarbeiten, wenn Sie die oben angegebenen Hinweise zur Kompatibilitat
beachten. Eine ausfihrliche Beschreibung der Versionsnummern finden Sie im
Kapitel 2.11.1.

ConvertObjForSDK

Dies ist eine Hilfsfunktion fir Programmierer von SDK Libraries. "Normale"
Objektvariablen speichern R-BASIC Objekte in einer Art und Weise, mit der man
im SDK nichts anfangen kann. Die Funktion ConvertObjForSDK liefert eine
"Objektvariable", die so angepasst wurde, dass man aus einer SDK-Routine
heraus mit dem BASIC-Objekt kommunizieren kann.

Syntax: <objVar> = ConvertObjForSDK (<objExpression>)

Wichtige Hinweise:

« Verwenden Sie ConvertObjForSDK nur, wenn Sie eine Routine aus einer
SDK-Library aufrufen wollen und der Programmierer der SDK-Library hat
explizit festgelegt, dass ConvertObjForSDK zu verwenden ist!

* Nutzen Sie den von ConvertObjForSDK zurlickgegebene Wert niemals fir
eine "normale" Objekt-Routine von R-BASIC, oder GEOS wird crashen!

Technische Details:

R-BASIC Objektvariablen enthalten eine Referenz auf ein Objekt, die nicht
identisch mit dem im SDK verwendeten Objekt-Pointer (optr) des Objekts ist.
ConvertObjForSDK ersetzt diese BASIC interne Referenz durch den realen optr
des Objekts. Weitere Details zu Objektvariablen und wie man ConvertObjForSDK
einsetzt finden Sie in der Beschreibung, wie man SDK Libraries erstellt. Diese
kann auf der R-BASIC Homepage heruntergeladen werden.

Libraries -263

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

2.12.2 Ul-Objekte in Libraries

Dieses Kapitel richtet sich an fortgeschrittene Programmierer.

Wie bereits oben erwahnt kénnen Sie in einer Library keinen Objekt-Tree im Ul
Codefenster anlegen. Es ist jedoch zuldssig Objekte zur Laufzeit des Programms
anzulegen und spater wieder zu vernichten. Die dazu bendtigten Befehle
CreateObject und DestroyObject sind im Kapitel 2.1.5 (Anlegen und Vernichten
von Objekten zur Laufzeit) des Objekthandbuchs beschrieben. AuBerdem sollten
Sie die Kapitel 2.1.3 (Verwaltung von Objektblécken, Befehle CreateObjBlock und
DestroyObjBlock) sowie 3.3.8 (Hintertirchen fir Programmierer, Befehle
ObjAddHint und ObjRemoveHint) aus dem Objekthandbuch lesen.

Um eine Library zu schreiben, die Objekte, z.B. eine Dialogbox, bereitstellt, sollten
Sie folgendermaBen vorgehen:

+ Schreiben Sie in der Library eine Initialisierungs-Routine (Function mit dem
Ruckgabetyp Object), die den Objekt-Tree anlegt.
Die Initialisierungs-Routine sollte das Top-Objekt des gerade erzeugten
Objekt-Trees zuriickgeben.

* Schreiben Sie in der Library eine Cleanup-Routine, die von der Library
erzeugten Tree vernichtet und den Objektblock wieder freigibt.

+ Sollte es notwendig sein, auf andere Objekte als das Top-Objekt des Objekt-
Trees zuzugreifen - was Ublicherweise der Fall ist - so sollten Sie Routinen in
der Library schreiben, die

- entweder das gewlinschte Objekt zurtickgeben, so dass das Programm
selbst auf das Objekt zugriefen kann

- oder die auf das UI-Objekt zugreifen und die gewilnschten Daten
zurickgeben bzw. setzen.

+ Falls Sie mehrere Objekt-Trees in der Library haben wollen (z.B. mehrere
Dialogboxen) sollten Sie auch mehrere Initialisierungs- und Cleanup-Routinen
schreiben.

Im Programm, dass die Library nutzt, missen Sie folgendes tun:

+ Rufen Sie die Initialisierungs-Routine der Library im OnStartup-Handler ihres
Programms auf. Nur falls Sie die Library-Ul sofort benétigen sollten Sie den
Onlnit-Handler verwenden. Binden Sie das von der Initialisierungs-Routine
zuriickgegebene Objekt in den Objekt-Tree lhres Programms ein, indem Sie
die Instancevariable "parent" dieses Objekts belegen.

Sie sollten die Initialisierungs-Routine der Library nicht rufen, wenn GEOS
nach einem Systemneustart mit ge6ffnetem Programm wieder hochféhrt.
Beachten Sie dazu das Beispiel unten.

+ Rufen Sie die CleanUp-Routine im OnExit-Handler ihres Programms.
Sie sollten die Cleanup-Routine der Library nicht rufen, wenn GEOS mit
gedffnetem Programm herunterféhrt. Beachten Sie dazu das Beispiel unten.

Libraries -264

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Beispiel

Die folgenden Codefragmente sind an die Beispiele "UI Lib" und "Dialog Library"
sowie den dazugehdrigen Testprogrammen angelehnt. Die vollstdndigen Dateien
finden Sie im Ordner "Beispiel\Library". Die beiden Beispiele beleuchten unter-
schiedliche Aspekte des Themas.

Erzeugen eines Ul-Trees

- Verwenden Sie CreateObjBlock um einen neuen Objektblock anzulegen und
CreateObject um die gewuinschten Objekte darin zu erzeugen.

- Setzen Sie die Instance-Variablen der Objekte auf die Werte, die Sie sonst im
Ul-Code setzen wuirden. Verwenden Sie den Befehl ObjAddHint, um
Instancevariablen zu setzen, die sonst nur im Ul-Code verfugbar sind.
Vergessen Sie nicht, die Objekte in einem Tree zu verlinken (Instancevariable
parent setzen, Children ist read-only).

Die Initialisierungs-Routine. Sie soll folgenden Ul-Tree nachbilden:
Dialog LibraryDialog

Caption$ = "Notizen eingeben"
Children = DialogClearButton
End Object

Button DialogClearButton

Caption$ = "Text loschen"
ActionHandler = DoClearText
End Object

Dabei muss der Actionhandler "DoClearText" irgendwo in der Library
implementiert sein.

FUNCTION BuildLibUI () AS object
dim objBlock as handle
dim dlg, obj as object

! Anlegen des Objektblocks, der die Objekte aufnehmen soll
objBlock = CreateObjBlock()

! In diesem Objektblock erzeugen wir die UI-Objekte
! und setzen die entsprechenden Instancevariablen
dlg = CreateObject (objBlock, Dialog)
dlg.caption$ = "Notizen eingeben"

ob = CreateObject (objBlock, Button)

ob.caption$ = "Text l6schen"
ob.actionHandler = DoClearText
ob.parent = dlg, 0 ' Button in Tree einbinden

Libraries -265

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Zugriff auf Objekte in der Library

Nur die Library selbst kennt die genaue Struktur des Ul-Trees. Deshalb sollten Sie
das "Finden" von Objekten als Routine in der Library programmieren. Falls Sie
spater die Struktur des Ul-Trees &ndern, missen Sie nur Code in der Library
andern. Die Programme, welche die Library nutzen, brauchen dann nicht neu
compiliert werden.

Die folgende Routine liefert den Button, der oben, in der Routine BuildLibUI,
angelegt wurde. |hr wird das Top-Objekt des Library-Trees Gbergeben. Dieses ist
das einzige, dass das aufrufende Programm wirklich kennt.

FUNCTION LibFindButton (topObj as OBJECT) AS OBJECT
'’ Wir wissen: Der Button ist das erste Child des Dialog-Objekts
return topObj.Children(0)

END FUNCTION

Im Beispielcode der Library "UILib" wird erklart, wie man von einem
ActionHandler aus ein Objekt im Ul-Tree der Library finden kann.

Vernichten des Ul-Trees

Um das System beim Beenden des Programms sauber zu halten sollten Sie daftr
sorgen, dass alle Objekte und Objektbldécke, die Sie angelegt haben, auch wieder
vernichtet werden. Die folgende Routine erledigt das fir einen kompletten Tree.
Ihr wird das Top-Objekt des zu vernichtenden Trees Ubergeben. AnschlieBend
mussen Sie noch den leeren Objektblock freigeben. Den Code dafir finden Sie in
den Beispielen.

Die Routine DestroyTree arbeitet rekursiv. Das heiBt, sie ruft sich selbst auf.
Rekursive Programmierung ist schwer zu verstehen und schwer zu erklaren. Aber
sie ist sehr leistungsfahig und der Ubliche Weg, Baumstrukturen durchzugehen.
Sie kénnen diese Routine einfach benutzen. Eine kurze Erklarung finden Sie im
Code der Beispiele.

Libraries -266

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

SUB DestroyTree (obj as object)
dim ch as object

WHILE obj.numChildren " noch children da?
ch = obj.children(0) ' erstes Child holen
DestroyTree(ch) ' ... und samt seiner

' Unter-Children vernichten
' das ehemals zweite Child ist
' jetzt das erste Child

WEND

' Das Objekt hat jetzt keine Children mehr

obj.parent = NullObj(),0 ' Objekt aus dem Tree nehmen
DestroyObject (obj) ' Objekt vernichten
END SUB

Beachten Sie, dass diese Beispielroutine nur den regulédren Tree vernichtet. Sie
pruft nicht ab, ob das zu vernichtende Objekt ein View ist, das ein Content hat. Bei
Bedarf kénnen Sie vor dem eigentlichen Vernichten des Objekts die Instance-
variable Class$ abfragen. Sie enthalt die Objektklasse im Klartext (z.B. "VIEW")
und Sie kénnen dann das Content oder den damit verbundenen VisTree
vernichten. Die Routine DestroyTree arbeitet auch fir den VisTree.

Verwendung im Programm

Im Programm mussen Sie den Library Ul-Tree anlegen (am Programmstart) und
wieder vernichten (am Programmende). Dazu verwenden Sie die OnStartup und
OnExit Handler des Application-Objekts. Die einfachste Variante sieht so aus:

SYSTEMACTION AppStartup
DIM ob as OBJECT

ob = BuildLibUI()

ob.parent = DemoPrimary, 0 ' Einbinden in den GenTree
END ACTION

SYSTEMACTION AppExit

DIM libTopObj as Object
1libTopObj = DemoPrimary.Children(0)
DestroyLibUI (1libTopObj)

END ACTION

Jedes Mal, wenn das Programm startet, wird die Library Ul erzeugt und bei jedem
Programmende wird sie vernichtet. Der wesentliche Nachteil bei diesem einfachen
Vorgehen ist, dass das Vernichten und Erzeugen auch passiert, wenn GEOS bei
offenem Programm herunterfahrt. Das kostet nicht nur Zeit, sondern es gehen
auch alle Eingaben (z.B. Texte oder Auswahlfelder), die in der Library Ul gemacht
wurden, verloren.

Libraries -267

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Deswegen ist es eine bessere Idee, abzufragen ob GEOS herunterfahrt oder nach
einem System-Shutdown neu startet. Der Parameter "flags" enthélt spezielle Bits,
die genau das anzeigen. Das Flag AF_RESTORE ist gesetzt, wenn das
Programm nach einem System Shutdown wieder o6ffnet. Das Flag
AF_SHUTDOWN ist gesetzt, wenn das System herunterfahrt, unser Programm
aber noch offen ist. Um zu testen, ob das Flag gesetzt ist, verwenden wir die
logische Operation AND. Ergibt diese Operation den Wert Null, so ist das Bit nicht
gesetzt und wir mussen handeln.

SYSTEMACTION AppStartup
dim ob as object
IF (flags AND AF RESTORE) = 0 THEN
' Das Programm startet neu.
' Wir miissen die Library-UI erzeugen.
ob = BuildLibUI()
ob.parent = DemoPrimary, O ' Einbinden in den GenTree
END IF
END ACTION

SYSTEMACTION AppExit
DIM libTopObj as Object
IF (flags and AF_SHUTDOWN) = 0 THEN

' Das Programm wird geschlossen.
" Wir miissen die Library-UI vernichten
1libTopObj = DemoPrimary.Children(0)
DestroyLibUI (1libTopObj) ' Cleanup-Routine
END IF

END ACTION

Es ist mdglich, die Ul-Objekte der Library in globalen Variablen zwischenzu-
speichern. Das erleichtert den Zugriff auf sie. Sie missen aber beachten, dass
globale Variablen einen Systemneustart nicht Uberleben. Im Beispielcode des
Programms "Dialog Library Test Programm" ist beschrieben, wie Sie in diesem

Fall vorgehen kénnen.

Libraries -268

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

(Leerseite)

- 269

