

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 ProgrammierhandbuchProgrammierhandbuch

Volume 5
Weitere Funktionen, Libraries

Version 1.0

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

2.11 Weitere Funktionen .. 240
2.11.1 Versionsnummern ... 240
2.11.2 Datum und Zeit ... 244
2.11.3 Speicherzugriff .. 251
2.11.4 DATA-Zeilen ... 253
2.11.5 Systemservices ... 256

2.12 Verwendung von Libraries .. 258
2.12.1 Konzeptionelles .. 258
2.12.2 UI-Objekte in Libraries .. 264

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Versionsnummern - 240

2.11 Weitere Funktionen

2.11.1 Versionsnummern

Da sowohl die R-BASIC IDE als auch ein R-BASIC Programm aus verschiedenen
Komponenten bestehen gibt es verschiedene Arten von Versionsnummern.

• Das BASIC-Programm selbst hat eine Versionsnummer. Sie kann mir dem
Befehl Version$ abgefragt werden.

• Jede GEOS-Datei hat eine Protocol- und eine Release-Nummer. Diese können
abgefragt und auch geändert werden.

• Die Versionsnummer der R-BASIC IDE, mit der ein Programm erstellt wurde
kann mit dem BASIC Befehl BasicVersion$ abgefragt werden.

Version$

Jedes Programm und jede Library besitzt eine Versionsnummer, mit deren Hilfe
man verschiedene Programmversionen identifizieren kann. Man kann sie über die
globale Variable Version$ ermitteln. Rufen Sie Version$ aus einer Library heraus
auf so erhalten Sie die Versionsnummer der Library.

Syntax <stringVar> = Version$

Der Aufbau von Version$ ist folgender:

Major.Minor.Change

Die beiden ersten Werte (Major und Minor) werden vom Programmierer festgelegt
und sind insbesondere bei Libraries von großer Bedeutung (siehe unten). Der
dritte Wert (Change) wird bei jedem Compilerlauf automatisch hochgezählt.
Änderungen des Major- oder des Minor-Wertes setzen den Change-Wert wieder
auf Null.
Verwechseln Sie Version$ nicht mit der Variablen BasicVersion$, welche die
Versionsnummer der BASIC-IDE enthält, die das aktuelle Programm compiliert
hat.

Die Werte für Major und Minor können im Menüpunkt "Programm" geändert
werden. Der Major-Wert sollte geändert (vergrößert) werden, wenn wesentliche
neue Funktionen dazugekommen sind, ein neuer Wert für Minor sollte Bugfixes
oder kleinere Änderungen anzeigen.

• Version eines Programms
Sie sind in der Wahl der Versionsnummer völlig frei.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Versionsnummern - 241

• Version einer Library
Wenn Sie eine BASIC-Library schreiben, die nur für genau ein spezielles
BASIC-Programm gedacht ist, spielt die Versionsnummer keine große Rolle. Sie
lassen die Versionsnummer bei 0.0, dann gibt es keine Probleme.

Wenn Sie eine BASIC-Library schreiben, die von verschiedenen Programmen
verwendet werden soll, müssen Sie der Versionsnummer eine gewisse
Aufmerksamkeit schenken. Beim Compilieren eines Programms, das ihre
Library benutzt, wird die aktuelle Versionsnummer der Library mit abgespeichert,
damit das Programm später entscheiden kann, ob es mit der aktuell
vorhandenen Library-Version zusammenarbeiten kann oder nicht. Dazu werden
der Major und der Minor-Wert herangezogen. Der Change-Wert wird ignoriert.
Ein Programm, das mit einer Library-Version 2.3 compiliert wurde, arbeitet mit
späteren Versionen der Library (z.B. Version 2.5 oder 3.1) zusammen. Es wird
aber weder mit der Version 2.1 noch mit der Version 1.9 der Library
zusammenarbeiten.

Tipps:
• Während der Entwicklungsphase einer Library oder eines Programms sollten

Sie die Versionsnummer nicht ändern, egal was Sie tun.
• Häufig ist es so, dass während der Entwicklung der Major-Wert auf Null bleibt.

Bei der ersten Veröffentlichung der Library oder des Programms setzt man die
Versionsnummer auf 1.0.

• Jedes Mal wenn eine neue Version einer Library veröffentlicht wird sollten Sie
die Versionsnummer ändern.

Release- und Protokollnummer

Auf GEOS Systemebene werden die Protokoll- und Releasenummer verwendet,
um zu prüfen, ob Dateien, Libraries und Programme zueinander kompatibel sind.

Eine komplette Beschreibung der Befehle zur Arbeit mit Protocol- und
Releasenummern finden Sie im Handbuch "Spezielle Themen", Kapitel 9.2
(Dateiattribute). Die folgende Tabelle enthält einen Überblick.

Befehl / Struktur Aufgabe / Bedeutung
FileGetRelease GEOS Releasenummer auslesen
FileSetRelease GEOS Releasenummer ändern
FileGetProtocol GEOS Protokollnummer auslesen
FileSetProtocol GEOS Protokollnummer ändern
ReleaseNumber Struktur zum Speichern einer Protocol- oder Release-

nummer

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Versionsnummern - 242

BasicVersion$

Sie können die Versionsnummer der BASIC-IDE, die das aktuelle Programm
compiliert hat, mit der Systemvariablen BasicVersion$ abfragen. Nicht zu
verwechseln mit der Variablen Version$, die die Versionsnummer des aktuell
ausgeführten Programms enthält.

Syntax <stringVar> = BasicVersion$

BasicVersion$ liefert einen String der Form:

Major.Minor.Change-Engeneering

z.B. 1.0.1-17

Dieser Wert ist der gleiche, wie er im Menü "Datei-Information" angezeigt wird, es
handelt sich um die Release-Nummer der R-BASIC IDE.

Interne Details

Der folgende Abschnitt enthält Hintergrundinformationen, die zur täglichen Arbeit
mit R-BASIC nicht unbedingt benötigt werden.

Die Releasenummer enthält die "Version" eines Programms oder einer Library.
Sie wird angezeigt, wenn Sie im GeoManager die Tastenkombination Strg-G
eingeben bzw. den Menüpunkt "Datei" -> "Info & Attribute" anklicken.
Die Protokollnummer beschreibt die "Fähigkeiten" eines Programms oder einer
Library bzw. die "innere Struktur" einer Datei. Sie wird zur Versionsprüfung auf
Systemebene verwendet. Wenn die Protokollnummer nicht passt ist die Datei
(Dokument, Library, Programm) nicht kompatibel. Zum Beispiel verwendet die R-
BASIC IDE die Protokollnummer um zu entscheiden ob R-BASIC die Datei öffnen
und bearbeiten kann.

R-BASIC verwendet die Releasenummer zur Versionsprüfung. Aus Sicht des
GEOS-Systems sind sowohl die R-BASIC Codedatei als auch die BIN-Datei
Dokumente. Das gilt auch für R-BASIC Libraries. Das GEOS-System ignoriert die
Releasenummer von Dokumenten, deshalb kann R-BASIC sie benutzen.

Der R-BASIC Compiler setzt beim Compilieren die ersten drei Felder der
Releasenummer der BIN-Datei entsprechend der Versionsnummer des Pro-
gramms bzw. der Library. Das hat folgende Konsequenzen:

• Der Wert kann mit dem BASIC Befehl Version$ ausgelesen werden.
• Uni-Installer ab Version 1.2 verwendet die Releasenummer von R-BASIC

Dateien um zu entscheiden ob eine Datei neuer ist als eine andere Datei mit
gleichem Namen. Dadurch kann verhindert werden, dass ältere Versionen
eines R-BASIC-Programms oder einer R-BASIC Library eine neuere Version
überschreiben.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Versionsnummern - 243

• Bei R-BASIC Libraries wird die Releasenummer (und damit die Versions-
nummer der Library) verwendet um zu entscheiden, ob ein BASIC Programm
mit dieser Library zusammenarbeiten kann.

Beim Anlegen eines eigenständigen Programms (R-App) wird die Releasenummer
des Launchers auf die Versionsnummer des Programms gesetzt. Dadurch kann
der Nutzer die Versionsnummer des Programms im GeoManager mit der
Tastenkombination Strg-G erfahren.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Datum und Zeit - 244

2.11.2 Arbeit mit Datum und Zeit

R-BASIC unterstützt die Grundfunktionen zum Zugriff auf das Systemdatum sowie
elementare Funktionen zur Anzeige von Datum und Uhrzeit. Außerdem wird die
Arbeit mit dem Julianischen Datum unterstützt.

Alle Zeitfunktionen, einschließlich der Funktionen zum Zugriff auf das Dateidatum
benutzen eine Struktur, die DateAndTime heißt.

STRUCT DateAndTime
year, month, day AS INTEGER
hour, minute, second AS INTEGER
END STRUCT

year, month, day enthalten das Jahr (z.B. 2014), den Monat (1...12) und den Tag
(1 ... 31).
hour, minute, second enthalten die Stunde (0..23), die Minute (0...59) und die
Sekunde (0...59).

Zugriff auf Datum und Zeit

SysGetTime

SysGetTime liefert das aktuelle Systemdatum und die Systemzeit.

Syntax: <time> = SysGetTime()
<time>: Variable vom Typ DateAndTime.

Beispiel:
DIM time AS DateAndTime
time = SysGetTime()
Print "Das Weltall. Unendliche Weiten. \
Wir schreiben das Jahr ";time.year

SysGetCount

SysGetCount liefert die Anzahl der "Tics" (1/60 s) seit dem letzten Systemstart.

Syntax: <numVar> = SysGetCount()
<numVar>: numerische Variable

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Datum und Zeit - 245

Formatierung von Datum und Zeit

Da man über die DateAndTime-Struktur direkten Zugriff auf das Jahr, den Monat,
die Stunde usw. als Zahl hat, ist es nicht kompliziert einen formatierten String zu
erzeugen, der Datum oder Zeit enthält. Zum Beispiel erzeugt der Code

s$ = "Jahr: " + Str$(time.year)

einen String, der das Jahr als Text enthält.
Aber manchmal braucht man einen einfachen Weg Datums- oder Zeitangaben zu
formatieren. Die folgenden Routinen erledigen das.

FormatDate$

FormatDate$ gibt das Datum in der Form "24.03.2010" oder in der Form
"2010/03/24" aus. Die lokalen Einstellungen des Computers werden dabei nicht
berücksichtigt.

Syntax: <stringVar> = FormatDate$(time [, flag])
time: Variable (oder Funktion) vom Typ DateAndTime.
flag (optional): TRUE: Das Format "2010/03/24" benutzen

FALSE (default): Das Format "24.03.2010" benutzen

Beispiel:
DIM time AS DateAndTime
time = SysGetTime()
Print "Aktuelles Datum: "; FormatDate$(time)

FormatTime$

FormatTime$ gibt die Uhrzeit im 24-Stunden-Format aus. Die lokalen Ein-
stellungen des Computers werden dabei nicht berücksichtigt.

Syntax: <stringVar> = FormatTime$(time [, flag])
time: Variable (oder Funktion) vom Typ DateAndTime.
flag (optional): TRUE (default): Sekunden anzeigen (17:34:54)

FALSE: Sekunden nicht anzeigen (17:34)

Beispiel:
DIM time AS DateAndTime
time = SysGetTime()
Print "Aktuelle Uhrzeit: "; FormatTime$(time)

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Datum und Zeit - 246

Weekday$, DayOfWeek

Weekday$ gibt den Wochentag in Textform aus, wobei die lokalen Einstellungen
(Sprache) des Computers berücksichtigt werden. DayOfWeek liefert eine Zahl
(0..6) die dem Wochentag entspricht. Der Sonntag hat den Wert Null.

Syntax: <stringVar> = Weekday$(time)
Syntax: <numVar> = DayOfWeek(time)

time: Variable (oder Funktion) vom Typ DateAndTime.

Beispiel:
DIM time AS DateAndTime
time = SysGetTime()
Print "Heute ist "; Weekday$(time)
Print "Das ist der"; DayOfWeek(time) + 1 ; ". Tag der Woche."

LocalFormatDateAndTime$

LocalFormatDateAndTime$ greift auf die Systemeinstellung für die Darstellung
von Datum und Zeit zu und formatiert Datums- und Zeitangaben entsprechend
diesen Einstellungen. Dadurch erscheinen die Datums- und Zeitangaben in dem
vom Nutzer eingestellten Format. Das kann allerdings auf verschiedenen
Systemen völlig unterschiedlich sein.

Syntax: <stringVar> = LocalFormatDateAndTime$(time, format)
time: Variable (oder Funktion) vom Typ DateAndTime.
format: Eine DateAndTimeFormat (DTF-) Konstanten aus der

aus der Tabelle unten.

Die folgende Tabelle zeigt das Ausgabeformat von LocalFormatDateAndTime$ für
die Standardeinstellungen auf einem deutschen PC/GEOS System. Auf anderen
Systemen, insbesondere auf fremdsprachigen Systemen, kann das
Ausgabeformat völlig anders aussehen.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Datum und Zeit - 247

Konstante Wert Ausgabe
DTF_LONG 0 Sonntag, 28. Februar 2010
DTF_LONG_CONDENSED 1 So, 28. Feb. 2010
DTF_LONG_NO_WEEKDAY 2 28. Februar 2010
DTF_LONG_NO_WEEKDAY_CONDENSED 3 28. Feb. 2010
DTF_SHORT 4 28.02.10
DTF_ZERO_PADDED_SHORT 5 28.02.10
DTF_MD_LONG 6 Sonntag, 28. Februar
DTF_MD_LONG_NO_WEEKDAY 7 28. Februar
DTF_MD_SHORT 8 28.02.
DTF_MY_LONG 9 Februar 2010
DTF_MY_SHORT 10 02.10
DTF_YEAR 11 2010
DTF_MONTH 12 Februar
DTF_DAY 13 28.
DTF_WEEKDAY 14 Sonntag
DTF_HMS 15 23:48:52
DTF_HM 16 23:48
DTF_H 17 23
DTF_MS 18 48:52
DTF_HMS_24HOUR 19 23:48:52
DTF_HM_24HOUR 20 23:48

Julianisches Datum

Das Julianische Datum ist eine Zahl, die der Anzahl der Tage seit dem 1.1.4713
vor Christus, 12 Uhr mittags entspricht. Man beginnt 12 Uhr mittags damit bei
astronomischen Beobachtungen während der Nacht kein Datumswechsel auftritt.
Die Nachkommastellen entsprechen der Uhrzeit (bezogen auf 12 Uhr mittags).

Das Julianische Datum ist fortlaufend. Unregelmäßigkeiten wie unterschiedliche
Monatslängen, Monats und Jahreswechsel oder auch Schaltjahre werden
automatisch berücksichtigt. Damit lassen sich Fragen wie "Wie viele Tage liegen
zwischen dem 28.04.2016 und dem 17.07.1962?" einfach durch die Differenz der
beiden zugehörigen Julianischen Datumszahlen beantworten. Der Vergleich von
zwei Zeitpunkten (einschließlich der Frage, welcher früher liegt) reduziert sich auf
den Vergleich von zwei Real-Zahlen.
Für das Julianische Datum wird allgemein die Abkürzung JD verwendet.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Datum und Zeit - 248

JDFromDAT

Die Funktion JDFromDAT ermittelt den julianischen Datumswert (JD) aus einer
DateAndTime Struktur (DAT).

Syntax: <numVar> = JDFromDAT (<dat>)
 <numVar>: numerische Variable, empfohlener Datentyp: Real
 <dat>: Variable oder Ausdruck vom Datentyp DateAndTime

DATFromJD

Die Funktion DATFromJD rechnet einen julianischen Datumswert (JD) in eine
DateAndTime Struktur um.

Syntax: <var> = DATFromJD (<jd>)
 <jd>: numerischer Ausdruck. Julianisches Datum
 <var>: Variable vom Datentyp DateAndTime

Das folgende Beispiel gibt aus, welches Datum wir in 100 Tagen, gerechnet ab
heute, haben.
DIM jetzt, dann AS DateAndTime
DIM jd as Real
jetzt = SysGetTime()
jd = JDFromDAT(jetzt)
dann = DATFromJD (jd + 100)

Print "In 100 Tagen ist der ";FormatDate$(dann)

Wir wollen wissen in wie vielen Tagen Weihnachten ist.
DIM zeit as DateAndTime
DIM ist, soll, count as Real
zeit = SysGetTime()
ist = JDFromDAT(zeit) ’ aktuelles Julianisches Datum

zeit.day = 24
zeit.month = 12
soll = JDFromDAT(zeit) ’ Julianisches Datum vom Weihnachten

count = soll - ist
Print "In";count;"Tagen ist Weihnachten."

JDDeltaFromMinutes

Die Funktion JDDeltaFromMinutes berechnet, wie groß die Differenz zweier
Julianischer Daten ist, die sie sich um die gegebene Anzahl von Minuten

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Datum und Zeit - 249

unterscheiden. Damit kann man Daten und Uhrzeiten ermitteln, die um eine
gegebene Zeitdifferenz vor oder nach einem bekannten Zeitpunkt liegen.

Syntax: <numVar> = JDDeltaFromMinutes (<n>)
 <numVar>: numerische Variable, empfohlender Datentyp: Real
 <n>: Zeitdifferenz in Minuten. Negative Zahlen und Dezimalzahlen

sind zulässig.
Beispiel: 1 min, 30 sek.: time = 1.5

Beispiele:
Wir wollen wissen wie spät es in 73,5 Minuten ist
DIM zeit as DateAndTime
DIM ist, soll, count as Real
zeit = SysGetTime()
ist = JDFromDAT(zeit) ’ aktuelles Julianisches Datum
soll = ist + JDDeltaFromMinutes(73.5)
zeit = DATFromJD(soll) ’ DateAndTime-Struktur bilden
Print "In 73,5 min ist es ";FormatTime$(zeit);" Uhr"

Die folgende Function liefert TRUE, wenn sich zwei Daten um mehr als 1 Stunde
unterscheiden. Als Vergleichswert wählen wir 60.001 Minuten (ca. 1/10 Sekunde
mehr als 1 h) weil es durch die interne Zahlendarstellung zu minimalen Ab-
weichungen kommen kann.
FUNCTION CompareTime(dat1, dat2 AS DateAndTime) as Real
DIM jd1, jd2, diff as Real
jd1 = JDFromDAT(dat1)
jd2 = JDFromDAT(dat2)
if (jd1 > jd2) THEN
diff = jd1 - jd2

ELSE
diff = jd2 - jd1 ’ diff immer positiv

END IF
IF diff > JDDeltaFromMinutes(60.01) THEN RETURN TRUE
Return FALSE

End Function

Unsere Schicht endet um 16 Uhr 15 Minuten. Wir wollen wissen wie viele Minuten
wir noch arbeiten müssen.
DIM zeit as DateAndTime
DIM ist, soll, count as Real
zeit = SysGetTime()
ist = JDFromDAT(zeit) ’ aktuelles Julianisches Datum

zeit.hour = 20
zeit.minute = 15
zeit.second = 0
soll = JDFromDAT(zeit) ’ Julianisches Datum vom Feierabend

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Datum und Zeit - 250

IF ist > soll THEN
count = (ist-soll)/JDDeltaFromMinutes(1)
Print "Du hast schon seit "; count; " Minuten Feierabend!"

ELSE
count = (soll-ist)/JDDeltaFromMinutes(1)
Print "Du musst noch "; count; " Minuten arbeiten."

END IF

Interne Details. Diese Informationen können hilfreich sein, werden aber zur Arbeit
mit dem Julianischen Datum nicht unbedingt benötigt.

• JDFromDAT und DATFromJD verwenden für Daten nach der Kalenderreform
(d.h. ab dem 15.10.1582) den heute gültigen Gregorianischen Kalender. Dieser
verwendet die erweiterte Schaltjahresregel, für Daten bis zum 04.10.1582 wird
der julianische Kalender verwendet (einfache Schaltjahresregel).

• Historisch folgte in den damals führenden Ländern auf den 04.10.1582 sofort
der 15.10.1582. Die dazwischen liegenden Daten existieren nicht. JDFromDAT
und DATFromJD berücksichtigen das. Sie berücksichtigen aber nicht, dass
viele Länder die Kalenderreform erst viel später durchführten.

• Historisch gab es vor Einführung des Julianischen Kalenders im Jahr 46 vor
Christus keine Schaltjahre. Bei der Berechnung des Julianischen Datums wird
das nicht berücksichtigt.

• Historisch existiert das Jahr Null nicht. Dem Jahr 1 vor Christus folgte sofort
das Jahr 1 der christlichen Zeitrechnung. Bei kalendarischen Berechnungen
wird das Jahr 1 vor Christus deshalb als Null gezählt, -1 entspricht dem Jahr 2
vor Christus usw.

• JDFromDAT ist tolerant gegenüber fehlerhaften Daten. Für den nicht existier-
enden 29.Februar 1999 wird beispielsweise das Julianische Datum des 1.März
1999 berechnet. Ein beliebiges Datum mit dem "nullten" des Monats (z.B.
0.3.1999) liefert das Julianische Datum des letzten Tags des Vormonats (im
Beispiel den 28. Februar 1999).

• Die Nachkommastellen im Julianischen Datum entsprechen der Uhrzeit, wobei
die Formel

std/24 + min/1440 + sek/86400

verwendet wird. Std, min und sek entsprechen dabei der Zeit, die seit 12 Uhr
mittags vergangen ist. Für 14 Uhr gilt also: std = 2.
Beispiele:

17.03.2016, 12 Uhr mittags JD = 2457465
17.03.2016, 22 Uhr abends JD = 2457465.41666667
18.03.2016, Null Uhr (morgens) JD = 2457465.5
18.03.2016, 8 Uhr morgens JD = 2457465.83333333

Im Allgemeinen ist es nicht notwendig die Zahlenwerte zu kennen, wenn man
mit dem Julianischen Datum arbeiten will.

• JDDeltaFromMinutes(x) entspricht entsprechend der obigen Formel dem Term
x/1440. JDDeltaFromMinutes(24*60) liefert den Wert 1 (= 1 Tag).

• Die Funktionen DayOfWeek() und Weekday$() verwenden das Julianische
Datum. Damit berücksichtigen sie automatisch den Gregorianischen und den
Julianischen Kalender.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Speicherzugriff - 251

2.11.3 Speicherzugriff

Gelegentlich benötigt man einfach eine bestimmte Menge Speicher, die man nach
den eigenen Vorstellungen organisieren kann. R-BASIC ermöglicht zwar keinen
direkten Zugriff auf den Hauptspeicher des Computers (das wäre zu unsicher),
stellt dem Programmierer aber 64 kByte "geschützten" (virtuellen) Speicher zur
Verfügung, der aus Sicht des Programms als 64 kByte fortlaufender Speicher über
die Adressen 0 bis 65635 (hexadezimal &h0 bis &hFFFF) angesprochen werden
kann. Der Zugriff auf diesen Speicher erfolgt schreibend über diverse Poke- und
lesend über die passenden Peek-Befehle (siehe Tabelle).

Befehl Wirkung
POKE <adr>, wert Schreibt ein Byte
DOKE <adr>, wert Schreibt einen Integer- oder Word-Wert (2 Byte)
POKE$ <adr>, <string> Schreibt eine String. Am Ende des Strings wird

eine binäre Null als Ende-Kennung geschrieben.
Es werden also LEN(<string>)+1 Bytes
geschrieben.

 SPOKE<adr>, <struktur> Schreibt eine Struktur. Die Anzahl der
geschriebenen Bytes hängt von der Struktur ab
und beträgt sizeof(<struktur>) Bytes.

<nVar> = PEEK (<adr>) Liest ein Byte
<nVar> = DEEK (<adr>) Liest einen Word oder Integer-Wert (2 Byte).
<sVar$> = PEEK$ (<adr>) Liest einen String. Das Stringende ist durch eine

binäre Null gekennzeichnet. Es werden maximal
1024 Zeichen gelesen.

<stVar> = SPEEK (<adr>) Liest eine Struktur. Die Anzahl der gelesenen
Bytes hängt von der Struktur ab und beträgt
sizeof(<stVar>) Bytes.

VPOKE <adr>, wert Kompatibilitätsbefehl für KC-85 Kompatibilität.
Beschreibt den Video-RAM des KC-85. Siehe
Hinweise unten.

<nVar> = VPEEK (<adr>) Kompatibilitätsbefehl für KC-85 Kompatibilität.
Liest aus dem Video-RAM des KC-85. Siehe
Hinweise unten.

<adr> numerischer Ausdruck, der einen Wert von 0 bis 65635 liefert. Liegt
der Wert außerhalb dieses Bereichs, wird MOD 65636 gerechnet, d.h.
es wird einfach wieder von vorne begonnen.

<string> Ein Stringausdruck.
<struktur> Eine Strukturvariable oder eine Funktion, die eine Struktur liefert. Es

sind sowohl R-BASIC Strukturen als auch selbst definierte Strukturen
zulässig.

<nVar> numerische Variable.
<sVar$> String-Variable.
<stVar> Strukturvariable.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Speicherzugriff - 252

Hinweise:
• R-BASIC verwaltet den Speicher in Blöcken zu 8 kByte, die erst

angefordert werden, wenn sie benötigt werden.
• Dieser Speicherbereich wird auch an Libraries übergeben, die im

PC/GEOS-SDK-Mode geschrieben sind. Außerdem wird er von einigen
Objekten (z.B. BitmapContent) benutzt um große Datenmengen zu
transferieren.

• Wollen Sie andere Datentypen (FILE, HANDLE, DWORD etc.) schreiben,
müssen Sie sie in einer Struktur kapseln.

• R-BASIC kontrolliert nicht, ob die gelesenen Daten gültig sind, d.h. zum
gelesenen Datentyp passen.

• Eine ausführliche Beschreibung der Befehle VPOKE und VPEEK finden
Sie im Handbuch "Spezielle Themen", Vol. 3, Kapitel 18.3 (Kompatibilität
mit dem KC-85-BASIC). Eine Beschreibung des KC-Video-RAM finden
Sie im Anhang.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

DATA-Zeilen - 253

2.11.4 DATA-Zeilen

Die DATA-Anweisung dient dazu, feste Werte im Programm zu abzulegen, auf die
zum gegebenen Zeitpunkt - bei Bedarf auch mehrfach - zugegriffen werden kann.
Mit Hilfe der READ-Anweisung werden die Werte aus den DATA-Zeilen gelesen.
RESTORE wird verwendet, um eine bestimmte DATA-Zeile anzuwählen. Dazu
muss mit der Anweisung LABEL eine Codezeile markiert werden, auf die Restore
verweisen kann.

DATA-Zeilen sind der klassische Weg um Daten (Zahlen und Strings) in einem
BASIC-Programm unterzubringen. Die Verwendung von DATA-Zeilen ist ein ver-
alteter Programmierstil und sie verbrauchen sehr viel Speicher im Programmcode.
Für größere Datenmengen können Sie zum Beispiel externe Dateien verwenden,
für Bilder können Sie auch die Picture-List (Menüpunkt: Extras) benutzen.
Manchmal, insbesondere wenn Sie nur kleine Datenmengen haben, sind DATA-
Zeilen trotzdem sehr nützlich.

Sie können die Anweisungen DATA, READ, und RESTORE auch innerhalb einer
Library verwenden. R-BASIC verwaltet die Werte für das Hauptprogramm und
jede eingebundene Library getrennt, so dass eine gegenseitige Beeinflussung
ausgeschlossen ist. Sie können also auch nicht vom Hauptprogramm aus mit
READ auf die DATA-Werte einer Library zugreifen.

DATA

Syntax: DATA Wert [, Wert [, Wert] ...
Wert: jeweils eine Konstante vom Typ REAL oder STRING, Variablen

sind nicht zulässig.

Beispiele:
DATA 12, 144, 13, 169
DATA "Paul", "Müller", "Malocher"

READ

Syntax: READ <var> [, <var>] [, <var>] ...
<var> bezeichnet die zu belegenden Variablen.

Hinweise:
• Zulässig für <var> sind alle numerischen Datentypen sowie alle String-Typen.

Dazu zählen auch Feld- und Struktur-Elemente.
• Der Typ der Variablen muss kompatibel zum jeweiligen Wert in der DATA-

Zeile sein, sonst kommt es zu einem Laufzeitfehler und das Programm wird
beendet.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

DATA-Zeilen - 254

Beispiele:
Der folgende Code liest die Werte aus den DATA-Zeilen aus dem Beispiel zum
Befehl DATA (oben).

READ A, B, C, D
READ Vorname$, Name$, Job$

RESTORE

Syntax: RESTORE
RESTORE <label>

<label> ist ein im Programm definiertes Label.

Hinweise:
• Wird kein Parameter (<label>) angegeben, so wird die erste DATA-Zeile des

Programms angewählt.
• Existiert das Label nicht, kommt es zu einem Compilerfehler.
• Weist das Label nicht direkt auf eine DATA-Zeile, so wird die nächste im

Programm vorkommende DATA-Zeile angewählt.
• Weist das Label hinter die letzte DATA-Zeile, so kommt es bei der nächsten

READ-Anweisung zu einem Laufzeitfehler

Beispiele:
DATA 1,2,3,4,5,6,7,8

LABEL Liste1
DATA "a","b","c","d","e","f"

....
RESTORE ’ zur ersten DATA-Zeile
RESTORE Liste1 ’ zur DATA-Zeile ab Liste1

Allgemeine Hinweise:
• Sind mehr Werte in einer DATA-Zeile, als Variablen gelesen werden, so setzt

die nächste READ-Anweisung mit dem nächsten Wert in dieser Zeile fort.
• Sollen mehr Werte gelesen werden, als Werte in einer DATA-Zeile sind, so

wird mit der nächsten DATA-Zeile fortgesetzt.
• Stößt der Interpreter beim Programmablauf auf eine DATA-Zeile, wird diese

übersprungen.
• Versucht das Programm mehr Werte zu lesen, als durch DATA-Zeilen definiert

sind, kommt es zu einem Laufzeitfehler und das Programm wird beendet.

Tipps:
- Verwenden Sie in einer DATA-Zeile nach Möglichkeit nur einen Typ von

Werten (z.B. nur Zahlen oder nur Strings)
- Fassen Sie die DATA-Zeilen zu einem Block im Programm zusammen. Es

bietet sich hier das DIM & DATA-Fenster an.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

DATA-Zeilen - 255

Beispiel:
LABEL Liste1
DATA 10, 12, 19, 20
DATA 10.8, 7.06, 51.2, 8.13

’ Beachten: Punkt als Dezimaltrennzeichen

RESTORE Liste1 ’ DATA-Zeiger setzen
READ a, b, c, d ’ liest die Werte 10, 12, 19, 20
READ e, f, g, h ’ liest die Werte 10.8, 7.06, 51.2, 8.13
....
RESTORE Liste1
READ e, f, g, h ’ liest wieder die Werte 10, 12, 19, 20

Kompatibilität
R-BASIC unterstützt auch die in vielen BASIC-Interpretern verwendete
Kombination "RESTORE Zeilennummer". Das kann die Übertragung fremder
BASIC-Programme vereinfachen. Die "Zeilennummer" muss dabei explizit
angegeben sein (z.B. "1000 DATA ..."). Sie sollten diese Variante in eigenen
Programmen nicht verwenden.

LABEL

Die Anweisung LABEL (Marke) vereinbart ein Ansprungziel für GOTO, RESTORE
oder GOTO.

Syntax: LABEL <sprungZiel>
<sprungZiel>: Name, unter dem die Stelle erreicht werden kann.

Beispiel:
GOTO keinFehler ’ verzweigt das Programm nach unten
.... ’ hier passiert etwas anderes
LABEL keinFehler
... ’ hier geht es dann weiter

Hinweise:
• Ein Sprung-Ziel (Label) muss noch nicht definiert sein, bevor es das erste Mal

verwendet wird. Eine Verwendung definiert das Label vorläufig. So auch im
Beispiel oben.

• Wird ein Sprung-Ziel verwendet, ohne es später mit LABEL endgültig zu
definieren, kommt es zu einem Compilerfehler.

• Die Verwendung von GOSUB ist veraltet und wird nur noch aus Kompa-
tibilitätsgründen unterstützt. Sie sollten GOSUB in eigenen Programmen nicht
verwenden.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

System Services - 256

2.11.5 System Services

Hier finden Sie eine Liste der wichtigsten Systemservices, die von R-BASIC aus
benutzt werden können, sowie Informationen, wo sie beschrieben werden. Die
meisten dieser Services werden von GEOS-Objekten bereitgestellt.

Tastatur

Die meisten Objekte unterstützen die Tastatur automatisch, ohne weiteres Zutun
des Programmierers. Zum direkten Zugriff auf die Tastatur stehen Ihnen folgende
Möglichkeiten zur Verfügung:
• Für einfache Fälle stehen Ihnen die Funktionen InKey$, GetKey, GetKeyLP

und GetKeyState zur Verfügung, die im Kapitel 2.7.2 des Programmier-
handbuchs beschrieben werden.

• Sie können einen Tastaturhandler schreiben. Tastaturhandler werden auto-
matisch aufgerufen, wenn der Nutzer eine Taste betätigt. Sie werden im
Handbuch "Spezielle Themen", Kapitel 14 (Arbeit mit der Tastatur) beschrieben.

Maus

Die meisten Objekte unterstützen die Maus automatisch, ohne weiteres Zutun des
Programmierers. Wenn Sie selbst direkt auf Mausereignisse reagieren wollen
müssen Sie einen Maushandler schreiben. Maushandler werden automatisch
aufgerufen, wenn der Nutzer die Maus bewegt oder eine der Maustasten betätigt.
Sie werden im Handbuch "Spezielle Themen", Kapitel 17 (Arbeit mit der Maus)
beschrieben.

Drucken

Um aus einem R-BASIC Programm heraus drucken zu können müssen Sie ein
Objekt der Klasse PrintControl einbinden. Dieses Objekt wird im Objekt-
Handbuch, Kapitel 4.14, beschrieben. Eventuell benötigen Sie noch ein Objekt der
Klasse PageSizeControl. Dieses Objekt wird im Kapitel 4.15 des Objekt-
Handbuchs beschrieben.

Clipboard

Über die Zwischenablage (Clipboard) können R-BASIC Programme Daten (z.B.
Texte oder Grafiken) mit anderen Programmen austauschen. Die Arbeit mit der
Zwischenablage wird im Handbuch "Spezielle Themen", Kapitel 5 (Arbeit mit der
Zwischenablage) beschrieben.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

System Services - 257

Hilfedateien

R-BASIC stellt Ihnen das GEOS-weite Hilfesystem zur Verfügung. Im Kapitel 4
des Handbuchs "Spezielle Themen" (Einbinden von Hilfedateien) ist beschrieben,
wie man das Hilfesystem einsetzt.

Timer

Ein Timer stellt eine Routine bereit, die in regelmäßigen Abständen automatisch
aufgerufen wird. Timer sind im Kapitel 16 des Handbuchs "Spezielle Themen"
(Timer) ist beschrieben.

Dateiarbeit

R-BASIC unterstützt die Arbeit mit DOS- und GEOS-Dateien. Sie können sowohl
Binär- als auch Text-Dateien lesen und schreiben. Die Arbeit mit Dateien ist in
folgenden Kapiteln des Handbuchs "Spezielle Themen" beschrieben.
• Kapitel 6: Das Dateisystem
• Kapitel 7: Arbeit mit Pfaden und Ordnern
• Kapitel 8: Verwaltung von Dateien
• Kapitel 9: Arbeit mit Dateien
• Kapitel 10: Arbeit mit Laufwerken und Datenträgern
Um in den Genuss der Vorteile von GEOS-VM-Dateien zu kommen müssen Sie
die Library "VMFiles" einbinden. Diese Library muss separat von der R-BASIC
Webseite heruntergeladen werden.

Dokumente

Im Kapitel 15 des Handbuchs "Spezielle Themen" (Implementieren eines
Dokument-Interfaces) finden Sie eine ausführliche Anleitung, wie man unter R-
BASIC die Funktionen des "Datei" Menüs implementiert. Einen großen Teil der
Funktionen übernimmt dabei ein Objekt der Klasse DocumentGuardian. Diese
Objekte arbeiten mit der Library "DocumentTools" zusammen und sind im Objekt-
Handbuch, Kapitel 4.13, beschrieben.

Automatisches Geometriemanagement

Eine der wesentlichen Eigenschaften des GEOS Systems ist seine Fähigkeit, die
Objekte automatisch so anzuordnen, dass sie alle gut sichtbar sind ohne sich zu
überlappen. Diese Fähigkeit ist auf elementarer Systemebene implementiert und
im Objekt-Handbuch, Kapitel 3.3 (Geometriemanagement) beschrieben.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 258

2.12 Verwendung von Libraries

2.12.1 Konzeptionelles

Libraries (deutsch: Bibliotheken) sind Sammlungen von Funktionen, SUBs,
Konstanten und Struktur-Typen, die von anderen Programmen und Libraries
verwendet werden können. Libraries können keine statischen UI-Objekte
enthalten, aber UI-Objekte können zur Laufzeit erzeugt werden (siehe unten).

Libraries bieten folgende Vorteile:
• Verwendung von geprüftem Code. Die Routinen einer Library sind meist sehr

gründlich getestet. Bugfixes in einer Library wirken sich sofort auf alle
Programme aus, die diese Library verwenden, ohne dass das Programm neu
compiliert werden muss.

• Schneller Programmentwicklung. Routinen aus einer Library muss man nicht
selbst oder noch einmal schreiben.

• Mehrere BASIC-Programme können die gleiche Library gleichzeitig verwenden.
Sie können Library-Routinen also so verwenden, als gehörten sie ausschließlich
zu Ihrem Programm.

Sie können eine Library für R-BASIC sowohl mit R-BASIC als auch mit dem
PC/GEOS SDK schreiben. Eine mit dem SDK geschriebene Library kann R-
BASIC um Funktionen erweitern, die im ursprünglichen Konzept nicht vorgesehen
sind. Um eine R-BASIC-Library mit dem SDK zu schreiben müssen Sie das "SDK
Library Kit" von der R-BASIC Webseite herunterladen und der dort enthaltenen
Anleitung folgen.

Um eine Library mit R-BASIC zu schreiben, gehen Sie folgendermaßen vor:
1. Öffnen Sie ein neues R-BASIC Programm
2. Wählen Sie aus dem Menü "Extras" den Punkt "In BASIC Library

umwandeln". Es wird ein neues Codefenster "Exports" aktiv. Das Fenster "UI-
Objekte" wird deaktiviert, weil R-BASIC Libraries keine statischen UI-Objekte
enthalten können.

3. Speichern Sie die Library unter einem aussagekräftigen Namen. Dieser Name
wird später zum Einbinden der Library verwendet. Der Ort, an dem Sie die
Library speichern, spielt keine Rolle.

4. Schreiben Sie den BASIC Code genau so als ob Sie ein Programm erstellen.
Vereinbarungen (Anweisungen: DIM, DECL, CONST, STRUCT), die von der
Library für andere Programme bereitgestellt werden sollen, müssen in das
"Exports" Fenster. Library-interne Vereinbarungen, die nicht exportiert (für
andere Programme bereitgestellt werden) werden sollen, sollten Sie im DIM &
DATA-Fenster unterbringen.

5. Compilieren Sie Ihre Library. R-BASIC speichert den compilierten Code im
Ordner Userdata\R-BASIC\Library\Bin. Dort können ihn alle BASIC-
Programme finden.

Um den Librarycode zu testen müssen Sie
• die Library compilieren
• ein Programm schreiben, das die Library einbindet (Anweisung: Include

"Name der Library") und dort die Library-Routinen aufrufen.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 259

Include

Die Anweisung Include bindet eine Library ein. Jedes Programm kann bis zu 32
Libraries einbinden, wobei auch die Libraries zählen, die von eingebundenen
Libraries verwendet werden.
Include erwartet den GEOS Namen der Library, das heißt, die Groß- und
Kleinschreibung als auch eventuelle Leerzeichen im Namen müssen beachtet
werden.

Syntax: INCLUDE "LibraryName"

Beispiel:
INCLUDE "Demo Library"

customError

Die numerische Systemvariable customError (Datentyp INTEGER) kann benutzt
werden um eine selbstdefinierte Fehlernummer zu speichern. Sie kann
geschrieben und gelesen werden. Das ist insbesondere für Libraries, auch für
SDK-Libraries, interessant. R-BASIC selber verwendet diesen Wert nicht.

Beispiel
customError = 12

IF customError = 4 THEN Print "Fehler 4 aufgetreten."

Beispiel:
Wir wollen eine Library schreiben, die 2 Routinen und zwei Konstanten exportiert.
Die Funktion Schummel soll eine Zahl von 1 bis 6 liefern, wobei die 6 aber
häufiger vorkommt. Die Sub Meldung soll in Abhängigkeit von einer Zahl, die der
Routine übergeben wird, zwei unterschiedliche Meldungen ausgeben. Dazu
brauchen wir die beiden Konstanten.
Den kompletten Code für dieses Beispiel finden Sie im Ordner "Beispiel\Library",
Dateien "Library einfach" und "Library einfach Test Programm".

Im Exports-Fenster vereinbaren wir:
CONST STATE_WIN = 1
CONST STATE_LOSE = 2
DECL FUNCTION Schummel() AS Real
DECL SUB Meldung(state as Real)

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 260

Den Code für die beiden Routinen schreiben wir im BASIC-Code Fenster:
FUNCTION Schummel() AS Real
DIM x

x = 10*Rnd() ’ 0 ... 9.9999999
x = Int(x)+1 ’ 1 ... 10
IF x > 6 THEN x = 6
Return x

END Function

SUB Meldung(state as Real)
IF state = STATE_WIN THEN
MsgBox "Wow, du hast gewonnen. " \

+ "Das hätte ich dir gar nicht zugetraut."
ELSE
WarningBox "Du hast ja so mies gespielt! " \

+ "Kein Wunder, dass du verloren hast."
END IF

End SUB

Wir speichern die Library unter einem aussagekräftigen Namen, z.B. "Test Lib"
und compilieren sie dann. Der Name wird für die Include-Anweisung benötigt.

Unser Testprogramm könnte so aussehen:
Include "Test Lib"
ClassicCode
DIM x
x = schummel()
Print x
IF x > 4 THEN
Meldung(state_win)

ELSE
Meldung(state_lose)

End IF

Die Anweisung ClassicCode bewirkt, dass R-BASIC automatisch einige UI-
Objekte anlegt (ein Primary mit einem View und einem BitmapContent), so dass
die Print-Anweisung verwendbar ist und außerdem der Code beim Programmstart
automatisch abgearbeitet wird (sogenannter klassischer BASIC Modus).

Wenn wir jetzt eine Änderung an der Library in der Library vornehmen müssen wir
sie neu compilieren. Beim nächsten Start unseres Testprogramms wird die
geänderte Library verwendet. Es ist dazu nicht nötig (aber trotzdem sinnvoll), die
Library zu speichern.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 261

Beim Schreiben einer Library können Sie alles tun, was sie auch beim Schreiben
eines normalen Programms tun können. Es ist aber ist folgendes zu beachten:
• Eine Library kann nicht "gestartet" werden. Es gibt kein "Hauptprogramm", nur

eine Sammlung von Unterprogrammen.
• Bezeichner, die von der Library anderen Programmen zur Verfügung gestellt

werden sollen (man sagt: sie sollen "exportiert" werden), müssen im
EXPORTS-Fenster vereinbart werden.

• Exportiert werden können:
- SUB’s
- FUNCTION’s
- ACTION-Handler
- STRUCT’s
- Konstanten (CONST-Anweisung)
- Variablen aller Typen (DIM-Anweisung). Diese Variablen werden vom

Programm, dass die Library benutzt, als globale Variablen verwendet. Sie
können zum Beispiel benutzt werden um Daten zwischen dem Programm
und der Library auszutauschen.
Hinweis: Globale Variablen einer Library (egal ob exportiert oder nicht)
werden im globalen Variablenspeicher des aufrufenden Programms
abgelegt. Wenn mehrere Programme eine Library gleichzeitig verwenden,
so wird für jedes Programm ein eigener Satz dieser Variablen angelegt.
Library und Programm verwenden diese Variablen so, als ob sie allein im
System sind. Eine gegenseitige Beeinflussung verschiedener Programme ist
ausgeschlossen.

• Nicht exportiert werden können LABEL’s.
• Libraries können keine UI-Objekte enthalten. Das UI-Objekte Fenster ist

gesperrt. Weiter unten ist beschrieben, wie Sie trotzdem Objekte in Libraries
verwenden können.

• Eine Library kann eine eigene PictureList haben (siehe Kapitel 2.8.6.2: Ver-
wendung der "Picture-List"). Auf diese PictureList kann nur innerhalb der
Library zugegriffen werden. Wenn Sie Bilder aus einer Library-PictureList
verwenden wollen müssen Sie eine Library-Routine schreiben, die auf die
PictureList der Library zugreift.

• DATA Zeilen innerhalb einer Library sind zulässig. Auch hier gilt: Auf diese
DATA-Zeilen kann nur von innerhalb der Library zugegriffen werden. DATA
Zeilen sollten deshalb im DIM & DATA Fenster stehen.

Wichtig!
Wenn ein Programm eine Routine (Sub, Function, Actionhandler) aus einer Library
verwendet so wird die Routine über eine Nummer identifiziert. Diese Nummer
entspricht der Position in der Liste der exportierten Routinen. Dabei zählen nur
Routinen. Vereinfacht gesagt zählt R-BASIC die DECL-Anweisungen im
EXPORTS Fenster. Das bedeutet konkret:
• Wenn Sie die Reihenfolge der exportierten Routinen ändern wird die Library

inkompatibel. Alle Programme, die diese Library benutzen müssen dann neu
compiliert werden.

• Wenn Sie neue Routinen vor den bereits vorhandenen Routinen einfügen wird
die Library ebenfalls inkompatibel. Sie dürfen neue Routinen im EXPORT-
Fenster nur nach allen bereits vorhandenen Routinen einfügen.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 262

• Für den Export von Structs, Konstanten und Variablen gelten diese Ein-
schränkungen nicht. Hier können Sie beliebig schieben oder hinzufügen.

• Die genannten Einschränkungen gelten nur für exportierte Routinen. Routinen,
die im DIM & DATA Fenster deklariert sind, unterliegen diesen Ein-
schränkungen nicht.

Natürlich wird eine Library auch inkompatibel, wenn Sie die Parameter einer
Routine ändern, Konstanten einen anderen Wert geben oder dergleichen.

Beispiel. Das ursprüngliche EXPORT-Fenster sieht so aus:
CONST ZAHL_1 = 12
CONST TEXT_1 = "Hallo Welt"
DECL SUB Routine1 ()
DECL FUNCTION Routine2(x as REAL) as REAL

Inkompatible Änderung: Reihenfolge vertauscht
CONST ZAHL_1 = 12
CONST TEXT_1 = "Hallo Welt"
DECL FUNCTION Routine2(x as REAL) as REAL
DECL SUB Routine1 ()

Inkompatible Änderung: Neue Routine eingeschoben
CONST ZAHL_1 = 12
CONST TEXT_1 = "Hallo Welt"
DECL SUB Routine3 (z as INTEGER)
DECL SUB Routine1 ()
DECL FUNCTION Routine2(x as REAL) as REAL

Kompatible Änderung: Neue Routine angefügt
CONST ZAHL_1 = 12
CONST TEXT_1 = "Hallo Welt"
DECL SUB Routine1 ()
DECL FUNCTION Routine2(x as REAL) as REAL
DECL SUB Routine3 (z as INTEGER)

Kompatible Änderungen: Konstanten hinzugefügt und verschoben
CONST ZAHL_1 = 12
CONST ZAHL_2 = 559.8

DECL SUB Routine1 ()
DECL FUNCTION Routine2(x as REAL) as REAL
CONST X_1 = 77
CONST X_2 = 85.7

DECL SUB Routine3 (z as INTEGER)
CONST TEXT_1 = "Hallo Welt" ’ verschieben ist OK
CONST TEXT_2 = "Hallo Jungs"

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 263

Die Library-Versionsnummer

Jedes Mal, wenn eine neue Version einer Library veröffentlicht wird sollten Sie die
Versionsnummer ändern.
Die Werte für Major und Minor können im Menüpunkt "Programm" geändert
werden. Der Major-Wert sollte geändert (vergrößert) werden, wenn wesentliche
neue Funktionen dazugekommen sind. Ein neuer Wert für Minor sollte Bugfixes
oder kleinere Änderungen anzeigen. Insbesondere wenn Sie neue Routinen
hinzugefügt haben sollen Sie die Versionsnummer (Major oder Minor) vergrößern.
Programme werden mit neueren Versionen einer Library problemlos
zusammenarbeiten, wenn Sie die oben angegebenen Hinweise zur Kompatibilität
beachten. Eine ausführliche Beschreibung der Versionsnummern finden Sie im
Kapitel 2.11.1.

ConvertObjForSDK

Dies ist eine Hilfsfunktion für Programmierer von SDK Libraries. "Normale"
Objektvariablen speichern R-BASIC Objekte in einer Art und Weise, mit der man
im SDK nichts anfangen kann. Die Funktion ConvertObjForSDK liefert eine
"Objektvariable", die so angepasst wurde, dass man aus einer SDK-Routine
heraus mit dem BASIC-Objekt kommunizieren kann.

Syntax: <objVar> = ConvertObjForSDK (<objExpression>)

Wichtige Hinweise:
• Verwenden Sie ConvertObjForSDK nur, wenn Sie eine Routine aus einer

SDK-Library aufrufen wollen und der Programmierer der SDK-Library hat
explizit festgelegt, dass ConvertObjForSDK zu verwenden ist!

• Nutzen Sie den von ConvertObjForSDK zurückgegebene Wert niemals für
eine "normale" Objekt-Routine von R-BASIC, oder GEOS wird crashen!

Technische Details:
R-BASIC Objektvariablen enthalten eine Referenz auf ein Objekt, die nicht
identisch mit dem im SDK verwendeten Objekt-Pointer (optr) des Objekts ist.
ConvertObjForSDK ersetzt diese BASIC interne Referenz durch den realen optr
des Objekts. Weitere Details zu Objektvariablen und wie man ConvertObjForSDK
einsetzt finden Sie in der Beschreibung, wie man SDK Libraries erstellt. Diese
kann auf der R-BASIC Homepage heruntergeladen werden.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 264

2.12.2 UI-Objekte in Libraries

Dieses Kapitel richtet sich an fortgeschrittene Programmierer.

Wie bereits oben erwähnt können Sie in einer Library keinen Objekt-Tree im UI
Codefenster anlegen. Es ist jedoch zulässig Objekte zur Laufzeit des Programms
anzulegen und später wieder zu vernichten. Die dazu benötigten Befehle
CreateObject und DestroyObject sind im Kapitel 2.1.5 (Anlegen und Vernichten
von Objekten zur Laufzeit) des Objekthandbuchs beschrieben. Außerdem sollten
Sie die Kapitel 2.1.3 (Verwaltung von Objektblöcken, Befehle CreateObjBlock und
DestroyObjBlock) sowie 3.3.8 (Hintertürchen für Programmierer, Befehle
ObjAddHint und ObjRemoveHint) aus dem Objekthandbuch lesen.

Um eine Library zu schreiben, die Objekte, z.B. eine Dialogbox, bereitstellt, sollten
Sie folgendermaßen vorgehen:

• Schreiben Sie in der Library eine Initialisierungs-Routine (Function mit dem
Rückgabetyp Object), die den Objekt-Tree anlegt.
Die Initialisierungs-Routine sollte das Top-Objekt des gerade erzeugten
Objekt-Trees zurückgeben.

• Schreiben Sie in der Library eine Cleanup-Routine, die von der Library
erzeugten Tree vernichtet und den Objektblock wieder freigibt.

• Sollte es notwendig sein, auf andere Objekte als das Top-Objekt des Objekt-
Trees zuzugreifen - was üblicherweise der Fall ist - so sollten Sie Routinen in
der Library schreiben, die

- entweder das gewünschte Objekt zurückgeben, so dass das Programm
selbst auf das Objekt zugriefen kann

- oder die auf das UI-Objekt zugreifen und die gewünschten Daten
zurückgeben bzw. setzen.

• Falls Sie mehrere Objekt-Trees in der Library haben wollen (z.B. mehrere
Dialogboxen) sollten Sie auch mehrere Initialisierungs- und Cleanup-Routinen
schreiben.

Im Programm, dass die Library nutzt, müssen Sie folgendes tun:
• Rufen Sie die Initialisierungs-Routine der Library im OnStartup-Handler ihres

Programms auf. Nur falls Sie die Library-UI sofort benötigen sollten Sie den
OnInit-Handler verwenden. Binden Sie das von der Initialisierungs-Routine
zurückgegebene Objekt in den Objekt-Tree Ihres Programms ein, indem Sie
die Instancevariable "parent" dieses Objekts belegen.
Sie sollten die Initialisierungs-Routine der Library nicht rufen, wenn GEOS
nach einem Systemneustart mit geöffnetem Programm wieder hochfährt.
Beachten Sie dazu das Beispiel unten.

• Rufen Sie die CleanUp-Routine im OnExit-Handler ihres Programms.
Sie sollten die Cleanup-Routine der Library nicht rufen, wenn GEOS mit
geöffnetem Programm herunterfährt. Beachten Sie dazu das Beispiel unten.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 265

Beispiel

Die folgenden Codefragmente sind an die Beispiele "UI Lib" und "Dialog Library"
sowie den dazugehörigen Testprogrammen angelehnt. Die vollständigen Dateien
finden Sie im Ordner "Beispiel\Library". Die beiden Beispiele beleuchten unter-
schiedliche Aspekte des Themas.

Erzeugen eines UI-Trees

- Verwenden Sie CreateObjBlock um einen neuen Objektblock anzulegen und
CreateObject um die gewünschten Objekte darin zu erzeugen.

- Setzen Sie die Instance-Variablen der Objekte auf die Werte, die Sie sonst im
UI-Code setzen würden. Verwenden Sie den Befehl ObjAddHint, um
Instancevariablen zu setzen, die sonst nur im UI-Code verfügbar sind.
Vergessen Sie nicht, die Objekte in einem Tree zu verlinken (Instancevariable
parent setzen, Children ist read-only).

Die Initialisierungs-Routine. Sie soll folgenden UI-Tree nachbilden:
Dialog LibraryDialog
 Caption$ = "Notizen eingeben"
 Children = DialogClearButton
 End Object

Button DialogClearButton
 Caption$ = "Text löschen"
 ActionHandler = DoClearText
End Object

Dabei muss der Actionhandler "DoClearText" irgendwo in der Library
implementiert sein.

FUNCTION BuildLibUI () AS object
dim objBlock as handle
dim dlg, obj as object

! Anlegen des Objektblocks, der die Objekte aufnehmen soll
 objBlock = CreateObjBlock()

! In diesem Objektblock erzeugen wir die UI-Objekte
! und setzen die entsprechenden Instancevariablen

dlg = CreateObject (objBlock, Dialog)
dlg.caption$ = "Notizen eingeben"

ob = CreateObject (objBlock, Button)
ob.caption$ = "Text löschen"
ob.actionHandler = DoClearText
ob.parent = dlg, 0 ’ Button in Tree einbinden

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 266

Zugriff auf Objekte in der Library

Nur die Library selbst kennt die genaue Struktur des UI-Trees. Deshalb sollten Sie
das "Finden" von Objekten als Routine in der Library programmieren. Falls Sie
später die Struktur des UI-Trees ändern, müssen Sie nur Code in der Library
ändern. Die Programme, welche die Library nutzen, brauchen dann nicht neu
compiliert werden.

Die folgende Routine liefert den Button, der oben, in der Routine BuildLibUI,
angelegt wurde. Ihr wird das Top-Objekt des Library-Trees übergeben. Dieses ist
das einzige, dass das aufrufende Programm wirklich kennt.

FUNCTION LibFindButton (topObj as OBJECT) AS OBJECT
’ Wir wissen: Der Button ist das erste Child des Dialog-Objekts
return topObj.Children(0)

END FUNCTION

Im Beispielcode der Library "UI Lib" wird erklärt, wie man von einem
ActionHandler aus ein Objekt im UI-Tree der Library finden kann.

Vernichten des UI-Trees

Um das System beim Beenden des Programms sauber zu halten sollten Sie dafür
sorgen, dass alle Objekte und Objektblöcke, die Sie angelegt haben, auch wieder
vernichtet werden. Die folgende Routine erledigt das für einen kompletten Tree.
Ihr wird das Top-Objekt des zu vernichtenden Trees übergeben. Anschließend
müssen Sie noch den leeren Objektblock freigeben. Den Code dafür finden Sie in
den Beispielen.

Die Routine DestroyTree arbeitet rekursiv. Das heißt, sie ruft sich selbst auf.
Rekursive Programmierung ist schwer zu verstehen und schwer zu erklären. Aber
sie ist sehr leistungsfähig und der übliche Weg, Baumstrukturen durchzugehen.
Sie können diese Routine einfach benutzen. Eine kurze Erklärung finden Sie im
Code der Beispiele.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 267

SUB DestroyTree (obj as object)
dim ch as object

WHILE obj.numChildren ’ noch children da?
ch = obj.children(0) ’ erstes Child holen
DestroyTree(ch) ’ ... und samt seiner

’ Unter-Children vernichten
’ das ehemals zweite Child ist
’ jetzt das erste Child

WEND

’ Das Objekt hat jetzt keine Children mehr
obj.parent = NullObj(),0 ’ Objekt aus dem Tree nehmen
DestroyObject(obj) ’ Objekt vernichten

END SUB

Beachten Sie, dass diese Beispielroutine nur den regulären Tree vernichtet. Sie
prüft nicht ab, ob das zu vernichtende Objekt ein View ist, das ein Content hat. Bei
Bedarf können Sie vor dem eigentlichen Vernichten des Objekts die Instance-
variable Class$ abfragen. Sie enthält die Objektklasse im Klartext (z.B. "VIEW")
und Sie können dann das Content oder den damit verbundenen VisTree
vernichten. Die Routine DestroyTree arbeitet auch für den VisTree.

Verwendung im Programm

Im Programm müssen Sie den Library UI-Tree anlegen (am Programmstart) und
wieder vernichten (am Programmende). Dazu verwenden Sie die OnStartup und
OnExit Handler des Application-Objekts. Die einfachste Variante sieht so aus:

SYSTEMACTION AppStartup
DIM ob as OBJECT

ob = BuildLibUI()
ob.parent = DemoPrimary, 0 ’ Einbinden in den GenTree

END ACTION

SYSTEMACTION AppExit
DIM libTopObj as Object

libTopObj = DemoPrimary.Children(0)
DestroyLibUI(libTopObj)

END ACTION

Jedes Mal, wenn das Programm startet, wird die Library UI erzeugt und bei jedem
Programmende wird sie vernichtet. Der wesentliche Nachteil bei diesem einfachen
Vorgehen ist, dass das Vernichten und Erzeugen auch passiert, wenn GEOS bei
offenem Programm herunterfährt. Das kostet nicht nur Zeit, sondern es gehen
auch alle Eingaben (z.B. Texte oder Auswahlfelder), die in der Library UI gemacht
wurden, verloren.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

Libraries - 268

Deswegen ist es eine bessere Idee, abzufragen ob GEOS herunterfährt oder nach
einem System-Shutdown neu startet. Der Parameter "flags" enthält spezielle Bits,
die genau das anzeigen. Das Flag AF_RESTORE ist gesetzt, wenn das
Programm nach einem System Shutdown wieder öffnet. Das Flag
AF_SHUTDOWN ist gesetzt, wenn das System herunterfährt, unser Programm
aber noch offen ist. Um zu testen, ob das Flag gesetzt ist, verwenden wir die
logische Operation AND. Ergibt diese Operation den Wert Null, so ist das Bit nicht
gesetzt und wir müssen handeln.

SYSTEMACTION AppStartup
dim ob as object
IF (flags AND AF_RESTORE) = 0 THEN
’ Das Programm startet neu.
’ Wir müssen die Library-UI erzeugen.
ob = BuildLibUI()
ob.parent = DemoPrimary, 0 ’ Einbinden in den GenTree

END IF
END ACTION

SYSTEMACTION AppExit
DIM libTopObj as Object
IF (flags and AF_SHUTDOWN) = 0 THEN
’ Das Programm wird geschlossen.
’ Wir müssen die Library-UI vernichten
libTopObj = DemoPrimary.Children(0)
DestroyLibUI(libTopObj) ’ Cleanup-Routine
END IF

END ACTION

Es ist möglich, die UI-Objekte der Library in globalen Variablen zwischenzu-
speichern. Das erleichtert den Zugriff auf sie. Sie müssen aber beachten, dass
globale Variablen einen Systemneustart nicht überleben. Im Beispielcode des
Programms "Dialog Library Test Programm" ist beschrieben, wie Sie in diesem
Fall vorgehen können.

R-BASIC - Programmierhandbuch - Vol. 5
Einfach unter PC/GEOS programmieren

 - 269

(Leerseite)

