R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
&

Spezielle Themen

Volume 1
Zahlenformatierung, Schriften, Blockgrafik,
Hilfedateien, Zwischenablage,
Dateisystem, Pfade, Ordner

Version 1.0

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

1 Formatierung von Zahlen ...t 4
NI IS = 1Yo F= 1o I = 1 a1 =Y 0 {0 10 o 0 1= 1 (= 4
1.2 Die numberFormat Variableccccooiiiiii 6
1.2.1 UDEIDICK vvvvereeeeeereeteeteeteeteeeeeeteese et eeeeeeeteeaesaesteeseesteeseeneeseeneeaseaseeseaneas 6

1.2.2 Einstellen der StellenNzZah] - ..o et en e aaens 9

1.2.3 Zahlen in Exponentialdarstellungcccccceeiiiiiiiiieciie e 11

1.3 Komplexe Beispi€le «.oovvvviieiiiiiii 14

2 Verwendung von Schriften ... cee e 16
P2 B0 =Y o) o O 16
2.2 Zugriff auf GEOS-FONLSoeiiiiiiiiei e 17
2.3 Der FiXed-FONt-IMOGUS - ettt et s s eaaeas s saerseaneanrnernen 20
2.4 Der GEOS-FONt-MOAUSoviiiiiiiiieiiiieee et 22
2.5 Der Block-Font-Modus (Block-Grafik-Modus)cccveeiiiiiiiiiiiiiiiiiiiiies 24

B2 o T 1= 4 5= ¥ | = 25
2.7 Direkter Zugriff auf die printFont Systemvariableccccooiiinnen. 27

3 Verwendung des Block-Grafik-Modus (Block-Font-Modus) 30
3.1 Ubersicht (iber die Verwendung von Block-Grafikenccccceeeveueueuennnnne. 30
3.2 Interner Aufbau eines Zeichens im Blockgrafik Modusoccoeiiiiin 31
3.3 Aufrufen des Blockgrafik MOAUS -....eeeeeiiiiiiiiiiiii 33
3.4 Direkter Zeichengeneratorzugriffoooiiiiiiiiii e 35
3.5 Zugriff o UL R o] T N =1 1= o T 37

4 Einbinden von Hilfedateien ..o 40
O U =Y o) o 40
4.2 Ansprechen der Hilfe in R-BASIC ... 40
4.3 Unterstltzung fir "Virtual Desktop"iceeeiiiiiiiiiiiiicii 44
4.4 Erstellen von Hilfedateienooooiiiiiiii e 44

5 Arbeit mit der Zwischenablagecccomrrreii 48
5.1 UDEIDICK «vrvrvvereriieietesiisietetesetesee st sese et sesese st se s b se s s sesese s s s sense e 48
5.2 Clipboardoperationenc..eoiiiiiiii i 49
5.3 Das Clipboard Uberwachencooviiiiiiiiiiieiieeee e 51
5.4 Eigene Formate verwendenoooviiiiiiiiiiiii 53
5.5 BIitmMaps UNd GSTIINGSceoiiiiiiiiiiiiiee et 56

6 Das DateiSyStemccccceirriirnnine s 58
6.1 Dateitypen .. 58
6.2 Fehlerbehandlung, die Variable fileErrorcccoeeeiiiiiiies 59
6.3 Arbeit mit FILE Variablenoouuiiiiiiiiiiiiieiiiiiiiiieeiiiieeeeeeeeeeeeeeeenneeneennees 60

7 Arbeit mit Pfaden und Ordnern -cccoeeecommmeirmmeeinmsee s ssssssssnmsssnees 62
71 Angabe LV70) 0 T i 7= Vo [=) o TP 62
7.2 Anlegen und Léschen von Ordnern und Pfadencccocoiiiiiiiiiiinnccnee, 63
7.3 Der aktuelle OrAdNerooiiiiiiie e 65

7.4 GEOS Standard-Pfade «.cccoveeeiiiiieiieie e e 67

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

1 Formatierung von Zahlen
Um einzustellen, wie R-BASIC Zahlen darstellt, haben Sie drei Mdglichkeiten:

1. Sie verwenden das voreingestellte Zahlenformat. Das sollte fur viele Standard-
anwendungen ausreichen.

2. Sie verwenden die Funktion SetNumberFormat, die im Abschnitt 1.1 be-
schrieben wird. Damit kbnnen Sie weitere typische Standardformate einstellen,
wie z.B. eine feste Anzahl von Nachkommastellen.

3. Wenn Sie damit nicht auskommen haben Sie mit Hilfe der globalen Variablen
numberFormat weitgehende Kontrolle dartber, wie R-BASIC Zahlen ausgibt.
Im Abschnitt 1.2 finden Sie ausfihrliche Informationen dazu. Sie kénnen z.B.
vorgeben wie viele Nachkommastellen ausgegeben werden oder wann in die
Exponentialdarstellung gewechselt wird.

1.1 Standard-Zahlenformate

Far viele Zwecke reichen die Standard-Zahlenformate aus, die mit der Funktion
SetNumberFormat eingestellt werden kénnen. Intern belegt SetNumberFormat die
globale Variable numberFormat mit vorgegebenen Werten.

SetNumberFormat

Stellt das Zahlenformat fir die Anzeige von Zahlen ein. Die verfligbaren
Zahlenformate finden Sie in der Tabelle auf der nachsten Seite.

Syntax 1: SetNumberFormat format
Die Systemvariable numberFormat wird belegt.
Das neue Zahlenformat wird sofort wirksam.
format: einzustellendes Zahlenformat (ein numerischer Wert)

Beispiele: SetNumberFormat NF NORMAL
SetNumberFormat (NF _SCI 4) ' Klammern sind OK

Weitere Beispiele finden Sie im Abschnitt 1.3 (Komplexe Beispiele)

Zahlenformatierung - 4

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Far format’ stehen folgende Werte zur Verfligung:

Wert Bezeichnung Wirkung

0 NF_NORMAL Standardeinstellung von R-BASIC. Genauigkeit:
5 Stellen. Zahlen unter 0.0001 und Uber
9999999 werden im Exponentialformat
dargestellt.
1 NF_CURRENCY Wahrungs-typische Darstellung mit 2
Nachkommastellen (gerundet).
Zahlen unter 0.005 werden als Null dargestellt™
2 NF_MAX_PREC Maximale Genauigkeit mit 15 Stellen
Darstellung immer im Exponentialformat @

3 NF_SCI_3 Wissenschaftliche Darstellung ® mit 3 Stellen
z.B. 34.8E+06

4 NF_SCI_4 Wissenschaftliche Darstellung ® mit 4 Stellen
z.B. 34.82E+06

5 NF_INTEGER Ganzzahlige Darstellung

6 NF_FIXED_3 Immer 3 Nachkommastellen, auch ein

Exponentialdarstellung
z.B. 123.456
oder 4.567E+8

7 NF_FIXED_4 Immer 4 Nachkommastellen, auch ein
Exponentialdarstellung z.B. 234.8765

@ Durch die interne Zahlendarstellung kann es zu Rundungsfehlern kommen.

Intern wird deswegen ein Flag gesetzt (FF_NO_EXP_LOW, siehe Kapitel 1.2)
dass bewirkt, dass Werte sehr nahe an Null (z.B. 1E-07) als Null angezeigt
werden.

Durch die feste Struktur der Zahl (als Text) gut als Ausgangspunkt fir eigene
Zahlenformate geeignet.

Wissenschaftliche Darstellung heiBt, das der Exponent immer durch 3 teilbar
ist.

e

&)

Fir Fortgeschrittene:

Sie konnen SetNumberFormat auch benutzen um eine Variable des Typs
NumberFormatStruct fur die spatere Verwendung vorzubereiten.

Syntax 2: <nf> = SetNumberFormat (format)
<nf> Variable vom Typ NumberFormatStruct. Die Systemvariable
numberFormat wird nicht gedndert, d.h. das eingestellte Zahlenformat
andert sich nicht. Stattdessen wird die Variable nf mit den von
SetNumberFormat gelieferten Daten belegt.

Zahlenformatierung - 5

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

1.2 Die numberFormat Variable

Wenn Sie mit den Standard Zahlenformaten nicht auskommen haben Sie mit Hilfe
der globalen Variablen numberFormat weitgehende Kontrolle dartber, wie R-
BASIC Zahlen ausgibt. Das betrifft sowohl die PRINT-Anweisung als auch die
Konvertierungsfunktionen Str$() und StrLocal$(). In diesem Abschnitt finden Sie
ausfihrliche Erlauterungen zur numberFormat-Variablen und dem dazugehérigen
Typ NumberFormatStruct, damit Sie in der Lage sind, die numberFormat-
Variable manuell Ihren Bedurfnissen anzupassen.

1.2.1 Uberblick

Die globale Variable numberFormat ist vom Typ NumberFormatStruct. In
diesem Abschnitt erhalten Sie einen Uberblick, eine ndhere Beschreibung der
Felder finden Sie in den folgenden Unterkapiteln dieses Abschnitts.

STRUCT NumberFormatStruct
minDigits, maxDigits, digitMode AS Integer
highLimit, lowLimit AS Integer
plusSign AS Integer
exponentMode AS Integer
preChars, addChars AS String[7]
formatFlags AS Word
END STRUCT

Alle Felder lassen sich lesen und schreiben.

Bedeutung der einzelnen Felder:

minDigits, maxDigits, digitMode
Diese Felder bestimmen, mit wie vielen Stellen Zahlen dargestellt
werden. Details dazu finden Sie im Abschnitt 1.2.2.

highLimit, lowLimit, exponentMode
Diese Felder bestimmen wann in die Exponentialdarstellung
gewechselt wird, also z.B. 1.234567E+05 statt 123456.7 ausgegeben
wird und ob der Exponent in 3er-Schritten angezeigt wird. Details dazu
finden Sie im Abschnitt 1.2.3.

plusSign Dieses Feld bestimmt ob bei positiven Zahlen ein '+’ geschrieben
werden soll oder nicht. Negative Vorzeichen werden immer
geschrieben. plusSign kann sein:
PS_NONE (0, kein Plus schreiben z.B. 12.567)
PS_SPACE (1, statt Plus ein Leerzeichen schreiben z.B. [12:567)
PS_ALWAYS (2, Plus immer schreiben z.B. ¥12:567)
Der Standard ist PS_SPACE.

Zahlenformatierung - 6

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

preChars, addChars

Enthalten jeweils bis zu 7 Zeichen, die vor (preChars) oder nach
(addChars) der Zahl angefligt werden. Das ist z.B. bei
Wahrungsangaben oder fir Sperrzeichen sinnvoll. StandardmaBig sind
diese Felder leer.
Beispiel: numberFormat.preChars ="----"

numberFormat.addChars =" Euro"

PRINT 123,87

Auf dem Bildschirm erscheint E==123i87 Euro

formatFlags
Formatflags enthélt einige Werte, die das Verhalten der
Zahlenausgabe modifizieren kdnnen. Die Werte sind so gewahlt, dass

jeweils einzelne Bits gesetzt sind (sog. Bit-Flags), so dass sie mit OR,
AND und NOT, aber auch mit Plus (+) verbunden werden kénnen.
Folgende Werte sind definiert, die anderen Bits sind reserviert. Der
Standard ist, dass kein Bit gesetzt ist (formatFlags = 0).

FF_PRINT_ADD_NO_SPACE (= 1) bewirkt, dass Print kein zuséatzliches
Leerzeichen an die Zahlen hangt. Normalerweise wird ein
zusétzliches zu den in addChars angegebenen Zeichen ein
weiteres Leerzeichen angehangt, um die Lesbarkeit zu
verbessern. Str$ und StrLocal$ hangen grundsatzlich kein
Leerzeichen an.

FF_NO_EXP_LOW (= 2) bewirkt das bei Zahlen, deren Betrag zwischen Null
und 1 liegt, nicht in die Exponentialdarstellung gewechselt
wird. Das ist sinnvoll z.B. bei Wahrungsangaben.

Hinweis 1: Der Wert des Feldes lowLimit, der sonst festlegt,
wann in die Exponentialdarstellung gewechselt wird, wird
ignoriert, statt dessen wird auf die geforderte Stellenzahl
gerundet.

Hinweis 2: Dieses Flag ist im digitMode DM_VALID_DIGITS
nicht verwendbar.

FF_NO_EXP_HIGH (= 4) bewirkt, dass bei groBen Zahlen nicht in die
Exponentialdarstellung gewechselt wird.
Hinweis: Der Wert des Feldes highLimit, der sonst festlegt,
wann in die Exponentialdarstellung gewechselt wird, wird
ignoriert. Zahlen, die sich nicht mehr darstellen lassen,
werden z.B. als "##### ###" angezeigt. Das ist z.B. bei der
Fehlersuche sinnvoll.

Zahlenformatierung - 7

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Beispiel: Immer eine Nachkommastelle erzwingen:

numberFormat.digitMode DM FRAC_DIGITS
Nur Nachkommastellen zahlen
numberFormat.minDigits = 1 Mindestens eine Nachkommastelle
numberFormat.maxDigits = 1 hochstens eine Nachkommastelle
numberFormat.highLimit 15 Nur im Notfall (zu viele Stellen)
ins Exponentialformat wechseln
numberFormat.formatFlags = FF_NO_EXP LOW

Zahlen nahe Null: runden

Wegen der vielen Moglichkeiten, die Sie hier haben, ist das korrekte Belegen der
Systemvariablen numberFormat unter Umstédnden unibersichtlich. Deswegen gibt
es im Ordner Beispie\Mathe zwei Beispielprogramme.

Das Beispiel "Zahlenformatierung" gibt ein paar Zahlen in verschiedenen
Standardformaten aus.

Das Beispiel "NumberFormat Einstellungen" erlaubt das interaktive Belegen der
Systemvariablen numberFormat und Sie kdnnen so direkt die Auswirkungen von
bestimmten Einstellungen sehen.

Zahlenformatierung - 8

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

1.2.2 Einstellen der Stellenzahl

Die Felder minDigits, maxDigits, digitMode bestimmen, mit wie vielen Stellen
eine Zahl dargestellt wird. Wenn nicht anders angegeben, wird in den folgenden
Beispielen vorausgesetzt, dass das Standardformat (NF_NORMAL) voreingestellt
ist.

Die Standardeinstellungen von R-BASIC sind: minDigits = 1
maxDigits = 5
digitMode = DM_VALID_DIGITS

Beispiele: 1/3 = 0.33333
0.1 = 0.1
1001.2 = 1001.2
123456.7 = 123457 (gerundet, aber 6 Stellen

weil Vorkommastellen
nie gerundet werden)

minDigits bestimmt die minimale Stellenzahl, die ausgegeben werden soll.
Hat die Zahl weniger Stellen so werden nach dem Komma Nullen
angehangt.
Beispiel: 12.34 wird als 12.340 ausgegeben

maxDigits bestimmt die maximale Stellenzahl, die ausgegeben werden soll.
Hat die Zahl mehr Stellen, so wird gerundet.
Beispiel fur maxDigits = 5: 10/3 wird als 3.3333 ausgegeben

Hinweis: Vorkommastellen werden nicht gerundet. Nur Nachkomma-
stellen werden gerundet.
Beispiel: 123456.78 wird mit 6 Stellen als 123457 ausgegeben

digitMode bestimmt, welche Stellen fir minDigits und maxDigits zahlen.
digitMode kann sein:
DM_ALL_DIGITS (Wert 0, alle Stellen zahlen),
DM_FRAC_DIGITS (Wert 1, nur Nachkommastellen zéhlen)
DM_VALID_DIGITS (Wert 2, glltige Stellen zahlen)

Beispiel: Wir wollen minimal 3 und maximal 5 Stellen mit verschiedenen
Werten von digitMode ausgeben.

SetNumberFormat (NF_NORMAL) ' setzt schon maxDigits = 5

numberFormat.minDigits = 3

numberFormat.digitMode

digitMode = DM_ALL_DIGITS (alle Stellen zéhlen)
Es macht keinen Unterschied, ob die Ziffern vor oder nach dem
Komma stehen, so wie es keinen Unterschied macht, ob man
1,230 km oder 1230 m schreibt.

Beispiele: 1/3 = 0.3333 (5 Stellen insgesamt)
0.1 = 0.10 (mind. 3 Stellen insgesamt)

Zahlenformatierung - 9

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

1001.27 = 1001.3 (max. 5 Stellen insgesamt)

digitMode = DM_FRAC_DIGITS (nur Nachkommastellen zahlen)
Es werden immer Nachkommastellen geschrieben. Maximal maxDigits,
mindestens jedoch minDigits Nachkommastellen.

Beispiele: 1/3 = 0.33333 (5 Nachkommastellen)
0.1 = 0.100 (mind. 3 Nachkommastellen)
1001.27 = 1001.270 (mind. 3 Nachkommastellen)

digitMode = DM_VALID_DIGITS (gultige Stellen zahlen)
Fahrende Nullen werden ignoriert, die Z&hlung der Stellenzahl beginnt
bei der ersten von Null verschiedenen Ziffer, egal wo das Komma
steht.
Dies ist auch die Art und Weise, wie wir intuitiv Zahlen aufschreiben.
Die KoérpergréBe einer Person wird als 1,73 m oder als 173 cm
angegeben, niemals als 173,00 cm, weil die Angabe auf 1/10 mm hier
sinnlos ist.
Die Lange einer Bricke kdnnen wir auf den Meter genau angeben,
indem wir entweder 0.346 km oder 346 m schreiben.

Beispiele: 1/3 = 0.33333 (5 gultige Ziffern)
0.1 = 0.100 (3 gultige Ziffern)
1001.27 = 1001.3 (5 gultige Ziffern)

Beispiel: Wir wollen immer 3 Nachkommastellen ausgeben. Dazu verwenden wir
minDigits = maxDigits.

SetNumberFormat (NF_NORMAL)
numberFormat.minDigits 3
numberFormat.maxDigits 3
numberFormat.digitMode DM FRAC_ DIGITS

Beispiele: 1/3 = 0.333
0.1 = 0.100
1001.27 = 1001.270

Zugehoriges Formatflag: FF_NO_EXP_LOW

Mit dem Flag FF_NO_EXP_LOW im Feld formatFlags kénnen Sie bewirken, dass
bei Zahlen unter 1 (wenn digitMode DM_FRAC_DIGITS oder DM_ALL_DIGITS
ist) nicht in den Exponentialmodus gewechselt wird, sondern stattdessen Null
angezeigt wird. Das ist z.B. sinnvoll fir Wé&hrungsangaben, wenn sich durch
Rundungsfehler ein Betrag von beispielsweise 0.00000000001 Euro ergibt. Im
Kapitel 1.2.3 finden Sie entsprechende Beispiele.

Im digitMode DM_VALID_DIGITS wird bei Zahlen unter 1 immer in den Expo-
nentialmodus gewechselt, wenn sich nicht mehr alle Stellen anzeigen lassen.

Zahlenformatierung - 10

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

1.2.3 Zahlen in Exponentialdarstellung

L&sst sich eine Zahl nicht mehr sinnvoll in "normaler" Darstellung ausdricken,
wechselt R-BASIC in die Exponentialdarstellung. Die Felder highLimit und
lowLimit der Systemvariablen numberFormat bestimmen die Grenze fir diesen
Ubergang, das Feld exponentMode bestimmt die Darstellung des Exponenten.

Fir die folgenden Beispiele nehmen wir an, dass das Feld formatFlags der
globalen Variablen numberFormat den Wert Null hat, so dass das Wechseln ins
Exponentialformat nicht verhindert wird. Das entspricht der Standardeinstellung.

highLimit gibt die maximale Anzahl der Vorkommastellen an, bevor ins
Exponentialformat gewechselt wird. Erlaubt sind Werte von 0 bis 15.
Der Standardwert ist highLimit = 7

Beispiele:
Bei den blau markierten Beispielen wird der Wert gerundet, weil die
Standardeinstellung maximal 5 Ziffern insgesamt vorsieht.
1234.5 = 12345

Beispiele fur unterschiedliche highLimit-Werte

numberFormat.highLimit = 3
12.3 = 123
123.4 = 123.4
1234.5 = 1.2345E+03

numberFormat.highLimit = 4
12.3 = 12.3
1234 = 1234
1234.5 = 1234.5

Das Umschalten in die Exponentialdarstellung kann fir groBe Zahlen verhindert
werden, wenn man das Bit FF_NO_EXP_HIGH im Feld formatFlags der globalen
Variablen numberFormat setzt. Statt der Umschaltung ins Exponentialformat
erfolgt dann eine Fehlerausgabe der Form #### .##

Zahlenformatierung - 11

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

lowLimit gibt die maximale Anzahl von fuhrenden Nullen an, einschlieBlich der
Null vor dem Komma, bevor ins Exponentialformat gewechselt wird.
Der Standardwert ist lowLimit = 4

Beispiele
0.0123 = 0.0123
0.00123 = 0.00123
0.000123 = 0.000123
0.0000123 = 1.23E-04

Beispiele fir numberFormat.lowLimit = 3
0.123 = 0.128
0.0123 = 0.01283
0.00123 = 1.23E-03
0.000123 = 1.23E-04

Hinweis: Es kann auch hier sein, dass die Zahl gerundet wird.
Beispiel fir maximal 4 Nachkommastellen. In der markierten Zeile wird die
Zahl daher gerundet.
SetNumberFormat (NF_NORMAL)
numberFormat.maxDigits = 4
numberFormat.lowLimit = 3
numberFormat.digitMode = DM FRAC DIGITS
0.123 = 0.128
0.0123 = 0.01283

0.000123 = 1.23E-04

Das Umschalten in die Exponentialdarstellung kann fir Zahlen mit einem Betrag
kleiner als 1 verhindert werden, wenn man das Bit FF_NO_EXP_LOW im Feld
formatFlags setzt. Werte, die nicht mehr dargestellt werden kdénnen, werden als
Null angezeigt.

Das gilt nicht, wenn digitMode den Wert DM_VALID_DIGITS hat. Dort wird immer
in der Exponentialmodus gewechselt, wenn die Zahl nicht mehr "normal"
dargestellt werden kann.

Beispiel fur die Wirkung von FF_NO_EXP_LOW

SetNumberFormat (NF_NORMAL)
numberFormat.maxDigits = 3
numberFormat.lowLimit = 1 ' Keine Null nach dem Komma

numberFormat.digitMode = DM FRAC DIGITS

FF_NO_EXP_LOW ist noch nicht gesetzt
0.678 = 0.678
0.0678 = 6.78E-02
0.00678 = 6.78E-03

Zahlenformatierung - 12

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

numberFormat.formatFlags = FF NO EXP LOW

FF_NO_EXP_LOW ist jetzt gesetzt

0.678 = 0.678
0.0678 = 0.068 > gerundet
0.00678 = 0.007 ’ gerundet
0.000678 = 0.001 > gerundet
0.0000678 = 0.000
exponentMode bestimmt, in welcher Weise der Exponent dargestellt wird.

Der Standard ist exponentMode = EXP_NORMAL

Erlaubte Werte sind:
EXP_NORMAL (=0) normale Darstellung

EXP_SCI (=1) wissenschaftliche Darstellung in 3er-Schritten
Die 12er-Reihe sieht dann so aus: 12E+00
144E+00
1.728E+03
20.736E+03

248.832E+03
2.985984E+06

EXP_FORCE (=2) Erzwingen der Exponentialdarstellung.
Zahlen werden auch dann im Exponentialformat dargestellt,
wenn dies eigentlich nicht erfoderlich ist. z.B. 1 als 1E+00
EXP_FORCE hat absoluten Vorrang, auch vor den Flags
FF_NO_EXP_LOW und FF_NO_EXP_HIGH.

EXP_FORCE + EXP_SCI (=23)
Wissenschaftliche Exponentialdarstellung erzwingen.

Beispiele

SetNumberFormat (NF_NORMAL)
1234567 = 1234567
12345678 = 1.2346E+07 ’ gerundet, 5 Stellen
123456789 = 1.2346E+08 ’ gerundet, 5 Stellen
1234567890 = 1.2346E+09 ’ gerundet, 5 Stellen

SetNumberFormat (NF_NORMAL)
numberFormat .exponentMode = EXP_SCI

1234567 = 1234567

12345678 = 12.346E+06 ’ gerundet, 5 Stellen
123456789 = 1283.46E+06 ’ gerundet, 5 Stellen
1234567890 = 1.2346E+09 ’ gerundet, 5 Stellen

Zahlenformatierung - 13

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

1.3 Komplexe Beispiele

Allgemeine Hinweise:

+ Sie kdnnen Variablen vom Typ NumberFormatStruct definieren. Wenn Sie
der Systemvariablen numberFormat eine solche Variable zuweisen
(numberFormat = ..), werden die in der selbst definierten Variablen
gespeicherten Werte aktiviert.

+ Achten Sie auf konsistente Werte (z.B. minDigits <= maxDigits), wenn Sie
numberFormat oder andere Variablen vom Typ NumberFormatStruct
belegen. Die Ergebnisse konnten sonst unerwartet und verwirrend sein.
Typische Fehler korrigiert R-BASIC selbsténdig ohne Fehlermeldung!

« Sie kénnen die mit SetNumberFormat eingestellten Zahlenformate nach-
traglich modifizieren, indem sie die numberFormat-Variable &ndern.

Beispiel 1: Zeitweise Exponentialdarstellung erzwingen. Der aktuelle Wert der
numberFormat-Variable wird in einer anderen Variablen
zwischengespeichert.

DIM nf AS NumberFormatStruct
DIM n

nf = numberFormat ' aktuelle Belegung merken
numberFormat .exponentMode = EXP_FORCE

FOR n =1 TO 8 STEP 0.7
Print n
NEXT
numberFormat = nf ! Wieder herstellen

Beispiel 2: Vorbereiten eines anderen Zahlenformats in einer Variablen

DIM nf AS NumberFormatStruct
Print 20/3 ' 6.6667
nf = SetNumberFormat (NF INTEGER) ' erweiterte Syntax!
' numberFormat wird nicht gedndert
Print 20/3 " 6.6667
numberFormat = nf
Print 20/3 T

Beispiel 3: Eine Funktion, die eine NumberFormat-Struktur bearbeitet.

FUNCTION SetPlusSign(nf AS NumberFormatStruct) as
NumberFormatStruct
nf.plusSign = PS ALWAYS
RETURN nf
END FUNCTION

Zahlenformatierung - 14

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Beispiel 4: SetNumberFormat (NF_FIXED_4) bewirkt, das Zahlen immer mit 4
Stellen nach dem Komma dargestellt werden, auch dort , wo es nicht

notig ist, z.B. bei 1.0000 und 0.2500
Wenn Sie die nachgestellten Nullen entfernen wollen, setzten Sie

minDigits auf Null.

SetNumberFormat (NF_FIXED 4)
numberFormat.minDigits = 0

Print 1 o1
Print 1/4 " 0.25
Print 1/3 " 0.3333

Hinweis zu Beispiel 4: Der Standard fur maxDigits ist 5. Es wurde aber von
SetNumberFormat (NF_FIXED_4) auf den Wert 4 gesetzt.

Beispiel 5: Sie wollen Geldbetrage mit filhrendem Plus, einem fihrenden
Leerzeichen und der Wahrung "Euro" ausgeben.

SetNumberFormat (NF CURRENCY)
numberFormat.preChars = " "
numberFormat.plusSign PS_ALWAYS
numberFormat.addChars = " Euro"

Beispiel 6: Ergénzung zu Beispiel 5.
Das von Print automatisch angehéngte Leerzeichen soll unterdriickt
werden. Um bereits gesetzte Flags zu erhalten (FF_NO_EXP_LOW
wird bereits von SetNumberFormat (NF_CURRENCY) gesetzt) wird
die Kombination mit einer logischen OR-Verknipfung verwendet.

Print 307.87 0 +307.87 Euro <-
! Leerzeichen am Ende

numberFormat.formatFlags \
= numberFormat.formatFlags OR FF_PRINT ADD NO SPACE

Print 307.87 g +307.87 Euro <- kein
! Leerzeichen mehr

Hinweis zu Beispiel 6: Die Variante numberFormat.formatFlags +
FF_PRINT_ADD_NO_SPACE wirde in diesem konkreten Fall
ebenfalls zuldssig, da man in diesem Beispiel sicher sein kann, dass
FF_PRINT_ADD_NO_SPACE noch nicht gesetzt ist.

Zahlenformatierung - 15

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

2 Verwendung von Schriften

2.1 Uberblick

R-BASIC kann alle im GEOS-System installierten Schriften (Fonts) und Schriftstile
verwenden.

FontID’s

GEOS (und auch R-BASIC) identifiziert Schriften Uber eine Font-ldentifikations-
Nummer, die FontID. Naheres dazu erfahren Sie im Abschnitt 2.2

Die Font-Modi
Um die Fahigkeiten von PC/GEOS voll ausreizen zu kénnen, kennt R-BASIC drei
Arten von Schriften (Font-Modi):

* Im Fixed-Font-Modus (Abschnitt 2.3) hat jedes Zeichen eine feste Breite und
eine feste Hohe. R-BASIC kennt und verwaltet die Position jedes einzelnen
Zeichens.

* Im GEOS-Font-Modus (Abschnitt 2.4) tGbernimmt GEOS die Ausgabe des
Textes. Es stehen alle im System installierten Schriften und alle Textstile (Fett,
Kursiv, hochgestellt usw.) zur Verfligung.

+ Im Block-Font-Modus (Abschnitt 2.5, ausfiihrliche Beschreibung im Kapitel 3)
wird fur jeden Buchstaben eine kleine Grafik ausgegeben (z.B. 14x8 Pixel).
Damit ist es mdéglich, sehr einfach grafische Elemente auf den Bildschirm zu
bringen.

Textstile

Die Eigenschaften der Schrift (Textstile: fett, kursiv, unterstrichen usw.) werden in
R-BASIC uber die Systemvariable printFont.style eingestellt. Das Feld style ist
das einzige "6ffentliche" Feld der printFont-Variablen und wird im Abschnitt 2.6

beschrieben. Alle anderen Felder werden automatisch beim Einstellen des Font-
Modus gesetzt.

Die printFont-Variable

Die Systemvariable printFont ist der Kern der R-BASIC-Schriftverwaltung.
Zuweisungen zu dieser Variablen oder einem ihrer Felder bestimmen die von R-
BASIC verwendete Schrift und ihre Eigenschaften. Fortgeschrittene
Programmierer kénnen die printFont - Variable auch direkt modifizieren. Die
notwendigen Informationen dafir finden Sie im Abschnitt 2.7.

Schriften - 16

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

2.2 Zugriff auf GEOS-Fonts

PC/GEQOS identifiziert Schriften (genannt: Fonts) Uber eine sogenannte Font-ID-
Nummer. Diese Font-ID ist an viele Font-Routinen zu ubergeben, z.B. zum
Einstellen des Font-Modus (Abschnitte 2.3, 2.4, 2.5). In R-BASIC sind einige
Fonts, die auf allen GEOS-Systemen installiert sind, namentlich vordefiniert.

Tabelle: Namentlich verfigbare Font-ID’s in R-BASIC

Name der Konstante | Wert Verfugbar mit GEOS-Name
FontSetFixed()
FID_BISON 2560 ja Bison
FID_UNIVERSITY 513 ja University
FID_BERKELEY 514 ja Berkeley
FID_MONO 6656 ja URW Mono
FID_SANS 4608 ja URW Sans
FID_ROMAN 4096 - URW Roman
FID_CRANBROOK 4097 — Cranbrook
FID_SYMBOLPS 6144 — URW SymbolPS

®Hinweis: Die Fonts mit den ID’s FID_BISON, FID_UNIVERSITY und
FID_BERKELEY sind Bitmap-Fonts, die sich nicht zur Ausgabe auf den Drucker
eignen.

Einige weitere Font-ID’s ohne vordefinierten Namen in R-BASIC:

1563 LED (Bitmap-Font)
53006 Fat Fracture

5632 Superb

4612 Sather Gothic

5123 Shattuck Avenue

Weitere Font-ID’s bekommen Sie aus dem PC/GEOS-SDK oder mit dem
FontExplorer, der Uber das Menu "Extras"-"Tools" erreichbar ist.

Um Informationen Uber die im System installierten Fonts zu erhalten, gibt es die

Routinen FontAvail, FontFind, FontGetName$ und FontGetSysinfo, die im
Folgenden beschrieben werden.

Schriften - 17

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

FontAvail

FontAvail pruft, ob ein Font mit der Ubergeben fontlD (Font-ldentifikations-
Nummer) im System installiert ist. Es liefert TRUE (-1, Font ist installiert) oder
FALSE (0, Font ist nicht installiert).

Syntax: <variable> = FontAvail (fontiD)
Parameter: <variable> ist eine numerische Variable
fontID: Identifikationsnummer des Fonts

Beispiele: found
found

FontAvail (FID ROMAN)
FontAvail (53267) ' Auf Animal-Font
' testen

FontFind

FontFind pruft, ob ein Font mit dem Ubergeben Namen im System installiert ist. Es
liefert die Font-ID-Nummer oder O (Font ist nicht installiert).

Syntax: <variable> = FontFind ("FontName")
Parameter: <variable> ist eine numerische Variable
"FontName": Stringausdruck, Fontname

Beispiel: fontID = FontFind ("Cartoon")

FontGetName$

FontGetName$ liefert den GEOS-Namen des Fonts mit der Gibergeben fontID. Ist
der Font nicht installiert, liefert es eine Leerstring.

Syntax: <variable> = FontGetName$ (fontID)
Parameter: <variable> ist eine Stringvariable
fontID: Identifikationsnummer des Fonts

Beispiel: nameOfRoman$ = FontGetName$ (FID ROMAN)

Schriften - 18

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

FontGetSyslInfo

FontGetSysinfo liefert Informationen Uber die Fonts, die GEOS fir bestimmte
Zwecke verwendet, indem es die zugehdrigen INI-Eintrédge ausliest.

Syntax:

<variable> = FontGetSysInfo (x)
Parameter: <variable> ist eine numerische Variable
x: Welche Info wird angefordert. Siehe Tabelle.

Beispiel:

fontSize = FontGetSysInfo (7)

Tabelle: Informationen, die FontGetSysinfo liefert:

Wert | INI-Eintrag Information

0 [system] fontid Default-Font, wenn kein anderer oder
ein fehlerhafter angegeben wurde

1 [system] fontsize GroBe far Default Font

2 [ui] fontid Font fir Menls und nicht editierbare
Texte

3 [ui] fontSize GroBe fur Menls und nicht editierbare
Texte

4 [ui] editableTextFontID Font fr editierbare Texte

5 [ui] editableTextFontsize GroBe fur editierbare Texte

6 [fileManager] fontid Font fir Dateinamen im GeoManager

7 [fileManager] fontsize GroBe fur Dateinamen im GeoManager

Schriften - 19

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

2.3 Der Fixed-Font-Modus

Der Fixed-Font-Modus ist die Standardeinstellung von R-BASIC. Jedes Zeichen
hat eine feste Breite und eine feste HOhe. R-BASIC kennt und verwaltet die
Position jedes einzelnen Zeichens. R-BASIC stehen 5 verschiedene Fonts in
jeweils 5 verschiedenen GrdBen zur Verfigung. Es stehen einige Textstile zur
Verfugung. Die Einstellung der Textstile erfolgt Uber das Feld printFont.style.
Beachten Sie, dass die Texistile sog. Bit-Flags sind (d.h. bestimmte Bits haben
bestimmte Bedeutung). Details dazu finden Sei im Abschnitt 2.6.

FontSetFixed

Die Anweisung FontSetFixed versetzt R-BASIC in den Fixed-Font Modus. Dabei
wird intern die Systemvariable printFont mit den passenden Werten belegt.

Syntax: FontSetFixed fontlD, size [,lineHeight]
fontID: ID-Nummer des Fonts. Zuldssige Werte: siehe Tabelle unten.
size: GroBe der Schrift in Point.
Zulassig sind die Werte 10, 12, 14, 18 und 22
lineHeight: (optional) Zeilenabstand. FontSetFixed stellt standardmaBig
gunstige Werte ein (siehe Tabelle unten). Wahlen Sie den
Zeilenabstand zu klein, Uberlappen sich die Buchstaben.

Beispiel 1: FontSetFixed (FID UNIVERSITY, 18) ‘' Klammern sind OK
Beispiel 2:
' Doppelten Zeilenabstand verwenden (vgl. Tabelle unten)
FontSetFixed FID UNIVERSITY, 18, 48

Hinweise:

+ FontSetFixed stellt automatisch das maximale Textfenster ein, der Cursor
wird nach links oben gesetzt (siehe Window-Befehl). Sie kbnnen das Fenster
anschlieBend mit dem WINDOW-Befehl andern und/oder den Cursor mit
LOCATE positionieren.

+ Verwenden Sie bei Bedarf den Befehl PRINT atXY(x,y); "Text..." um die
Textausgaben pixelgenau zu positionieren.

+ Im Fixed-Font-Modus wird der Texthintergrund per Default in der aktuellen
Hintergrundfarbe geléscht. Um Texte transparent auszugeben mussen Sie die
Hintergrundfarbe auf BG_TRANSPARENT setzen.

PAPER BG_TRANSPARENT

Schriften - 20

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hinweise fir fortgeschrittene Programmierer:

+ Die von PRINT verwendete Schriftart (Font), die TextgréBe und weitere
Eigenschaften werden von der Systemvariable printFont bestimmt, die im
Abschnitte 2.7 beschrieben ist. Fortgeschrittene Programmierer kdnnen die
printFont - Variable auch direkt modifizieren.

+ Fortgeschrittene Programmierer finden eventuell die Syntax
<variable> = FontSetFixed(fontID, size [,lineHeight])
hilfreich. <variable> ist eine Variable vom Typ PrintFontStruct, die dann statt
der Systemvariablen printFont belegt wird.

Tabelle: ZeichengréBen, die von FontSetFixed gesetzt werden. Blau kursiv
bezeichnet das jeweilige printFont-Feld.

Font-ID GroBe Zeichen Zeilen- Spalten x Zeilen
Breite abstand bei Bil16
schirmgréBe
640 x 400 Pixel
FID_BISON 10 7 13 91 x 30
12 8 16 80 x 25
14 10 20 64 x 20
18 # 12 22 53 x 18
22 # 15 25 42 x 16
FID_UNIVERSITY 10 10 14 64 x 28
12 11 16 58 x 25
14 14 19 45 x 21
18 16 24 40 x 16
22 22 30 29 x 13
FID_BERKELEY 10 11 13 58 x 30
12 14 16 45 x 25
14 16 20 40 x 20
18 16 23 40 x 17
22 # 16 25 40 x 16
FID_MONO 10 8 12 80 x 33
12 9 16 71x25
14 10 16 64 x 25
18 13 20 49 x 20
22 14 25 45x 16
FID_SANS 10 10 14 64 x 28
12 12 16 53 x 25
14 14 18 45 x 22
18 16 22 40 x 18
22 21 38 30x10

* . Bison unterstitzt nicht die GroBen 18 und 22 Point, Berkeley nicht 22 Point.
Hier wird nur die Zeichenbox (Breite und HOhe) vergrdBert.

Schriften - 21

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

2.4 Der GEOS-Font-Modus

Im GEOS-Font-Modus Ubernimmt das GEOS-System die Ausgabe des Textes. Es
stehen alle im System installierten Schriften und alle Texistile (Fett, Kursiv,
hochgestellt usw.) zur Verfigung. Die Einstellung der Textstile erfolgt Uber das
Feld printFont.style (siehe Abschnitt 2.6). Beachten Sie, dass die Textstile sog.
Bit-Flags sind (d.h. bestimmte Bits haben bestimmte Bedeutung).

Da die meisten GEOS-Fonts sogenannte proportional-Fonts sind, d.h. ein 'm’ ist
viel breiter als ein ’I’, kennt R-BASIC die Position der einzelnen Buchstaben bei
einer Textausgabe nicht. Die Kommandos WINDOW und LOCATE arbeiten
deswegen mit einer "durchschnittlichen" Buchstabenbreite und viele Print-
Steuercodes arbeiten nicht oder nur eingeschrankt.

R-BASIC hat keine Kontrolle Uber die genaue Position der einzelnen Zeichen

innerhalb eines ausgegebenen Textstrings. Verwenden Sie bei Bedarf den Befehl
PRINT atXY(x,y); "Text..." um die Textausgaben prazise zu positionieren.

FontSetGEOS

Die Anweisung FontSetGEOS versetzt R-BASIC in den GEOS-Font Modus.
Dabei wird intern die Systemvariable printFont mit den passenden Werten belegt.

Syntax: FontSetGEOS fontlD, size [,lineHeight]
Parameter: fontlD: ID-Nummer des Fonts. Weitere Infos zur fontlD und
einige verfugbare Werte finden Sie hier.
size: Gr6Be der Schrift in Point.

lineHeight: optional: Zeilenabstand. FontSetGEOS stellt
standardmaBig gunstige Werte ein (ZeichengrdBe + ca.
30%, exakt: INT(1.35*size)). Wahlen Sie den
Zeilenabstand zu klein, Uberlappen sich die Buchstaben.

Beispiel 1: FontSetGEOS FID SYMBOLPS, 18

Beispiel 2 " Zeilenabstand = 150% der SchriftgroBe
FontSetGEOS (FID ROMAN, 14, 1.5 * 14) ' Klammern sind erlaubt

Hinweise:

« FontSetGEOS stellt automatisch das maximale Textfenster ein, der Cursor
wird nach links oben gesetzt (siehe Window-Befehl). Sie kébnnen das Fenster
anschlieBend mit dem WINDOW-Befehl andern und/oder den Cursor mit
LOCATE positionieren.

+ Die Befehle WINDOW, LOCATE und POS arbeiten mit einer
"durchschnittlichen" Zeichenbreite, der Befehl VGet$ steht nicht zur Verfligung.

Schriften - 22

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

« Im GEOS Font Modus wird der Texthintergrund per Default in der aktuellen
Hintergrundfarbe geldscht. Um Texte transparent auszugeben mussen Sie die
Hintergrundfarbe auf BG_TRANSPARENT setzen.

PAPER BG_TRANSPARENT

Hinweise fir fortgeschrittene Programmierer:

« Die von PRINT verwendete Schriftart (Font), die TextgréBe und weitere
Eigenschaften, z.B. der Wert fir die oben erwdhnte "durchschnittliche"
Zeichenbreite werden von der Systemvariable printFont bestimmt, die im
Abschnitte 2.7 beschrieben ist. Fortgeschrittene Programmierer konnen die
printFont - Variable auch direkt modifizieren.

+ Fortgeschrittene Programmierer finden eventuell die Syntax
<variable> = FontSetGEOS(fontID, size [,lineHeight])
hilfreich. <variable> ist eine Variable vom Typ PrintFontStruct, die dann statt

der Systemvariablen printFont belegt wird.

Schriften - 23

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

2.5 Der Block-Font-Modus (Block-Grafik-Modus)

Im Block-Font-Modus wird statt eines GEOS-Fonts flr jeden Buchstaben eine
kleine, quadratische Grafik ausgegeben (z.B. 16x16 Pixel). Damit entstehen die
typischen "Computer-Schriften" und es ist mdglich, sehr einfach grafische
Elemente auf den Bildschirm zu bringen. Es stehen keinerlei Texistile zur
Verflgung.

In diesem Abschnitt finden Sie eine kurze Ubersicht zum Thema Block-Font-
Modus. Eine ausfuihrliche Beschreibung der Méglichkeiten finden Sie im Kapitel 3.

FontSetBlock

Die Anweisung FontSetBlock versetzt R-BASIC in den Blockgrafik-Modus. Dabei
wird intern die Systemvariable printFont mit den passenden Werten belegt. Falls
Sie FontSetBlock erstmalig im Programm verwenden oder eine andere als die
aktuell gesetzte ZeichengréBe verwenden wird der Zeichengenerator-Speicher
geldscht, d.h. alle Grafikzeichen sind leer. Der Parameter "colored" bestimmt, ob
die Grafikzeichen in diesem Fall als monochrom (einfarbig, Default) oder als farbig
(256 Farben) behandelt werden sollen.

Syntax: FontSetBlock sizex, sizey [, colored]
sizex, sizey: GrdBe der Block-Grafiken in Pixel. Erlaubte Werte liegen
zwischen 2 und 64 (jeweils einschlieBlich).
colored: Ungeladenen Zeichensatz als monochrom (FALSE, Default) oder
als farbig (256 Farben) behandein..

Beispiel: FontSetBlock 16, 24

Hinweise:
+ Eine ausfuhrliche Beschreibung der Mdoglichkeiten der Block-Font-Modus
(auch Block-Grafik-Modus) finden Sie im Kapitel 3.

+ Sie verwenden ganz normal die Print-Anweisung, statt der Buchstaben
erscheinen aber Grafik-Symbole auf dem Schirm.

+ Im Block-Grafik-Modus stehen keine Textstile zur Verfligung.

+ R-BASIC unterstiitzt das Verwenden von Grafikzeichensatzen sowohl durch
den direkten Zugriff auf den Zeichengenerator (den Speicher, in dem die
Grafiksymbole abgelegt sind) als auch durch die Verwendung von Dateien, die
Grafiksymbole enthalten.

+ Das Laden eines Zeichensatzes aus einer Datei (Befehl BlockLoad) uber-
schreibt die durch den Parameter colored gesetzte Einstellung.

+ Ein intuitives Erstellen von Grafiksymbolen ist mit dem Block-Grafik-Editor
moglich, den Sie im Menu "Extras"-"Tools" finden.

Schriften - 24

R-BASIC Handbuch - Spezielle Themen - Vol. 1

2.6 Textstile

Einfach unter PC/GEOS programmieren

R-BASIC kann verschiedene Textstile (wie unterstrichen, fett, kursiv usw.)
verwenden. Welcher Stil verwendet werden soll, wird Uber die Systemvariable
printFont.style bestimmt. Je nach Font-Modus stehen unterschiedliche Stile zur
Verfugung. Im Block-Font-Modus stehen keine Stile zur Verfigung.

Beispiel: printFont.style

TS_BOLD

Flar Hinweise und weitere Beispiele: siehe nachste Seite.

Achtung! Die hier dargestellten Zusammenhange beziehen sich auf die Text-
ausgabe mit dem PRINT Kommando. Textobjekte (Memo, InputLine) haben ihren
eigenen Weg Textstile zu verwenden. Das ist im Objekt-Handbuch, Kapitel 4.10

(Text-Objekte) erklart.

Tabelle: Textstile zur Benutzung mit printFont.style
F: Verfugbar im Fixed-Font Modus
G: Verfugbar im GEOS-Font-Modus
B: Im Block-Font-Modus ist nur TS_DONT_EXEC_CONTROLS verfligbar

Textstil Wert | Modus |Bedeutung

TS_UNDERLINE 1 G, F unterstrichene Schrift

TS_STRIKE_THRU 2 G durchgestrichene-Schrift

TS_SUBSCRIPT 4 G tiefgestellte Schrift scpnn

TS_SUPERSCRIPT 8 G hochgestellte Schrift %"

TS_ITALIC 16 G kursive Schrift

TS_BOLD 32 G, F fette Schrift

TS_OUTLINE 64 G Wenn der Font sowohl Bitmap- und
als auch Outline-Schrift enthalt:
Verwendung der Outline Schrift
erzwingen

TS_CENTER 256 F Buchstaben einzeln zentrieren
(langsamer) ®
Standard bei einigen FID_-Werten im
Fixed-Font-Modus

TS_ERRORLINE 1024 F Unterstrichen mit rot gepunkteter
Linie®

TS_DONT_EXEC_CONTROLS

32768 B [Kein Textstil sondern bewirkt, dass

Steuerzeichen (ASCII-Code < 32)
nicht ausgefuhrt, sondern als
druckbare Zeichen behandelt werden.
Sinnvoll nur fur Block-Fonts.®

(® Wird von R-BASIC realisiert, keine Systemfunktion.

Schriften - 25

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hinweise:

+ Texte werden standardmaBig mit Hintergrund ausgegeben. Um Texte trans-
parent auszugeben mussen Sie die Hintergrundfarbe auf BG_TRANS-
PARENT setzen (z.B. PAPER BG_TRANSPARENT)

+ Im GEOS-Font-Modus ist standardmaBig kein Stil gesetzt.

+ Die Stile sind sog. Bit-Flags, d.h. sie haben bestimmte Bits gesetzt (Flag =
Flagge, in der Computertechnik oft ein bestimmtes Bit) und sollten mit OR
(setzen) und AND NOT (I6schen) kombiniert werden.

Man setzt einen Stil mit OR:
printFont.style = printFont.style OR TS_UNDERLINE
Der Stil "unterstrichen" wird gesetzt, egal ob er bereits gesetzt war oder nicht.

Man I6scht einen Stil mit AND NOT:
printFont.style = printFont.style AND NOT TS_UNDERLINE
Es ist kein Fehler, wenn der Stil gar nicht gesetzt war.

Man fragt einen Stil mit AND ab:
IF printFont.style AND TS_UNDERLINE THEN ...

Man Uberschreibt alte Stile mit neuen so:
printFont.style = TS_ITALIC OR TS_UNDERLINE
Beide Stile werden gesetzt, printFont.style erhalt den Wert 17.

Sie sollten Addition (+) von Stilen vermeiden. Je nachdem, welche Stile schon
gesetzt sind, kénnen die Ergebnisse unerwartet sein.

Beispiel:
Das Setzen von Stilen mit + ist kein Problem:
printFont.style = TS_ITALIC + TS_UNDERLINE

printFont.style ist hat jetzt den Wert 17. Schreibt man jetzt
printFont.style = printFont.style + TS_ITALIC

so erhalt printFont.style den Wert 17 + 16 =33
Das entspricht aber der Stilkombination TS_UNDERLINE und
TS_BOLD.

Komplexes Beispiel:
Fetten gedruckten Text nicht mehr fett drucken (TS_BOLD zurlcksetzen) und
unterstrichen (TS_UNDERLINE) ausgeben:

printFont.style = (printFont.style OR TS_UNDERLINE) AND (NOT
TS BOLD)

Die Klammern sind notwendig, um dem Compiler mitzuteilen, in welcher
Reihenfolge die logischen Operatoren abgearbeitet werden sollen.

Schriften - 26

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

2.7 Direkter Zugriff auf die printFont Systemvariable

Achtung!

Dieser Abschnitt richtet sich an erfahrene oder ambitionierte Programmierer. Die
Kenntnis oder das Verstandnis der hier dargestellten Zusammenhange ist fir die
meisten Anwendungsfalle von Schriften nicht erforderlich. Lediglich das Feld
printFont.style enthalt "6ffentliche" Informationen. Andern Sie die anderen
Felder, kénnten zundchst unerwartete Ergebnisse auftreten. Ublicherweise
verwendet man eine der Befehle FontSetFixed, FontSetGEOS und
FontSetBlock, welche die Systemvariable printFont mit einer stimmigen printFont-
Struktur belegen.

Die Systemvariable printFont ist folgendermaBen definiert:

STRUCT PrintFontStruct
type as word
fontID as word
fontSize as word
charWidth as word
lineHeight as word

style as word'’ offentlich
base as word
END STRUCT
DIM printFont AS PrintFontStruct

Bedeutung der einzelnen Felder

type Speichert den aktuell von PRINT verwendeten Font-Typ. Gdltige
Werte sind FT_FIXED (0, gesetzt von FontSetFixed), FT_GEOS (1,
gesetzt von FontSetGEOS) und FT_BLOCK (2, gesetzt von
FontSetBlock).
fontID Die GEOS-Font-ID fur FT_FIXED und FT_GEOS. Bei ungultigen
Werten wéahlt GEOS einen Ersatzfont, hdufig die BISON-Schrift.
fontSize Die GroéBe der Schrift. Bitmap-Schriften (z.B. FID_BISON)
unterstitzen nicht alle GréBen.
charWidth Breite eines Zeichens.
Fir type = FT_FIXED gilt: Wert in Pixeln
Fir type = FT_GEOS gilt: Wert in % von printFont.fontSize
Fur type = FT_BLOCK gilt: Wert in Pixeln
lineHeight Zeilenabstand, in Pixeln

style Textstil fur FT_GEOS und FT_FIXED: Kombination von TS_xxx-
Werten. Siehe Abschnitt 2.6.
base Abstand der Text-Grundline vom oberen Rand der Zeile.

Schriften - 27

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Tipps und Beispiele fur Fortgeschrittene

+ Sie kbnnen selbst Variablen vom Typ PrintFontStruct definieren und
verwenden. Hier kénnen Sie veranderte Varianten der printFont-Variablen
zwischenspeichern und spater wieder verwenden. Auswirkungen auf den

PRINT-Befehl hat aber nur das Setzen des Systemvariablen printFont.

Beispiel: modifizierte printFont Variable speichern
DIM newFont AS PrintFontStruct

FontSetGEOS (FID SANS, 12) ' belegt printFont

newFont = printFont ' Kopie erstellen
newFont.style = TS STRIKE THRU " noch wirkungslos
FontSetGEOS (FID ROMAN, 20) ' belegt printFont

printFont.style = TS BOLD
Print "Ich bin FETT, URW Roman, 20 Point"

printFont = newFont
Print "Ich bin Durchgestrichen, URW Sans, 12 Point"

+ Sie kénnen praktisch jeden GEOS-Font im Modus FT_FIXED einsetzen. Die
nétigen Werte fiur charWidth, lineHeight und base erfordern aber
Experimentieren. Denke Sie daran, dass der Buchstabe W und das Zeichen ’_’
mit TS_BOLD in das Raster passen sollte.

Beispiel: URW Roman als Fixed Font

FontSetFixed (FID SANS, 14)
' gliltige Startwerte fiir printFont setzen
printFont.fontID = FID ROMAN
printFont.charWidth = <ausprobieren>
printFont.lineHeight = <ausprobieren>
printFont.base = <ausprobieren>

- Das Feld 'base’ bestimmt die vertikale Position der Grundlinie der Buchstaben.
Andern Sie nur das Feld ’size’, erscheinen die Buchstaben auf der alten
Grundlinie, aber gréBer (wie in GeoWrite auch):

Beispiel: Hallo g rO B e Welt

FontSetGEOS (FID CRANBROOK, 14)
Print "Hallo";

printFont.size = 35
Print " groBe ";
printFont.size = 14

Print "Welt"

+ Die Zuweisung eines Wertes zur printFont-Variablen (implizit durch Ver-
wendung einer der FontSet-Funktionen oder explizit mit einer anderen
Variablen) stellt automatisch das maximale Textfenster ein.

Schriften - 28

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

(Leerseite)

Schriften - 29

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

3 Verwendung des Block-Grafik-Modus (Block-Font-Modus)

3.1 Ubersicht iiber die Verwendung von Block-Grafiken

Aus Sicht des Computers sind Buchstaben einfach nur kleine Bilder, Grafiken, die
einem bestimmten ASCIIl-Zeichen zugeordnet sind. Im Blockgrafik-Modus
schreibt R-BASIC mit dem PRINT-Befehl anstelle der "systemdefinierten"
Buchstaben kleine selbst definierte Grafiken mit bis zu 64x64 Pixeln. Diese
Grafiken stehen in einem von R-BASIC verwalteten Speicherbereich, den man
"Zeichengenerator" nennt. Damit kbnnen Sie eigene Zeichenséatze definieren oder
sehr einfach grafische Elemente auf den Bildschirm ausgeben, die aus einzelnen
"Blécken" (z.B. 8x14 Pixeln) bestehen. Diese Technik wird schon seit der
Anfangszeit der Computer verwendet und "Block-Grafik" genannt. Mit dem Befehl
FontSetBlock aktivieren Sie den Blockgrafik-Modus. Falls Sie FontSetBlock
erstmalig im Programm verwenden oder eine andere als die aktuell gesetzte
ZeichengréBe verwenden wird der Zeichengenerator-Speicher geléscht, d.h. alle
Grafikzeichen sind nutzbar, aber leer.

R-BASIC unterstitzt monochrome (einfarbig, mono = Eins, chromos = Farbe) und
farbige Blockgrafikzeichen (256 Farben). Monochrome Grafikzeichen werden in
der aktuellen Vordergrund/Hintergrund Farbkombination gezeichnet, wobei der
Hinterfrund auch transparent sein kann (die Hintergrundfarbe ist dann auf den
speziellen Wert BG_TRANSPARENT gesetzt).

Farbige Blockgrafikzeichen werden in ihren eigenen Farben gezeichnet, nur der
Farbindex 255 wird durch die aktuelle Hintergundfarbe ersetzt (bzw. transparent
gezeichnet).

Der einfachste Weg um Blockgrafik-Zeichen zu verwenden ist die Benutzung des
Blockgrafik-Editors, den Sie im Menl "Extras"-"Tools" finden. Der Blockgrafik-
Editor erlaubt das intuitive Erstellen von Grafikzeichen und schreibt sie in eine
Datei (*.RBF), die vom Befehl BlockLoad in den Zeichengenerator gelesen
werden kann.

Zur Verwaltung der Blockgrafik-Dateien stehen weiterhin die Befehle BlockSave,
BlockSize, Blockinfo zur Verfugung.

Sie haben einen direkten Zugriff auf den Zeichengenerator durch die Verwendung
der Befehle BlockPoke (Schreiben eines einzelnen Bytes in den
Zeichengenerator) BlockPeek (Lesen eines einzelnen Bytes aus dem
Zeichengenerator) BlockREAD (Lesen eines oder mehrerer Zeichen aus DATA-
Zeilen. Die DATA-Werte werden in den Zeichengenerator kopiert).

BlockSelect schaltet zwischen zwei Zeichengeneratoren um.
Wichtig! Die Print-Anweisung erstellt eine Kopie des Zeichens (aus dem
Zeichengenerator) auf dem Bildschirm. Eine nachtragliche Anderung des

Zeichengenerators wirkt sich daher nicht auf den Bildschirm aus, wird aber bei der
néchsten Print-Anweisung berlcksichtigt.

Blockgrafik - 30

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

3.2 Interner Aufbau eines Zeichens im Blockgrafik Modus

Je nachdem, ob die Blockgrafik monochrome oder farbige Zeichen enthalt
unterscheidet sich die internen Struktur des Zeichens etwas.

Farbige Zeichen

In diesem Modus besteht jedes Zeichen aus einer kleinen Farbgrafik mit 256
Farben aus der Systempalette. Eigene Paletten werden nicht unterstitzt. Fur
jedes Pixel wird ein Byte bendtigt. Das heif}t, ein Zeichen der Gr6Be 8x10 Pixel
bendtigt 80 Bytes. Die Z&hlung der Bytes beginnt immer bei Null und erfolgt
zeilenweise, d.h. zuerst von links nach rechts. Soll ein Pixel transparent (oder in
in der aktuellen Hintergrundfarbe) dargestellt werden so muss der Farbindex
(Farbwert) 255 verwendet werden. Zu diesem Farbwert gehért die Farbe WeiB.
WeiBB hat aber auch den Index 16, so dass durch diese Wahl keine Ein-
schrankungen entstehen. Beispiel:
Byte 1

Byte 0 Byte 7
|_—

Byte 8

Das im Bild oben dargestellte Zeichen der GréBe 8x4 Pixel wird durch folgende
Bytes beschrieben (Rot: 12, Blau: 9, transparent: 255):
255, 12, 12, 255,255, 9, 9, 255
255, 12, 12, 255,9, 9, 9, 9
255, 12, 12, 255,9, 9, 9, 9
255, 12, 12, 255,255, 9, 9, 255

Monochrome Zeichen

In diesem Modus besteht jedes Zeichen aus einer kleinen Monochrom-Grafik.
Dabei kann jedes Pixel die Vordergrund- oder die Hintergrundfarbe annehmen.
Far ein 8x8 Zeichen bendtigt man 8 Byte, fur ein 16x16 Zeichen bereits 32 Byte.
Die Z&hlung der Bytes beginnt immer bei Null und erfolgt zeilenweise, d.h. zuerst
von links nach rechts.

8x8 16 x 16
Byte O Byte 1

Byte 2 — . Byte 3

Byte O

héherwertigstes gi?derwertlgstes

Bit

Byte 30 i Byte 31

Blockgrafik - 31

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Den zu einem Byte gehdrenden Zahlenwert erhalt man, wenn man die gesetzten
Bits (in der oberen Darstellung grau) entsprechend folgender Zuordnung addiert:

[128] 64 [32|16 8 [4 [2 | 1 |

Fir die ersten beiden Zeilen (Byte 0 bis 3) im Bild oben rechts (16x16 Pixel) stellt
sich das so dar:

1 [128] 64
1 [128] 64

1281 64 [32 | 16
1281 64 [32 | 16

woraus sich ergibt: Byte 0: 0
Byte1: 16+8+4 =28
Byte2: 8+4=12
Byte 3: 16

Ganz anlog kann man sich die Werte fir das 8x8 Grafikzeichen oben links
ermitteln. Es setzt sich aus den folgenden Werten 8 zusammen:

0, 124, 68, 68, 207, 68, 124, 0

oder gleichbedeutend hexadezimal:
&h00, &h7C, &h44, &h44, &hCF, &h44, &h7C, &h00

Beispiel:

Der folgende Code schaltet in den Blockgrafik-Modus. Mini8x8.rbf ist eine Block-
Font-Datei, die gemeinsam mit R-BASIC installiert wurde. Dann liest es das oben
dargestellte 8x8 Zeichen in den Zeichengenerator auf die Position des Zeichens
'b’. Der Befehl

PRINT "b"

schreibt dann das Grafikzeichen auf den Schirm.

LABEL ZG
DATA 0, 124, 68, 68, 207, 68, 124, O

FontSetBlock 8, 8
BlockLoad "mini8x8.rbf" , 0, 256

Restore ZG
BlockREAD ASC("b"), 1

Color 7, 0 " Grau auf Schwarz
Print "aabbbb" '

Print INK(RED); "aabbcc" a2 -3 cc

Print COLOR(WHITE, RED); "bb" =aky

Blockgrafik - 32

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

3.3 Aufrufen des Blockgrafik Modus

FontSetBlock

Die Anweisung FontSetBlock versetzt R-BASIC in den Blockgrafik-Modus. Dabei
wird intern die Systemvariable printFont mit den passenden Werten belegt. Falls
Sie FontSetBlock erstmalig im Programm verwenden oder eine andere als die
aktuell gesetzte Zeichengr6Be verwenden wird der Zeichengenerator-Speicher
geldscht, d.h. alle Grafikzeichen sind leer. Der Parameter "colored" bestimmt, ob
die Grafikzeichen in diesem Fall als monochrom (einfarbig, Default) oder als farbig
(256 Farben) behandelt werden sollen.

Syntax: FontSetBlock sizex, sizey [, colored]
sizex, sizey: GroBe der Block-Grafiken in Pixel. Erlaubte Werte liegen
zwischen 2 und 64 (jeweils einschlieBlich).
colored: Ungeladenen Zeichensatz als monochrom (FALSE, Default) oder
als farbig (256 Farben) behandlen..

Beispiel: FontSetBlock 16, 24

Hinweise:
+ Im Block-Grafik-Modus stehen keine Textstile zur Verfligung.

+ Sie kénnen das Flagbit TS_DONT_EXEC_CONTROLS im Feld printFont.style
verwenden um die Steuerzeichen mit den ASCII-Codes unter 32 als druckbare
Zeichen auszugeben statt sie "auszufiuhren".

+ Ein intuitives Erstellen von Grafiksymbolen ist mit dem Block-Grafik-Editor
moglich, den Sie im Menu "Extras"-"Tools" finden.

« FontSetBlock stellt automatisch das maximale Textfenster ein, der Cursor wird
nach links oben gesetzt (siehe Window-Befehl). Sie kdénnen das Fenster

anschlieBend mit dem WINDOW-Befehl a&ndern und/oder den Cursor mit
LOCATE positionieren.

* Verwenden Sie bei Bedarf den Befehl PRINT atXY(x,y); "Text..." um die
Textausgaben pixelgenau zu positionieren.

+ Falls Sie FontSetBlock erstmalig im Programm verwenden wird der Zeichen-
generator-Speicher geldéscht, d.h. alle Grafikzeichen sind leer. Das passiert
auch, wenn die GroBe der Zeichen (Parameter sizex oder sizey) seit dem
letzten FontSetBlock geandert wird.

Im Umkehrschluss bedeutet das, das im folgenden Code beim zweiten
FontSetBlock(8, 8) der Zeichensatz nicht neu geladen wird, sondern der mit
BlockLoad geladenen Zeichensatz wieder verwendet wird. Der Parameter
"colored" wird in diesem Fall (d.h. wenn die GréBe nicht geandert wird)
ignoriert.

Blockgrafik - 33

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

FontSetBlock (8, 8) ' Klammern sind erlaubt
BlockLoad "MYFONT.RBF", 0, 256 ' farbiger Zeichensatz erlaubt
<.. diverse Befehle ..>
FontSetFixed (FID UNIVERSITY, 18)
<.. diverse Befehle ..>
FontSetBlock (8, 8) ' wieder "MYFONT" einstellen
'’ auch wenn MYFONT ein
' farbiger Zeichensatz ist

+ Das Laden eines Zeichensatzes aus einer Datei (Befehl BlocklLoad) Uber-
schreibt die durch den Parameter colored gesetzte Einstellung.

Hinweise flr fortgeschrittene Programmierer:
+ Prinzipiell ist es mdglich, die printFont - Variable direkt zu modifizieren. Die
meisten Felder haben im Blockgrafik-Modus jedoch keine Bedeutung.
+ Fortgeschrittene Programmierer finden eventuell die Syntax
<variable> = FontSetBlock(sizex, sizey)
hilfreich. <variable> ist eine Variable vom Typ PrintFontStruct, die dann
statt der Systemvariablen printFont belegt wird.

Blockgrafik - 34

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

3.4 Direkter Zeichengenerator-Zugriff

Die im Blockgrafik-Modus ausgegebenen Grafiken stehen in einem von R-BASIC
verwalteten Speicherbereich, den man "Zeichengenerator" nennt. Mit den
folgenden Befehlen haben Sie direkten Zugriff auf den Zeichengenerator. Zum
Verstédndnis der Arbeitsweise der Befehle finden Sie im Abschnitt 3.2
Informationen zum internen Aufbau eines Zeichens im Blockgrafik-Modus, d.h. der
Organisation des Zeichengenerators.

BlockPoke

Schreibt ein einzelnes Byte in den Zeichengenerator. Die Anderungen werden
beim nachsten "Print" des entsprechenden Zeichens berlcksichtigt.

Syntax: BlockPoke zeichen, byteNr, wert
zeichen ASCII-Code des zu andernden Zeichens
byteNr zu anderndes Byte. Zulassige Werte:
z.B. bei 8 x 8 - Zeichen:0..7
bei 16 x 16 - Zeichen: 0 .. 32
bei 32 x 32 - Zeichen: 0 .. 128
Hinweis: In x-Richtung gibt es evt. nicht genutzte Bits!
z.B. bei 20 x 30 - Zeichen 4 Bits --> byteNr ist von 0 .. 90 erlaubt

Beispiel:
! Das Zeichen 192 soll als schwarzer Block erscheinen
! 16 x 16 - Zeichen vorausgesetzt
FOR n = 0 TO 31
BlockPoke 192, n , 255
NEXT
Print Chr$(192)

BlockPeek

Liest ein einzelnes Byte aus dem Zeichengenerator.

Syntax: <numVar> = BlockPeek (zeichen, byteNr)
zeichen ASCII-Code des zu lesenden Zeichens
byteNr zu lesendes Byte.

Erlaubte Werte: siehe BlockPoke

Beispiel:
! Lesen der Daten des Zeichens 192
! 8 x 8 - Zeichen vorausgesetzt
DIM n, x as REAL
FOR n = 0 TO 7
x = BlockPeek (192, n)
Print x; Hex$ (X)
NEXT

Blockgrafik - 35

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

BlockREAD

Liest ein oder mehrere ganze Zeichen aus DATA-Zeilen in den Zeichengenerator.
Die Anderungen werden beim n&chsten "Print" des entsprechenden Zeichens
berlcksichtigt.

Syntax: BlockREAD zeichen, anzahl

zeichen ASCII-Code des ersten zu andernden Zeichens
anzahl Anzahl der zu lesenden Zeichen. Pro Zeichen werden so viele Werte

gelesen, wie entsprechend der gesetzten GréBe notig sind.

Beispiel:

! Statt des Zeichens "b" soll ein Muster erscheinen, das in
einer DATA-Zeile definiert ist.

!

LABEL ZG

DATA O, 124, 68, 68, 207, 68, 124, 0

Restore ZG

FontSetBlock 8, 8

BlockLoad "mini8x8.rbf" , 0, 256

BlockREAD ASC("b"), 1

Print "abbc" ! es erscheint af3ZFc

BlockSelect

R-BASIC verwaltet zwei Zeichengeneratoren. Damit ist ein schnelles Umschalten
zwischen zwei Grafikzeichenséatzen oder zwischen Text- und Grafikzeichen im
Blockgrafik-Modus méglich. StandardméBig ist Zeichengenerator O aktiv.

Syntax: BlockSelect (nr)
nr Nummer des Zeichengenerators
erlaubte Werte: 0 und 1

Hinweise:

+ Alle Block~ Befehle wirken immer auf den aktuellen Zeichengenerator.

+ Wird erstmalig in den alternativen Zeichengenerator gewechselt, so wird der
aktuelle Zeichensatz dorthin kopiert.

+ Wird mit FontSetBlock() eine andere GréBe eingestellt (Parameter sizex
oder sizey), so wird auf Zeichensatz O gewechselt und der alternative
Zeichengenerator zurickgesetzt. Im Umkehrschluss bedeutet das, bei einem
FontSetBlock() mit der gleichen GroBe der Zeichensatz nicht verandert wird,
auch wenn zwischenzeitlich z.B. ein FontSetFixed erfolgte.

+ Es ist zulassig, dass in einem der Zeichengenaratoren ein monochromer
Zeichensatz geladen ist, im anderen ein farbiger.

Blockgrafik - 36

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

3.5 Zugriff auf RBF-Dateien

Der einfachste Weg um Blockgrafik-Zeichen zu verwenden ist die Benutzung des
Blockgrafik-Editors, den Sie im MenU "Extras"-"Tools" finden. Der Blockgrafik-
Editor erlaubt das intuitive Erstellen von Grafikzeichen und schreibt sie in eine
Datei (*.RBF). In diesem Abschnitt finden Sie die Befehle, die mit diesen R-
BASIC-Blockgrafik-Font-Dateien arbeiten. Informationen zur Organisation des
Zeichengenerators finden Sie im Abschnitt 3.2.

BlockLoad

L&adt ein oder mehrere Zeichen aus einer RBF-Datei in den Zeichengenerator. Die
RBF-Datei befindet sich Ublicherweise im Ordner "USERDATA\R-BASIC\Font".
Sie koénnen jedoch mit dem Parameter "local" festlegen, dass sie im aktuellen
Ordner zu finden ist.

Syntax: BlockLoad fileNameS$, firstChar, count [, local]
fleName$ Name der Blockgrafikdatei, z.B. "MYFONT.RBF"
firstChar ASCII-Code des ersten zu lesenden Zeichens

count Anzahl der zu lesenden Zeichen
Es muss gelten: firstChar + count <= 256
local optional: TRUE oder FALSE (Default: FALSE)

Suchen der Blockgrafikdatei im Ordner "USERDATA\R-
BASIC\Font" (local = FALSE, Default-Einstellung) oder im
aktuellen Ordner (local = TRUE).

BlockLoad ignoriert die von FontSetBlock vorgegebene Farbtiefe und benutzt den
Wert entsprechend der RBF-Datei. Insbesondere ist es zulédssig in den einen
Zeichengenerator einen monochromen Zeichensatz und in den anderen Zeichen-
generator einen farbigen Zeichensatz zu laden, solange die ZeichengréBe Uber-
einstimmt. Das Mischen von monochromen und farbigen Zeichen im gleichen
Zeichensatz ist nicht mdglich.

Fehlerbehandlung:

+ Enthélt die Datei keinen passenden Zeichensatz oder tritt ein anderer Fehler
auf (z.B. Datei nicht gefunden), so wird der Zeichengenerator nicht geéndert.

+ Die globale Variable fileError wird belegt, im Erfolgsfall mit Null, sonst mit
einer Fehlernummer. Ist die Datei keine gultige RBF-Datei so wird fileError
auf den Wert -12 (INVALID_FONT_FILE) gesetzt, stimmt die GréBe der
Grafikzeichen in der Datei nicht mir der aktuell eingestellten GréBe Uberein,
so wird fileError auf den Wert -13 (FONT_SIZE_MISMATCH) gesetzt.

Beispiel:

! Lesen der oberen 128 Zeichen aus einer Datei im Ordner
"USERDATA\R-BASIC\Font"

BlockLoad "MYFONT.RBF", 128, 128

! Lesen der Zeichen a-f aus einer Datei im aktuellen Ordner
BlockLoad "NEWFONT.RBF", ASC("a"), 6, TRUE

Blockgrafik - 37

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

BlockSave

Speichert einen Zeichensatz in eine RBF-Datei. Existiert die Datei bereits, wird sie
ohne Meldung Uberschrieben. Welche der ASCII-Zeichen in die Datei geschrieben
werden hangt vom Parameter "saveBits" ab.

Syntax: BlockSave fileName$, local, saveBits
fleName$ Name der Blockgrafikdatei, z.B. "MYFONT.RBF"
local TRUE oder FALSE

Datei ins aktuelle Verzeichnis (TRUE) oder nach "USERDATA\R-
BASIC\Font" (FALSE) schreiben.

saveBits 16 Bit Wert, der bestimmt, welche Zeichen in die Datei zu
schreiben sind. Jedes Bit steht flir einen Block von 16 Zeichen.
Siehe Tabelle unten.

Fehlerbehandlung:
+ Die globale Variable fileError wird belegt, im Erfolgsfall mit Null, sonst mit
einer Fehlernummer (z.B. Datei in Benutzung).

Verwendung des Parameters saveBits:

RBF-Dateien enthalten meist nicht fir jeden ASCII-Code ein Grafikzeichen. Der
Parameter saveBit legt jeweils fir eine Gruppe von 16 ASCII-Codes fest, ob sie in
die Datei geschrieben werden sollen oder nicht. Bit O steht dabei fir die Codes 0
bis 15, Bit 1 fur 16 bis 31 usw. Die folgenden Tabelle enthalt die entsprechenden
Werte fiir die einzelnen Gruppen. Den Wert flr SaveBits erhalt man, indem man
die zu den entsprechenden Bits gehdrenden Werte (rot markiert) addiert.

Bit Wert ASCII-Codes Bit Wert ASCII-Codes
Nr. [dez. hex. (dezimal) Nr. dez. hex. (dezimal)
0 1 &h1 0..15 8 256 &h100 128 ... 143
1 2 &h2 16 ... 31 9 512 &h200 144 ... 159
2 4 &h4 32 ...47 10 | 1024 &h400 160 ... 175
3 8 &h8 48 ... 63 11 2048 &h800 176 ... 191
4 16 &h10 64 ...79 12 | 4096 &h1000| 192 ...207
5 32 &h20 80...95 13 | 8192 &h2000| 208 ...223
6 64 &h40 96 ... 111 14 | 16384 &h4000(224 ...239
7 128 &h80 112 ... 127 15 | 32768 &h8000| 240 ...255
Beispiele fur typische Bereiche zugehdriger Wert
Zahlen und Sonderzeichen (ASCII Codes 32 ... 63) 12 (=4 +8)
GroBbuchstaben (ASCII Codes 64 ... 95) 48 (= 16+32)
Alle ASCII-Zeichen von 32 (Leerzeichen) bis 127 252 (= &hFC)
Alle ASCII-Zeichen auBer den Steuerzeichen (0...31) 65532 (= &hFFFC)

Blockgrafik - 38

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

BlockSize

Liest die GréBe der Grafikzeichen aus einer Datei. Der Rlckgabewert enthalt
sowohl die Héhe als auch die Breite und berechnet sich zu 256*breite + hdhe.

Ermittlung der H6he / Breite aus dem Rickgabewert x:

breite = ShR(x,8) AND 255 oder : breite = INT (x / 256)
héhe = x AND 255 héhe = x - 256 * breite
Syntax: <numVar> = BlockSize (fileName$ [, local])
fleName$ Name der Blockgrafikdatei, z.B. "MYFONT.RBF"
local optional: TRUE oder FALSE (Default: FALSE)

Datei im aktuellen Verzeichnis (TRUE) oder in "USERDATA\R-
BASIC\Font" (FALSE, Default) suchen.

Fehlerbehandlung:

+ Die globale Variable fileError wird belegt, im Erfolgsfall mit Null, sonst mit
einer Fehlernummer (z.B. Datei nicht gefunden). Konnte die Datei gefunden
werden, ist aber keine gultige RBF-Datei, so wird fileError auf den Wert -12
(INVALID_FONT_FILE) gesetzt.

 Im Fehlerfall (z.B. Datei nicht gefunden oder keine gultige RBF-Datei) liefert
die Funktion den Wert O zurtck.

BlockInfo

RBF-Dateien enthalten flr jedes Zeichen die Information, ob es "belegt" ist oder
nicht. Blocklnfo liest diese Information firr ein Zeichen aus (Ruckgabewerte TRUE
bzw. FALSE) . Zeichen die "nicht belegt" sind existieren trotzdem (k6nnen also mit
BlockLoad gelesen werden), enthalten aber i.a. keine Daten. Beim Print wirken
sie daher wie ein Leerzeichen.

Syntax: <numVar> = BlocklInfo (fileName$, zeichen [, local])
Parameter: zeichen: ASCII-Codes des Zeichens

Restliche Parameter: sieche BlockSize
Fehlerbehandlung: siehe BlockSize

Blockgrafik -39

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

4 Einbinden von Hilfedateien

4.1 Uberblick

R-BASIC stellt Thnen das GEOS-weite Hilfesystem zur Verfigung. Damit kénnen
Sie Hilfedateien schreiben und einbinden, die sich in ihrer Handhabung nicht von
den Hilfedateien der PC/GEOS-SDK-Programme unterscheiden.

Das Grundprinzip des GEOS Hilfesystems

Hilfedateien haben ein spezielles Format befinden sich grundséatzlich im Ordner
USERDATA\HELP. Jede Hilfedatei wird Uber ihren Namen angesprochen. In der
Hilfedatei befinden sich die einzelnen Hilfeseiten. Jede Hilfeseite hat einen
internen Namen, der als "Help Context" bezeichnet wird. Wenn ein Programm
wlnscht, eine bestimmte Hilfeseite zu 6ffnen muss es dem Hilfesystem den
Dateinamen (Help File) und den Help Context mitteilen. Das Hilfesystem 6ffnet
dann die entsprechende Seite in der Hilfedatei und zeigt sie an. Beim Erstellen der
Datei kénnen Sie Verweise ("Hyperlinks") auf andere Hilfeseiten der gleichen
Datei oder auch von anderen Hilfedateien festlegen. Damit kann der Nutzer
zwischen den verschiedenen Hilfeseiten navigieren. Ein Hyperlink auf eine
bestimmte Stelle innerhalb einer Seite (z.B. ans Seitenende) ist leider nicht
moglich.

4.2 Ansprechen der Hilfe in R-BASIC

Instance-Variable Syntax im Ul-Code Im BASIC-Code
helpFile$ helpFile$ = "FileName" lesen, schreiben
helpContext$ helpContext$ = "ContextName" lesen, schreiben

Um das Hilfesystem von GEOS nutzen zu kénnen miissen Sie nur die Hilfedatei
(Help File) und die aufzurufende Hilfeseite (Help Context) festlegen. Dazu stehen
lhnen die Instancevariablen helpFile$ und helpContext$ zur Verfligung. Den
Rest erledigt das System. Beispielsweise kann Uber die Taste F1 automatisch die
Hilfe aufgerufen werden. HelpFile$ und helpContext$ sind fiir alle GenericClass-
Objekte definiert.

Um zu verstehen, wie sie diese Instancevariablen am besten einsetzten missen
Sie verstehen, wie das Hilfesystem arbeitet.

So arbeitet das Hilfesystem

Nehmen wir an, die haben einen Dialog offen, der Uber einen "Hilfe" Button
verfugt. Klicken Sie auf den Button oder dricken Sie "F1" so wird das Hilfesystem
von GEOS aktiviert. Diese sucht zuerst im Dialogobjekt nach einer Hilfedatei und
einem HelpContext. Wenn der Programmierer im Dialog weder einen Wert far
helpContext$ noch einen fiir helpFile$ definiert haben wendet sich das System
an das Parent-Objekt des Dialogs, dann an dessen Parent usw., bis hin zum
Application-Objekt.

Hilfedateien - 40

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Nehmen wir weiterhin an, der Programmierer hat dem Dialog einen helpContext$
gegeben, aber keinen Wert flr helpFile$ festgelegt. Dann durchsucht das System
die Parent-Objekt nur noch nach dem Namen der Hilfedatei (helpFile$). Sobald
das System HelpFile und HelpContext zusammen hat zeigt es die entsprechende
Hilfeseite an.

helpFile$

Syntax Ul- Code: helpFile$ = "FileName"
Lesen: <stringVar> = <obj> . helpFile$
Schreiben: <obj>.helpFile$ = "Text"

HelpFile$ ordnet einem Objekt eine Hilfedatei zu. Da das GEOS Hilfesystem den
Objekttree aufwarts (in Richtung der Parents) durchsucht ist diese Hilfedatei auch
far alle Children des Objekts gultig. Deswegen wird dem Application Objekt mit
helpFile$ eine Hilfedatei zugeordnet. Die Instancevariable helpFile$ ist aber flr
alle GenericClass Objekte zulassig. Haufig wird sie fur Groups, Dialoge und
Buttons verwendet, wenn diese eine Hilfedatei nutzen sollen, die von der im
Applicationobjekt definierten "Haupthilfe" abweicht.

Die Hilfedatei ist eine GEOS-Datei. Deswegen sind fir helpFile$ bis zu 32
Zeichen zulassig.

Hinweis: Damit der Button "Inhalt" im Hilfefenster arbeiten kann missen Sie fir
das Applicationobjekt einen Namen fir die Hilfedatei (helpFile$) festlegen.

helpContext$

Syntax Ul- Code: helpContext$ = "ContextName"
Lesen: <stringVar> = <obj>.helpContext$
Schreiben: <obj>.helpContext$ = "Text"

HelpContext$ ordnet einem Objekt eine Hilfeseite (Help Context) zu. Da das
GEOS Hilfesystem den Objekttree aufwérts (in Richtung der Parents) durchsucht
ist diese Hilfeseite auch fir alle Children des Objekts gultig. Die Instancevariable
helpContext$ ist fiir alle GenericClass Objekte zulassig. Sehr haufig wird ein Help
Context fur Groups, Dialoge und Buttons verwendet, um die entsprechende
Hilfeseite anzuzeigen. Den Namen der Hilfedatei bezieht das System dabei sehr
h&ufig vom Applicationobjekt.

Die Textlange fir helpContext$ ist auf 20 Zeichen begrenzt. Mehr lasst der
GEOQOS Hilfeeditor in GeoWrite nicht zu.

Hilfedateien - 41

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Die Standardkonfiguration

Die meisten Programme verwenden nur eine einzige Hilfedatei und beim Aufruf
der Hilfe wird die immer Startseite (Inhaltsverzeichnis, engl. Top Of Content, TOC)
angezeigt. Das ist sehr einfach zu realisieren. Vereinbaren Sie im Ul Code fur das
Applicationobjekt eine Hilfedatei (helpFile$) und fir das Primaryobjekt den Help
Context "TOC". Dadurch erscheint automatisch der "Hilfe" Button (blaues
Fragezeichen) in der Titelzeile des Primaryobjekts und die Taste F1 zum Aufruf
der Hilfe wird aktiviert.

Application DemoApplication

Children = DemoPrimary
helpfile$ = "R-BASIC Demo Help"

END Object

Primary DemoPrimary
Children =

SizeWindowAsDesired
helpContext$ = "TOC"

END Object

Um den automatisch erzeugten Hilfebutton aus der Titelzeile des Primary wieder
zu entfernen verwenden Sie bei bedarf den Hint PrimaryNoHelpButton.

Eigene Hilfeseiten fir Dialoge

Ein sehr haufiger Fall ist, dass ein Dialog offen ist und der Nutzer Hilfe zu genau
diesem Dialog benétigt. Dann kann er entweder die Taste F1 dricken oder einen
speziellen "Hilfe" Button in diesem Dialog anklicken. Dieses Funktionalitat lasst
sich sehr einfach implementieren. Geben Sie einfach dem Dialogobjekt eine Help
Context. Als Nebenwirkung erzeugt der Dialog automatisch einen Hilfebutton. Das
Hilfesystem ruft dann beim Aufruf der Hilfe (F1 oder anklicken des Hilfebuttons)
automatisch die dem Dialog zugeordnete Hilfeseite auf.

Dialog HelpedDialog
Caption$ = "Dialog mit Hilfe"
Children =
helpContext$="SpecialDialogHelp"
End Object

Bei Bedarf kdnnen Sie auch eine andere Hilfedatei (helpFile$) festlegen:

Dialog HelpedDialog
Caption$ = "Dialog mit Hilfe"
Children =
helpContext$ = "SpecialDialogHelp"
helpFile$ = "SpecialHelpFile"
End Object

Hilfedateien - 42

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Der vom Dialog automatisch erzeugte Helpbutton hat ein Fragezeichen als
Aufschrift. Um diese Aufschrift zu &ndern muss man einen Button anlegen, dessen
interactionCommand Wert auf IC_HELP gesetzt ist. Dieser Button ersetzt dann
den vom Dialog erzeugten Button. Zusatzlich sollten Sie dem Button die
Anweisung

placeObject = REPLY_BAR
geben, falls das angebracht ist.

Dialog HelpedDialog
caption$ = "Dialog mit Hilfe"
children = ... , DialogHelpButton
dialogtype = DT COMMAND
helpContext$="MoreHelp"
End Object

Button DialogHelpButton
Caption$ = "Hilf mir"
interactionCommand = IC_HELP
placeObject = REPLY_ BAR
End Object

Direkter Aufruf spezieller Hilfeseiten

Insbesondere in einem "Hilfe" Menu oder auch in einem Dialog kann der Wunsch
bestehen, mehrere konkrete Hilfeseiten direkt aufzurufen. Das lasst sich sehr
einfach Uber Buttons realisieren, denen als ActionHandler das Schllisselwort
"BringUpHelp" zugewiesen wird. Diese Buttons sollten einen eigen Help Context
und ggf. eine eigene Hilfedatei zugeordnet bekommen.

Dialog HelpedDialog

caption$ = "Dialog mit mehr Hilfen"
children = ... , HelpButtonl, HelpButton2
dialogtype = DT COMMAND

End Object

Button HelpButtonl

Caption$ = "Hilfe Thematisch"
ActionHandler = BringUpHelp
helpContext$ = "ThemaHelp"
End Object

Button HelpButton2
Caption$ = "Spezielle Hilfe"
ActionHandler = BringUpHelp
helpContext$ = "HelpSpecial
helpFile$ = "Help File 2"
End Object

Hilfedateien - 43

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

4.3 Unterstitzung fur "Virtual Desktop”

Wenn Sie das Programm "Virtual Desktop" von Jens-Michael GroB installiert
haben mdchten Sie vielleicht die dort verfligbare Funktionalitat "BubbleHelp" auch
far inre R-BASIC Programme einsetzen. J.-M. GroB hat die BubbleHelp Funktion
Uber die Help Contexte realisiert. Um z.B. einem Button die Bubble-Hilfe "Offnet
die Dateiauswahl" zu geben, verwenden Sie helpContext$ mit drei fihrenden $-
Zeichen.

Button FileSelectButton
Caption$ = "Wdhlen"
helpContext$ = "$$$0ffnet die Dateiauswahl"
End Object

Virtual Desktop erkennt an den flihrenden $$3$, dass es sich um eine Bubble-Hilfe
handelt. Der Text hinter den $$$ kann bis zu 35 Zeichen lang sein.

Sie kénnen BASIC Programme, denen Sie auf diese Weise eine BubbleHelp

Funktionalitdt gegeben haben, problemlos an User verteilen, die Virtual Desktop
nicht installiert haben. Sie laufen dort ohne Einschrankung.

4.4 Erstellen von Hilfedateien
Hilfedateien werden einfach mit GeoWrite erstellt. Dazu muss zuerst der

Hilfeeditor freigeschaltet werden. Sie erkennen am Vorhandensein des Menus
"Hilfe-Editor" dass der Hilfeeditor bereits aktiviert ist.

So schalten Sie den Hilfeeditor frei

Wenn Sie noch kein Hilfe-Editor Menl haben gehen Sie folgendermaBen vor:

1. Starten Sie GEOS und stellen Sie sicher, dass GeoWrite nicht lauft. Fahren Sie
GEOS dann herunter.

2. Fertigen Sie eine Sicherheitskopie ihrer GEOS.INI an und 6ffnen Sie sie mit
einem Texteditor (nicht mit MSWord oder sowas!). Suchen Sie die Kategorie
[configure] und tragen darunter die Zeile

helpeditor = true
ein. Wenn die Kategorie [configure] noch nicht existiert missen Sie sie anlegen.
Dieser Schritt stellt sicher, das man in GeoWrite den Hilfeeditor zuschalten
kann. Speichern Sie die GEOS.INI und starten Sie GEOS und dann GeoWrite.

3. Wéhlen Sie in GeoWrite im MenlU "Optionen" den Punkt "Benutzerebene
andern". Klicken Sie auf "Feineinstellung" und aktivieren Sie das

Hilfedateien - 44

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Kontrollkadstchen "Hilfe-Editor". Wundern Sie sich bitte nicht, dass jetzt keine
Benutzerebene mehr selektiert ist. Mehrfach OK klicken nicht vergessen.

4. Wéahlen Sie "Konfiguration speichern" aus dem Optionen-Menu.
5. Sollte das Hilfe-Editor MenU jetzt noch nicht zu sehen sein, schlieBen Sie bitte

GeoWrite und starten Sie GEOS neu.

So erstellen Sie eine Hilfedatei

1. Planen Sie ihre Hilfedatei grindlich!

2. Offnen Sie in GeoWrite eine neue Datei und speichern Sie sie unter einen
moglichst eindeutigen Namen.

3. Schreiben Sie das "Inhaltsverzeichnis". Das ist die Startseite, von der aus auf
die wichtigsten Unterthemen gesprungen werden soll. Sie muss naturlich die
Texte fur die Hyperlinks zu den Unterthemen enthalten. Ein Beispiel:

Hilfe zu Supergame
Spielregeln
Copyright

Wahlen Sie fur die Hyperlinks ein geeignetes Format, z.B. dunkelblau und
unterstrichen.

Diese Seite kann, wie jede andere Hilfeseite auch, Grafiken oder Bilder
enthalten. Sie sollten Grafiken und Bilder aber immer in die Textebene
einfigen, sonst kdnnten Layoutprobleme beim der Anzeige der Hilfe die Folge
sein.

4. Drucken Sie Strg-Enter um eine neue Seite zu 6ffnen. Es ist wichtig dass jede
Hilfeseite auf einer neuen Seite beginnt.

5. Schreiben Sie den Hilfetext, z.B.:

Spielregeln
Wer gefressen wird hat verloren.

Denken Sie bei der Formatierung daran, dass der Nutzer das Hilfefenster spéater
in seiner GroBe veréandern kann. Arbeiten Sie zur Formatierung nicht mit der
TAB-Taste oder Leerzeichen sondern verwenden Sie konsequent Seitenrander
und Absatzeinziige! Auch Tabulatoren sind mit Vorsicht zu genieBen, da die
Hilfe meist nicht so breit ist wie das Textfenster von GeoWrite. Farben und
Zeichenattribute sind natdrlich auch erlaubt.

Hilfedateien - 45

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

6. Jetzt mussen Sie die internen Seitennamen (Help Contexte) vereinbaren.
Offnen Sie dazu das Hilfe-Editor Menii und wahlen Sie "Kontext erstellen".
Erstellen Sie unbedingt einen Kontext namens TOC, der auch die Eigenschaft
"TOC" aus der Auswabhlliste oben bekommen sollte. TOC steht fir Table of
Content (Inhaltsverzeichnis) und jede Hilfedatei muss zwingend einen Kontext
namens TOC haben, sonst arbeitet das Hilfesystem nicht richtig. Alle anderen
Kontexte behalten die Eigenschaft "Text". Erstellen Sie weitere Kontexte mit
beliebigen Namen, z.B. "Spielregeln" oder "Copyright". Leerzeichen sind
zuldssig, aber unpraktisch.

7.Nun muissen Sie die vereinbarten Help Contexte den einzelnen Seiten
zuordnen. Gehen Sie dazu in GeoWrite zunachst auf lhre Seite mit dem
Inhaltsverzeichnis und markieren Sie die erste Zeile oder die ersten Zeilen.
Dabei gelten die folgenden Regeln:

+ Der Anfang der ersten Zeile muss mit markiert sein. Das gilt auch, wenn es
sich um eine Leerzeile handelt. Leerzeilen enthalten keine Zeichen, auch
keine Leerzeichen oder Sondertext wie Tabulatoren oder Grafiken.

+ Beginnt die Seite mit einer oder mehreren Leerzeilen so sollten Sie alle
fuhrenden Leerzeilen, einschlieBlich der ersten Zeile mit Text, markieren.

* Der Text der ersten Zeile, die ein Zeichen enthélt, wird vom Hilfesystem
fur das Menu "Letzte Schritte" verwendet.

_+ Das Markieren der ganzen Seite ist unzulassig.

Offnen Sie nun wieder das Hilfe-Editor Menl und wéahlen Sie "Kontext setzen".
Klicken Sie auf "TOC" in der Liste der Kontexte und dann auf' Anwenden".
Markieren Sie nun die ersten Buchstaben der erste Hilfeseite und weisen Sie
ihm auch einen Kontext zu. Wichtig ist hier, dass nicht aus Versehen der
Seitenumbruch mit markiert ist, sonst wird der Kontext der vorhergehenden
Seite zugeordnet!

Tipp: Beginnt die erste nicht-Leerzeile mit einer Grafik so findet das Hilfesystem
keinen Text fur die "Letzte Schritte" Liste. Um das zu vermeiden schreiben sie
den Text flr die "Letzte Schritte" Liste in die allererste Zeile, setzen ihn aber auf
"unsichtbar", indem Sie im MenU "Zeichen" - "Textfarbe" den Wert fir "Raster
(%)" auf Null setzen.

8. Jetzt missen Sie die Seiten verlinken. Markieren Sie auf der Seite mit dem

Inhaltsverzeichnis den Link auf das erste Hilfethema. Offnen Sie nun wieder das
Hilfe-Editor Menl und wéhlen Sie "Hyperlink setzen". Wahlen Sie einen
Kontext und klicken Sie auf "Anwenden".
Tipp: Setzen Sie hinter jeden Hyperlink, der allein auf einer Zeile steht ein
einzelnes Leerzeichen, das nicht Teil des Links ist. Das verhindert, dass das
Hilfesystem den Mauscursor bis an Ende der Zeile, wo gar nichts mehr steht,
als "Hyperlink-Cursor" anzeigt.

9. Nun kénnen Sie weitere Hilfeseiten, Kontexte und Hyperlinks nach belieben in
das Dokument einflgen.

10. Zum Abschluss muss die Hilfedatei im USERDATA\HELP Ordner angelegt

werden. Dazu 6ffnen Sie wieder das Hilfe-Editor Meni und wéahlen "Hilfedatei
erstellen". Den Punkt "Daten komprimieren" sollten Sie aktiviert lassen.

Hilfedateien - 46

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

GeoWrite legt eine Kopie des aktuellen Dokuments in USERDATA\HELP ab
und &ndert deren Format so, dass das Hilfesystem sie verwenden kann. Die
GeoWrite-Datei bleibt erhalten. So kdénnen Sie ihre Hilfedatei spéater beliebig
erweitern oder veréandern.

Hilfesysteme mit mehreren Hilfedateien

Es ist méglich einen Hyperlink auf einen Kontext in einer anderen als der aktuellen
Datei zu setzen. Damit kbnnen Sie sehr umfangreiche und komplexe Hilfesystem
aufbauen. Um einen Hyperlink auf einen Kontext in einer fremden Datei zu setzten
mussen Sie den Namen der Datei und den Namen des anzuspringenden
Kontextes manuell vereinbaren.

1.

Offnen Sie den Punkt "Datei definieren" im Menii "Hilfe-Editor". Tragen Sie den
Namen der Hilfedatei ein und klicken Sie auf "Datei hinzuftigen".

. Offnen Sie den Punkt "Kontext erstellen" im Ment "Hilfe-Editor". Klicken Sie

auf " + aktuelle Datei " und wahlen Sie die eben hinzugefiigte Datei aus.
Definieren Sie jetzt den Namen des Kontextes, den Sie in dieser Datei
anspringen wollen.

. Markieren Sie den Hyperlinktext in ihrem Dokument und 6ffnen Sie den

Menupunkt "Hyperlink setzen" aus dem "Hilfe-Editor" Menu. Wé&hlen Sie dort die
gewlnschte Datei sowie den gewlinschten Kontext aus und klicken Sie auf
"Anwenden".

. Erzeugen Sie die beiden betroffenen Hilfedateien (MenuUpunkt "Hilfedatei

erstellen"), starten Sie die zugehdrige Anwendung bzw. lhr BASIC Programm
und testen Sie ihre Hilfedateien. Sollte es ein Problem geben prifen Sie bitte
die Schreibweise (GroB/Kleinschreibung, Leerzeichen) des Dateinamens und
des Kontextes.

Hilfedateien - 47

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

5 Arbeit mit der Zwischenablage

5.1 Uberblick

Zugriff auf die Zwischenablage

Die Arbeit mit der Zwischenablage (auch Clipboard genannt) ist unter PC/GEOS
auf zwei Arten mdglich. Zum einen weiB3 jedes Objekt, z.B. ein Memo-Objekt, ob
es mit der Zwischenablage zusammenarbeiten kann und wie es Daten (z.B. einen
Text oder eine Grafik) in die Zwischenablage kopiert oder aus ihr herausholt.
Zusétzlich unterstitzt PC/GEOS den direkten Zugriff auf die Zwischenablage, d.h.
eine Applikation kann ihre eigenen Daten in einem eigenen Format in die
Zwischenablage kopieren bzw. von dort lesen. R-BASIC bietet ebenfalls beide
Wege an. Auf Objektebene stehen die Methoden (Objektanweisungen)
CipTestCopy, ClpTestPaste, ClpCopy und ClpPaste zur Verfugung. Das
Programm selbst kann mit den Befehlen ClipboardTest, ClipboardPut,
ClipboardGet, ClipboardPutGS, ClipboardGetGS, ClipboardPutBitmap und
ClipboardGetBitmap direkt auf die Zwischenablage zugreifen. Die globale
Variable clipboardError wird auf TRUE gesetzt, wenn es ein Problem bei der
Arbeit mit der Zwischenablage gab.

Uberwachung der Zwischenablage

Ein R-BASIC Programm kann sich bei Bedarf iiber Anderungen des Inhalts der
Zwischenablage informieren lassen. Jedes Mal wenn irgendein Programm (z.B.
GeoWrite) Anderungen an der Zwischenablage vornimmt wird vom Application-
Objekt ein spezieller Handler (OnClpChange-Handler) gerufen.

Das ClipboardFormat

Will ein Programm oder Objekt z.B. einen Text aus der Zwischenablage
entnehmen, so muss es sicher sein, dass sich auch ein Text in der Zwischen-
ablage befindet. Deshalb muss beim Kopieren irgendwelcher Daten in die
Zwischenablage immer eine Information mit abgespeichert werden, worum es sich
handelt. Diese Information heiBt ClipboardFormat und besteht aus zwei WORD-
Werten, der Manufacturer-ID und der FormatNummer. Der erste Wert, die
Manufacturer-ID, frei Ubersetzt die "Hersteller-Kennung", beschreibt, wer die
Software, die Daten ins Clipboard kopiert, geschrieben hat. Der zweite Wert, die
FormatNummer, ist einfach eine laufende Nummer, die verschiedene
Clipboardformate der gleiche Softwareschmiede unterscheiden soll.

Standardformate

Bei allen von PC/GEQOS selbst definierten Formaten (z.B. Text, Bitmap, Graphic
String) ist die Manufacturer-ID Null. Null ist die Herstellerkennung von GeoWorks.
BreadBox hat die Nummer 16431 und der Programmierer von R-BASIC hat die
Nummer 16480. GeoWorks hat einige grundlegende Formate z.B. Text (FormatNr.
0), Graphic String (Folge von Grafikbefehlen, Nr. 1) und Bitmap (Nr. 7) sowie
einige mehr definiert. Diese werden als Standardformate bezeichnet und sind
teilweise im PC/GEOS-SDK dokumentiert. Unter R-BASIC ist ein Zugriff auf die
Formate Text, Graphic String und Bitmap Uber einige R-BASIC Objekte mdglich.
Ein BitmapContent-Objekt kann z.B. sowohl eine Bitmap als auch einen
Graphic String aus dem Clipboard lesen und Textobjekte (Memo, InputLine,

Zwischenablage -48

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

VisText und LargeText) kénnen selbstversténdlich mit Texten im Clipboard
umgehen.

Weiter unten wird beschrieben, wie sie selbst zu einer Manufacturer-ID kommen,
falls Sie eine bendtigen.

Mehrere Formate im Clipboard

Unter PC/GEOS konnen die Daten in der Zwischenablage in mehr als einem
Format gleichzeitig abgelegt werden. Beispielsweise speichert GeoDraw seine
Grafiken immer sowohl als editierbare GeoDraw-Objekte als auch als Graphic
String (der z.B. von GeoWrite oder vom R-BASIC Bitmap-Objekt gelesen werden
kann). Der Grafikbetrachter Gonzo und auch das R-BASIC BitmapContent Objekt
kopiert Bilder sowohl als reine Bitmap als auch als Graphic String in die
Zwischenablage. Wenn Sie in R-BASIC eigene Clipboardformate verwenden,
kénnen Sie allerdings nur genau ein Format gleichzeitig in die Zwischenablage
kopieren.

5.2 Clipboardoperationen

Aus dem Bearbeiten-Menu kennen Sie die Clipboardoperationen "Kopieren",
"Einfigen" und "Ausschneiden". Diese sind unter PC/GEQOS auf ganz elementarer
Ebene und fir alle Objekte definiert - auch wenn die meisten Objekte (z.B. ein
Button) gar nicht mit dem Clipboard zusammenarbeiten kénnen. R-BASIC
Ubernimmt das und deswegen sind die Clipboardoperationen auch unter R-BASIC
fir alle Objekte erlaubt. Sehr viele, wie z.B. ein Button, ignorieren die ent-
sprechenden Anweisungen aber. Bei denjenigen Objekten, die mit dem Clipboard
arbeiten koénnen, z.B. BitmapContent und Textobjekte, finden Sie bei der
Beschreibung dieser Objekte die entsprechenden Detailinformationen.

Methoden:

Methode Aufgabe
ClpTestCopy Prifen, ob Daten ins Clipboard kopiert werden kénnen
ClpCopy Daten ins Clipboard kopieren
ClpTestPaste Prufen, ob passende Daten im Clipboard sind
ClpPaste Daten aus dem Clipboard holen

lobale Variablen:
Variable Aufgabe
clipboardError enthalt im Fehlerfall TRUE, sonst FALSE

Das Kopieren von Daten ins Clipboard wird als Copy-Operation bezeichnet (engl.
to copy: etwas kopieren), das Einfliigen von Daten aus dem Clipboard in ein Objekt
wird als Paste-Operation bezeichnet (engl. to paste: etwas einkleben, etwas
einfugen). Die Operation "Ausschneiden" wird von R-BASIC nicht direkt
unterstitzt. Sie ist identisch mit "Kopieren ins Clipboard" und anschlieBendem
Léschen der Daten aus dem Objekt. Das lasst sich bei Bedarf sehr leicht manuell
implementieren.

Zwischenablage -49

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

clipboardError

Es ist mdglich, wenn auch extrem unwahrscheinlich, dass in der kurzen
Zeitspanne zwischen den Prufen der Zwischenablage mit ClpTest bzw.
ClipboardTest und der Verwendung der Daten mit ClpPaste bzw. ClipboardGet
eine andere Applikation den Inhalt der Zwischenablage verandert hat. Die
Clipboard "Lese" Operationen ClipboardGet und ClpPaste setzen deswegen die
globale Variable clipboardError auf TRUE (Fehler) oder FALSE (OK), je
nachdem ob sie erfolgreich waren oder nicht.

ClpTestCopy, ClpCopy

Die Methode ClpTestCopy weist das Objekt an zu prifen, ob es Daten ins
Clipbord kopieren kann. Die Methode liefert den Wert TRUE (-1, entspricht ja)
oder FALSE (Null, entspricht nein). Objekte, die nicht mit dem Clipboard arbeiten
kénnen liefern hier immer Null, also nein. Die globale Variable clipboardError
wird von ClpTestCopy nicht verandert.

Syntax BASIC-Code: <numVar> = <obj>.ClpTestCopy
Liefert: TRUE: Daten zum Kopieren vorhanden
FALSE: Kann keine Daten kopieren

Die Methode ClpCopy weist das Objekt an, seine Daten ins Clipboard zu
kopieren. Ist es dazu nicht in der Lage, entweder weil das Objekt gar nicht mit dem
Clipboard arbeiten kann oder weil gerade keine Daten verfugbar sind, wird die
Anweisung ignoriert und die globale Variable clipboardError wird auf TRUE
gesetzt.

Syntax BASIC-Code: <obj>.ClpCopy

Beispiel:
DIM n
n = QuestionBox ("Text kopieren?")
IF n = YES then
DemoText .ClpCopy
end if

ClpTestPaste, ClpPaste

Mit der Methode ClpTestPaste kdnnen Sie erfahren, ob sich Daten im Clipboard
befinden, die vom Objekt akzeptiert werden. Dazu prift das Objekt, ob sich ein
geeignetes Format im Clipboard befindet. Objekte, die nicht mit dem Clipboard
arbeiten kénnen liefern hier immer FALSE (Wert Null, bedeutet nein). Die globale
Variable clipboardError wird von ClpTestPaste nicht verandert.

Zwischenablage -50

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Syntax BASIC-Code: <numVar> = <obj>.ClpTestPaste
Liefert: TRUE: Daten zum Einfligen gefunden
FALSE: Kann nichts einfligen

Die Methode ClpPaste weist das Objekt an, Daten aus dem Clipboard bei sich
selbst "einzufigen". Ob das ein "Hinzufligen" oder ein "Ersetzen" ist hangt vom
Objekt ab. Ist das Objekt nicht in der Lage, die Clipboarddaten einzufligen,
entweder weil das Objekt gar nicht mit dem Clipboard arbeiten kann oder weil es
ein Problem gibt, wird die Anweisung ignoriert. Je nach Objekt und Situation kann
es eine Fehlermeldung geben oder auch nicht. Die meisten Objekte (mit
Ausnahme der Textobjekte) setzen die globale Variable clipboardError auf TRUE
bzw. auf FALSE.

Syntax BASIC-Code: <obj>.ClpPaste

Beispiel:
IF DemoBitmap.ClpTestPaste THEN

DemoBitmap.ClpPaste

else
MsgBox "Keine Grafik im Clipboard"
end if

5.3 Das Clipboard tiberwachen

Um in R-BASIC z.B. ein "Bearbeiten" Menu zu implementieren miissen Sie wissen
wenn jemand etwas ins Clipboard kopiert und was es ist. Dann kénnen Sie z.B.
einen "Einfigen" Schalter enablen oder disablen. Fir dieses Zweck verfugt das
Application Objekt (und nur dieses) Uber einen speziellen Actionhandler, der
immer dann aufgerufen wird, wenn sich im Clipboard etwas tut.

Instance-Variable:
Variable Syntax im Ul-Code Im BASIC-Code
OnClpChange OnClpChange = <Handler> nur schreiben

Action-Handler-Typen:
Handler-Typ Parameter

SystemAction (sender as object, state as word,
data1 as word, data2 as word)

Der OnClpChange Handler wird automatisch immer dann aufgerufen wenn sich
die Daten im Clipboard andern. Die Ubergebenen Parameter sind hier ohne
Bedeutung und sollten ignoriert werden. Wenn die Instancevariable
OnClpChange erstmalig belegt wird, meldet sich das Applicationobjekt beim
System fir die Clipboardiberwachung an und erhalt fortan automatisch die

Zwischenablage - 51

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

entsprechenden Informationen. Erstmalig wird der Handler bereits gerufen, wenn
sich das Applicationobjekt anmeldet. Da OnClpChange Ublicherweise im Ul-Code
belegt wird erfolgt der erstmalige Aufruf schon beim Programmstart. Damit ist das
BASIC Programm stets Uber den Stand des Clipboards informiert.

Das folgende Beispiel zeigt das Fragment einer typischen Implementation. Der
"Einfigen" Button ist nur dann aktiv wenn sich auch eine Grafik im Clipboard
befindet.

Im Ul Code:

Application DemoApplication
Children = DemoPrimary
OonClpChange = ClpChangeHandler

END Object

BitmapContent DemoBitmap

END Object

Button PasteButton
Caption$="Einfiigen"

enabled = FALSE ' sicherheitshalber
ActionHandler = PasteImageHandler

END Object

Im BASIC Code:

14

' Der Handler enabled oder disabled den Einfiigen Button

14

SYSTEMACTION ClpChangeHandler

DIM ok
ok = DemoBitmap.ClpTestPaste
IF ok THEN
PasteButton.enabled = TRUE
ELSE
PasteButton.enabled = FALSE
END IF

END Action

4

' Der Button Handler ist sehr simpel

BUTTONACTION PasteImageHandler
DemoBitmap.ClpPaste
END Action

Zwischenablage -52

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

5.4 Eigene Formate verwenden

Bei komplexen Anwendungen kann es sinnvoll oder noétig sein, eigene Daten von
R-BASIC aus ins Clipboard zu kopieren und die wieder von dort zu lesen. Ein
einfacher Fall ware das Kopieren von Inhalten von einem Dokument in ein
anderes. R-BASIC unterstitzt das Uber die drei Befehle: ClipboardTest,
ClipboardPut und ClipboardGet sowie mit der globalen Variaben
clipboardError. Dabei wird jeweils der Inhalte einer Strukturvariablen ins
Clipboard kopiert bzw. von dort gelesen. Sie sollten daher mit den Grundlagen der
Verwendung von Strukturen (Schlisselwort STRUCT) vertraut sein um die
folgenden Abschnitte vollstandig zu verstehen.

clipboardError

Enthalt im Fehlerfall TRUE, sonst FALSE. Details siehe Abschnitt "Clipboard-
operationen".

ClipboardTest

ClipboardTest prift, ob sich Daten mit einem bestimmten Format im Clipboard
befinden. Das Format kann ein GEOS Standardformat oder eine eigenes Format
sein. Die globale Variable clipboardError wird nicht verandert.

Syntax BASIC Code: <numVar> = ClipboardTest (manufiD, formatNr)
manuflD: Manufacturer-ID des Formats
formatNr: Nummer des Formats
Return: TRUE: Format gefunden
FALSE: Format nicht im Clipboard

Die folgenden Tabelle enthalt eine Auswahl der von GeoWorks definierten
Clipboardformate. Einige dieser Formate sind im PC/GEOS-SDK dokumentiert,
andere nicht.

Manufacturer-1D Format-Nummer Inhalt
0 0 Text
0 1 Graphic String (eine Folge

von Zeichenbefehlen)

0 3 Tabellenkalkulationsdaten
0 5 GeoDraw Objekte

0 6 GeoDex Daten

0 7 Bitmap

Unter R-BASIC ist ein Zugriff auf die Formate Text, Graphic String und Bitmap
uber R-BASIC Objekte mdglich.

Zwischenablage -53

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

ClipboardPut

Mit ClipboardPut kénnen Sie den Inhalt einer Strukturvariablen (Struktur-
ausdrlicke sind auch erlaubt) ins Clipboard kopieren. Dazu muissen Sie ein
eigenes ClipboardFormat "definieren" indem sie eine eindeutige Kombination von
Manufacturer-ID und Formatnummer verwenden. ClipboardPut kann nicht
fehlschlagen, die globale Variable clipboardError wird immer auf FALSE gesetzt.

Syntax BASIC Code: ClipboardPut <structExpr>, manuflD, formatNr
<structExpr> Struktur Variable oder Ausdruck
manuflD: Manufacturer-1D ihres Formats
formatNr: Nummer ihres Formats

ClipboardPut erkennt alle sonstigen nétigen Daten wie GroBe der Struktur auto-
matisch. Es kopiert die Struktur 1:1 ins Clipboard und legt als ClipboardFormat die
Kombination aus manuflD und formatNr fest.

Beispiel

STRUCT Mydata
X, Y AS INTEGER
r,g,b AS BYTE
text$S AS STRING(60)
info$ AS STRING(30)

END STRUCT

DIM dat AS Mydata
soc ' hier dat mit Werten belegen
ClipboardPut dat, 16480, 12 ' RABE-Soft ID + Nr.1l2

Wenn Sie bereits eine eigene Manufacturer-ID besitzen ist das "Definieren" eines
eigenen ClipboardFormats ganz einfach: Sie verwenden ausschlieBlich ihre
eigene Manufacturer-ID und denken sich fir jedes Programm, dass ein eigenes
ClipboardFormat bendtigt, eine (oder mehrere) willkirliche Formatnummer(n) aus.
Schreiben Sie sich alle verwendeten Werte auf und legen Sie die Liste gut weg,
damit Sie keinen Wert doppelt verwenden. Das ist schon alles. Es gibt keine
zentrale Stelle wo Sie ihr Format "anmelden" oder gar "genehmigen lassen”
mussen.

Falls Sie noch keine eigene Manufacturer-ID besitzen sollten Sie sich bei
BreadBox eine besorgen. Wenn sie das wirklich nicht wollen ist die Sache
komplizierter. Sie missen sich dann eine "ausdenken" - was unter (wenn auch
sehr unwahrscheinlichen) Umstanden zu Konflikten fiihren kann. Lesen Sie dazu
bitte den Abschnitt 3.4 (Uber die Manufacturer ID) im R-BASIC Benutzer
Handbuch.

ClipboardGet
Mit ClipboardGet kénnen Sie den Inhalt des Clipboards in eine Strukturvariable

kopieren. ClipboardGet prift dabei, ob sich das ClipboardFormat, dass Sie mit

Zwischenablage -54

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

den Parametern manufID und formatNr spezifiziert haben, auch wirklich im
Clipboard befindet. Sollte das nicht der Fall sein liefert ClipboardGet eine "leere"
Struktur (alles Nullen) zuriick. Es erfolgt keine weitere Fehlermeldung. Verwenden
Sie vorher ClipboardTest, und prifen Sie auch die globale Variabe
clipboardError ab, wenn Sie sicher sein wollen.

Syntax BASIC Code: <structVar> = ClipboardGet (manuflD, formatNr)
<structVar> Struktur-Variable
manuflD: Manufacturer-1D ihres Formats
formatNr: Nummer ihres Formats

ClipboardGet erkennt alle sonstigen nétigen Daten wie GrdBe der Struktur auto-
matisch.

Achtung! ClipboardGet flihrt keine weiteren Prufungen aus! Wenn das
ClipboardFormat 'manufID’ + ’formatNr’ gefunden wurde, wird versucht die Daten
zu kopieren. Das heif3t z.B.

+ Wenn Sie statt ihres gewlinschten Formats zuféllig ein Format spezifiziert
haben, dass sich im Clipboard befindet, greift ClipboardGet darauf zu. Im
gunstigsten Fall erhalten Sie Mull, im schlechtesten crasht das System.

« Wenn der Typ der Strukturvariablen links vom Gileichheitszeichen nicht mit
dem Type der Variablen, die bei ClipboardPut verwendet wurde, Uber-
einstimmt, erhalten Sie Muill.

Beispiel
DIM dat AS Mydata !

Siehe ClipboardPut
dat = ClipboardGet (16480, 12)

Zwischenablage -55

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

5.5 Bitmaps und GStrings

R-BASIC kann sowohl auf Bitmapdaten (ManufacturerID = 0, formatNr = 7) als
auch auf Graphic Strings (ManufacturerlD = 0, formatNr = 1) im Clipboard direkt
zugreifen bzw. diese ins Clipboard kopieren. Dabei werden die Bitmap bzw. der
GString uber Handles referenziert.

Um zu prufen, ob sich das richtige Format im Clipboard befindet kénnen Sie die
Routine ClipboardTest (siehe oben) verwenden. Um zu prufen, ob die Operation
erfolgreich war kdnnen Sie die globale Variable clipboardError abfragen.

ClipboardPutBitmap, ClipboardGetBitmap, FreeBitmap

Diese Befehle ermdglichen es eine Bitmap unabhéngig vom BitmapContent-
Objekt in das Clipboard zu kopieren oder von dort zu lesen. Eine ausfihrliche
Beschreibung dieser Befehle finden Sie im Kapitel 2.8.6.4 (Bitmaps und
BitmapHandles) des Programmierhandbuchs.

ClipboardPutGS, ClipboardGetGS

Diese Befehle erméglichen es einen Graphic String in das Clipboard zu kopieren
oder von dort zu lesen. Eine ausfuhrliche Beschreibung dieser Befehle finden Sie
im Kapitel 2.8.5 (Arbeit mit Graphic Strings) des R-BASIC Programmierhand-
buchs.

Zwischenablage -56

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

(Leerseite)

Zwischenablage -57

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

6 Das Dateisystem

6.1 Dateitypen

GEOS kennt verschiedene Dateitypen. Aus Grinden des Systematik werden in
diesem Zusammenhang auch Ordner als spezielle Type von Dateien angesehen.
Die Tabelle unten enthélt eine Ubersicht sowie die Namen der numerischen
Konstanten, die R-BASIC fur diesen Zweck zur Verfigung stellt. Der Vorsatz
GFT_ steht fur "GeosFileType"

FileType

Mit der Funktion FileType ermitteln Sie den Typ einer Datei. Die Datei kann durch
ihren Namen oder eine Dateivariable spezifiziert werden. Die Systemvariable
fileError wird gesetzt oder geldscht.

Syntax: <numVar> = FileType (fileName$)
<numVar> = FileType (<fh>)
fleName$ Name der Datei. Pfadangaben im Namen sind zulassig.
<fh>: Variable (oder Ausdruck) vom Typ FILE. Bezeichnet die Datei.
Return: Dateityp entsprechend der Tabelle unten

Beispiel:

DIM type as word

type = FileType ("Bilder")

IF (type = GFT_DIRECTORY) THEN Print "Es ist ein Ordner!"

Wert Name der Konstante Bedeutung
0 GFT_NOT_GEOS_FILE Keine GEOS-Datei, sondern eine DOS-
Datei
1 GFT_EXECUTABLE Ausfihrbare GEOS-Datei (Applikation,
Library)
2 GFT_VM GEOS-VM-Datei (z.B. ein Write-
Dokument)
3 GFT_DATA GEOS-Daten-Datei (unterstitzt von R-
BASIC)
4 GFT_DIRECTORY Keine Datei, sondern ein Ordner

Tabelle: GeosFileTypen

Hinweis fiir PC/GEOS-SDK-Programmierer: Die PC/GEOS-SDK-Routinen hinter diesem Befehl
(FileGetHandleExtAttributes und FileGetPathExtAttributes) liefern beim Auffinden einer DOS-Datei
oder eines DOS-Verzeichnissen den Fehler ERROR_ATTR_NOT_FOUND. R-BASIC fangt das ab
und liefert den korrekten FileType-Wert.

Dateisystem - 58

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

6.2 Fehlerbehandlung, die Variable fileError

Bei Dateioperationen kann es immer vorkommen, dass ein Problem auftritt, z.B.
dass eine Datei nicht gefunden wird. Das erfordert meistens keinen Programm-
abbruch, sondern das Programm kann darauf reagieren, indem es die numerische
Systemvariable fileError abfragt.

Alle Befehle, die mit Dateien und Pfaden arbeiten (mit Ausnahme der FileFind-
Routinen) belegen die fileError-Variable.

Das bedeutet: Trat eine Fehler auf, wird ein Fehlercode (Fehlernummer) in der
Variablen angelegt. Trat kein Fehler auf, wird die Variable mit Null belegt. Der
Wert wird dort bis zur ndchsten Dateioperation gespeichert und kann beliebig oft
abgefragt werden. Im Anhang finden Sie eine Liste der Fehlercodes.

ErrorText$

In GEOS sind sehr viele Fehlercodes definiert, nicht nur fir Dateioperationen.
Einige davon sind MS-DOS-Fehler, andere sind GEOS-intern. Bei der Arbeit an
einem Programm, das Fehlercodes auswerten und entsprechend reagieren soll,
aber auch bei der Fehlersuche im eigenen Programm selbst, ist es sehr hilfreich,
die Bedeutung dieser Codes zu kennen.

Die Funktion ErrorText$ liefert zu einem Fehlercode den passenden Text. Das
sind weitgehend selbsterklarende, aber englische Bezeichnungen, die 1:1 dem
PC/GEOS-SDK entnommen wurden, z.B. ERROR_PATH_NOT_FOUND (Pfad
nicht gefunden).

Bei unbekannten Fehlern wird ein Text in der Form <ERROR_CODE: 301>
geliefert.

Syntax: <stringVar> = ErrorText$(fehlerCode)

Beispiel:
IF (fileError) THEN Print ErrorText$(fileError)

Dateisystem - 59

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

6.3 Arbeit mit FILE Variablen

Eine komplette Beschreibung der Variablentypen, auch des Datentyps FILE ,
finden Sie im R-BASIC Programmierhandbuch.

Variablen vom Typ FILE kdénnen behandelt werden wie alle anderen Variablen in
R-BASIC auch. Man kann z.B. Felder von Dateivariablen anlegen (z.B. DIM
dateien(10) AS FILE), sie als Elemente von Strukturen verwenden, als Parameter
an SUB’s oder FUNCTION'’s libergeben oder als Rickgabetyp von FUNCTION’s
benutzen. Nur "rechnen" kann man mit ihnen nicht.

An dieser Stelle soll noch einmal auf die Funktionen NullFile und Filelnfo$
hingewiesen werden.

NullFile

NullFile() ist eine Funktion, die eine "leere" Dateivariable liefert, d.h. sie dient
zum Loéschen einer Dateivariable. Achtung! NullFile() schlieBt die Datei nicht.
Verwenden Sie dazu vorher FileClose().

Syntax: <han> = NullFile()
Die Klammern sind erforderlich, weil NullFile eine Funktion ist.
<han>: Variable vom Typ FILE

FileInfo$

Die Funktion FileInfo$ liefert einen Text, der interne Informationen Uber eine
Dateivariable liefert. Sie kdnnen diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = FileInfo$(<f>)
<f>: Variable oder Ausdruck vom Typ FILE
<stringVar>: Stringvariable

Dateisystem -60

R-BASIC Handbuch - Spezielle Themen - Vol. 1

Einfach unter PC/GEOS programmieren

(Leerseite)

Dateisystem - 61

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

7 Arbeit mit Pfaden und Ordnern

7.1 Angabe von Pfaden

Fir R-BASIC-Befehle, die einen Pfad erwarten (z.B. CreateDir, DeleteDir
SetCurrentPath, SetStandardPath, PushDir, PopDir und viele File~ Befehle)
gelten einheitliche Konventionen, wie Pfade angegeben werden kénnen.

Relative Pfade konnen ein einfacher Ordnername (z.B. "Bucher") oder eine
einfacher Pfad (z.B. "Blcher\Informatik\BASIC") sein.
Der Pfad bezieht sich auf das aktuelle Arbeitsverzeichnis.
Man beachte, dass ein Backslash in Stringkonstanten doppelt angegeben
werden muss.

Pfade relativ zum Wurzelverzeichnis beginnen mit einem Ruckwéarts-Strich
("Backslash", \)
z.B. "\\Bucher" oder "\\Blicher\\Informatik\BASIC"
Der Pfad bezieht sich auf das Wurzelverzeichnis des aktuellen Laufwerks.

Absolute Pfadangaben enthalten am Beginn eine Laufwerksbuchstaben.
z.B. "F:\\Bucher" oder "F:\\Bucher\Informatik\BASIC"

Diese beziehen sich immer auf das angegebene Laufwerk.

Eines Sonderfall stellen "reine" Laufwerksbezeichner dar,
z.B. "F:" oder "D:\\" (doppelten Backslash beachten)
Beide Schreibweisen kann man in SetCurrentPath verwenden und
BEIDE beziehen sich auf das Wurzelverzeichnis des angegebenen
Laufwerks. Im Gegensatz zu DOS unterstitzt GEOS keinen "aktuellen"
Pfad auf jedem Laufwerk.

Standardpfade beziehen sich auf typische GEOS-Ordner, wie z.B. WORLD oder
DOCUMENT. Sie werden Uber numerische Konstanten (SP_TOP,

SP_DOCUMENT usw.) eingestellt. Die entsprechenden Befehle finden Sie
weiter unten im Kaptiel 7.4.

Weitere Hinweise:
+ Jeder Pfad kann ein beliebiger Stringausdruck sein.
* In Stringkonstanten muss der Backslash ('\') doppelt angegeben werden, da
ein einfacher Backslash ein Sonderzeichen einleitet (z.B. Zeilenumbruch "\r")
oder einen ASCII Code (z.B. "\201"):

Pfade und Ordner - 62

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

7.2 Anlegen und Léschen von Ordnern und Pfaden

Ordner werden auch als "Verzeichnisse" (englisch: Directory) bezeichnet. Viele
diesbezlgliche Befehle enthalten deswegen ein "DIR" im Namen.

R-BASIC kann ganze Pfade, bestehend aus mehreren Verzeichnissen, auf einmal
anlegen oder l6schen. Die meisten Programmiersprachen kénnen das nicht.

CreateDir

CreateDir (erzeuge Directory, lege Ordner an) legt einen Ordner oder einen
kompletten Pfad auf einem Datentrager an. R-BASIC kann, im Gegensatz zu
vielen anderen Programmiersprachen und dem PC/GEQOS-SDK einen kompletten
Pfad aus mehreren Unterverzeichnissen auf einmal anlegen.

Syntax: CreateDir path$

path$: Bezeichnung des anzulegende Pfades. Es darf eine absolute oder
eine relative Pfadangabe (siehe Kapitel 7.1) sein.

CreateDir setzt die Systemvariable fileError, z.B. wenn das spezifizierte Laufwerk
nicht existiert. Trat kein Fehler auf, enthélt fileError den Wert O.

DeleteDir

DeleteDir (I6sche Directory) 16scht einen Ordner oder einen kompletten Pfad vom
Datentrager. DeleteDir setzt voraus, das sich keine Dateien mehr im zu
l6schenden Ordner befinden, ansonsten kann der Ordner nicht geléscht werden
und die Variable fileError wird entsprechend gesetzt.

Syntax: DeleteDir path$ [,killAll]

path$ Bezeichnung des zu léschenden Pfades. Es darf eine absolute oder
eine relative Pfadangabe sein.

killAIl Wenn angegeben und ungleich Null (z.B. 1, YES oder TRUE): Es soll
der gesamte Pfad geléscht werden. Ansonsten (killAll nicht angegeben
oder Null) I16scht DeleteDir nur den letzten Ordner eine Pfades.

DeleteDir setzt die Systemvariable fileError, z.B. wenn der zu I6schende Ordner
nicht existiert oder nicht leer ist. Soll ein Pfad geléscht werden, so missen alle zu
l6schenden Ordner leer sein. Trat kein Fehler auf, enthalt fileError den Wert 0.

Beispiele:

CreateDir "Biicher"
CreateDir "G:\\Daten\\Programme"
s$ = "\\daten" : CreateDir s$ + "\\Programme"

Pfade und Ordner - 63

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

DeleteDir "Bilicher"
DeleteDir "G:\\Daten\\Programme"

' Der Ordner Programme aus dem
Ordner "G:\Daten" wird geldscht
DeleteDir "G:\\Daten\\Programme", YES

' Der komplette Pfad
"G:\Daten\Programme" wird geldscht

' Fehlerabfrage
DeleteDir "G:\\Daten\\Programme", YES

IF (fileError) THEN MsgBox "G: \\Daten\\Programme konnte nicht
vollstandig geldscht werden"

Hinweis: Zur Abwartskompatibilitdt mit alteren BASIC-Programmen kann man
statt CreateDir auch MKDIR ("Make Directory") und statt DeleteDir auch RMDIR
("Remove Directory") schreiben.

Pfade und Ordner - 64

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

7.3 Der aktuelle Ordner

Alle Dateioperationen in R-BASIC beziehen sich auf ein bestimmtes Verzeichnis,
das "aktuelle Verzeichnis". Der Begriff "Pfad" (englisch "path") wird verwendet,
wenn ein Weg tber mehrere Verzeichnisse gemeint ist bzw. gemeint sein kann.

currentPath$, currentDir$, geosPath$

Diese Systemvariablen enthalten die Namen wichtiger Pfade bzw. Verzeichnisse.

currentPath$ enthalt den aktuellen Pfad z.B. "D:\\GEOS\DOCUMENT\Bilder"
currentDir$ enthélt das aktuelle Verzeichnis ohne Pfad z.B. "Bilder"
geosPath$ enthalt das Geos-Hauptverzeichnis z.B. "D:\GEOS"

Beispiel:
PRINT "Geos befindet sich im Ordner " ;geosPath$

SetCurrentPath

SetCurrentPath (Setze aktuellen Pfad) stellt das aktuelle Verzeichnis ein.

Syntax: SetCurrentPath path$

path$: Bezeichnung des einzustellenden Pfades. Es darf eine absolute oder
eine relative Pfadangabe sein.

SetCurrentPath setzt die Systemvariable fileError, z.B. wenn das spezifizierte
Laufwerk nicht existiert. Trat kein Fehler auf, enthalt fileError den Wert 0.

Beispiele:

SetCurrentPath "Biicher"

SetCurrentPath "G:\\Daten\\Programme"

s$ = "\\daten" : SetCurrentPath s$ + "\\Programme"

Hinweis: Zur Abwartskompatibilitat mit alteren BASIC-Programmen kann man statt
SetCurrentPath auch CHDIR ("Change Directory") schreiben.

PushDir, PopDir

GEOS verfugt Gber die einzigartige Fahigkeit, sich den aktuellen Pfad zu merken.
Daflr wird eine sogenannter "Stack" (deutsch: Stapelspeicher), verwendet. Wie
bei einem Papierstapel wird der Wert, der als letztes auf dem Stapel abgelegt
wurde ("Push"-Operation) als erstes wieder vom Stapel entnommen ("Pop"-
Operation). Zu jedem PushDir muss es daher ein dazugehdériges PopDir geben.

Pfade und Ordner - 65

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Syntax: PushDir
Das aktuelle Verzeichnis wird auf dem Stack abgelegt.

Syntax: PopDir
Das zuletzt auf dem Stack abgelegte Verzeichnis vom Stack geholt
und als aktuelles Verzeichnisse wieder eingestellt.

PushDir und PopDir setzen die Variable fileError zurlck (Null, kein Fehler).

Beispiel:
! Es sei "G:\Daten\Audio" das aktuelle Verzeichnis

PushDir ' Merken von "G:\Daten\Audio"
SetStandardPath SP_TOP ' Einstellen von, z.B. "C:\GEOS"
PopDir ' Wiederherstellen von "G:\Daten\Audio"

Pfade und Ordner - 66

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

7.4 GEOS Standardpfade

SetStandardPath

SetStandardPath stellt eines der GEOS-Standardverzeichnisse als aktuelles
Verzeichnis ein. Das funktioniert unabh&ngig davon, auf welchem Laufwerk und in
welchen Verzeichnis GEOS installiert ist und auch dann, wenn eine
landerspezifische GEOS-Version vorliegt, deren Verzeichnisse anders heiBen.

Syntax: SetStandardPath pfadKonstante

pfadKonstante:
Eine der Standard-Pfadkonstanten. Siehe Tabelle.
Achtung! Ein ungultiger Wert fur ‘pfadKonstante’ kann das System
abstirzen lassen!

Die Variable fileError wird zurtickgesetzt (Null, kein Fehler).

Beispiele:
SetStandardPath SP_DOCUMENT
SetStandardPath SP_TOP

R-BASIC kennt die folgenden Standard-Pfadkonstanten

Konstante Wert Eingestelltes Verzeichnis
SP_TOP 1 Geos Hauptverzeichnis
SP_WORLD 3 WORLD-Verzeichnis
SP_DOCUMENT 5 DOCUMENT-Verzeichnis
SP_SYSTEM 7 SYSTEM-Verzeichnis
SP_PRIV_DATA 9 PRIVDATA-Verzeichnis
SP_USER_DATA 19 USERDATA-Verzeichnis
SP_HELP 39 HELP-Verzeichnis
(Hilfedateienverzeichnis)
SP_TEMPLATE 41 TEMPLATE-Verzeichnis
(Vorlagenverzeichnis)
SP_DOS_ROOM 45 DOS-Room-Verzeichnis
SP_WASTE_BASKET | 49 Papierkorb
SP_BACKUP 51 Sicherheitskopien-Verzeichnis

Im PC/GEQS SDK sind weitere Konstanten definiert.

Pfade und Ordner - 67

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

ConstructPath$

ConstructPath$ erzeugt einen vollstdndigen Pfad aus einer Pfadkonstante und
einem Unterverzeichnis. Es wird nicht gepruft, ob der so erzeugte Pfad tatséchlich
existiert.

Syntax: <path$> = ConstructPath$ (pfadKonstante, tail$)

pfadKonstante: Eine der Standard-Pfadkonstanten aus der Tabelle oben. Oder
Null wenn der aktuelle Pfad anstelle eines Standardpfades verwendet
werden soll.

tails$: Unterordner

<path$>: Variable vom Typ String oder besser String(200). GEOS-Pfade
kénnen bis zu 198 Zeichen lang werden.

Die Variable fileError wird gesetzt (Null, oder Fehlerwert).

Beispiele:
path$ = ConstructPath$ (SP _DOCUMENT, "Biicher\\Karl May")
path$ = ConstructPath$ (SP_USER DATA, "R-BASIC\\IMAGES")

SetCurrentPath "C:\\GEOS\\DOCUMENT\\Bilder"
path$ = ConstructPath$ (0, "Urlaub")
! —=> liefert "C:\GEOS\DOCUMENT\Bilder\Urlaub"

GetStandardPath

GetStandardPath findet die zu einem Pfad gehérende Standardpfad-Konstante.
Beschreibt der Pfad keinen Ordner im GEOS-System so liefert GetStandardPath
den Wert Null. In diesem Fall wird die Variable fileError auf den Wert 3
(ERROR_PATH_NOT_FOUND) gesetzt.

Syntax: <numVar> = GetStandardPath ("pfadstring")

"pfadstring": Bezeichnet den gewlnschten Pfad. Es muss ein absoluter Pfad,
einschlieBlich Laufwerksbuchstabe sein.
<numVar>: numerische Variable.

GetStandardPath findet praft nicht, ob der Pfad wirklich existiert, sondern nur, ob
er einen Standardpfad enthélt. Die Variable fileError wird gesetzt (Null, oder
Fehlerwert).

Pfade und Ordner - 68

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Beispiele. Wir nehmen an, GEOS befindet sich im Ordner "C\GEOS". Der aktuelle
Ordner sei "DOCUMENT\Bilder".

DIM stdPath

stdPath = GetStandardPath ("C:\\GEOS\\USERDATA\\R-BASIC")
* => liefert 19 (SP_USER DATA)

stdPath = GetStandardPath (currentPath$)
' -> liefert 5 (SP_DOCUMENT)

stdPath = GetStandardPath ("D:\\SOURCE\\PCGEOS")
' => liefert 0 (kein Standardpfad)

GetStandardPathTail$

GetStandardPathTail$ ist das Gegenstliick zu GetStandardPath und findet den
zum Standardpfad gehérenden Unterordner. Beschreibt der Pfad keine Ordner im
GEOS-System gibt GetStandardPathTail$ den Ubergebenen Pfadstring komplett

zurick. In diesem Fall wird die Variable fileError auf den Wert 3
(ERROR_PATH_NOT_FOUND) gesetzt.

Syntax: <path$> = GetStandardPathTail$ ("pfadstring")

"pfadstring": Bezeichnet den gewlinschten Pfad. Es muss ein absoluter Pfad,
einschlieBlich Laufwerksbuchstabe sein.

<path$>: Variable vom Typ String oder String(200). GEOS-Pfade kénnen bis
zu 198 Zeichen lang werden.

GetStandardPathTail$ findet priift nicht, ob der Pfad wirklich existiert, sondern nur,

ob er einen Standardpfad enthélt. Die Variable fileError wird gesetzt (Null, oder
Fehlerwert).

Beispiele. Wir nehmen an, GEOS befindet sich im Ordner "C\GEOS". Der aktuelle
Ordner sei "DOCUMENT\Bilder".

DIM path$ as String(200)

path$ = GetStandardPathTail$ ("C:\\GEOS\\USERDATA\\R-BASIC")
' -> liefert "R-BASIC"

path$ = GetStandardPathTail$ (currentPath$)
" -> liefert "Bilder"

path$ = GetStandardPathTail$ ("D:\\SOURCE\\PCGEOS")
' => liefert "D:\\SOURCE\\PCGEOS" (kein Standardpfad)

Pfade und Ordner - 69

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

(Leerseite)

Pfade und Ordner - 70

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

(Leerseite)

Pfade und Ordner - 71

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

(Leerseite)

Pfade und Ordner - 72

