

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Spezielle ThemenSpezielle Themen
Volume 1

Zahlenformatierung, Schriften, Blockgrafik,
Hilfedateien, Zwischenablage,

Dateisystem, Pfade, Ordner

Version 1.0

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

 Inhaltsverzeichnis

1 Formatierung von Zahlen ... 4
1.1 Standard-Zahlenformate ... 4
1.2 Die numberFormat Variable ... 6

1.2.1 Überblick .. 6
1.2.2 Einstellen der Stellenzahl ... 9
1.2.3 Zahlen in Exponentialdarstellung ... 11

1.3 Komplexe Beispiele .. 14

2 Verwendung von Schriften .. 16
2.1 Überblick ... 16
2.2 Zugriff auf GEOS-Fonts .. 17
2.3 Der Fixed-Font-Modus .. 20
2.4 Der GEOS-Font-Modus .. 22
2.5 Der Block-Font-Modus (Block-Grafik-Modus) ... 24
2.6 Textstile .. 25
2.7 Direkter Zugriff auf die printFont Systemvariable .. 27

3 Verwendung des Block-Grafik-Modus (Block-Font-Modus) 30
3.1 Übersicht über die Verwendung von Block-Grafiken 30
3.2 Interner Aufbau eines Zeichens im Blockgrafik Modus 31
3.3 Aufrufen des Blockgrafik Modus ... 33
3.4 Direkter Zeichengeneratorzugriff .. 35
3.5 Zugriff auf RBF-Dateien .. 37

4 Einbinden von Hilfedateien .. 40
4.1 Überblick ... 40
4.2 Ansprechen der Hilfe in R-BASIC ... 40
4.3 Unterstützung für "Virtual Desktop" .. 44
4.4 Erstellen von Hilfedateien ... 44

5 Arbeit mit der Zwischenablage .. 48
5.1 Überblick ... 48
5.2 Clipboardoperationen ... 49
5.3 Das Clipboard überwachen .. 51
5.4 Eigene Formate verwenden ... 53
5.5 Bitmaps und GStrings ... 56

6 Das Dateisystem ... 58
6.1 Dateitypen .. 58
6.2 Fehlerbehandlung, die Variable fileError ... 59
6.3 Arbeit mit FILE Variablen ... 60

7 Arbeit mit Pfaden und Ordnern ... 62

7.1 Angabe von Pfaden ... 62
7.2 Anlegen und Löschen von Ordnern und Pfaden .. 63
7.3 Der aktuelle Ordner .. 65
7.4 GEOS Standard-Pfade ... 67

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 4

1 Formatierung von Zahlen

Um einzustellen, wie R-BASIC Zahlen darstellt, haben Sie drei Möglichkeiten:

1. Sie verwenden das voreingestellte Zahlenformat. Das sollte für viele Standard-
anwendungen ausreichen.

2. Sie verwenden die Funktion SetNumberFormat, die im Abschnitt 1.1 be-
schrieben wird. Damit können Sie weitere typische Standardformate einstellen,
wie z.B. eine feste Anzahl von Nachkommastellen.

3. Wenn Sie damit nicht auskommen haben Sie mit Hilfe der globalen Variablen
numberFormat weitgehende Kontrolle darüber, wie R-BASIC Zahlen ausgibt.
Im Abschnitt 1.2 finden Sie ausführliche Informationen dazu. Sie können z.B.
vorgeben wie viele Nachkommastellen ausgegeben werden oder wann in die
Exponentialdarstellung gewechselt wird.

1.1 Standard-Zahlenformate

Für viele Zwecke reichen die Standard-Zahlenformate aus, die mit der Funktion
SetNumberFormat eingestellt werden können. Intern belegt SetNumberFormat die
globale Variable numberFormat mit vorgegebenen Werten.

SetNumberFormat

Stellt das Zahlenformat für die Anzeige von Zahlen ein. Die verfügbaren
Zahlenformate finden Sie in der Tabelle auf der nächsten Seite.

Syntax 1: SetNumberFormat format
Die Systemvariable numberFormat wird belegt.
Das neue Zahlenformat wird sofort wirksam.
format: einzustellendes Zahlenformat (ein numerischer Wert)

Beispiele: SetNumberFormat NF_NORMAL
SetNumberFormat (NF_SCI_4) ’ Klammern sind OK

Weitere Beispiele finden Sie im Abschnitt 1.3 (Komplexe Beispiele)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 5

Für ’format’ stehen folgende Werte zur Verfügung:

 Wert Bezeichnung Wirkung
 0 NF_NORMAL Standardeinstellung von R-BASIC. Genauigkeit:

5 Stellen. Zahlen unter 0.0001 und über
9999999 werden im Exponentialformat
dargestellt.

 1 NF_CURRENCY Währungs-typische Darstellung mit 2
Nachkommastellen (gerundet).
Zahlen unter 0.005 werden als Null dargestellt(1)

 2 NF_MAX_PREC Maximale Genauigkeit mit 15 Stellen
Darstellung immer im Exponentialformat (2)

 3 NF_SCI_3 Wissenschaftliche Darstellung (3) mit 3 Stellen
z.B. 34.8E+06

 4 NF_SCI_4 Wissenschaftliche Darstellung (3) mit 4 Stellen
z.B. 34.82E+06

 5 NF_INTEGER Ganzzahlige Darstellung
 6 NF_FIXED_3 Immer 3 Nachkommastellen, auch ein

Exponentialdarstellung
z.B. 123.456
oder 4.567E+8

 7 NF_FIXED_4 Immer 4 Nachkommastellen, auch ein
Exponentialdarstellung z.B. 234.8765

 (1) Durch die interne Zahlendarstellung kann es zu Rundungsfehlern kommen.
Intern wird deswegen ein Flag gesetzt (FF_NO_EXP_LOW, siehe Kapitel 1.2)
dass bewirkt, dass Werte sehr nahe an Null (z.B. 1E-07) als Null angezeigt
werden.

 (2) Durch die feste Struktur der Zahl (als Text) gut als Ausgangspunkt für eigene
Zahlenformate geeignet.

 (3) Wissenschaftliche Darstellung heißt, das der Exponent immer durch 3 teilbar
ist.

Für Fortgeschrittene:

Sie können SetNumberFormat auch benutzen um eine Variable des Typs
NumberFormatStruct für die spätere Verwendung vorzubereiten.

Syntax 2: <nf> = SetNumberFormat (format)
<nf> Variable vom Typ NumberFormatStruct. Die Systemvariable

numberFormat wird nicht geändert, d.h. das eingestellte Zahlenformat
ändert sich nicht. Stattdessen wird die Variable nf mit den von
SetNumberFormat gelieferten Daten belegt.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 6

1.2 Die numberFormat Variable

Wenn Sie mit den Standard Zahlenformaten nicht auskommen haben Sie mit Hilfe
der globalen Variablen numberFormat weitgehende Kontrolle darüber, wie R-
BASIC Zahlen ausgibt. Das betrifft sowohl die PRINT-Anweisung als auch die
Konvertierungsfunktionen Str$() und StrLocal$(). In diesem Abschnitt finden Sie
ausführliche Erläuterungen zur numberFormat-Variablen und dem dazugehörigen
Typ NumberFormatStruct, damit Sie in der Lage sind, die numberFormat-
Variable manuell Ihren Bedürfnissen anzupassen.

1.2.1 Überblick

Die globale Variable numberFormat ist vom Typ NumberFormatStruct. In
diesem Abschnitt erhalten Sie einen Überblick, eine nähere Beschreibung der
Felder finden Sie in den folgenden Unterkapiteln dieses Abschnitts.

STRUCT NumberFormatStruct
minDigits, maxDigits, digitMode AS Integer
highLimit, lowLimit AS Integer
plusSign AS Integer
exponentMode AS Integer
preChars, addChars AS String[7]
formatFlags AS Word
END STRUCT

Alle Felder lassen sich lesen und schreiben.

Bedeutung der einzelnen Felder:

minDigits, maxDigits, digitMode
Diese Felder bestimmen, mit wie vielen Stellen Zahlen dargestellt
werden. Details dazu finden Sie im Abschnitt 1.2.2.

highLimit, lowLimit, exponentMode
Diese Felder bestimmen wann in die Exponentialdarstellung
gewechselt wird, also z.B. 1.234567E+05 statt 123456.7 ausgegeben
wird und ob der Exponent in 3er-Schritten angezeigt wird. Details dazu
finden Sie im Abschnitt 1.2.3.

plusSign Dieses Feld bestimmt ob bei positiven Zahlen ein ’+’ geschrieben
werden soll oder nicht. Negative Vorzeichen werden immer
geschrieben. plusSign kann sein:

PS_NONE (0, kein Plus schreiben z.B. 12.567)
PS_SPACE (1, statt Plus ein Leerzeichen schreiben z.B. 12.567)
PS_ALWAYS (2, Plus immer schreiben z.B. +12.567)

Der Standard ist PS_SPACE.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 7

preChars, addChars
Enthalten jeweils bis zu 7 Zeichen, die vor (preChars) oder nach
(addChars) der Zahl angefügt werden. Das ist z.B. bei
Währungsangaben oder für Sperrzeichen sinnvoll. Standardmäßig sind
diese Felder leer.
Beispiel: numberFormat.preChars = "---- "

numberFormat.addChars = " Euro"
PRINT 123,87
Auf dem Bildschirm erscheint --- 123.87 Euro

formatFlags
Formatflags enthält einige Werte, die das Verhalten der
Zahlenausgabe modifizieren können. Die Werte sind so gewählt, dass
jeweils einzelne Bits gesetzt sind (sog. Bit-Flags), so dass sie mit OR,
AND und NOT, aber auch mit Plus (+) verbunden werden können.
Folgende Werte sind definiert, die anderen Bits sind reserviert. Der
Standard ist, dass kein Bit gesetzt ist (formatFlags = 0).

FF_PRINT_ADD_NO_SPACE (= 1) bewirkt, dass Print kein zusätzliches
Leerzeichen an die Zahlen hängt. Normalerweise wird ein
zusätzliches zu den in addChars angegebenen Zeichen ein
weiteres Leerzeichen angehängt, um die Lesbarkeit zu
verbessern. Str$ und StrLocal$ hängen grundsätzlich kein
Leerzeichen an.

FF_NO_EXP_LOW (= 2) bewirkt das bei Zahlen, deren Betrag zwischen Null
und 1 liegt, nicht in die Exponentialdarstellung gewechselt
wird. Das ist sinnvoll z.B. bei Währungsangaben.
Hinweis 1: Der Wert des Feldes lowLimit, der sonst festlegt,
wann in die Exponentialdarstellung gewechselt wird, wird
ignoriert, statt dessen wird auf die geforderte Stellenzahl
gerundet.
Hinweis 2: Dieses Flag ist im digitMode DM_VALID_DIGITS
nicht verwendbar.

FF_NO_EXP_HIGH (= 4) bewirkt, dass bei großen Zahlen nicht in die
Exponentialdarstellung gewechselt wird.
Hinweis: Der Wert des Feldes highLimit, der sonst festlegt,
wann in die Exponentialdarstellung gewechselt wird, wird
ignoriert. Zahlen, die sich nicht mehr darstellen lassen,
werden z.B. als "#####.###" angezeigt. Das ist z.B. bei der
Fehlersuche sinnvoll.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 8

Beispiel: Immer eine Nachkommastelle erzwingen:

numberFormat.digitMode = DM_FRAC_DIGITS
Nur Nachkommastellen zählen

numberFormat.minDigits = 1 Mindestens eine Nachkommastelle
numberFormat.maxDigits = 1 höchstens eine Nachkommastelle
numberFormat.highLimit = 15 Nur im Notfall (zu viele Stellen)

ins Exponentialformat wechseln
numberFormat.formatFlags = FF_NO_EXP_LOW

Zahlen nahe Null: runden

Wegen der vielen Möglichkeiten, die Sie hier haben, ist das korrekte Belegen der
Systemvariablen numberFormat unter Umständen unübersichtlich. Deswegen gibt
es im Ordner Beispiel\Mathe zwei Beispielprogramme.
Das Beispiel "Zahlenformatierung" gibt ein paar Zahlen in verschiedenen
Standardformaten aus.
Das Beispiel "NumberFormat Einstellungen" erlaubt das interaktive Belegen der
Systemvariablen numberFormat und Sie können so direkt die Auswirkungen von
bestimmten Einstellungen sehen.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 9

1.2.2 Einstellen der Stellenzahl

Die Felder minDigits, maxDigits, digitMode bestimmen, mit wie vielen Stellen
eine Zahl dargestellt wird. Wenn nicht anders angegeben, wird in den folgenden
Beispielen vorausgesetzt, dass das Standardformat (NF_NORMAL) voreingestellt
ist.

Die Standardeinstellungen von R-BASIC sind: minDigits = 1
maxDigits = 5
digitMode = DM_VALID_DIGITS

Beispiele: 1/3 ⇒ 0.33333
0.1 ⇒ 0.1
1001.2 ⇒ 1001.2
123456.7 ⇒ 123457 (gerundet, aber 6 Stellen

weil Vorkommastellen
nie gerundet werden)

minDigits bestimmt die minimale Stellenzahl, die ausgegeben werden soll.
Hat die Zahl weniger Stellen so werden nach dem Komma Nullen
angehängt.
Beispiel: 12.34 wird als 12.340 ausgegeben

maxDigits bestimmt die maximale Stellenzahl, die ausgegeben werden soll.
Hat die Zahl mehr Stellen, so wird gerundet.
Beispiel für maxDigits = 5: 10/3 wird als 3.3333 ausgegeben

Hinweis: Vorkommastellen werden nicht gerundet. Nur Nachkomma-
stellen werden gerundet.
Beispiel: 123456.78 wird mit 6 Stellen als 123457 ausgegeben

digitMode bestimmt, welche Stellen für minDigits und maxDigits zählen.
digitMode kann sein:

DM_ALL_DIGITS (Wert 0, alle Stellen zählen),
DM_FRAC_DIGITS (Wert 1, nur Nachkommastellen zählen)
DM_VALID_DIGITS (Wert 2, gültige Stellen zählen)

Beispiel: Wir wollen minimal 3 und maximal 5 Stellen mit verschiedenen
Werten von digitMode ausgeben.

SetNumberFormat(NF_NORMAL) ’ setzt schon maxDigits = 5
numberFormat.minDigits = 3
numberFormat.digitMode =

digitMode = DM_ALL_DIGITS (alle Stellen zählen)
Es macht keinen Unterschied, ob die Ziffern vor oder nach dem
Komma stehen, so wie es keinen Unterschied macht, ob man
1,230 km oder 1230 m schreibt.

Beispiele: 1/3 ⇒ 0.3333 (5 Stellen insgesamt)
0.1 ⇒ 0.10 (mind. 3 Stellen insgesamt)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 10

1001.27 ⇒ 1001.3 (max. 5 Stellen insgesamt)

digitMode = DM_FRAC_DIGITS (nur Nachkommastellen zählen)
Es werden immer Nachkommastellen geschrieben. Maximal maxDigits,
mindestens jedoch minDigits Nachkommastellen.

Beispiele: 1/3 ⇒ 0.33333 (5 Nachkommastellen)
0.1 ⇒ 0.100 (mind. 3 Nachkommastellen)
1001.27 ⇒ 1001.270 (mind. 3 Nachkommastellen)

digitMode = DM_VALID_DIGITS (gültige Stellen zählen)
Führende Nullen werden ignoriert, die Zählung der Stellenzahl beginnt
bei der ersten von Null verschiedenen Ziffer, egal wo das Komma
steht.
Dies ist auch die Art und Weise, wie wir intuitiv Zahlen aufschreiben.
Die Körpergröße einer Person wird als 1,73 m oder als 173 cm
angegeben, niemals als 173,00 cm, weil die Angabe auf 1/10 mm hier
sinnlos ist.
Die Länge einer Brücke können wir auf den Meter genau angeben,
indem wir entweder 0.346 km oder 346 m schreiben.

Beispiele: 1/3 ⇒ 0.33333 (5 gültige Ziffern)
0.1 ⇒ 0.100 (3 gültige Ziffern)
1001.27 ⇒ 1001.3 (5 gültige Ziffern)

Beispiel: Wir wollen immer 3 Nachkommastellen ausgeben. Dazu verwenden wir
minDigits = maxDigits.
SetNumberFormat(NF_NORMAL)
numberFormat.minDigits = 3
numberFormat.maxDigits = 3
numberFormat.digitMode = DM_FRAC_DIGITS

Beispiele: 1/3 ⇒ 0.333
0.1 ⇒ 0.100
1001.27 ⇒ 1001.270

Zugehöriges Formatflag: FF_NO_EXP_LOW
Mit dem Flag FF_NO_EXP_LOW im Feld formatFlags können Sie bewirken, dass
bei Zahlen unter 1 (wenn digitMode DM_FRAC_DIGITS oder DM_ALL_DIGITS
ist) nicht in den Exponentialmodus gewechselt wird, sondern stattdessen Null
angezeigt wird. Das ist z.B. sinnvoll für Währungsangaben, wenn sich durch
Rundungsfehler ein Betrag von beispielsweise 0.00000000001 Euro ergibt. Im
Kapitel 1.2.3 finden Sie entsprechende Beispiele.
Im digitMode DM_VALID_DIGITS wird bei Zahlen unter 1 immer in den Expo-
nentialmodus gewechselt, wenn sich nicht mehr alle Stellen anzeigen lassen.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 11

1.2.3 Zahlen in Exponentialdarstellung

Lässt sich eine Zahl nicht mehr sinnvoll in "normaler" Darstellung ausdrücken,
wechselt R-BASIC in die Exponentialdarstellung. Die Felder highLimit und
lowLimit der Systemvariablen numberFormat bestimmen die Grenze für diesen
Übergang, das Feld exponentMode bestimmt die Darstellung des Exponenten.

Für die folgenden Beispiele nehmen wir an, dass das Feld formatFlags der
globalen Variablen numberFormat den Wert Null hat, so dass das Wechseln ins
Exponentialformat nicht verhindert wird. Das entspricht der Standardeinstellung.

highLimit gibt die maximale Anzahl der Vorkommastellen an, bevor ins
Exponentialformat gewechselt wird. Erlaubt sind Werte von 0 bis 15.
Der Standardwert ist highLimit = 7

Beispiele:
Bei den blau markierten Beispielen wird der Wert gerundet, weil die
Standardeinstellung maximal 5 Ziffern insgesamt vorsieht.

1234.5 ⇒ 1234.5
12345.6 ⇒ 12346
123456.7 ⇒ 123457
1234567.8 ⇒ 1234568
12345678.9 ⇒ 1.2346E+07

Beispiele für unterschiedliche highLimit-Werte
numberFormat.highLimit = 3

12.3 ⇒ 12.3
123.4 ⇒ 123.4
1234.5 ⇒ 1.2345E+03
12345.6 ⇒ 1.2346E+04

numberFormat.highLimit = 4
12.3 ⇒ 12.3
123.4 ⇒ 123.4
1234.5 ⇒ 1234.5
12345.6 ⇒ 1.2346E+04

Das Umschalten in die Exponentialdarstellung kann für große Zahlen verhindert
werden, wenn man das Bit FF_NO_EXP_HIGH im Feld formatFlags der globalen
Variablen numberFormat setzt. Statt der Umschaltung ins Exponentialformat
erfolgt dann eine Fehlerausgabe der Form ####.##

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 12

lowLimit gibt die maximale Anzahl von führenden Nullen an, einschließlich der
Null vor dem Komma, bevor ins Exponentialformat gewechselt wird.
Der Standardwert ist lowLimit = 4

Beispiele
0.0123 ⇒ 0.0123
0.00123 ⇒ 0.00123
0.000123 ⇒ 0.000123
0.0000123 ⇒ 1.23E-04

Beispiele für numberFormat.lowLimit = 3
0.123 ⇒ 0.123
0.0123 ⇒ 0.0123
0.00123 ⇒ 1.23E-03
0.000123 ⇒ 1.23E-04

Hinweis: Es kann auch hier sein, dass die Zahl gerundet wird.
Beispiel für maximal 4 Nachkommastellen. In der blau markierten Zeile wird die
Zahl daher gerundet.
SetNumberFormat(NF_NORMAL)
numberFormat.maxDigits = 4
numberFormat.lowLimit = 3
numberFormat.digitMode = DM_FRAC_DIGITS

0.123 ⇒ 0.123
0.0123 ⇒ 0.0123
0.00123 ⇒ 0.0012
0.000123 ⇒ 1.23E-04

Das Umschalten in die Exponentialdarstellung kann für Zahlen mit einem Betrag
kleiner als 1 verhindert werden, wenn man das Bit FF_NO_EXP_LOW im Feld
formatFlags setzt. Werte, die nicht mehr dargestellt werden können, werden als
Null angezeigt.
Das gilt nicht, wenn digitMode den Wert DM_VALID_DIGITS hat. Dort wird immer
in der Exponentialmodus gewechselt, wenn die Zahl nicht mehr "normal"
dargestellt werden kann.

Beispiel für die Wirkung von FF_NO_EXP_LOW
SetNumberFormat(NF_NORMAL)
numberFormat.maxDigits = 3
numberFormat.lowLimit = 1 ’ Keine Null nach dem Komma
numberFormat.digitMode = DM_FRAC_DIGITS

FF_NO_EXP_LOW ist noch nicht gesetzt
0.678 ⇒ 0.678
0.0678 ⇒ 6.78E-02
0.00678 ⇒ 6.78E-03

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 13

.....
numberFormat.formatFlags = FF_NO_EXP_LOW

FF_NO_EXP_LOW ist jetzt gesetzt
0.678 ⇒ 0.678
0.0678 ⇒ 0.068 ’ gerundet
0.00678 ⇒ 0.007 ’ gerundet
0.000678 ⇒ 0.001 ’ gerundet
0.0000678 ⇒ 0.000

exponentMode bestimmt, in welcher Weise der Exponent dargestellt wird.
Der Standard ist exponentMode = EXP_NORMAL

Erlaubte Werte sind:
EXP_NORMAL (= 0) normale Darstellung

EXP_SCI (= 1) wissenschaftliche Darstellung in 3er-Schritten
Die 12er-Reihe sieht dann so aus: 12E+00

144E+00
1.728E+03

20.736E+03
248.832E+03

2.985984E+06

EXP_FORCE (= 2) Erzwingen der Exponentialdarstellung.
Zahlen werden auch dann im Exponentialformat dargestellt,
wenn dies eigentlich nicht erfoderlich ist. z.B. 1 als 1E+00
EXP_FORCE hat absoluten Vorrang, auch vor den Flags
FF_NO_EXP_LOW und FF_NO_EXP_HIGH.

EXP_FORCE + EXP_SCI (= 3)
Wissenschaftliche Exponentialdarstellung erzwingen.

Beispiele
SetNumberFormat(NF_NORMAL)

1234567 ⇒ 1234567
12345678 ⇒ 1.2346E+07 ’ gerundet, 5 Stellen
123456789 ⇒ 1.2346E+08 ’ gerundet, 5 Stellen
1234567890 ⇒ 1.2346E+09 ’ gerundet, 5 Stellen

SetNumberFormat(NF_NORMAL)
numberFormat.exponentMode = EXP_SCI

1234567 ⇒ 1234567
12345678 ⇒ 12.346E+06 ’ gerundet, 5 Stellen
123456789 ⇒ 123.46E+06 ’ gerundet, 5 Stellen
1234567890 ⇒ 1.2346E+09 ’ gerundet, 5 Stellen

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 14

1.3 Komplexe Beispiele

Allgemeine Hinweise:
• Sie können Variablen vom Typ NumberFormatStruct definieren. Wenn Sie

der Systemvariablen numberFormat eine solche Variable zuweisen
(numberFormat = ..), werden die in der selbst definierten Variablen
gespeicherten Werte aktiviert.

• Achten Sie auf konsistente Werte (z.B. minDigits <= maxDigits), wenn Sie
numberFormat oder andere Variablen vom Typ NumberFormatStruct
belegen. Die Ergebnisse könnten sonst unerwartet und verwirrend sein.
Typische Fehler korrigiert R-BASIC selbständig ohne Fehlermeldung!

• Sie können die mit SetNumberFormat eingestellten Zahlenformate nach-
träglich modifizieren, indem sie die numberFormat-Variable ändern.

Beispiel 1: Zeitweise Exponentialdarstellung erzwingen. Der aktuelle Wert der
numberFormat-Variable wird in einer anderen Variablen
zwischengespeichert.

DIM nf AS NumberFormatStruct
DIM n

nf = numberFormat ’ aktuelle Belegung merken
numberFormat.exponentMode = EXP_FORCE
FOR n = 1 TO 8 STEP 0.7
 Print n
NEXT
numberFormat = nf ’ Wieder herstellen

Beispiel 2: Vorbereiten eines anderen Zahlenformats in einer Variablen

DIM nf AS NumberFormatStruct
Print 20/3 ’ 6.6667
nf = SetNumberFormat (NF_INTEGER) ’ erweiterte Syntax!

’ numberFormat wird nicht geändert
Print 20/3 ’ 6.6667
numberFormat = nf
Print 20/3 ’ 7

Beispiel 3: Eine Funktion, die eine NumberFormat-Struktur bearbeitet.

FUNCTION SetPlusSign(nf AS NumberFormatStruct) as
NumberFormatStruct
nf.plusSign = PS_ALWAYS
RETURN nf
END FUNCTION

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zahlenformatierung - 15

Beispiel 4: SetNumberFormat (NF_FIXED_4) bewirkt, das Zahlen immer mit 4
Stellen nach dem Komma dargestellt werden, auch dort , wo es nicht
nötig ist, z.B. bei 1.0000 und 0.2500
Wenn Sie die nachgestellten Nullen entfernen wollen, setzten Sie
minDigits auf Null.

SetNumberFormat (NF_FIXED_4)
numberFormat.minDigits = 0
Print 1 ’ 1
Print 1/4 ’ 0.25
Print 1/3 ’ 0.3333

Hinweis zu Beispiel 4: Der Standard für maxDigits ist 5. Es wurde aber von
SetNumberFormat (NF_FIXED_4) auf den Wert 4 gesetzt.

Beispiel 5: Sie wollen Geldbeträge mit führendem Plus, einem führenden
Leerzeichen und der Währung "Euro" ausgeben.

SetNumberFormat (NF_CURRENCY)
numberFormat.preChars = " "
numberFormat.plusSign = PS_ALWAYS
numberFormat.addChars = " Euro"

Beispiel 6: Ergänzung zu Beispiel 5.
Das von Print automatisch angehängte Leerzeichen soll unterdrückt
werden. Um bereits gesetzte Flags zu erhalten (FF_NO_EXP_LOW
wird bereits von SetNumberFormat (NF_CURRENCY) gesetzt) wird
die Kombination mit einer logischen OR-Verknüpfung verwendet.

Print 307.87 ’ +307.87 Euro <-
’ Leerzeichen am Ende

numberFormat.formatFlags \
= numberFormat.formatFlags OR FF_PRINT_ADD_NO_SPACE

Print 307.87 ’ +307.87 Euro <- kein
’ Leerzeichen mehr

Hinweis zu Beispiel 6: Die Variante numberFormat.formatFlags +
FF_PRINT_ADD_NO_SPACE würde in diesem konkreten Fall
ebenfalls zulässig, da man in diesem Beispiel sicher sein kann, dass
FF_PRINT_ADD_NO_SPACE noch nicht gesetzt ist.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 16

2 Verwendung von Schriften

2.1 Überblick

R-BASIC kann alle im GEOS-System installierten Schriften (Fonts) und Schriftstile
verwenden.

FontID’s
GEOS (und auch R-BASIC) identifiziert Schriften über eine Font-Identifikations-
Nummer, die FontID. Näheres dazu erfahren Sie im Abschnitt 2.2

Die Font-Modi
Um die Fähigkeiten von PC/GEOS voll ausreizen zu können, kennt R-BASIC drei
Arten von Schriften (Font-Modi):

• Im Fixed-Font-Modus (Abschnitt 2.3) hat jedes Zeichen eine feste Breite und
eine feste Höhe. R-BASIC kennt und verwaltet die Position jedes einzelnen
Zeichens.

• Im GEOS-Font-Modus (Abschnitt 2.4) übernimmt GEOS die Ausgabe des
Textes. Es stehen alle im System installierten Schriften und alle Textstile (Fett,
Kursiv, hochgestellt usw.) zur Verfügung.

• Im Block-Font-Modus (Abschnitt 2.5, ausführliche Beschreibung im Kapitel 3)
wird für jeden Buchstaben eine kleine Grafik ausgegeben (z.B. 14x8 Pixel).
Damit ist es möglich, sehr einfach grafische Elemente auf den Bildschirm zu
bringen.

Textstile
Die Eigenschaften der Schrift (Textstile: fett, kursiv, unterstrichen usw.) werden in
R-BASIC über die Systemvariable printFont.style eingestellt. Das Feld style ist
das einzige "öffentliche" Feld der printFont-Variablen und wird im Abschnitt 2.6
beschrieben. Alle anderen Felder werden automatisch beim Einstellen des Font-
Modus gesetzt.

Die printFont-Variable
Die Systemvariable printFont ist der Kern der R-BASIC-Schriftverwaltung.
Zuweisungen zu dieser Variablen oder einem ihrer Felder bestimmen die von R-
BASIC verwendete Schrift und ihre Eigenschaften. Fortgeschrittene
Programmierer können die printFont - Variable auch direkt modifizieren. Die
notwendigen Informationen dafür finden Sie im Abschnitt 2.7.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 17

2.2 Zugriff auf GEOS-Fonts

PC/GEOS identifiziert Schriften (genannt: Fonts) über eine sogenannte Font-ID-
Nummer. Diese Font-ID ist an viele Font-Routinen zu übergeben, z.B. zum
Einstellen des Font-Modus (Abschnitte 2.3, 2.4, 2.5). In R-BASIC sind einige
Fonts, die auf allen GEOS-Systemen installiert sind, namentlich vordefiniert.

Tabelle: Namentlich verfügbare Font-ID’s in R-BASIC

Name der Konstante Wert Verfügbar mit GEOS-Name
FontSetFixed()

FID_BISON 2560 ja Bison (1)

FID_UNIVERSITY 513 ja University (1)

FID_BERKELEY 514 ja Berkeley (1)

FID_MONO 6656 ja URW Mono
FID_SANS 4608 ja URW Sans
FID_ROMAN 4096 – URW Roman
FID_CRANBROOK 4097 – Cranbrook
FID_SYMBOLPS 6144 – URW SymbolPS

(1)Hinweis: Die Fonts mit den ID’s FID_BISON, FID_UNIVERSITY und
FID_BERKELEY sind Bitmap-Fonts, die sich nicht zur Ausgabe auf den Drucker
eignen.

Einige weitere Font-ID’s ohne vordefinierten Namen in R-BASIC:
1563 LED (Bitmap-Font)
53006 Fat Fracture
5632 Superb
4612 Sather Gothic
5123 Shattuck Avenue

Weitere Font-ID’s bekommen Sie aus dem PC/GEOS-SDK oder mit dem
FontExplorer, der über das Menü "Extras"-"Tools" erreichbar ist.

Um Informationen über die im System installierten Fonts zu erhalten, gibt es die
Routinen FontAvail, FontFind, FontGetName$ und FontGetSysInfo, die im
Folgenden beschrieben werden.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 18

FontAvail

FontAvail prüft, ob ein Font mit der übergeben fontID (Font-Identifikations-
Nummer) im System installiert ist. Es liefert TRUE (-1, Font ist installiert) oder
FALSE (0, Font ist nicht installiert).

Syntax: <variable> = FontAvail (fontID)
Parameter: <variable> ist eine numerische Variable

fontID: Identifikationsnummer des Fonts

Beispiele: found = FontAvail (FID_ROMAN)
found = FontAvail (53267) ’ Auf Animal-Font

’ testen

FontFind

FontFind prüft, ob ein Font mit dem übergeben Namen im System installiert ist. Es
liefert die Font-ID-Nummer oder 0 (Font ist nicht installiert).

Syntax: <variable> = FontFind ("FontName")
Parameter: <variable> ist eine numerische Variable

"FontName": Stringausdruck, Fontname

Beispiel: fontID = FontFind ("Cartoon")

FontGetName$

FontGetName$ liefert den GEOS-Namen des Fonts mit der übergeben fontID. Ist
der Font nicht installiert, liefert es eine Leerstring.

Syntax: <variable> = FontGetName$ (fontID)
Parameter: <variable> ist eine Stringvariable

fontID: Identifikationsnummer des Fonts

Beispiel: nameOfRoman$ = FontGetName$ (FID_ROMAN)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 19

FontGetSysInfo

FontGetSysInfo liefert Informationen über die Fonts, die GEOS für bestimmte
Zwecke verwendet, indem es die zugehörigen INI-Einträge ausliest.

Syntax: <variable> = FontGetSysInfo (x)
Parameter: <variable> ist eine numerische Variable

x: Welche Info wird angefordert. Siehe Tabelle.

Beispiel: fontSize = FontGetSysInfo (7)

Tabelle: Informationen, die FontGetSysInfo liefert:

Wert INI-Eintrag Information
0 [system] fontid Default-Font, wenn kein anderer oder

ein fehlerhafter angegeben wurde
1 [system] fontsize Größe für Default Font
2 [ui] fontid Font für Menüs und nicht editierbare

Texte
3 [ui] fontSize Größe für Menüs und nicht editierbare

Texte
4 [ui] editableTextFontID Font für editierbare Texte
5 [ui] editableTextFontsize Größe für editierbare Texte
6 [fileManager] fontid Font für Dateinamen im GeoManager
7 [fileManager] fontsize Größe für Dateinamen im GeoManager

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 20

2.3 Der Fixed-Font-Modus

Der Fixed-Font-Modus ist die Standardeinstellung von R-BASIC. Jedes Zeichen
hat eine feste Breite und eine feste Höhe. R-BASIC kennt und verwaltet die
Position jedes einzelnen Zeichens. R-BASIC stehen 5 verschiedene Fonts in
jeweils 5 verschiedenen Größen zur Verfügung. Es stehen einige Textstile zur
Verfügung. Die Einstellung der Textstile erfolgt über das Feld printFont.style.
Beachten Sie, dass die Textstile sog. Bit-Flags sind (d.h. bestimmte Bits haben
bestimmte Bedeutung). Details dazu finden Sei im Abschnitt 2.6.

FontSetFixed

Die Anweisung FontSetFixed versetzt R-BASIC in den Fixed-Font Modus. Dabei
wird intern die Systemvariable printFont mit den passenden Werten belegt.

Syntax: FontSetFixed fontID, size [,lineHeight]
fontID: ID-Nummer des Fonts. Zulässige Werte: siehe Tabelle unten.
size: Größe der Schrift in Point.

Zulässig sind die Werte 10, 12, 14, 18 und 22
lineHeight: (optional) Zeilenabstand. FontSetFixed stellt standardmäßig

günstige Werte ein (siehe Tabelle unten). Wählen Sie den
Zeilenabstand zu klein, überlappen sich die Buchstaben.

Beispiel 1: FontSetFixed (FID_UNIVERSITY, 18) ’ Klammern sind OK
Beispiel 2:

’ Doppelten Zeilenabstand verwenden (vgl. Tabelle unten)
FontSetFixed FID_UNIVERSITY, 18, 48

Hinweise:
• FontSetFixed stellt automatisch das maximale Textfenster ein, der Cursor

wird nach links oben gesetzt (siehe Window-Befehl). Sie können das Fenster
anschließend mit dem WINDOW-Befehl ändern und/oder den Cursor mit
LOCATE positionieren.

• Verwenden Sie bei Bedarf den Befehl PRINT atXY(x,y); "Text..." um die
Textausgaben pixelgenau zu positionieren.

• Im Fixed-Font-Modus wird der Texthintergrund per Default in der aktuellen
Hintergrundfarbe gelöscht. Um Texte transparent auszugeben müssen Sie die
Hintergrundfarbe auf BG_TRANSPARENT setzen.

PAPER BG_TRANSPARENT

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 21

Hinweise für fortgeschrittene Programmierer:
• Die von PRINT verwendete Schriftart (Font), die Textgröße und weitere

Eigenschaften werden von der Systemvariable printFont bestimmt, die im
Abschnitte 2.7 beschrieben ist. Fortgeschrittene Programmierer können die
printFont - Variable auch direkt modifizieren.

• Fortgeschrittene Programmierer finden eventuell die Syntax
<variable> = FontSetFixed(fontID, size [,lineHeight])

hilfreich. <variable> ist eine Variable vom Typ PrintFontStruct, die dann statt
der Systemvariablen printFont belegt wird.

Tabelle: Zeichengrößen, die von FontSetFixed gesetzt werden. Blau kursiv
bezeichnet das jeweilige printFont-Feld.

Font-ID Größe Zeichen Zeilen- Spalten x Zeilen
Breite abstand bei Bil16

schirmgröße
size charWidth lineHeight 640 x 400 Pixel

FID_BISON 10 7 13 91 x 30
 12 8 16 80 x 25
 14 10 20 64 x 20
 18 ‡ 12 22 53 x 18
 22 ‡ 15 25 42 x 16

FID_UNIVERSITY 10 10 14 64 x 28
 12 11 16 58 x 25
 14 14 19 45 x 21
 18 16 24 40 x 16
 22 22 30 29 x 13

FID_BERKELEY 10 11 13 58 x 30
 12 14 16 45 x 25
 14 16 20 40 x 20
 18 16 23 40 x 17
 22 ‡ 16 25 40 x 16

FID_MONO 10 8 12 80 x 33
 12 9 16 71 x 25
 14 10 16 64 x 25
 18 13 20 49 x 20
 22 14 25 45 x 16

FID_SANS 10 10 14 64 x 28
 12 12 16 53 x 25
 14 14 18 45 x 22
 18 16 22 40 x 18
 22 21 38 30 x 10

‡ : Bison unterstützt nicht die Größen 18 und 22 Point, Berkeley nicht 22 Point.
Hier wird nur die Zeichenbox (Breite und Höhe) vergrößert.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 22

2.4 Der GEOS-Font-Modus

Im GEOS-Font-Modus übernimmt das GEOS-System die Ausgabe des Textes. Es
stehen alle im System installierten Schriften und alle Textstile (Fett, Kursiv,
hochgestellt usw.) zur Verfügung. Die Einstellung der Textstile erfolgt über das
Feld printFont.style (siehe Abschnitt 2.6). Beachten Sie, dass die Textstile sog.
Bit-Flags sind (d.h. bestimmte Bits haben bestimmte Bedeutung).

Da die meisten GEOS-Fonts sogenannte proportional-Fonts sind, d.h. ein ’m’ ist
viel breiter als ein ’l’, kennt R-BASIC die Position der einzelnen Buchstaben bei
einer Textausgabe nicht. Die Kommandos WINDOW und LOCATE arbeiten
deswegen mit einer "durchschnittlichen" Buchstabenbreite und viele Print-
Steuercodes arbeiten nicht oder nur eingeschränkt.

R-BASIC hat keine Kontrolle über die genaue Position der einzelnen Zeichen
innerhalb eines ausgegebenen Textstrings. Verwenden Sie bei Bedarf den Befehl
PRINT atXY(x,y); "Text..." um die Textausgaben präzise zu positionieren.

FontSetGEOS

Die Anweisung FontSetGEOS versetzt R-BASIC in den GEOS-Font Modus.
Dabei wird intern die Systemvariable printFont mit den passenden Werten belegt.

Syntax: FontSetGEOS fontID, size [,lineHeight]
Parameter: fontID: ID-Nummer des Fonts. Weitere Infos zur fontID und

einige verfügbare Werte finden Sie hier.
size: Größe der Schrift in Point.
lineHeight: optional: Zeilenabstand. FontSetGEOS stellt

standardmäßig günstige Werte ein (Zeichengröße + ca.
30%, exakt: INT(1.35*size)). Wählen Sie den
Zeilenabstand zu klein, überlappen sich die Buchstaben.

Beispiel 1: FontSetGEOS FID_SYMBOLPS, 18
Beispiel 2 ’ Zeilenabstand = 150% der Schriftgröße

FontSetGEOS(FID_ROMAN, 14, 1.5 * 14) ’ Klammern sind erlaubt

Hinweise:
• FontSetGEOS stellt automatisch das maximale Textfenster ein, der Cursor

wird nach links oben gesetzt (siehe Window-Befehl). Sie können das Fenster
anschließend mit dem WINDOW-Befehl ändern und/oder den Cursor mit
LOCATE positionieren.

• Die Befehle WINDOW, LOCATE und POS arbeiten mit einer
"durchschnittlichen" Zeichenbreite, der Befehl VGet$ steht nicht zur Verfügung.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 23

• Im GEOS Font Modus wird der Texthintergrund per Default in der aktuellen
Hintergrundfarbe gelöscht. Um Texte transparent auszugeben müssen Sie die
Hintergrundfarbe auf BG_TRANSPARENT setzen.

PAPER BG_TRANSPARENT

Hinweise für fortgeschrittene Programmierer:
• Die von PRINT verwendete Schriftart (Font), die Textgröße und weitere

Eigenschaften, z.B. der Wert für die oben erwähnte "durchschnittliche"
Zeichenbreite werden von der Systemvariable printFont bestimmt, die im
Abschnitte 2.7 beschrieben ist. Fortgeschrittene Programmierer können die
printFont - Variable auch direkt modifizieren.

• Fortgeschrittene Programmierer finden eventuell die Syntax
<variable> = FontSetGEOS(fontID, size [,lineHeight])

hilfreich. <variable> ist eine Variable vom Typ PrintFontStruct, die dann statt
der Systemvariablen printFont belegt wird.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 24

2.5 Der Block-Font-Modus (Block-Grafik-Modus)

Im Block-Font-Modus wird statt eines GEOS-Fonts für jeden Buchstaben eine
kleine, quadratische Grafik ausgegeben (z.B. 16x16 Pixel). Damit entstehen die
typischen "Computer-Schriften" und es ist möglich, sehr einfach grafische
Elemente auf den Bildschirm zu bringen. Es stehen keinerlei Textstile zur
Verfügung.

In diesem Abschnitt finden Sie eine kurze Übersicht zum Thema Block-Font-
Modus. Eine ausführliche Beschreibung der Möglichkeiten finden Sie im Kapitel 3.

FontSetBlock

Die Anweisung FontSetBlock versetzt R-BASIC in den Blockgrafik-Modus. Dabei
wird intern die Systemvariable printFont mit den passenden Werten belegt. Falls
Sie FontSetBlock erstmalig im Programm verwenden oder eine andere als die
aktuell gesetzte Zeichengröße verwenden wird der Zeichengenerator-Speicher
gelöscht, d.h. alle Grafikzeichen sind leer. Der Parameter "colored" bestimmt, ob
die Grafikzeichen in diesem Fall als monochrom (einfarbig, Default) oder als farbig
(256 Farben) behandelt werden sollen.

Syntax: FontSetBlock sizex, sizey [, colored]
sizex, sizey: Größe der Block-Grafiken in Pixel. Erlaubte Werte liegen

zwischen 2 und 64 (jeweils einschließlich).
colored: Ungeladenen Zeichensatz als monochrom (FALSE, Default) oder

als farbig (256 Farben) behandeln..

Beispiel: FontSetBlock 16, 24

Hinweise:
• Eine ausführliche Beschreibung der Möglichkeiten der Block-Font-Modus

(auch Block-Grafik-Modus) finden Sie im Kapitel 3.

• Sie verwenden ganz normal die Print-Anweisung, statt der Buchstaben
erscheinen aber Grafik-Symbole auf dem Schirm.

• Im Block-Grafik-Modus stehen keine Textstile zur Verfügung.
• R-BASIC unterstützt das Verwenden von Grafikzeichensätzen sowohl durch

den direkten Zugriff auf den Zeichengenerator (den Speicher, in dem die
Grafiksymbole abgelegt sind) als auch durch die Verwendung von Dateien, die
Grafiksymbole enthalten.

• Das Laden eines Zeichensatzes aus einer Datei (Befehl BlockLoad) über-
schreibt die durch den Parameter colored gesetzte Einstellung.

• Ein intuitives Erstellen von Grafiksymbolen ist mit dem Block-Grafik-Editor
möglich, den Sie im Menü "Extras"-"Tools" finden.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 25

2.6 Textstile

R-BASIC kann verschiedene Textstile (wie unterstrichen, fett, kursiv usw.)
verwenden. Welcher Stil verwendet werden soll, wird über die Systemvariable
printFont.style bestimmt. Je nach Font-Modus stehen unterschiedliche Stile zur
Verfügung. Im Block-Font-Modus stehen keine Stile zur Verfügung.

Beispiel: printFont.style = TS_BOLD

Für Hinweise und weitere Beispiele: siehe nächste Seite.

Achtung! Die hier dargestellten Zusammenhänge beziehen sich auf die Text-
ausgabe mit dem PRINT Kommando. Textobjekte (Memo, InputLine) haben ihren
eigenen Weg Textstile zu verwenden. Das ist im Objekt-Handbuch, Kapitel 4.10
(Text-Objekte) erklärt.

Tabelle: Textstile zur Benutzung mit printFont.style
F: Verfügbar im Fixed-Font Modus
G: Verfügbar im GEOS-Font-Modus
B: Im Block-Font-Modus ist nur TS_DONT_EXEC_CONTROLS verfügbar

Textstil Wert Modus Bedeutung
TS_UNDERLINE 1 G, F unterstrichene Schrift
TS_STRIKE_THRU 2 G durchgestrichene Schrift
TS_SUBSCRIPT 4 G tiefgestellte Schrift Schrift

TS_SUPERSCRIPT 8 G hochgestellte Schrift Schrift

TS_ITALIC 16 G kursive Schrift
TS_BOLD 32 G, F fette Schrift
TS_OUTLINE 64 G Wenn der Font sowohl Bitmap- und

als auch Outline-Schrift enthält:
Verwendung der Outline Schrift
erzwingen

TS_CENTER 256 F Buchstaben einzeln zentrieren
(langsamer) (A)

Standard bei einigen FID_-Werten im
Fixed-Font-Modus

TS_ERRORLINE 1024 F Unterstrichen mit rot gepunkteter
Linie(A)

TS_DONT_EXEC_CONTROLS
32768 B Kein Textstil sondern bewirkt, dass

Steuerzeichen (ASCII-Code < 32)
nicht ausgeführt, sondern als
druckbare Zeichen behandelt werden.
Sinnvoll nur für Block-Fonts.(A)

(A) Wird von R-BASIC realisiert, keine Systemfunktion.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 26

Hinweise:
• Texte werden standardmäßig mit Hintergrund ausgegeben. Um Texte trans-

parent auszugeben müssen Sie die Hintergrundfarbe auf BG_TRANS-
PARENT setzen (z.B. PAPER BG_TRANSPARENT)

• Im GEOS-Font-Modus ist standardmäßig kein Stil gesetzt.
• Die Stile sind sog. Bit-Flags, d.h. sie haben bestimmte Bits gesetzt (Flag =

Flagge, in der Computertechnik oft ein bestimmtes Bit) und sollten mit OR
(setzen) und AND NOT (löschen) kombiniert werden.

Man setzt einen Stil mit OR:
printFont.style = printFont.style OR TS_UNDERLINE

Der Stil "unterstrichen" wird gesetzt, egal ob er bereits gesetzt war oder nicht.

Man löscht einen Stil mit AND NOT:
printFont.style = printFont.style AND NOT TS_UNDERLINE

Es ist kein Fehler, wenn der Stil gar nicht gesetzt war.

Man fragt einen Stil mit AND ab:
IF printFont.style AND TS_UNDERLINE THEN ...

Man überschreibt alte Stile mit neuen so:
printFont.style = TS_ITALIC OR TS_UNDERLINE

Beide Stile werden gesetzt, printFont.style erhält den Wert 17.

Sie sollten Addition (+) von Stilen vermeiden. Je nachdem, welche Stile schon
gesetzt sind, können die Ergebnisse unerwartet sein.

Beispiel:
Das Setzen von Stilen mit + ist kein Problem:

printFont.style = TS_ITALIC + TS_UNDERLINE

printFont.style ist hat jetzt den Wert 17. Schreibt man jetzt
printFont.style = printFont.style + TS_ITALIC

so erhält printFont.style den Wert 17 + 16 = 33
Das entspricht aber der Stilkombination TS_UNDERLINE und
TS_BOLD.

Komplexes Beispiel:
Fetten gedruckten Text nicht mehr fett drucken (TS_BOLD zurücksetzen) und
unterstrichen (TS_UNDERLINE) ausgeben:

printFont.style = (printFont.style OR TS_UNDERLINE) AND (NOT
TS_BOLD)

Die Klammern sind notwendig, um dem Compiler mitzuteilen, in welcher
Reihenfolge die logischen Operatoren abgearbeitet werden sollen.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 27

2.7 Direkter Zugriff auf die printFont Systemvariable

Achtung!
Dieser Abschnitt richtet sich an erfahrene oder ambitionierte Programmierer. Die
Kenntnis oder das Verständnis der hier dargestellten Zusammenhänge ist für die
meisten Anwendungsfälle von Schriften nicht erforderlich. Lediglich das Feld
printFont.style enthält "öffentliche" Informationen. Ändern Sie die anderen
Felder, könnten zunächst unerwartete Ergebnisse auftreten. Üblicherweise
verwendet man eine der Befehle FontSetFixed, FontSetGEOS und
FontSetBlock, welche die Systemvariable printFont mit einer stimmigen printFont-
Struktur belegen.

Die Systemvariable printFont ist folgendermaßen definiert:

STRUCT PrintFontStruct
type as word
fontID as word
fontSize as word
charWidth as word
lineHeight as word
style as word’ öffentlich
base as word
END STRUCT

DIM printFont AS PrintFontStruct

Bedeutung der einzelnen Felder

type Speichert den aktuell von PRINT verwendeten Font-Typ. Gültige
Werte sind FT_FIXED (0, gesetzt von FontSetFixed), FT_GEOS (1,
gesetzt von FontSetGEOS) und FT_BLOCK (2, gesetzt von
FontSetBlock).

fontID Die GEOS-Font-ID für FT_FIXED und FT_GEOS. Bei ungültigen
Werten wählt GEOS einen Ersatzfont, häufig die BISON-Schrift.

fontSize Die Größe der Schrift. Bitmap-Schriften (z.B. FID_BISON)
unterstützen nicht alle Größen.

charWidth Breite eines Zeichens.
Für type = FT_FIXED gilt: Wert in Pixeln
Für type = FT_GEOS gilt: Wert in % von printFont.fontSize
Für type = FT_BLOCK gilt: Wert in Pixeln

lineHeight Zeilenabstand, in Pixeln
style Textstil für FT_GEOS und FT_FIXED: Kombination von TS_xxx-

Werten. Siehe Abschnitt 2.6.
base Abstand der Text-Grundline vom oberen Rand der Zeile.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 28

Tipps und Beispiele für Fortgeschrittene

• Sie können selbst Variablen vom Typ PrintFontStruct definieren und
verwenden. Hier können Sie veränderte Varianten der printFont-Variablen
zwischenspeichern und später wieder verwenden. Auswirkungen auf den
PRINT-Befehl hat aber nur das Setzen des Systemvariablen printFont.

Beispiel: modifizierte printFont Variable speichern
DIM newFont AS PrintFontStruct
FontSetGEOS(FID_SANS, 12) ’ belegt printFont
newFont = printFont ’ Kopie erstellen
newFont.style = TS_STRIKE_THRU ’ noch wirkungslos

FontSetGEOS(FID_ROMAN, 20) ’ belegt printFont
printFont.style = TS_BOLD
Print "Ich bin FETT, URW Roman, 20 Point"

printFont = newFont
Print "Ich bin Durchgestrichen, URW Sans, 12 Point"

• Sie können praktisch jeden GEOS-Font im Modus FT_FIXED einsetzen. Die
nötigen Werte für charWidth, lineHeight und base erfordern aber
Experimentieren. Denke Sie daran, dass der Buchstabe W und das Zeichen ’_’
mit TS_BOLD in das Raster passen sollte.

Beispiel: URW Roman als Fixed Font
FontSetFixed(FID_SANS, 14)

’ gültige Startwerte für printFont setzen
printFont.fontID = FID_ROMAN
printFont.charWidth = <ausprobieren>
printFont.lineHeight = <ausprobieren>
printFont.base = <ausprobieren>

• Das Feld ’base’ bestimmt die vertikale Position der Grundlinie der Buchstaben.
Ändern Sie nur das Feld ’size’, erscheinen die Buchstaben auf der alten
Grundlinie, aber größer (wie in GeoWrite auch):

Beispiel: Hallo große Welt

FontSetGEOS(FID_CRANBROOK, 14)
Print "Hallo";
printFont.size = 35
Print " große ";
printFont.size = 14
Print "Welt"

• Die Zuweisung eines Wertes zur printFont-Variablen (implizit durch Ver-
wendung einer der FontSet-Funktionen oder explizit mit einer anderen
Variablen) stellt automatisch das maximale Textfenster ein.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Schriften - 29

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 30

3 Verwendung des Block-Grafik-Modus (Block-Font-Modus)

3.1 Übersicht über die Verwendung von Block-Grafiken

Aus Sicht des Computers sind Buchstaben einfach nur kleine Bilder, Grafiken, die
einem bestimmten ASCII-Zeichen zugeordnet sind. Im Blockgrafik-Modus
schreibt R-BASIC mit dem PRINT-Befehl anstelle der "systemdefinierten"
Buchstaben kleine selbst definierte Grafiken mit bis zu 64x64 Pixeln. Diese
Grafiken stehen in einem von R-BASIC verwalteten Speicherbereich, den man
"Zeichengenerator" nennt. Damit können Sie eigene Zeichensätze definieren oder
sehr einfach grafische Elemente auf den Bildschirm ausgeben, die aus einzelnen
"Blöcken" (z.B. 8x14 Pixeln) bestehen. Diese Technik wird schon seit der
Anfangszeit der Computer verwendet und "Block-Grafik" genannt. Mit dem Befehl
FontSetBlock aktivieren Sie den Blockgrafik-Modus. Falls Sie FontSetBlock
erstmalig im Programm verwenden oder eine andere als die aktuell gesetzte
Zeichengröße verwenden wird der Zeichengenerator-Speicher gelöscht, d.h. alle
Grafikzeichen sind nutzbar, aber leer.

R-BASIC unterstützt monochrome (einfarbig, mono = Eins, chromos = Farbe) und
farbige Blockgrafikzeichen (256 Farben). Monochrome Grafikzeichen werden in
der aktuellen Vordergrund/Hintergrund Farbkombination gezeichnet, wobei der
Hinterfrund auch transparent sein kann (die Hintergrundfarbe ist dann auf den
speziellen Wert BG_TRANSPARENT gesetzt).
Farbige Blockgrafikzeichen werden in ihren eigenen Farben gezeichnet, nur der
Farbindex 255 wird durch die aktuelle Hintergundfarbe ersetzt (bzw. transparent
gezeichnet).

Der einfachste Weg um Blockgrafik-Zeichen zu verwenden ist die Benutzung des
Blockgrafik-Editors, den Sie im Menü "Extras"-"Tools" finden. Der Blockgrafik-
Editor erlaubt das intuitive Erstellen von Grafikzeichen und schreibt sie in eine
Datei (*.RBF), die vom Befehl BlockLoad in den Zeichengenerator gelesen
werden kann.
Zur Verwaltung der Blockgrafik-Dateien stehen weiterhin die Befehle BlockSave,
BlockSize, BlockInfo zur Verfügung.

Sie haben einen direkten Zugriff auf den Zeichengenerator durch die Verwendung
der Befehle BlockPoke (Schreiben eines einzelnen Bytes in den
Zeichengenerator) BlockPeek (Lesen eines einzelnen Bytes aus dem
Zeichengenerator) BlockREAD (Lesen eines oder mehrerer Zeichen aus DATA-
Zeilen. Die DATA-Werte werden in den Zeichengenerator kopiert).

BlockSelect schaltet zwischen zwei Zeichengeneratoren um.

Wichtig! Die Print-Anweisung erstellt eine Kopie des Zeichens (aus dem
Zeichengenerator) auf dem Bildschirm. Eine nachträgliche Änderung des
Zeichengenerators wirkt sich daher nicht auf den Bildschirm aus, wird aber bei der
nächsten Print-Anweisung berücksichtigt.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 31

3.2 Interner Aufbau eines Zeichens im Blockgrafik Modus

Je nachdem, ob die Blockgrafik monochrome oder farbige Zeichen enthält
unterscheidet sich die internen Struktur des Zeichens etwas.

Farbige Zeichen

In diesem Modus besteht jedes Zeichen aus einer kleinen Farbgrafik mit 256
Farben aus der Systempalette. Eigene Paletten werden nicht unterstützt. Für
jedes Pixel wird ein Byte benötigt. Das heißt, ein Zeichen der Größe 8x10 Pixel
benötigt 80 Bytes. Die Zählung der Bytes beginnt immer bei Null und erfolgt
zeilenweise, d.h. zuerst von links nach rechts. Soll ein Pixel transparent (oder in
in der aktuellen Hintergrundfarbe) dargestellt werden so muss der Farbindex
(Farbwert) 255 verwendet werden. Zu diesem Farbwert gehört die Farbe Weiß.
Weiß hat aber auch den Index 16, so dass durch diese Wahl keine Ein-
schränkungen entstehen. Beispiel:

Byte 0
Byte 1

Byte 7

Byte 8

Das im Bild oben dargestellte Zeichen der Größe 8x4 Pixel wird durch folgende
Bytes beschrieben (Rot: 12, Blau: 9, transparent: 255):

255, 12, 12, 255, 255, 9, 9, 255
255, 12, 12, 255, 9, 9, 9, 9
255, 12, 12, 255, 9, 9, 9, 9
255, 12, 12, 255, 255, 9, 9, 255

Monochrome Zeichen

In diesem Modus besteht jedes Zeichen aus einer kleinen Monochrom-Grafik.
Dabei kann jedes Pixel die Vordergrund- oder die Hintergrundfarbe annehmen.
Für ein 8x8 Zeichen benötigt man 8 Byte, für ein 16x16 Zeichen bereits 32 Byte.
Die Zählung der Bytes beginnt immer bei Null und erfolgt zeilenweise, d.h. zuerst
von links nach rechts.

Byte 0
8 x 8 16 x 16

Byte 7

Byte 0

Byte 30 Byte 31

Byte 1

höherwertigstes
Bit

niederwertigstes
Bit

Byte 2 Byte 3

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 32

Den zu einem Byte gehörenden Zahlenwert erhält man, wenn man die gesetzten
Bits (in der oberen Darstellung grau) entsprechend folgender Zuordnung addiert:

128 64 32 16 8 4 2 1

Für die ersten beiden Zeilen (Byte 0 bis 3) im Bild oben rechts (16x16 Pixel) stellt
sich das so dar:

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1
128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

woraus sich ergibt: Byte 0: 0
Byte 1: 16 + 8 + 4 = 28
Byte 2: 8 + 4 = 12
Byte 3: 16

Ganz anlog kann man sich die Werte für das 8x8 Grafikzeichen oben links
ermitteln. Es setzt sich aus den folgenden Werten 8 zusammen:

0, 124, 68, 68, 207, 68, 124, 0

oder gleichbedeutend hexadezimal:
&h00, &h7C, &h44, &h44, &hCF, &h44, &h7C, &h00

Beispiel:
Der folgende Code schaltet in den Blockgrafik-Modus. Mini8x8.rbf ist eine Block-
Font-Datei, die gemeinsam mit R-BASIC installiert wurde. Dann liest es das oben
dargestellte 8x8 Zeichen in den Zeichengenerator auf die Position des Zeichens
’b’. Der Befehl
PRINT "b"
schreibt dann das Grafikzeichen auf den Schirm.

LABEL ZG
DATA 0, 124, 68, 68, 207, 68, 124, 0

FontSetBlock 8, 8
BlockLoad "mini8x8.rbf" , 0, 256
Restore ZG
BlockREAD ASC("b"), 1
Color 7, 0 ’ Grau auf Schwarz
Print "aabbbb" ’ aa
Print INK(RED); "aabbcc" ’ aa cc
Print COLOR(WHITE, RED); "bb" ’

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 33

3.3 Aufrufen des Blockgrafik Modus

FontSetBlock

Die Anweisung FontSetBlock versetzt R-BASIC in den Blockgrafik-Modus. Dabei
wird intern die Systemvariable printFont mit den passenden Werten belegt. Falls
Sie FontSetBlock erstmalig im Programm verwenden oder eine andere als die
aktuell gesetzte Zeichengröße verwenden wird der Zeichengenerator-Speicher
gelöscht, d.h. alle Grafikzeichen sind leer. Der Parameter "colored" bestimmt, ob
die Grafikzeichen in diesem Fall als monochrom (einfarbig, Default) oder als farbig
(256 Farben) behandelt werden sollen.

Syntax: FontSetBlock sizex, sizey [, colored]
sizex, sizey: Größe der Block-Grafiken in Pixel. Erlaubte Werte liegen

zwischen 2 und 64 (jeweils einschließlich).
colored: Ungeladenen Zeichensatz als monochrom (FALSE, Default) oder

als farbig (256 Farben) behandlen..

Beispiel: FontSetBlock 16, 24

Hinweise:

• Im Block-Grafik-Modus stehen keine Textstile zur Verfügung.

• Sie können das Flagbit TS_DONT_EXEC_CONTROLS im Feld printFont.style
verwenden um die Steuerzeichen mit den ASCII-Codes unter 32 als druckbare
Zeichen auszugeben statt sie "auszuführen".

• Ein intuitives Erstellen von Grafiksymbolen ist mit dem Block-Grafik-Editor
möglich, den Sie im Menü "Extras"-"Tools" finden.

• FontSetBlock stellt automatisch das maximale Textfenster ein, der Cursor wird
nach links oben gesetzt (siehe Window-Befehl). Sie können das Fenster
anschließend mit dem WINDOW-Befehl ändern und/oder den Cursor mit
LOCATE positionieren.

• Verwenden Sie bei Bedarf den Befehl PRINT atXY(x,y); "Text..." um die
Textausgaben pixelgenau zu positionieren.

• Falls Sie FontSetBlock erstmalig im Programm verwenden wird der Zeichen-
generator-Speicher gelöscht, d.h. alle Grafikzeichen sind leer. Das passiert
auch, wenn die Größe der Zeichen (Parameter sizex oder sizey) seit dem
letzten FontSetBlock geändert wird.

Im Umkehrschluss bedeutet das, das im folgenden Code beim zweiten
FontSetBlock(8, 8) der Zeichensatz nicht neu geladen wird, sondern der mit
BlockLoad geladenen Zeichensatz wieder verwendet wird. Der Parameter
"colored" wird in diesem Fall (d.h. wenn die Größe nicht geändert wird)
ignoriert.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 34

FontSetBlock (8, 8) ’ Klammern sind erlaubt
BlockLoad "MYFONT.RBF", 0, 256 ’ farbiger Zeichensatz erlaubt
<.. diverse Befehle ..>
FontSetFixed (FID_UNIVERSITY, 18)
<.. diverse Befehle ..>
FontSetBlock (8, 8) ’ wieder "MYFONT" einstellen

’ auch wenn MYFONT ein
’ farbiger Zeichensatz ist

• Das Laden eines Zeichensatzes aus einer Datei (Befehl BlockLoad) über-
schreibt die durch den Parameter colored gesetzte Einstellung.

Hinweise für fortgeschrittene Programmierer:
• Prinzipiell ist es möglich, die printFont - Variable direkt zu modifizieren. Die

meisten Felder haben im Blockgrafik-Modus jedoch keine Bedeutung.
• Fortgeschrittene Programmierer finden eventuell die Syntax

<variable> = FontSetBlock(sizex, sizey)
hilfreich. <variable> ist eine Variable vom Typ PrintFontStruct, die dann
statt der Systemvariablen printFont belegt wird.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 35

3.4 Direkter Zeichengenerator-Zugriff

Die im Blockgrafik-Modus ausgegebenen Grafiken stehen in einem von R-BASIC
verwalteten Speicherbereich, den man "Zeichengenerator" nennt. Mit den
folgenden Befehlen haben Sie direkten Zugriff auf den Zeichengenerator. Zum
Verständnis der Arbeitsweise der Befehle finden Sie im Abschnitt 3.2
Informationen zum internen Aufbau eines Zeichens im Blockgrafik-Modus, d.h. der
Organisation des Zeichengenerators.

BlockPoke

Schreibt ein einzelnes Byte in den Zeichengenerator. Die Änderungen werden
beim nächsten "Print" des entsprechenden Zeichens berücksichtigt.

Syntax: BlockPoke zeichen, byteNr, wert
zeichen ASCII-Code des zu ändernden Zeichens
byteNr zu änderndes Byte. Zulässige Werte:

z.B. bei 8 x 8 - Zeichen: 0 .. 7
bei 16 x 16 - Zeichen: 0 .. 32
bei 32 x 32 - Zeichen: 0 .. 128

Hinweis: In x-Richtung gibt es evt. nicht genutzte Bits!
z.B. bei 20 x 30 - Zeichen 4 Bits --> byteNr ist von 0 .. 90 erlaubt

Beispiel:
! Das Zeichen 192 soll als schwarzer Block erscheinen
! 16 x 16 - Zeichen vorausgesetzt
FOR n = 0 TO 31

BlockPoke 192, n , 255
NEXT

Print Chr$(192)

BlockPeek

Liest ein einzelnes Byte aus dem Zeichengenerator.

Syntax: <numVar> = BlockPeek (zeichen, byteNr)
zeichen ASCII-Code des zu lesenden Zeichens
byteNr zu lesendes Byte.

Erlaubte Werte: siehe BlockPoke

Beispiel:
! Lesen der Daten des Zeichens 192
! 8 x 8 - Zeichen vorausgesetzt
DIM n, x as REAL
FOR n = 0 TO 7

x = BlockPeek (192, n)
Print x; Hex$(x)
NEXT

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 36

BlockREAD

Liest ein oder mehrere ganze Zeichen aus DATA-Zeilen in den Zeichengenerator.
Die Änderungen werden beim nächsten "Print" des entsprechenden Zeichens
berücksichtigt.

Syntax: BlockREAD zeichen, anzahl
zeichen ASCII-Code des ersten zu ändernden Zeichens
anzahl Anzahl der zu lesenden Zeichen. Pro Zeichen werden so viele Werte

gelesen, wie entsprechend der gesetzten Größe nötig sind.

Beispiel:
! Statt des Zeichens "b" soll ein Muster erscheinen, das in
einer DATA-Zeile definiert ist.
!
LABEL ZG
DATA 0, 124, 68, 68, 207, 68, 124, 0

Restore ZG
FontSetBlock 8, 8
BlockLoad "mini8x8.rbf" , 0, 256
BlockREAD ASC("b"), 1
Print "abbc" ! es erscheint a c

BlockSelect

R-BASIC verwaltet zwei Zeichengeneratoren. Damit ist ein schnelles Umschalten
zwischen zwei Grafikzeichensätzen oder zwischen Text- und Grafikzeichen im
Blockgrafik-Modus möglich. Standardmäßig ist Zeichengenerator 0 aktiv.

Syntax: BlockSelect (nr)
nr Nummer des Zeichengenerators

erlaubte Werte: 0 und 1

Hinweise:
• Alle Block~ Befehle wirken immer auf den aktuellen Zeichengenerator.
• Wird erstmalig in den alternativen Zeichengenerator gewechselt, so wird der

aktuelle Zeichensatz dorthin kopiert.
• Wird mit FontSetBlock() eine andere Größe eingestellt (Parameter sizex

oder sizey), so wird auf Zeichensatz 0 gewechselt und der alternative
Zeichengenerator zurückgesetzt. Im Umkehrschluss bedeutet das, bei einem
FontSetBlock() mit der gleichen Größe der Zeichensatz nicht verändert wird,
auch wenn zwischenzeitlich z.B. ein FontSetFixed erfolgte.

• Es ist zulässig, dass in einem der Zeichengenaratoren ein monochromer
Zeichensatz geladen ist, im anderen ein farbiger.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 37

3.5 Zugriff auf RBF-Dateien

Der einfachste Weg um Blockgrafik-Zeichen zu verwenden ist die Benutzung des
Blockgrafik-Editors, den Sie im Menü "Extras"-"Tools" finden. Der Blockgrafik-
Editor erlaubt das intuitive Erstellen von Grafikzeichen und schreibt sie in eine
Datei (*.RBF). In diesem Abschnitt finden Sie die Befehle, die mit diesen R-
BASIC-Blockgrafik-Font-Dateien arbeiten. Informationen zur Organisation des
Zeichengenerators finden Sie im Abschnitt 3.2.

BlockLoad

Lädt ein oder mehrere Zeichen aus einer RBF-Datei in den Zeichengenerator. Die
RBF-Datei befindet sich üblicherweise im Ordner "USERDATA\R-BASIC\Font".
Sie können jedoch mit dem Parameter "local" festlegen, dass sie im aktuellen
Ordner zu finden ist.

Syntax: BlockLoad fileName$, firstChar, count [, local]
fileName$ Name der Blockgrafikdatei, z.B. "MYFONT.RBF"
firstChar ASCII-Code des ersten zu lesenden Zeichens
count Anzahl der zu lesenden Zeichen

Es muss gelten: firstChar + count <= 256
local optional: TRUE oder FALSE (Default: FALSE)

Suchen der Blockgrafikdatei im Ordner "USERDATA\R-
BASIC\Font" (local = FALSE, Default-Einstellung) oder im
aktuellen Ordner (local = TRUE).

BlockLoad ignoriert die von FontSetBlock vorgegebene Farbtiefe und benutzt den
Wert entsprechend der RBF-Datei. Insbesondere ist es zulässig in den einen
Zeichengenerator einen monochromen Zeichensatz und in den anderen Zeichen-
generator einen farbigen Zeichensatz zu laden, solange die Zeichengröße über-
einstimmt. Das Mischen von monochromen und farbigen Zeichen im gleichen
Zeichensatz ist nicht möglich.

Fehlerbehandlung:
• Enthält die Datei keinen passenden Zeichensatz oder tritt ein anderer Fehler

auf (z.B. Datei nicht gefunden), so wird der Zeichengenerator nicht geändert.
• Die globale Variable fileError wird belegt, im Erfolgsfall mit Null, sonst mit

einer Fehlernummer. Ist die Datei keine gültige RBF-Datei so wird fileError
auf den Wert -12 (INVALID_FONT_FILE) gesetzt, stimmt die Größe der
Grafikzeichen in der Datei nicht mir der aktuell eingestellten Größe überein,
so wird fileError auf den Wert -13 (FONT_SIZE_MISMATCH) gesetzt.

Beispiel:
! Lesen der oberen 128 Zeichen aus einer Datei im Ordner
"USERDATA\R-BASIC\Font"
BlockLoad "MYFONT.RBF", 128, 128
! Lesen der Zeichen a-f aus einer Datei im aktuellen Ordner
BlockLoad "NEWFONT.RBF", ASC("a"), 6, TRUE

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 38

BlockSave

Speichert einen Zeichensatz in eine RBF-Datei. Existiert die Datei bereits, wird sie
ohne Meldung überschrieben. Welche der ASCII-Zeichen in die Datei geschrieben
werden hängt vom Parameter "saveBits" ab.

Syntax: BlockSave fileName$, local, saveBits
fileName$ Name der Blockgrafikdatei, z.B. "MYFONT.RBF"
local TRUE oder FALSE

Datei ins aktuelle Verzeichnis (TRUE) oder nach "USERDATA\R-
BASIC\Font" (FALSE) schreiben.

saveBits 16 Bit Wert, der bestimmt, welche Zeichen in die Datei zu
schreiben sind. Jedes Bit steht für einen Block von 16 Zeichen.
Siehe Tabelle unten.

Fehlerbehandlung:
• Die globale Variable fileError wird belegt, im Erfolgsfall mit Null, sonst mit

einer Fehlernummer (z.B. Datei in Benutzung).

Verwendung des Parameters saveBits:
RBF-Dateien enthalten meist nicht für jeden ASCII-Code ein Grafikzeichen. Der
Parameter saveBit legt jeweils für eine Gruppe von 16 ASCII-Codes fest, ob sie in
die Datei geschrieben werden sollen oder nicht. Bit 0 steht dabei für die Codes 0
bis 15, Bit 1 für 16 bis 31 usw. Die folgenden Tabelle enthält die entsprechenden
Werte für die einzelnen Gruppen. Den Wert für SaveBits erhält man, indem man
die zu den entsprechenden Bits gehörenden Werte (rot markiert) addiert.

Bit Wert ASCII-Codes Bit Wert ASCII-Codes
Nr. dez. hex. (dezimal) Nr. dez. hex. (dezimal)
0 1 &h1 0 ... 15 8 256 &h100 128 ... 143
1 2 &h2 16 ... 31 9 512 &h200 144 ... 159
2 4 &h4 32 ... 47 10 1024 &h400 160 ... 175
3 8 &h8 48 ... 63 11 2048 &h800 176 ... 191
4 16 &h10 64 ... 79 12 4096 &h1000 192 ... 207
5 32 &h20 80 ... 95 13 8192 &h2000 208 ... 223
6 64 &h40 96 ... 111 14 16384 &h4000 224 ... 239
7 128 &h80 112 ... 127 15 32768 &h8000 240 ... 255

Beispiele für typische Bereiche zugehöriger Wert
Zahlen und Sonderzeichen (ASCII Codes 32 ... 63) 12 (= 4 + 8)
Großbuchstaben (ASCII Codes 64 ... 95) 48 (= 16+32)
Alle ASCII-Zeichen von 32 (Leerzeichen) bis 127 252 (= &hFC)
Alle ASCII-Zeichen außer den Steuerzeichen (0...31) 65532 (= &hFFFC)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Blockgrafik - 39

BlockSize

Liest die Größe der Grafikzeichen aus einer Datei. Der Rückgabewert enthält
sowohl die Höhe als auch die Breite und berechnet sich zu 256*breite + höhe.

Ermittlung der Höhe / Breite aus dem Rückgabewert x:
breite = ShR(x,8) AND 255 oder : breite = INT (x / 256)
höhe = x AND 255 höhe = x - 256 * breite

Syntax: <numVar> = BlockSize (fileName$ [, local])
fileName$ Name der Blockgrafikdatei, z.B. "MYFONT.RBF"
local optional: TRUE oder FALSE (Default: FALSE)

Datei im aktuellen Verzeichnis (TRUE) oder in "USERDATA\R-
BASIC\Font" (FALSE, Default) suchen.

Fehlerbehandlung:
• Die globale Variable fileError wird belegt, im Erfolgsfall mit Null, sonst mit

einer Fehlernummer (z.B. Datei nicht gefunden). Konnte die Datei gefunden
werden, ist aber keine gültige RBF-Datei, so wird fileError auf den Wert -12
(INVALID_FONT_FILE) gesetzt.

• Im Fehlerfall (z.B. Datei nicht gefunden oder keine gültige RBF-Datei) liefert
die Funktion den Wert 0 zurück.

BlockInfo

RBF-Dateien enthalten für jedes Zeichen die Information, ob es "belegt" ist oder
nicht. BlockInfo liest diese Information für ein Zeichen aus (Rückgabewerte TRUE
bzw. FALSE) . Zeichen die "nicht belegt" sind existieren trotzdem (können also mit
BlockLoad gelesen werden), enthalten aber i.a. keine Daten. Beim Print wirken
sie daher wie ein Leerzeichen.

Syntax: <numVar> = BlockInfo (fileName$, zeichen [, local])
Parameter: zeichen: ASCII-Codes des Zeichens

Restliche Parameter: siehe BlockSize
Fehlerbehandlung: siehe BlockSize

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 40

4 Einbinden von Hilfedateien

4.1 Überblick

R-BASIC stellt Ihnen das GEOS-weite Hilfesystem zur Verfügung. Damit können
Sie Hilfedateien schreiben und einbinden, die sich in ihrer Handhabung nicht von
den Hilfedateien der PC/GEOS-SDK-Programme unterscheiden.

Das Grundprinzip des GEOS Hilfesystems
Hilfedateien haben ein spezielles Format befinden sich grundsätzlich im Ordner
USERDATA\HELP. Jede Hilfedatei wird über ihren Namen angesprochen. In der
Hilfedatei befinden sich die einzelnen Hilfeseiten. Jede Hilfeseite hat einen
internen Namen, der als "Help Context" bezeichnet wird. Wenn ein Programm
wünscht, eine bestimmte Hilfeseite zu öffnen muss es dem Hilfesystem den
Dateinamen (Help File) und den Help Context mitteilen. Das Hilfesystem öffnet
dann die entsprechende Seite in der Hilfedatei und zeigt sie an. Beim Erstellen der
Datei können Sie Verweise ("Hyperlinks") auf andere Hilfeseiten der gleichen
Datei oder auch von anderen Hilfedateien festlegen. Damit kann der Nutzer
zwischen den verschiedenen Hilfeseiten navigieren. Ein Hyperlink auf eine
bestimmte Stelle innerhalb einer Seite (z.B. ans Seitenende) ist leider nicht
möglich.

4.2 Ansprechen der Hilfe in R-BASIC

Instance-Variable Syntax im UI-Code Im BASIC-Code
helpFile$ helpFile$ = "FileName" lesen, schreiben
helpContext$ helpContext$ = "ContextName" lesen, schreiben

Um das Hilfesystem von GEOS nutzen zu können müssen Sie nur die Hilfedatei
(Help File) und die aufzurufende Hilfeseite (Help Context) festlegen. Dazu stehen
Ihnen die Instancevariablen helpFile$ und helpContext$ zur Verfügung. Den
Rest erledigt das System. Beispielsweise kann über die Taste F1 automatisch die
Hilfe aufgerufen werden. HelpFile$ und helpContext$ sind für alle GenericClass-
Objekte definiert.
Um zu verstehen, wie sie diese Instancevariablen am besten einsetzten müssen
Sie verstehen, wie das Hilfesystem arbeitet.

So arbeitet das Hilfesystem
Nehmen wir an, die haben einen Dialog offen, der über einen "Hilfe" Button
verfügt. Klicken Sie auf den Button oder drücken Sie "F1" so wird das Hilfesystem
von GEOS aktiviert. Diese sucht zuerst im Dialogobjekt nach einer Hilfedatei und
einem HelpContext. Wenn der Programmierer im Dialog weder einen Wert für
helpContext$ noch einen für helpFile$ definiert haben wendet sich das System
an das Parent-Objekt des Dialogs, dann an dessen Parent usw., bis hin zum
Application-Objekt.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 41

Nehmen wir weiterhin an, der Programmierer hat dem Dialog einen helpContext$
gegeben, aber keinen Wert für helpFile$ festgelegt. Dann durchsucht das System
die Parent-Objekt nur noch nach dem Namen der Hilfedatei (helpFile$). Sobald
das System HelpFile und HelpContext zusammen hat zeigt es die entsprechende
Hilfeseite an.

helpFile$

Syntax UI- Code: helpFile$ = "FileName"
Lesen: <stringVar> = <obj> . helpFile$
Schreiben: <obj>.helpFile$ = "Text"

HelpFile$ ordnet einem Objekt eine Hilfedatei zu. Da das GEOS Hilfesystem den
Objekttree aufwärts (in Richtung der Parents) durchsucht ist diese Hilfedatei auch
für alle Children des Objekts gültig. Deswegen wird dem Application Objekt mit
helpFile$ eine Hilfedatei zugeordnet. Die Instancevariable helpFile$ ist aber für
alle GenericClass Objekte zulässig. Häufig wird sie für Groups, Dialoge und
Buttons verwendet, wenn diese eine Hilfedatei nutzen sollen, die von der im
Applicationobjekt definierten "Haupthilfe" abweicht.
Die Hilfedatei ist eine GEOS-Datei. Deswegen sind für helpFile$ bis zu 32
Zeichen zulässig.
Hinweis: Damit der Button "Inhalt" im Hilfefenster arbeiten kann müssen Sie für
das Applicationobjekt einen Namen für die Hilfedatei (helpFile$) festlegen.

helpContext$

Syntax UI- Code: helpContext$ = "ContextName"
Lesen: <stringVar> = <obj>.helpContext$
Schreiben: <obj>.helpContext$ = "Text"

HelpContext$ ordnet einem Objekt eine Hilfeseite (Help Context) zu. Da das
GEOS Hilfesystem den Objekttree aufwärts (in Richtung der Parents) durchsucht
ist diese Hilfeseite auch für alle Children des Objekts gültig. Die Instancevariable
helpContext$ ist für alle GenericClass Objekte zulässig. Sehr häufig wird ein Help
Context für Groups, Dialoge und Buttons verwendet, um die entsprechende
Hilfeseite anzuzeigen. Den Namen der Hilfedatei bezieht das System dabei sehr
häufig vom Applicationobjekt.
Die Textlänge für helpContext$ ist auf 20 Zeichen begrenzt. Mehr lässt der
GEOS Hilfeeditor in GeoWrite nicht zu.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 42

Die Standardkonfiguration

Die meisten Programme verwenden nur eine einzige Hilfedatei und beim Aufruf
der Hilfe wird die immer Startseite (Inhaltsverzeichnis, engl. Top Of Content, TOC)
angezeigt. Das ist sehr einfach zu realisieren. Vereinbaren Sie im UI Code für das
Applicationobjekt eine Hilfedatei (helpFile$) und für das Primaryobjekt den Help
Context "TOC". Dadurch erscheint automatisch der "Hilfe" Button (blaues
Fragezeichen) in der Titelzeile des Primaryobjekts und die Taste F1 zum Aufruf
der Hilfe wird aktiviert.

Application DemoApplication
 Children = DemoPrimary
 helpfile$ = "R-BASIC Demo Help"
END Object

Primary DemoPrimary
 Children =
 SizeWindowAsDesired
 helpContext$ = "TOC"
END Object

Um den automatisch erzeugten Hilfebutton aus der Titelzeile des Primary wieder
zu entfernen verwenden Sie bei bedarf den Hint PrimaryNoHelpButton.

Eigene Hilfeseiten für Dialoge

Ein sehr häufiger Fall ist, dass ein Dialog offen ist und der Nutzer Hilfe zu genau
diesem Dialog benötigt. Dann kann er entweder die Taste F1 drücken oder einen
speziellen "Hilfe" Button in diesem Dialog anklicken. Dieses Funktionalität lässt
sich sehr einfach implementieren. Geben Sie einfach dem Dialogobjekt eine Help
Context. Als Nebenwirkung erzeugt der Dialog automatisch einen Hilfebutton. Das
Hilfesystem ruft dann beim Aufruf der Hilfe (F1 oder anklicken des Hilfebuttons)
automatisch die dem Dialog zugeordnete Hilfeseite auf.

Dialog HelpedDialog
Caption$ = "Dialog mit Hilfe"
Children =
helpContext$="SpecialDialogHelp"
End Object

Bei Bedarf können Sie auch eine andere Hilfedatei (helpFile$) festlegen:

Dialog HelpedDialog
Caption$ = "Dialog mit Hilfe"
Children =
helpContext$ = "SpecialDialogHelp"
helpFile$ = "SpecialHelpFile"
End Object

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 43

Der vom Dialog automatisch erzeugte Helpbutton hat ein Fragezeichen als
Aufschrift. Um diese Aufschrift zu ändern muss man einen Button anlegen, dessen
interactionCommand Wert auf IC_HELP gesetzt ist. Dieser Button ersetzt dann
den vom Dialog erzeugten Button. Zusätzlich sollten Sie dem Button die
Anweisung

placeObject = REPLY_BAR
geben, falls das angebracht ist.

Dialog HelpedDialog
caption$ = "Dialog mit Hilfe"
children = ... , DialogHelpButton
dialogtype = DT_COMMAND
helpContext$="MoreHelp"
End Object

...
Button DialogHelpButton
Caption$ = "Hilf mir"
interactionCommand = IC_HELP
placeObject = REPLY_BAR
End Object

Direkter Aufruf spezieller Hilfeseiten

Insbesondere in einem "Hilfe" Menü oder auch in einem Dialog kann der Wunsch
bestehen, mehrere konkrete Hilfeseiten direkt aufzurufen. Das lässt sich sehr
einfach über Buttons realisieren, denen als ActionHandler das Schlüsselwort
"BringUpHelp" zugewiesen wird. Diese Buttons sollten einen eigen Help Context
und ggf. eine eigene Hilfedatei zugeordnet bekommen.

Dialog HelpedDialog
caption$ = "Dialog mit mehr Hilfen"
children = ... , HelpButton1, HelpButton2
dialogtype = DT_COMMAND
End Object

...
Button HelpButton1
Caption$ = "Hilfe Thematisch"
ActionHandler = BringUpHelp
helpContext$ = "ThemaHelp"
End Object

Button HelpButton2
Caption$ = "Spezielle Hilfe"
ActionHandler = BringUpHelp
helpContext$ = "HelpSpecial"
helpFile$ = "Help File 2"
End Object

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 44

4.3 Unterstützung für "Virtual Desktop"

Wenn Sie das Programm "Virtual Desktop" von Jens-Michael Groß installiert
haben möchten Sie vielleicht die dort verfügbare Funktionalität "BubbleHelp" auch
für ihre R-BASIC Programme einsetzen. J.-M. Groß hat die BubbleHelp Funktion
über die Help Contexte realisiert. Um z.B. einem Button die Bubble-Hilfe "Öffnet
die Dateiauswahl" zu geben, verwenden Sie helpContext$ mit drei führenden $-
Zeichen.

Button FileSelectButton
Caption$ = "Wählen"
helpContext$ = "$$$Öffnet die Dateiauswahl"
End Object

Virtual Desktop erkennt an den führenden $$$, dass es sich um eine Bubble-Hilfe
handelt. Der Text hinter den $$$ kann bis zu 35 Zeichen lang sein.

Sie können BASIC Programme, denen Sie auf diese Weise eine BubbleHelp
Funktionalität gegeben haben, problemlos an User verteilen, die Virtual Desktop
nicht installiert haben. Sie laufen dort ohne Einschränkung.

4.4 Erstellen von Hilfedateien

Hilfedateien werden einfach mit GeoWrite erstellt. Dazu muss zuerst der
Hilfeeditor freigeschaltet werden. Sie erkennen am Vorhandensein des Menüs
"Hilfe-Editor" dass der Hilfeeditor bereits aktiviert ist.

So schalten Sie den Hilfeeditor frei

Wenn Sie noch kein Hilfe-Editor Menü haben gehen Sie folgendermaßen vor:

1. Starten Sie GEOS und stellen Sie sicher, dass GeoWrite nicht läuft. Fahren Sie
GEOS dann herunter.

2. Fertigen Sie eine Sicherheitskopie ihrer GEOS.INI an und öffnen Sie sie mit
einem Texteditor (nicht mit MSWord oder sowas!). Suchen Sie die Kategorie
[configure] und tragen darunter die Zeile

helpeditor = true
ein. Wenn die Kategorie [configure] noch nicht existiert müssen Sie sie anlegen.
Dieser Schritt stellt sicher, das man in GeoWrite den Hilfeeditor zuschalten
kann. Speichern Sie die GEOS.INI und starten Sie GEOS und dann GeoWrite.

3. Wählen Sie in GeoWrite im Menü "Optionen" den Punkt "Benutzerebene
ändern". Klicken Sie auf "Feineinstellung" und aktivieren Sie das

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 45

Kontrollkästchen "Hilfe-Editor". Wundern Sie sich bitte nicht, dass jetzt keine
Benutzerebene mehr selektiert ist. Mehrfach OK klicken nicht vergessen.

4. Wählen Sie "Konfiguration speichern" aus dem Optionen-Menü.

5. Sollte das Hilfe-Editor Menü jetzt noch nicht zu sehen sein, schließen Sie bitte
GeoWrite und starten Sie GEOS neu.

So erstellen Sie eine Hilfedatei

1. Planen Sie ihre Hilfedatei gründlich!

2. Öffnen Sie in GeoWrite eine neue Datei und speichern Sie sie unter einen
möglichst eindeutigen Namen.

3. Schreiben Sie das "Inhaltsverzeichnis". Das ist die Startseite, von der aus auf
die wichtigsten Unterthemen gesprungen werden soll. Sie muss natürlich die
Texte für die Hyperlinks zu den Unterthemen enthalten. Ein Beispiel:

Hilfe zu Supergame
Spielregeln
Copyright

Wählen Sie für die Hyperlinks ein geeignetes Format, z.B. dunkelblau und
unterstrichen.
Diese Seite kann, wie jede andere Hilfeseite auch, Grafiken oder Bilder
enthalten. Sie sollten Grafiken und Bilder aber immer in die Textebene
einfügen, sonst könnten Layoutprobleme beim der Anzeige der Hilfe die Folge
sein.

4. Drücken Sie Strg-Enter um eine neue Seite zu öffnen. Es ist wichtig dass jede
Hilfeseite auf einer neuen Seite beginnt.

5. Schreiben Sie den Hilfetext, z.B.:

Spielregeln
Wer gefressen wird hat verloren.

Denken Sie bei der Formatierung daran, dass der Nutzer das Hilfefenster später
in seiner Größe verändern kann. Arbeiten Sie zur Formatierung nicht mit der
TAB-Taste oder Leerzeichen sondern verwenden Sie konsequent Seitenränder
und Absatzeinzüge! Auch Tabulatoren sind mit Vorsicht zu genießen, da die
Hilfe meist nicht so breit ist wie das Textfenster von GeoWrite. Farben und
Zeichenattribute sind natürlich auch erlaubt.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 46

6. Jetzt müssen Sie die internen Seitennamen (Help Contexte) vereinbaren.
Öffnen Sie dazu das Hilfe-Editor Menü und wählen Sie "Kontext erstellen".
Erstellen Sie unbedingt einen Kontext namens TOC, der auch die Eigenschaft
"TOC" aus der Auswahlliste oben bekommen sollte. TOC steht für Table of
Content (Inhaltsverzeichnis) und jede Hilfedatei muss zwingend einen Kontext
namens TOC haben, sonst arbeitet das Hilfesystem nicht richtig. Alle anderen
Kontexte behalten die Eigenschaft "Text". Erstellen Sie weitere Kontexte mit
beliebigen Namen, z.B. "Spielregeln" oder "Copyright". Leerzeichen sind
zulässig, aber unpraktisch.

7. Nun müssen Sie die vereinbarten Help Contexte den einzelnen Seiten
zuordnen. Gehen Sie dazu in GeoWrite zunächst auf Ihre Seite mit dem
Inhaltsverzeichnis und markieren Sie die erste Zeile oder die ersten Zeilen.
Dabei gelten die folgenden Regeln:

• Der Anfang der ersten Zeile muss mit markiert sein. Das gilt auch, wenn es
sich um eine Leerzeile handelt. Leerzeilen enthalten keine Zeichen, auch
keine Leerzeichen oder Sondertext wie Tabulatoren oder Grafiken.

• Beginnt die Seite mit einer oder mehreren Leerzeilen so sollten Sie alle
führenden Leerzeilen, einschließlich der ersten Zeile mit Text, markieren.

• Der Text der ersten Zeile, die ein Zeichen enthält, wird vom Hilfesystem
für das Menü "Letzte Schritte" verwendet.

• Das Markieren der ganzen Seite ist unzulässig.
Öffnen Sie nun wieder das Hilfe-Editor Menü und wählen Sie "Kontext setzen".
Klicken Sie auf "TOC" in der Liste der Kontexte und dann auf" Anwenden".
Markieren Sie nun die ersten Buchstaben der erste Hilfeseite und weisen Sie
ihm auch einen Kontext zu. Wichtig ist hier, dass nicht aus Versehen der
Seitenumbruch mit markiert ist, sonst wird der Kontext der vorhergehenden
Seite zugeordnet!
Tipp: Beginnt die erste nicht-Leerzeile mit einer Grafik so findet das Hilfesystem
keinen Text für die "Letzte Schritte" Liste. Um das zu vermeiden schreiben sie
den Text für die "Letzte Schritte" Liste in die allererste Zeile, setzen ihn aber auf
"unsichtbar", indem Sie im Menü "Zeichen" - "Textfarbe" den Wert für "Raster
(%)" auf Null setzen.

8. Jetzt müssen Sie die Seiten verlinken. Markieren Sie auf der Seite mit dem
Inhaltsverzeichnis den Link auf das erste Hilfethema. Öffnen Sie nun wieder das
Hilfe-Editor Menü und wählen Sie "Hyperlink setzen". Wählen Sie einen
Kontext und klicken Sie auf "Anwenden".
Tipp: Setzen Sie hinter jeden Hyperlink, der allein auf einer Zeile steht ein
einzelnes Leerzeichen, das nicht Teil des Links ist. Das verhindert, dass das
Hilfesystem den Mauscursor bis an Ende der Zeile, wo gar nichts mehr steht,
als "Hyperlink-Cursor" anzeigt.

9. Nun können Sie weitere Hilfeseiten, Kontexte und Hyperlinks nach belieben in
das Dokument einfügen.

10. Zum Abschluss muss die Hilfedatei im USERDATA\HELP Ordner angelegt
werden. Dazu öffnen Sie wieder das Hilfe-Editor Menü und wählen "Hilfedatei
erstellen". Den Punkt "Daten komprimieren" sollten Sie aktiviert lassen.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Hilfedateien - 47

GeoWrite legt eine Kopie des aktuellen Dokuments in USERDATA\HELP ab
und ändert deren Format so, dass das Hilfesystem sie verwenden kann. Die
GeoWrite-Datei bleibt erhalten. So können Sie ihre Hilfedatei später beliebig
erweitern oder verändern.

Hilfesysteme mit mehreren Hilfedateien

Es ist möglich einen Hyperlink auf einen Kontext in einer anderen als der aktuellen
Datei zu setzen. Damit können Sie sehr umfangreiche und komplexe Hilfesystem
aufbauen. Um einen Hyperlink auf einen Kontext in einer fremden Datei zu setzten
müssen Sie den Namen der Datei und den Namen des anzuspringenden
Kontextes manuell vereinbaren.

1. Öffnen Sie den Punkt "Datei definieren" im Menü "Hilfe-Editor". Tragen Sie den
Namen der Hilfedatei ein und klicken Sie auf "Datei hinzufügen".

2. Öffnen Sie den Punkt "Kontext erstellen" im Menü "Hilfe-Editor". Klicken Sie
auf " • aktuelle Datei •" und wählen Sie die eben hinzugefügte Datei aus.
Definieren Sie jetzt den Namen des Kontextes, den Sie in dieser Datei
anspringen wollen.

3. Markieren Sie den Hyperlinktext in ihrem Dokument und öffnen Sie den
Menüpunkt "Hyperlink setzen" aus dem "Hilfe-Editor" Menü. Wählen Sie dort die
gewünschte Datei sowie den gewünschten Kontext aus und klicken Sie auf
"Anwenden".

4. Erzeugen Sie die beiden betroffenen Hilfedateien (Menüpunkt "Hilfedatei
erstellen"), starten Sie die zugehörige Anwendung bzw. Ihr BASIC Programm
und testen Sie ihre Hilfedateien. Sollte es ein Problem geben prüfen Sie bitte
die Schreibweise (Groß/Kleinschreibung, Leerzeichen) des Dateinamens und
des Kontextes.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 48

5 Arbeit mit der Zwischenablage

5.1 Überblick

Zugriff auf die Zwischenablage
Die Arbeit mit der Zwischenablage (auch Clipboard genannt) ist unter PC/GEOS
auf zwei Arten möglich. Zum einen weiß jedes Objekt, z.B. ein Memo-Objekt, ob
es mit der Zwischenablage zusammenarbeiten kann und wie es Daten (z.B. einen
Text oder eine Grafik) in die Zwischenablage kopiert oder aus ihr herausholt.
Zusätzlich unterstützt PC/GEOS den direkten Zugriff auf die Zwischenablage, d.h.
eine Applikation kann ihre eigenen Daten in einem eigenen Format in die
Zwischenablage kopieren bzw. von dort lesen. R-BASIC bietet ebenfalls beide
Wege an. Auf Objektebene stehen die Methoden (Objektanweisungen)
ClpTestCopy, ClpTestPaste, ClpCopy und ClpPaste zur Verfügung. Das
Programm selbst kann mit den Befehlen ClipboardTest, ClipboardPut,
ClipboardGet, ClipboardPutGS, ClipboardGetGS, ClipboardPutBitmap und
ClipboardGetBitmap direkt auf die Zwischenablage zugreifen. Die globale
Variable clipboardError wird auf TRUE gesetzt, wenn es ein Problem bei der
Arbeit mit der Zwischenablage gab.

Überwachung der Zwischenablage
Ein R-BASIC Programm kann sich bei Bedarf über Änderungen des Inhalts der
Zwischenablage informieren lassen. Jedes Mal wenn irgendein Programm (z.B.
GeoWrite) Änderungen an der Zwischenablage vornimmt wird vom Application-
Objekt ein spezieller Handler (OnClpChange-Handler) gerufen.

Das ClipboardFormat
Will ein Programm oder Objekt z.B. einen Text aus der Zwischenablage
entnehmen, so muss es sicher sein, dass sich auch ein Text in der Zwischen-
ablage befindet. Deshalb muss beim Kopieren irgendwelcher Daten in die
Zwischenablage immer eine Information mit abgespeichert werden, worum es sich
handelt. Diese Information heißt ClipboardFormat und besteht aus zwei WORD-
Werten, der Manufacturer-ID und der FormatNummer. Der erste Wert, die
Manufacturer-ID, frei übersetzt die "Hersteller-Kennung", beschreibt, wer die
Software, die Daten ins Clipboard kopiert, geschrieben hat. Der zweite Wert, die
FormatNummer, ist einfach eine laufende Nummer, die verschiedene
Clipboardformate der gleiche Softwareschmiede unterscheiden soll.

Standardformate
Bei allen von PC/GEOS selbst definierten Formaten (z.B. Text, Bitmap, Graphic
String) ist die Manufacturer-ID Null. Null ist die Herstellerkennung von GeoWorks.
BreadBox hat die Nummer 16431 und der Programmierer von R-BASIC hat die
Nummer 16480. GeoWorks hat einige grundlegende Formate z.B. Text (FormatNr.
0), Graphic String (Folge von Grafikbefehlen, Nr. 1) und Bitmap (Nr. 7) sowie
einige mehr definiert. Diese werden als Standardformate bezeichnet und sind
teilweise im PC/GEOS-SDK dokumentiert. Unter R-BASIC ist ein Zugriff auf die
Formate Text, Graphic String und Bitmap über einige R-BASIC Objekte möglich.
Ein BitmapContent-Objekt kann z.B. sowohl eine Bitmap als auch einen
Graphic String aus dem Clipboard lesen und Textobjekte (Memo, InputLine,

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 49

VisText und LargeText) können selbstverständlich mit Texten im Clipboard
umgehen.
Weiter unten wird beschrieben, wie sie selbst zu einer Manufacturer-ID kommen,
falls Sie eine benötigen.

Mehrere Formate im Clipboard
Unter PC/GEOS können die Daten in der Zwischenablage in mehr als einem
Format gleichzeitig abgelegt werden. Beispielsweise speichert GeoDraw seine
Grafiken immer sowohl als editierbare GeoDraw-Objekte als auch als Graphic
String (der z.B. von GeoWrite oder vom R-BASIC Bitmap-Objekt gelesen werden
kann). Der Grafikbetrachter Gonzo und auch das R-BASIC BitmapContent Objekt
kopiert Bilder sowohl als reine Bitmap als auch als Graphic String in die
Zwischenablage. Wenn Sie in R-BASIC eigene Clipboardformate verwenden,
können Sie allerdings nur genau ein Format gleichzeitig in die Zwischenablage
kopieren.

5.2 Clipboardoperationen

Aus dem Bearbeiten-Menü kennen Sie die Clipboardoperationen "Kopieren",
"Einfügen" und "Ausschneiden". Diese sind unter PC/GEOS auf ganz elementarer
Ebene und für alle Objekte definiert - auch wenn die meisten Objekte (z.B. ein
Button) gar nicht mit dem Clipboard zusammenarbeiten können. R-BASIC
übernimmt das und deswegen sind die Clipboardoperationen auch unter R-BASIC
für alle Objekte erlaubt. Sehr viele, wie z.B. ein Button, ignorieren die ent-
sprechenden Anweisungen aber. Bei denjenigen Objekten, die mit dem Clipboard
arbeiten können, z.B. BitmapContent und Textobjekte, finden Sie bei der
Beschreibung dieser Objekte die entsprechenden Detailinformationen.

Methoden:
Methode Aufgabe

ClpTestCopy Prüfen, ob Daten ins Clipboard kopiert werden können
ClpCopy Daten ins Clipboard kopieren
ClpTestPaste Prüfen, ob passende Daten im Clipboard sind
ClpPaste Daten aus dem Clipboard holen

globale Variablen:
 Variable Aufgabe

clipboardError enthält im Fehlerfall TRUE, sonst FALSE

Das Kopieren von Daten ins Clipboard wird als Copy-Operation bezeichnet (engl.
to copy: etwas kopieren), das Einfügen von Daten aus dem Clipboard in ein Objekt
wird als Paste-Operation bezeichnet (engl. to paste: etwas einkleben, etwas
einfügen). Die Operation "Ausschneiden" wird von R-BASIC nicht direkt
unterstützt. Sie ist identisch mit "Kopieren ins Clipboard" und anschließendem
Löschen der Daten aus dem Objekt. Das lässt sich bei Bedarf sehr leicht manuell
implementieren.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 50

clipboardError

Es ist möglich, wenn auch extrem unwahrscheinlich, dass in der kurzen
Zeitspanne zwischen den Prüfen der Zwischenablage mit ClpTest bzw.
ClipboardTest und der Verwendung der Daten mit ClpPaste bzw. ClipboardGet
eine andere Applikation den Inhalt der Zwischenablage verändert hat. Die
Clipboard "Lese" Operationen ClipboardGet und ClpPaste setzen deswegen die
globale Variable clipboardError auf TRUE (Fehler) oder FALSE (OK), je
nachdem ob sie erfolgreich waren oder nicht.

ClpTestCopy, ClpCopy

Die Methode ClpTestCopy weist das Objekt an zu prüfen, ob es Daten ins
Clipbord kopieren kann. Die Methode liefert den Wert TRUE (–1, entspricht ja)
oder FALSE (Null, entspricht nein). Objekte, die nicht mit dem Clipboard arbeiten
können liefern hier immer Null, also nein. Die globale Variable clipboardError
wird von ClpTestCopy nicht verändert.

Syntax BASIC-Code: <numVar> = <obj>.ClpTestCopy
 Liefert: TRUE: Daten zum Kopieren vorhanden

FALSE: Kann keine Daten kopieren

Die Methode ClpCopy weist das Objekt an, seine Daten ins Clipboard zu
kopieren. Ist es dazu nicht in der Lage, entweder weil das Objekt gar nicht mit dem
Clipboard arbeiten kann oder weil gerade keine Daten verfügbar sind, wird die
Anweisung ignoriert und die globale Variable clipboardError wird auf TRUE
gesetzt.

Syntax BASIC-Code: <obj>.ClpCopy

Beispiel:
DIM n
n = QuestionBox ("Text kopieren?")
IF n = YES then
DemoText.ClpCopy
end if

ClpTestPaste, ClpPaste

Mit der Methode ClpTestPaste können Sie erfahren, ob sich Daten im Clipboard
befinden, die vom Objekt akzeptiert werden. Dazu prüft das Objekt, ob sich ein
geeignetes Format im Clipboard befindet. Objekte, die nicht mit dem Clipboard
arbeiten können liefern hier immer FALSE (Wert Null, bedeutet nein). Die globale
Variable clipboardError wird von ClpTestPaste nicht verändert.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 51

Syntax BASIC-Code: <numVar> = <obj>.ClpTestPaste
 Liefert: TRUE: Daten zum Einfügen gefunden

FALSE: Kann nichts einfügen

Die Methode ClpPaste weist das Objekt an, Daten aus dem Clipboard bei sich
selbst "einzufügen". Ob das ein "Hinzufügen" oder ein "Ersetzen" ist hängt vom
Objekt ab. Ist das Objekt nicht in der Lage, die Clipboarddaten einzufügen,
entweder weil das Objekt gar nicht mit dem Clipboard arbeiten kann oder weil es
ein Problem gibt, wird die Anweisung ignoriert. Je nach Objekt und Situation kann
es eine Fehlermeldung geben oder auch nicht. Die meisten Objekte (mit
Ausnahme der Textobjekte) setzen die globale Variable clipboardError auf TRUE
bzw. auf FALSE.

Syntax BASIC-Code: <obj>.ClpPaste

Beispiel:
IF DemoBitmap.ClpTestPaste THEN

DemoBitmap.ClpPaste
else
MsgBox "Keine Grafik im Clipboard"

end if

5.3 Das Clipboard überwachen

Um in R-BASIC z.B. ein "Bearbeiten" Menü zu implementieren müssen Sie wissen
wenn jemand etwas ins Clipboard kopiert und was es ist. Dann können Sie z.B.
einen "Einfügen" Schalter enablen oder disablen. Für dieses Zweck verfügt das
Application Objekt (und nur dieses) über einen speziellen Actionhandler, der
immer dann aufgerufen wird, wenn sich im Clipboard etwas tut.

Instance-Variable:
Variable Syntax im UI-Code Im BASIC-Code
OnClpChange OnClpChange = <Handler> nur schreiben

Action-Handler-Typen:
Handler-Typ Parameter
SystemAction (sender as object, state as word,

data1 as word, data2 as word)

Der OnClpChange Handler wird automatisch immer dann aufgerufen wenn sich
die Daten im Clipboard ändern. Die übergebenen Parameter sind hier ohne
Bedeutung und sollten ignoriert werden. Wenn die Instancevariable
OnClpChange erstmalig belegt wird, meldet sich das Applicationobjekt beim
System für die Clipboardüberwachung an und erhält fortan automatisch die

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 52

entsprechenden Informationen. Erstmalig wird der Handler bereits gerufen, wenn
sich das Applicationobjekt anmeldet. Da OnClpChange üblicherweise im UI-Code
belegt wird erfolgt der erstmalige Aufruf schon beim Programmstart. Damit ist das
BASIC Programm stets über den Stand des Clipboards informiert.

Das folgende Beispiel zeigt das Fragment einer typischen Implementation. Der
"Einfügen" Button ist nur dann aktiv wenn sich auch eine Grafik im Clipboard
befindet.

Im UI Code:
Application DemoApplication
 Children = DemoPrimary
 OnClpChange = ClpChangeHandler
END Object

BitmapContent DemoBitmap
....

END Object

Button PasteButton
Caption$="Einfügen"
enabled = FALSE ’ sicherheitshalber
ActionHandler = PasteImageHandler

END Object

Im BASIC Code:
’
’ Der Handler enabled oder disabled den Einfügen Button
’
SYSTEMACTION ClpChangeHandler
DIM ok
ok = DemoBitmap.ClpTestPaste
IF ok THEN
PasteButton.enabled = TRUE
ELSE
PasteButton.enabled = FALSE
END IF

END Action

’
’ Der Button Handler ist sehr simpel
’
BUTTONACTION PasteImageHandler
DemoBitmap.ClpPaste

END Action

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 53

5.4 Eigene Formate verwenden

Bei komplexen Anwendungen kann es sinnvoll oder nötig sein, eigene Daten von
R-BASIC aus ins Clipboard zu kopieren und die wieder von dort zu lesen. Ein
einfacher Fall wäre das Kopieren von Inhalten von einem Dokument in ein
anderes. R-BASIC unterstützt das über die drei Befehle: ClipboardTest,
ClipboardPut und ClipboardGet sowie mit der globalen Variaben
clipboardError. Dabei wird jeweils der Inhalte einer Strukturvariablen ins
Clipboard kopiert bzw. von dort gelesen. Sie sollten daher mit den Grundlagen der
Verwendung von Strukturen (Schlüsselwort STRUCT) vertraut sein um die
folgenden Abschnitte vollständig zu verstehen.

clipboardError

Enthält im Fehlerfall TRUE, sonst FALSE. Details siehe Abschnitt "Clipboard-
operationen".

ClipboardTest

ClipboardTest prüft, ob sich Daten mit einem bestimmten Format im Clipboard
befinden. Das Format kann ein GEOS Standardformat oder eine eigenes Format
sein. Die globale Variable clipboardError wird nicht verändert.

Syntax BASIC Code: <numVar> = ClipboardTest (manufID, formatNr)
manufID: Manufacturer-ID des Formats
formatNr: Nummer des Formats
Return: TRUE: Format gefunden

FALSE: Format nicht im Clipboard

Die folgenden Tabelle enthält eine Auswahl der von GeoWorks definierten
Clipboardformate. Einige dieser Formate sind im PC/GEOS-SDK dokumentiert,
andere nicht.

Manufacturer-ID Format-Nummer Inhalt
0 0 Text
0 1 Graphic String (eine Folge

von Zeichenbefehlen)
0 3 Tabellenkalkulationsdaten
0 5 GeoDraw Objekte
0 6 GeoDex Daten
0 7 Bitmap

Unter R-BASIC ist ein Zugriff auf die Formate Text, Graphic String und Bitmap
über R-BASIC Objekte möglich.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 54

ClipboardPut

Mit ClipboardPut können Sie den Inhalt einer Strukturvariablen (Struktur-
ausdrücke sind auch erlaubt) ins Clipboard kopieren. Dazu müssen Sie ein
eigenes ClipboardFormat "definieren" indem sie eine eindeutige Kombination von
Manufacturer-ID und Formatnummer verwenden. ClipboardPut kann nicht
fehlschlagen, die globale Variable clipboardError wird immer auf FALSE gesetzt.

Syntax BASIC Code: ClipboardPut <structExpr>, manufID, formatNr
<structExpr> Struktur Variable oder Ausdruck
manufID: Manufacturer-ID ihres Formats
formatNr: Nummer ihres Formats

ClipboardPut erkennt alle sonstigen nötigen Daten wie Größe der Struktur auto-
matisch. Es kopiert die Struktur 1:1 ins Clipboard und legt als ClipboardFormat die
Kombination aus manufID und formatNr fest.

Beispiel
STRUCT Mydata
x, y AS INTEGER
r,g,b AS BYTE
text$ AS STRING(60)
info$ AS STRING(30)
END STRUCT

DIM dat AS Mydata
... ’ hier dat mit Werten belegen
ClipboardPut dat, 16480, 12 ’ RABE-Soft ID + Nr.12

Wenn Sie bereits eine eigene Manufacturer-ID besitzen ist das "Definieren" eines
eigenen ClipboardFormats ganz einfach: Sie verwenden ausschließlich ihre
eigene Manufacturer-ID und denken sich für jedes Programm, dass ein eigenes
ClipboardFormat benötigt, eine (oder mehrere) willkürliche Formatnummer(n) aus.
Schreiben Sie sich alle verwendeten Werte auf und legen Sie die Liste gut weg,
damit Sie keinen Wert doppelt verwenden. Das ist schon alles. Es gibt keine
zentrale Stelle wo Sie ihr Format "anmelden" oder gar "genehmigen lassen"
müssen.

Falls Sie noch keine eigene Manufacturer-ID besitzen sollten Sie sich bei
BreadBox eine besorgen. Wenn sie das wirklich nicht wollen ist die Sache
komplizierter. Sie müssen sich dann eine "ausdenken" - was unter (wenn auch
sehr unwahrscheinlichen) Umständen zu Konflikten führen kann. Lesen Sie dazu
bitte den Abschnitt 3.4 (Über die Manufacturer ID) im R-BASIC Benutzer
Handbuch.

ClipboardGet

Mit ClipboardGet können Sie den Inhalt des Clipboards in eine Strukturvariable
kopieren. ClipboardGet prüft dabei, ob sich das ClipboardFormat, dass Sie mit

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 55

den Parametern manufID und formatNr spezifiziert haben, auch wirklich im
Clipboard befindet. Sollte das nicht der Fall sein liefert ClipboardGet eine "leere"
Struktur (alles Nullen) zurück. Es erfolgt keine weitere Fehlermeldung. Verwenden
Sie vorher ClipboardTest, und prüfen Sie auch die globale Variabe
clipboardError ab, wenn Sie sicher sein wollen.

Syntax BASIC Code: <structVar> = ClipboardGet (manufID, formatNr)
<structVar> Struktur-Variable
manufID: Manufacturer-ID ihres Formats
formatNr: Nummer ihres Formats

ClipboardGet erkennt alle sonstigen nötigen Daten wie Größe der Struktur auto-
matisch.

Achtung! ClipboardGet führt keine weiteren Prüfungen aus! Wenn das
ClipboardFormat ’manufID’ + ’formatNr’ gefunden wurde, wird versucht die Daten
zu kopieren. Das heißt z.B.

• Wenn Sie statt ihres gewünschten Formats zufällig ein Format spezifiziert
haben, dass sich im Clipboard befindet, greift ClipboardGet darauf zu. Im
günstigsten Fall erhalten Sie Müll, im schlechtesten crasht das System.

• Wenn der Typ der Strukturvariablen links vom Gleichheitszeichen nicht mit
dem Type der Variablen, die bei ClipboardPut verwendet wurde, über-
einstimmt, erhalten Sie Müll.

Beispiel
DIM dat AS Mydata ’
Siehe ClipboardPut
dat = ClipboardGet (16480, 12)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 56

5.5 Bitmaps und GStrings

R-BASIC kann sowohl auf Bitmapdaten (ManufacturerID = 0, formatNr = 7) als
auch auf Graphic Strings (ManufacturerID = 0, formatNr = 1) im Clipboard direkt
zugreifen bzw. diese ins Clipboard kopieren. Dabei werden die Bitmap bzw. der
GString über Handles referenziert.
Um zu prüfen, ob sich das richtige Format im Clipboard befindet können Sie die
Routine ClipboardTest (siehe oben) verwenden. Um zu prüfen, ob die Operation
erfolgreich war können Sie die globale Variable clipboardError abfragen.

ClipboardPutBitmap, ClipboardGetBitmap, FreeBitmap

Diese Befehle ermöglichen es eine Bitmap unabhängig vom BitmapContent-
Objekt in das Clipboard zu kopieren oder von dort zu lesen. Eine ausführliche
Beschreibung dieser Befehle finden Sie im Kapitel 2.8.6.4 (Bitmaps und
BitmapHandles) des Programmierhandbuchs.

ClipboardPutGS, ClipboardGetGS

Diese Befehle ermöglichen es einen Graphic String in das Clipboard zu kopieren
oder von dort zu lesen. Eine ausführliche Beschreibung dieser Befehle finden Sie
im Kapitel 2.8.5 (Arbeit mit Graphic Strings) des R-BASIC Programmierhand-
buchs.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Zwischenablage - 57

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Dateisystem - 58

6 Das Dateisystem

6.1 Dateitypen

GEOS kennt verschiedene Dateitypen. Aus Gründen des Systematik werden in
diesem Zusammenhang auch Ordner als spezielle Type von Dateien angesehen.
Die Tabelle unten enthält eine Übersicht sowie die Namen der numerischen
Konstanten, die R-BASIC für diesen Zweck zur Verfügung stellt. Der Vorsatz
GFT_ steht für "GeosFileType"

FileType

Mit der Funktion FileType ermitteln Sie den Typ einer Datei. Die Datei kann durch
ihren Namen oder eine Dateivariable spezifiziert werden. Die Systemvariable
fileError wird gesetzt oder gelöscht.

Syntax: <numVar> = FileType (fileName$)
<numVar> = FileType (<fh>)

fileName$ Name der Datei. Pfadangaben im Namen sind zulässig.
<fh>: Variable (oder Ausdruck) vom Typ FILE. Bezeichnet die Datei.
Return: Dateityp entsprechend der Tabelle unten

Beispiel:
DIM type as word
type = FileType ("Bilder")
IF (type = GFT_DIRECTORY) THEN Print "Es ist ein Ordner!"

Wert Name der Konstante Bedeutung
0 GFT_NOT_GEOS_FILE Keine GEOS-Datei, sondern eine DOS-

Datei
1 GFT_EXECUTABLE Ausführbare GEOS-Datei (Applikation,

Library)
2 GFT_VM GEOS-VM-Datei (z.B. ein Write-

Dokument)
3 GFT_DATA GEOS-Daten-Datei (unterstützt von R-

BASIC)
4 GFT_DIRECTORY Keine Datei, sondern ein Ordner

Tabelle: GeosFileTypen

Hinweis für PC/GEOS-SDK-Programmierer: Die PC/GEOS-SDK-Routinen hinter diesem Befehl
(FileGetHandleExtAttributes und FileGetPathExtAttributes) liefern beim Auffinden einer DOS-Datei
oder eines DOS-Verzeichnissen den Fehler ERROR_ATTR_NOT_FOUND. R-BASIC fängt das ab
und liefert den korrekten FileType-Wert.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Dateisystem - 59

6.2 Fehlerbehandlung, die Variable fileError

Bei Dateioperationen kann es immer vorkommen, dass ein Problem auftritt, z.B.
dass eine Datei nicht gefunden wird. Das erfordert meistens keinen Programm-
abbruch, sondern das Programm kann darauf reagieren, indem es die numerische
Systemvariable fileError abfragt.

Alle Befehle, die mit Dateien und Pfaden arbeiten (mit Ausnahme der FileFind-
Routinen) belegen die fileError-Variable.

Das bedeutet: Trat eine Fehler auf, wird ein Fehlercode (Fehlernummer) in der
Variablen angelegt. Trat kein Fehler auf, wird die Variable mit Null belegt. Der
Wert wird dort bis zur nächsten Dateioperation gespeichert und kann beliebig oft
abgefragt werden. Im Anhang finden Sie eine Liste der Fehlercodes.

ErrorText$

In GEOS sind sehr viele Fehlercodes definiert, nicht nur für Dateioperationen.
Einige davon sind MS-DOS-Fehler, andere sind GEOS-intern. Bei der Arbeit an
einem Programm, das Fehlercodes auswerten und entsprechend reagieren soll,
aber auch bei der Fehlersuche im eigenen Programm selbst, ist es sehr hilfreich,
die Bedeutung dieser Codes zu kennen.

Die Funktion ErrorText$ liefert zu einem Fehlercode den passenden Text. Das
sind weitgehend selbsterklärende, aber englische Bezeichnungen, die 1:1 dem
PC/GEOS-SDK entnommen wurden, z.B. ERROR_PATH_NOT_FOUND (Pfad
nicht gefunden).
Bei unbekannten Fehlern wird ein Text in der Form <ERROR_CODE: 301>
geliefert.

Syntax: <stringVar> = ErrorText$(fehlerCode)

Beispiel:
IF (fileError) THEN Print ErrorText$(fileError)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Dateisystem - 60

6.3 Arbeit mit FILE Variablen

Eine komplette Beschreibung der Variablentypen, auch des Datentyps FILE ,
finden Sie im R-BASIC Programmierhandbuch.
Variablen vom Typ FILE können behandelt werden wie alle anderen Variablen in
R-BASIC auch. Man kann z.B. Felder von Dateivariablen anlegen (z.B. DIM
dateien(10) AS FILE), sie als Elemente von Strukturen verwenden, als Parameter
an SUB’s oder FUNCTION’s übergeben oder als Rückgabetyp von FUNCTION’s
benutzen. Nur "rechnen" kann man mit ihnen nicht.

An dieser Stelle soll noch einmal auf die Funktionen NullFile und FileInfo$
hingewiesen werden.

NullFile

NullFile() ist eine Funktion, die eine "leere" Dateivariable liefert, d.h. sie dient
zum Löschen einer Dateivariable. Achtung! NullFile() schließt die Datei nicht.
Verwenden Sie dazu vorher FileClose().

Syntax: <han> = NullFile()
Die Klammern sind erforderlich, weil NullFile eine Funktion ist.

<han>: Variable vom Typ FILE

FileInfo$

Die Funktion FileInfo$ liefert einen Text, der interne Informationen über eine
Dateivariable liefert. Sie können diese Funktion zur Fehlersuche einsetzen.

Syntax: <stringVar> = FileInfo$(<f>)
<f>: Variable oder Ausdruck vom Typ FILE

<stringVar>: Stringvariable

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Dateisystem - 61

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 62

7 Arbeit mit Pfaden und Ordnern

7.1 Angabe von Pfaden

Für R-BASIC-Befehle, die einen Pfad erwarten (z.B. CreateDir, DeleteDir
SetCurrentPath, SetStandardPath, PushDir, PopDir und viele File~ Befehle)
gelten einheitliche Konventionen, wie Pfade angegeben werden können.

Relative Pfade können ein einfacher Ordnername (z.B. "Bücher") oder eine
einfacher Pfad (z.B. "Bücher\\Informatik\\BASIC") sein.
Der Pfad bezieht sich auf das aktuelle Arbeitsverzeichnis.
Man beachte, dass ein Backslash in Stringkonstanten doppelt angegeben
werden muss.

Pfade relativ zum Wurzelverzeichnis beginnen mit einem Rückwärts-Strich
("Backslash", ’\’)
z.B. "\\Bücher" oder "\\Bücher\\Informatik\\BASIC"
Der Pfad bezieht sich auf das Wurzelverzeichnis des aktuellen Laufwerks.

Absolute Pfadangaben enthalten am Beginn eine Laufwerksbuchstaben.
z.B. "F:\\Bücher" oder "F:\\Bücher\\Informatik\\BASIC"
Diese beziehen sich immer auf das angegebene Laufwerk.

Eines Sonderfall stellen "reine" Laufwerksbezeichner dar,
z.B. "F:" oder "D:\\" (doppelten Backslash beachten)
Beide Schreibweisen kann man in SetCurrentPath verwenden und
BEIDE beziehen sich auf das Wurzelverzeichnis des angegebenen
Laufwerks. Im Gegensatz zu DOS unterstützt GEOS keinen "aktuellen"
Pfad auf jedem Laufwerk.

Standardpfade beziehen sich auf typische GEOS-Ordner, wie z.B. WORLD oder
DOCUMENT. Sie werden über numerische Konstanten (SP_TOP,
SP_DOCUMENT usw.) eingestellt. Die entsprechenden Befehle finden Sie
weiter unten im Kaptiel 7.4.

Weitere Hinweise:
• Jeder Pfad kann ein beliebiger Stringausdruck sein.
• In Stringkonstanten muss der Backslash (’\’) doppelt angegeben werden, da

ein einfacher Backslash ein Sonderzeichen einleitet (z.B. Zeilenumbruch "\r")
oder einen ASCII Code (z.B. "\201"):

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 63

7.2 Anlegen und Löschen von Ordnern und Pfaden

Ordner werden auch als "Verzeichnisse" (englisch: Directory) bezeichnet. Viele
diesbezügliche Befehle enthalten deswegen ein "DIR" im Namen.
R-BASIC kann ganze Pfade, bestehend aus mehreren Verzeichnissen, auf einmal
anlegen oder löschen. Die meisten Programmiersprachen können das nicht.

CreateDir

CreateDir (erzeuge Directory, lege Ordner an) legt einen Ordner oder einen
kompletten Pfad auf einem Datenträger an. R-BASIC kann, im Gegensatz zu
vielen anderen Programmiersprachen und dem PC/GEOS-SDK einen kompletten
Pfad aus mehreren Unterverzeichnissen auf einmal anlegen.

Syntax: CreateDir path$

path$: Bezeichnung des anzulegende Pfades. Es darf eine absolute oder
eine relative Pfadangabe (siehe Kapitel 7.1) sein.

CreateDir setzt die Systemvariable fileError, z.B. wenn das spezifizierte Laufwerk
nicht existiert. Trat kein Fehler auf, enthält fileError den Wert 0.

DeleteDir

DeleteDir (lösche Directory) löscht einen Ordner oder einen kompletten Pfad vom
Datenträger. DeleteDir setzt voraus, das sich keine Dateien mehr im zu
löschenden Ordner befinden, ansonsten kann der Ordner nicht gelöscht werden
und die Variable fileError wird entsprechend gesetzt.

Syntax: DeleteDir path$ [,killAll]

path$ Bezeichnung des zu löschenden Pfades. Es darf eine absolute oder
eine relative Pfadangabe sein.

killAll Wenn angegeben und ungleich Null (z.B. 1, YES oder TRUE): Es soll
der gesamte Pfad gelöscht werden. Ansonsten (killAll nicht angegeben
oder Null) löscht DeleteDir nur den letzten Ordner eine Pfades.

DeleteDir setzt die Systemvariable fileError, z.B. wenn der zu löschende Ordner
nicht existiert oder nicht leer ist. Soll ein Pfad gelöscht werden, so müssen alle zu
löschenden Ordner leer sein. Trat kein Fehler auf, enthält fileError den Wert 0.

Beispiele:
CreateDir "Bücher"
CreateDir "G:\\Daten\\Programme"
s$ = "\\daten" : CreateDir s$ + "\\Programme"

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 64

DeleteDir "Bücher"
DeleteDir "G:\\Daten\\Programme"

’ Der Ordner Programme aus dem
Ordner "G:\Daten" wird gelöscht

DeleteDir "G:\\Daten\\Programme", YES
’ Der komplette Pfad
"G:\Daten\Programme" wird gelöscht

’ Fehlerabfrage
DeleteDir "G:\\Daten\\Programme", YES
IF (fileError) THEN MsgBox "G: \\Daten\\Programme konnte nicht

vollständig gelöscht werden"

Hinweis: Zur Abwärtskompatibilität mit älteren BASIC-Programmen kann man
statt CreateDir auch MKDIR ("Make Directory") und statt DeleteDir auch RMDIR
("Remove Directory") schreiben.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 65

7.3 Der aktuelle Ordner

Alle Dateioperationen in R-BASIC beziehen sich auf ein bestimmtes Verzeichnis,
das "aktuelle Verzeichnis". Der Begriff "Pfad" (englisch "path") wird verwendet,
wenn ein Weg über mehrere Verzeichnisse gemeint ist bzw. gemeint sein kann.

currentPath$, currentDir$, geosPath$

Diese Systemvariablen enthalten die Namen wichtiger Pfade bzw. Verzeichnisse.

currentPath$ enthält den aktuellen Pfad z.B. "D:\GEOS\DOCUMENT\Bilder"
currentDir$ enthält das aktuelle Verzeichnis ohne Pfad z.B. "Bilder"
geosPath$ enthält das Geos-Hauptverzeichnis z.B. "D:\GEOS"

Beispiel:
PRINT "Geos befindet sich im Ordner ";geosPath$

SetCurrentPath

SetCurrentPath (Setze aktuellen Pfad) stellt das aktuelle Verzeichnis ein.

Syntax: SetCurrentPath path$

path$: Bezeichnung des einzustellenden Pfades. Es darf eine absolute oder
eine relative Pfadangabe sein.

SetCurrentPath setzt die Systemvariable fileError, z.B. wenn das spezifizierte
Laufwerk nicht existiert. Trat kein Fehler auf, enthält fileError den Wert 0.

Beispiele:
SetCurrentPath "Bücher"
SetCurrentPath "G:\\Daten\\Programme"
s$ = "\\daten" : SetCurrentPath s$ + "\\Programme"

Hinweis: Zur Abwärtskompatibilität mit älteren BASIC-Programmen kann man statt
SetCurrentPath auch CHDIR ("Change Directory") schreiben.

PushDir, PopDir

GEOS verfügt über die einzigartige Fähigkeit, sich den aktuellen Pfad zu merken.
Dafür wird eine sogenannter "Stack" (deutsch: Stapelspeicher), verwendet. Wie
bei einem Papierstapel wird der Wert, der als letztes auf dem Stapel abgelegt
wurde ("Push"-Operation) als erstes wieder vom Stapel entnommen ("Pop"-
Operation). Zu jedem PushDir muss es daher ein dazugehöriges PopDir geben.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 66

Syntax: PushDir
Das aktuelle Verzeichnis wird auf dem Stack abgelegt.

Syntax: PopDir
Das zuletzt auf dem Stack abgelegte Verzeichnis vom Stack geholt
und als aktuelles Verzeichnisse wieder eingestellt.

PushDir und PopDir setzen die Variable fileError zurück (Null, kein Fehler).

Beispiel:
! Es sei "G:\Daten\Audio" das aktuelle Verzeichnis

PushDir ’ Merken von "G:\Daten\Audio"
SetStandardPath SP_TOP ’ Einstellen von, z.B. "C:\GEOS"

PopDir ’ Wiederherstellen von "G:\Daten\Audio"

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 67

7.4 GEOS Standardpfade

SetStandardPath

SetStandardPath stellt eines der GEOS-Standardverzeichnisse als aktuelles
Verzeichnis ein. Das funktioniert unabhängig davon, auf welchem Laufwerk und in
welchen Verzeichnis GEOS installiert ist und auch dann, wenn eine
länderspezifische GEOS-Version vorliegt, deren Verzeichnisse anders heißen.

Syntax: SetStandardPath pfadKonstante

pfadKonstante:
Eine der Standard-Pfadkonstanten. Siehe Tabelle.
Achtung! Ein ungültiger Wert für ’pfadKonstante’ kann das System
abstürzen lassen!

Die Variable fileError wird zurückgesetzt (Null, kein Fehler).

Beispiele:
SetStandardPath SP_DOCUMENT
SetStandardPath SP_TOP

R-BASIC kennt die folgenden Standard-Pfadkonstanten

Konstante Wert Eingestelltes Verzeichnis
 SP_TOP 1 Geos Hauptverzeichnis

SP_WORLD 3 WORLD-Verzeichnis
SP_DOCUMENT 5 DOCUMENT-Verzeichnis
SP_SYSTEM 7 SYSTEM-Verzeichnis
SP_PRIV_DATA 9 PRIVDATA-Verzeichnis
SP_USER_DATA 19 USERDATA-Verzeichnis
SP_HELP 39 HELP-Verzeichnis

(Hilfedateienverzeichnis)
SP_TEMPLATE 41 TEMPLATE-Verzeichnis

(Vorlagenverzeichnis)
SP_DOS_ROOM 45 DOS-Room-Verzeichnis
SP_WASTE_BASKET 49 Papierkorb
SP_BACKUP 51 Sicherheitskopien-Verzeichnis

Im PC/GEOS SDK sind weitere Konstanten definiert.

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 68

ConstructPath$

ConstructPath$ erzeugt einen vollständigen Pfad aus einer Pfadkonstante und
einem Unterverzeichnis. Es wird nicht geprüft, ob der so erzeugte Pfad tatsächlich
existiert.

Syntax: <path$> = ConstructPath$ (pfadKonstante, tail$)

pfadKonstante: Eine der Standard-Pfadkonstanten aus der Tabelle oben. Oder
Null wenn der aktuelle Pfad anstelle eines Standardpfades verwendet
werden soll.

tails$: Unterordner
<path$>: Variable vom Typ String oder besser String(200). GEOS-Pfade

können bis zu 198 Zeichen lang werden.

Die Variable fileError wird gesetzt (Null, oder Fehlerwert).

Beispiele:
path$ = ConstructPath$ (SP_DOCUMENT, "Bücher\\Karl May")
path$ = ConstructPath$ (SP_USER_DATA, "R-BASIC\\IMAGES")

SetCurrentPath "C:\\GEOS\\DOCUMENT\\Bilder"
path$ = ConstructPath$ (0, "Urlaub")
’ --> liefert "C:\GEOS\DOCUMENT\Bilder\Urlaub"

GetStandardPath

GetStandardPath findet die zu einem Pfad gehörende Standardpfad-Konstante.
Beschreibt der Pfad keinen Ordner im GEOS-System so liefert GetStandardPath
den Wert Null. In diesem Fall wird die Variable fileError auf den Wert 3
(ERROR_PATH_NOT_FOUND) gesetzt.

Syntax: <numVar> = GetStandardPath ("pfadstring")

"pfadstring": Bezeichnet den gewünschten Pfad. Es muss ein absoluter Pfad,
einschließlich Laufwerksbuchstabe sein.

<numVar>: numerische Variable.

GetStandardPath findet prüft nicht, ob der Pfad wirklich existiert, sondern nur, ob
er einen Standardpfad enthält. Die Variable fileError wird gesetzt (Null, oder
Fehlerwert).

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 69

Beispiele. Wir nehmen an, GEOS befindet sich im Ordner "C:\GEOS". Der aktuelle
Ordner sei "DOCUMENT\Bilder".
DIM stdPath

stdPath = GetStandardPath ("C:\\GEOS\\USERDATA\\R-BASIC")
’ -> liefert 19 (SP_USER_DATA)

stdPath = GetStandardPath (currentPath$)
’ -> liefert 5 (SP_DOCUMENT)

stdPath = GetStandardPath ("D:\\SOURCE\\PCGEOS")
’ -> liefert 0 (kein Standardpfad)

GetStandardPathTail$

GetStandardPathTail$ ist das Gegenstück zu GetStandardPath und findet den
zum Standardpfad gehörenden Unterordner. Beschreibt der Pfad keine Ordner im
GEOS-System gibt GetStandardPathTail$ den übergebenen Pfadstring komplett
zurück. In diesem Fall wird die Variable fileError auf den Wert 3
(ERROR_PATH_NOT_FOUND) gesetzt.

Syntax: <path$> = GetStandardPathTail$ ("pfadstring")

"pfadstring": Bezeichnet den gewünschten Pfad. Es muss ein absoluter Pfad,
einschließlich Laufwerksbuchstabe sein.

<path$>: Variable vom Typ String oder String(200). GEOS-Pfade können bis
zu 198 Zeichen lang werden.

GetStandardPathTail$ findet prüft nicht, ob der Pfad wirklich existiert, sondern nur,
ob er einen Standardpfad enthält. Die Variable fileError wird gesetzt (Null, oder
Fehlerwert).

Beispiele. Wir nehmen an, GEOS befindet sich im Ordner "C:\GEOS". Der aktuelle
Ordner sei "DOCUMENT\Bilder".
DIM path$ as String(200)

path$ = GetStandardPathTail$ ("C:\\GEOS\\USERDATA\\R-BASIC")
’ -> liefert "R-BASIC"

path$ = GetStandardPathTail$ (currentPath$)
’ -> liefert "Bilder"

path$ = GetStandardPathTail$ ("D:\\SOURCE\\PCGEOS")
’ -> liefert "D:\\SOURCE\\PCGEOS" (kein Standardpfad)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 70

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 71

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 1
Einfach unter PC/GEOS programmieren

Pfade und Ordner - 72

(Leerseite)

