R-BASIC

Einfach unter PC/GEOS programmieren

\

ol
9&

Spezielle Themen

Volume 2
Dateien, Laufwerke, Ports,
Focus, Target, Edit-Menu

Version 1.0

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis
8 Verwaltung von Dateienccocccvvmrnninnsnnn et 76
8.1 Kopieren, Verschieben und LOSChenccocvveeiiiiiiiiiiiiiieic e 76
8.2 Flagzeichen fur FileCopy, FileMove und FileDeleteccc.ocecei. 78
8.3 Arbeit Mit DateiNamENooeeeeee e 82
8.4 SUChenN NACh DA@IENceveieeiiee e e 84
9 Arbeit Mit Dat@iencccciieeiireiiriirreir s e n e nnrrnnns 88
9.1 Uberblick ZUr DAt@IarDeIteoueeeeeeeeeeeee e e e eee e 88
9.2 Dateiattribyte ... 90
9.3 Anlegen, Offnen und SchlieBen von Dateiencccccevviiiiinnnnnn. 98
9.4 Lesen und Schreiben von Binardatein .ceveeeeeeeiiieieiiieieeieiiieeeeenen. 105
9.5 Lesen und Schreiben von Textdateienc.ocoevveeeveeeiviiieiiiiieeees 110
9.6 Sonstige FUNKHONENcooiiiiiiiiiie e 113
10 Arbeit mit Laufwerken und Datentragern -.......ccoooemnminissnnies s, 116
11 Portzugriffe cccccccniiniiinimisssss sttt e 122
12 FOcUS UNd Targetccccccceummmmemiummmmmmmmnsssnssssmmmannsusssssnssssssussansssssnssnnsnne 124
12,1 UIDEIDICK «veeeeeeeeeeeeeee e et e e e e e e e et e e e e e e e e e e e e e e e e 124
12.2 Arbeit Mit e FOCUS - cuineiiieeiei e e e e aeas 126
12.3 Arbeit mit dem Target ... 128

13 Implementieren von Meniis: Bearbeiten, TextgroBe und andere132

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

8 Verwaltung von Dateien

8.1 Kopieren, Verschieben und Léschen

Die R-BASIC Befehle zum Kopieren, Verschieben und Léschen von Dateien sind
in ihrer Grundsyntax sehr einfach anzuwenden und tun ihren Job "so gut wie
moglich" indem sie z.B. auch versteckte, System- oder schreibgeschiitzte Dateien
I6schen bzw. Uberschreiben. Durch die Moglichkeit Flagzeichen anzugeben kann
der ambitionierte Programmierer ihr Verhalten aber sehr gut steuern und sich
dadurch viel Programmierarbeit sparen. Am Ende des Abschnitts finden Sie eine
Beschreibung des Konzepts, das hinter den Flags steht und eine Auflistung aller
Flagzeichen und ihrer Bedeutung. Mégliche Fehlercodes flr die Variable fileError
finden Sie im Anhang.

FileCopy

FileCopy kopiert eine Datei. Das kann eine DOS oder eine GEOS-Datei sein.

Syntax: FileCopy quelle$, ziel$ [, flags$]

quelle$: Bezeichnet die zu kopierende Datei. Pfadangaben sind zulassig

ziel$: Bezeichnet Ort und Namen, wohin die Datei kopiert werden soll.
Pfadangaben sind zulédssig. Es muss der Name der neuen Datei
enthalten sein. Er darf vom Namen des Originals abweichen
(automatisches Umbenennen beim Kopieren).

flags$: Optional: Zeichenkette. Bestimmt das Verhalten firr den Fall, das die
durch ziel$ spezifizierte Datei schon existiert.
Standard (ohne flags$): vorhandene Dateien (ziel$) immer
Uberschreiben, auch schreibgeschitzte und Systemdateien
(entspricht dem Flagzeichen "a").
Ein oft sinnvoller Wert ist "am": Wie Standard, aber bei Problemen
eine passende Meldungsbox ("m") anzeigen.
Im Abschnitt 8.3 finden Sie eine Auflistung aller Flagzeichen und ihrer
Bedeutung sowie Beispiele fur ihre Anwendung.

FileCopy kann keine Links kopieren. Die Variable fileError wird belegt (d.h.
gesetzt oder geldscht).

Beispiele:
Beispiele unter Verwendung des Flagstrings finden Sie im Abschnitt 8.2.

FileCopy "Termine von heute", "Backup der Termine von heute"

! Kopie in ein entferntes Verzeichnis
datei$ = "Meine Daten"
FileCopy datei$, "F:\\Backup\\Januar\\" + datei$, "am"

Verwaltung von Dateien - 7€

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FileMove

FileMove verschiebt eine Datei, indem zuerst FileCopy ausgeflihrt wird und
anschlieBend die Originaldatei geldscht wird.

Syntax: FileMove quelle$, ziel$ [, flags$]

quelle$, ziel$, flags$: Siehe FileCopy.

FileMove kann keine Links verschieben. Die Variable fileError wird belegt (d.h.
gesetzt oder geldscht).

Beispiele:

FileMove "Termine von heute", "Alte Version\\Termine von heute"

! Verschieben aus einem entfernten Verzeichnis
datei$ = "Brief an Willi"
FileMove "F:\\Briefe\\Umzug\\" + datei$, datei$, "am"

Beispiele unter Verwendung des Flagstrings finden Sie im Abschnitt 8.2.

FileDelete

FileDelete 16scht eine Datei. Das kann eine DOS oder eine GEOS-Datei oder ein
Link sein. Um einen Ordner zu l6schen, verwenden Sie bitte FileDeleteDir.

Syntax: FileDelete datei$ [, flags$]

datei$ Bezeichnet die zu I6schende Datei. Pfadangaben sind zuléssig.
flags$ Optional: Einstellung der Reaktion auf Fehler oder bestimmte
Situationen.
Standard (ohne flags$): Dateien immer I6schen, auch
schreibgeschitzte und Systemdateien (entspricht "a").
Es sind die gleichen Flagzeichen wie bei FileCopy und FileMove
zuléssig. Ein oft sinnvoller Wert ist "am": Wie Standard, aber bei
Problemen eine passende Meldungsbox ("m") anzeigen.

Die Variable fileError wird belegt (d.h. gesetzt oder geléscht). Es ist ein Fehler,
wenn die Datei nicht existiert.

Beispiele:

Beispiele unter Verwendung des Flagstrings finden Sie im Abschnitt 8.2.
FileDelete '"Meine Daten"

FileDelete "C:\\TEMP\\Logfile.log" , "am"

Verwaltung von Dateien - 77

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

8.2 Flagzeichen fiir FileCopy, FileMove und FileDelete

Die Flagzeichen modifizieren das Verhalten von FileCopy, FileMove und
FileDelete. Fur FileDelete kann man so z.B. angeben ob bestimmte Dateien
automatisch geléscht werden oder ob nachgefragt werden soll. Bei FileCopy oder
FileMove kann es passieren, dass das Kopierziel bereits existiert. Hier bestimmen
die Flags z.B. ob diese schon vorhandene Datei automatisch geléscht werden soll
oder ob nachgefragt werden soll.

Geben Sie kein Flagzeichen an, so wird der Standard "a" genommen.

FileCopy, FileMove und FileDelete sind standardméaBig (d.h. ohne Angabe
spezieller Flagzeichen) so eingestellt, dass sie ihren Dienst "bestmdglich"
verrichten. FileDelete versucht alle Dateien, auch schreibgeschitzte und
Systemdateien, zu lI6schen und FileMove bzw. FileCopy versuchen, wenn das
Kopierziel schon existiert, es zu tberschreiben. Fur viele Anwendungsfélle ist es
daher nicht noétig, sich mit der komplexen Materie der Flagzeichen
auseinanderzusetzen.

Konzeption:

Mit Hilfe der Flagzeichen kénnen Sie angeben:

+ Welche Dateitypen automatisch Uberschrieben bzw. geléscht werden sollen
(Flagzeichen "a", "f" und "L"). R-BASIC orientiert sich dabei am Dateityp (siehe
Kapitel 6.1). Fur schreibgeschitzte und Systemdateien gibt es extra
Flagzeichen ("r" und "h"). "f" ist eine Abkiirzung fir "evgd".

+ Ob nachgefragt werden soll, wenn eine Datei nicht automatisch Uberschrieben
bzw. geléscht werden soll ("q" oder "u"), oder ob dies als Fehler gewertet
werden soll.

+ Ob R-BASIC im Fehlerfall (z.B. Datei nicht gefunden oder Zugriff verweigert)
eine Meldung an den Nutzer ausgeben soll ("m") oder ob Sie das selbst
programmieren wollen (kein "m" angegeben). Der Standard ist, das R-BASIC
keine Meldungsbox erzeugt. Es ist oft sinnvoll, "m" anzugeben. Die Variable
fileError wird in jedem (Fehler-) Fall gesetzt.

+ Ob in bestimmten Situationen immer ein Fehler erzeugt werden soll, d.h. die
fileError-Variable gesetzt werden soll. (Flagzeichen "o", "i", "t")

Sie kénnen den Flagzeichenstring durch Leerzeichen oder Bindestriche uber-
sichtlicher gestalten. Er darf aber nicht langer als 64 Zeichen werden, sonst wird
ein Laufzeitfehler erzeugt und das Programm beendet. Die GroB- bzw. Klein-
schreibung wird ignoriert.

Verwaltung von Dateien - 78

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Allgemeine Flags, die mit allen anderen kombiniert werden kénnen

m Message: Dialogbox anzeigen, wenn ein Fehler auftrat. Unabhéngig davon
wird die Variable fileError gesetzt.

o Read-Only-Fehler: Erzwingt, dass beim Versuch, eine schreibgeschutzte
Datei zu uberschreiben oder zu I6schen immer eine Fehlermeldung erzeugt
wird.

i Hidden-Fehler: Erzwingt, dass beim Versuch, eine versteckte oder
Systemdatei (Attribute FA_HIDDEN oder FA_SYSTEM) zu Uberschreiben
oder zu Idschen immer eine Fehlermeldung erzeugt wird.

t Type-Fehler (nur FileMove und FileCopy): Erzwingt, dass beim Versuch, eine
DOS- durch eine GEOS-Datei (oder umgekehrt) zu Uberschreiben, immer
eine Fehlermeldung erzeugt wird.

Das Flags "o" "i" "t" haben Vorrang vor allen anderen Flags. Die Variable fileError
wird gesetzt und falls das Flag "m" angegeben wurde wird eine entsprechende
Dialogbox angezeigt.

Flags fur Dateien, die gel6scht bzw. Uberschrieben werden kénnen

f Files (=Dateien) Normale Dateien sollen ohne Nachfragen Uberschrieben
bzw. geléscht werden.
Das schlieBt nicht ein: Links, schreibgeschitzte, versteckte und
Systemdateien.
Das Flag "f" ist eine Abkirzung fir "e v g d". Statt "f" anzugeben kann man
einzelne Dateitypen angeben:
e Executable: Applikationen bzw. Libraries
v VM-Dateien
g Geos-Daten-Dateien
d DOS-Dateien

L Links sollen ohne Nachfragen Uberschrieben bzw. gel6scht werden.

r Read-only: Schreibgeschutzte Dateien sollen ohne Nachfragen
Uberschrieben bzw. geléscht werden.

h Hidden: Versteckte Dateien (Attribute FA_HIDDEN oder FA_SYSTEM)
sollen ohne Nachfragen lGberschrieben bzw. geléscht werden.

a Alle Dateien: "a" ist eine Abkurzung fur "f L r h"

Behandlung von Dateien, die Uberschrieben oder geléscht werden solle, aber
nicht durch die Dateiflags oben erfasst sind
q oder u Question: R-BASIC fragt nach, ob die Datei geléscht / Uberschreiben
werden soll. Der Unterschied ist:
q Antwortet der Nutzer mit "Nein" so wird Variable fileError auf —1 (Abbruch
durch Nutzer) gesetzt.
u Antwortet der Nutzer mit "Nein" so wird Variable fileError geléscht (Wert Null,
OK).
Wird weder "q" noch "u" angegeben, so wird die Datei nicht geléscht /
Uberschrieben und die Variable fileError wird auf +5 (Zugriff verweigert) gesetzt.
Das ermdglicht lhnen, ein flexibles Fehlerhandling zu implementieren.

Verwaltung von Dateien - 79

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiele fiir sinnvolle Flagzeichenstrings:

"a" Dies ist der Standard fur FileCopy, FileMove und FileDelete.

Alle Dateien und Links I6schen / Uberschreiben, aber bei Fehler keine
Meldung machen (nur fileError setzen). Ihr Programm Ubernimmt die
Fehlerbehandlung selbst.

"am" Alle gefunden Dateien und Links werden Uberschrieben bzw. geléscht
(auch schreibgeschiitzte und Systemdateien).

Meldung machen bei Fehler ("m"), z.B. Datei nicht gefunden.

" (leerer String) Niemals Dateien l6schen/Uberschreiben (sinnvoll fir
FileCopy und FileMove). fileError wird auf +5 (Zugriff verweigert)
gesetzt, falls das Ziel schon existiert. lhr Programm Ubernimmt die
Fehlerbehandlung selbst.

"fLgm" Alle Dateien ("f') und Links ("L") Iéschen / Uberschreiben, aber
Nachfragen (Question "q") bei schreibgeschitzten und
Systemdateien (diese sind von "f" nicht abgedeckt).

Meldung machen bei Fehler ("m").

"fLrqm" Wie "f Lqg m" (siehe letztes Beispiel), aber schreibgeschitzte Dateien
("r") automatisch Uberschreiben und nur bei Systemdateien
nachfragen.

"fLgmi" Alle Dateien ("f') und Links ("L") I6schen / iberschreiben, Nachfragen
(Question "q") bei schreibgeschitzten Dateien, aber bei
Systemdateien ("i") immer eine Fehler erzeugen (fileError setzen,
aber nicht nachfragen)

Meldung machen bei Problemen ("m").

"aoitm" Alle Dateien und Links Il6éschen / Uberschreiben, auBer bei
schreibgeschuitzten ("o"), versteckten bzw. Systemdateien ("i") und
bei Typ-Fehlern ("t"): diese nicht I6schen/Uberschreiben, Meldung
machen ("m") und die fileError-Variable setzen.

Codebeispiele unter Verwendung der Flagzeichen

Wenn es zu einem Problem kommt (z.B. Datei nicht gefunden) wird immer die
Variable fileError gesetzt. Mit dem Flagzeichen "m" erzeugt R-BASIC zusétzlich
eine Dialogbox, die den Fehler beschreibt.

Vorhandene Datei immer I6schen, und bei Fehler eine Dialogbox ausgeben.

FileCopy "Meine Daten" , "A:\\Meine Daten" ,"am
FileDelete "A:\\Meine Daten" ,"am"

Verwaltung von Dateien - 8C

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Der Standard ist, bei Problemen keine Meldungsbox auszugeben. Das entspricht
dem Flagzeichenstring "a". Das Programm sollte dann eventuelle Fehler selbst
behandeln.

FileDelete "A:\\Meine Daten" ' Entspricht "a"
IF fileError THEN

Immer nachfragen wenn, wenn das Ziel schon existiert. Mit "m": R-BASIC meldet,
wenn sich das Ziel nicht Uberschrieben lasst (ohne "m" wird nur fileError gesetzt)
Antwortet der Nutzer auf Nachfrage mit "Nein", wird fileError auf —1 (Abbruch
durch Nutzer) gesetzt.

FileMove quelle$, ziel$, "q

" n

FileMove dquelle$, ziel$, "gm

Wie letztes Beispiel, aber bei "Nein" wird fileError auf Null gesetzt.

n n

FileMove quelle$, ziel$, "u

" n

FileMove quelle$, ziel$, "um

Normale Dateien Uberschrieben ("f'), bei schreibgeschutzten und Systemdateien
nachfragen. Mit "m": R-BASIC erzeugt eine Fehlerbox, wenn es ein Problem gab.
Ohne "m": Ihr Programm ist verantwortlich indem es die Variable fileError abfragt.

FileCopy quelle$, ziel$, "fqgm"

FileCopy quelle$, ziel$, "fq"
IF fileError THEN
MsgBox "Fehler beim Kopieren von "+datei$ + " :\r" +
ErrorText$ (fileError)
END IF

Normale Dateien Uberschreiben bzw. |6schen ("f'), bei schreibgeschitzten
nachfragen ("q") und bei Systemdateien immer fileError setzen ("i"). Die
Leerzeichen zwischen den Flagzeichen sind zulassig und verbessern die
Ubersicht.

FileCopy quelle$, ziel$, "f g i m"
FileDelete ziel$, "f g i m"

Verwaltung von Dateien - 81

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

8.3 Arbeit mit Dateinamen

GEOS-Dateien und Ordner haben neben ihrem langen, unter GEOS sichtbaren
Namen noch einen DOS-Namen. Normalerweise wird der DOS-Name vom
System automatisch vergeben. R-BASIC hat Zugriff sowohl auf den GEOS- als
auch auf den DOS-Namen von Dateien und verflgt Uber die einzigartige Fahigkeit,
den DOS-Namen bewusst zu manipulieren.

FileRename

Andert den Namen einer DOS- oder GEOS-Datei oder eines Ordners. Der DOS-
Name einer GEOS-Datei wird dabei vom System ebenfalls geadndert.

Syntax: FileRename oldName$, newName$ [, flags$]

oldName$: Alter Dateiname. oldName$ darf einen kompletten Pfad enthalten.
Bei GEOS-Dateien bzw. Ordnern ist die GroB- Kleinschreibung zu
beachten.

newName$: Neuer Dateiname. newName$ darf keinen Pfad enthalten. Far
DOS-Dateien muss newName$ der Konvention 8.3 entsprechen.

flags$: (optional): Zeichenkette, bestehend aus dem Buchstaben "m" (fiir
Message), die festlegt, ob im Fehlerfall (z.B. Datei nicht gefunden,
neuer Name ungultig) eine Meldungsbox angezeigt wird.

Wird flags$ nicht angegeben, gibt es keine Meldungsbox.

Auch schreibgeschitzte, System- oder versteckte Dateien sowie GEOS-Links
kédnnen umbenannt werden. Die Systemvariable fileError wird gesetzt oder
geléscht.

Beispiele:

' Einfaches umbenennen
FileRename "E:\\Dateien\\info.txt", "info.bak"

' Umbenennen mit automatischer Fehlermeldung durch R-BASIC
FileRename "E:\\Dateien\\info.txt", "info.bak", "m"

' Umbenennen mit eigener Fehlermeldung

FileRename "E:\\Dateien\\info.txt", "info.bak"

IF fileError THEN MsgBox("Die Datei konnte nicht umbenannt
werden\rFehler: " +
ErrorText$(fileError))

Verwaltung von Dateien - 82

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FileGetDosName$

Liefert den DOS-Namen einer Datei oder eines Ordners.

Syntax: FileGetDosName$ (geosName$)

geosName$: Der GEOS-Name der Datei.
geosName$ darf auch eine DOS-Datei bezeichnen.

Die Systemvariable fileError wird gesetzt oder geléscht.

Beispiel:
DIM name$

name$ = "Write unbenannt"
Print name$, FileGetDosName$ (name$)

FileSetDosName

Andert den DOS-Namen einer GEOS-Datei oder eines Ordners. Der lange GEOS-
Name wird nicht gedndert.

Syntax: FileSetDosName oldName$, newName$ [, flags$]

oldName$, newName$, flags$: siehe FileRename

Die Systemvariable fileError wird gesetzt oder geléscht. Auch schreibgeschitzte,
System- oder versteckte Dateien kénnen umbenannt werden.

Beispiele:
' Einfaches umbenennen
FileSetDosName "E:\\Dateien\\Draw Beispiel", "DRAW.777"

’ Umbenennen mit automatischer Fehlermeldung durch R-BASIC
FileSetDosName "E:\\Dateien\\Draw Beispiel", "DRAW.777", "m"

' Umbenennen mit eigener Fehlermeldung
FileSetDosName "E:\\Dateien\\Draw Beispiel", "DRAW.777"

IF fileError THEN MsgBox("Der DOS-Name der Datei konnte nicht

geandert werden\rFehler: " +
ErrorText$(fileError))

Verwaltung von Dateien - 83

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

8.4 Suchen nach Dateien

R-BASIC unterstutzt die Suche nach Dateien und Ordnern mit den Befehlen
FileFindFirst$, FileFindNext$ und FileFindDone. FileFindFirst$ durchsucht den
Ordner und initialisiert ein Handle, das von FileFindNext$ und FileFindDone
verwendet wird. FileFindFirst$ liefert den ersten Datei- bzw. Ordnernamen. Die
nachsten Datei- bzw. Ordnernamen werden von FileFindNext$ geliefert.
FileFindDone gibt nach getaner Arbeit das Handle wieder frei.

FileFindFirst$, FileFindNext$ und FileFindDone beeinflussen fileError nicht.

FileFindFirst$

Sucht den ersten Datei- bzw. Ordnernamen. Initialisiert ein Handle, dass von
FileFindNext$ und FileFindDone verwendet wird.

Syntax: <name$> = FileFindFirst$ (<han> [, mask$ [, flags$ [, <token>]]])

<han>: Variable vom Typ Handle. Ausdricke (z.B. Funktionsaufrufe) sind nicht
zulassig.
mask$: (optional) Dateimaske, die auf die zu findende Datei passen muss.
Default: "*" (= alle Dateien und Ordner finden)
Es gelten die GEOS-Namens-Konventionen:
* (Sternchen): beliebige Anzahl (oder Null) Zeichen oder Ziffern
? Genau ein Zeichen oder eine Ziffer
: und \ sind nicht zulassig
GroB- bzw. Kleinschreibung und Leerzeichen werden berucksichtigt.
Far DOS-Dateien sind GroBbuschstaben anzugeben.
Die Maske darf keinen Pfadanteil enthalten!
Beispiele: "*a*" findet alle Dateien, deren Name ein ’a’ enthalt
"X*" findet alle Dateien, deren Name mit "X’ beginnt
"X*e" Der Name muss mit "X’ beginnen und auf "e" enden.
flags$: (optional) Zeichenkette, die bestimmt, welche Dateitypen gefunden
werden sollen. Zuléssig sind:
e Executable: Applikationen bzw. Libraries
g oder v Geos-Daten-Dateien bzw. VM-Dateien
Eine Unterscheidung zwischen beiden ist nicht mdglich
d DOS-Dateien
f oder o Folders (Ordner)
a Alle Dateien und Ordner. Abklrzung fur "e g d "
L Links
Wird flags$ nicht angegeben wird "a L" angenommen (alles finden).
<token>: (optional) GeodeToken der zu findenden Datei. Wird "token" nicht
angegeben, gibt es keine Einschrédnkung. Um "token" angeben zu
kdnnen, muss man "flags$" angeben und "flags$" muss GEOS-
Dateien einschlieBen (e, g bzw. a).
Hinweis: Ordner werden immer gefunden (wenn das Flag "f" ange-
geben ist), auch wenn sie nicht das entsprechende Token haben.

Verwaltung von Dateien - 84

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Die Systemvariable fileError wird nicht beeinflusst. Ist im aktuellen Ordner keine
Datei oder Unter-Ordner enthalten, auf welche die Suchkriterien passen, wird ein
Leerstring (L&nge Null) zurickgegeben. Auch in diesem Fall muss FileFindDone
gerufen werden!

FileFindNext$

Sucht den nachsten Datei- bzw. Ordnernamen. Ist keine weitere Datei oder
Ordner verflgbar, wird ein Leerstring (Ladnge Null) zuriickgegeben.

Syntax: <name$> = FileFindNext$ (<han>)
<han>: Variable (oder Ausdruck) vom Typ Handle. han muss von

FileFindFirst$ initialisiert worden sein.

Die Systemvariable fileError wird nicht beeinflusst.

FileFindDone

Gibt das von FileFindFirst$ initialisierte Handle frei, indem die dahinterliegenden
Datenstrukturen und Speicherbereiche freigeben werden. Dieser Schritt ist sehr
wichtig, da Speicher im GEOS-System knapp ist.

Syntax: FileFindDone <han>
<han>: Variable (oder Ausdruck) vom Typ Handle. han muss von
FileFindFirst$ initialisiert worden sein.

Die Systemvariable fileError wird nicht beeinflusst.

Beispiel 1: Dateien und Ordner auflisten:

DIM han AS HANDLE

DIM name$

name$ = FileFindFirst$ (han) Handle initialisieren
WHILE (name$ <> Vergleich auf Leerstring

!

mnn) !
Print name$, !
1

IF FileType(name$)

Print "<DIR>"
ELSE
Print FileSize(name$);
END IF
name$ = FileFindNext$ (han)
WEND

FileFindDone (han)

Komma am Ende
--> tabuliert

= GFT_DIRECTORY THEN

Bytes"

! Handle benutzen

! Handle freigeben.

! Die Klammern sind optional.
! Die von han referenzierten Datenstrukturen werden
! freigegeben.
! Die in han gespeicherten Werte sind jetzt ungiiltig.

Verwaltung von Dateien - 85

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiel 2: Alle Write-Dateien im Geos Top-Folder auflisten:

DIM han AS HANDLE
DIM nameS$
DIM token AS GeodeToken

token.manufid = 0
token.tokenChars = "WDAT"

CLS
SetStandardPath SP_TOP

name$ = FileFindFirst$ (han, "*", "aL", token) !
WHILE (name$ <> "")
if FileType(name$) <> GFT_DIRECTORY THEN Print names$
name$ = FileFindNext$ (han) ! Handle benutzen
WEND
FileFindDone (han) ! free handle

Verwaltung von Dateien - 8€

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

Verwaltung von Dateien - 87

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

9 Arbeit mit Dateien

9.1 Uberblick zur Dateiarbeit

Far R-BASIC ist jede Datei zunéchst eine einfache Abfolge von Bytes. Um auf die
Daten in einer Datei zugreifen zu kdénnen, missen Sie sie zuerst "6ffnen" und
nach Gebrauch wieder "schlieBen". Wéhrend die Datei gedffnet ist, erfolgt der
Zugriff auf eine Datei Uber eine Variablen vom Typ FILE, die von FileOpen bzw.
FileCreate geliefert wird. GEOS verwaltet auBerdem einen "Dateizeiger", der die
Position bestimmt, an der Daten gelesen oder geschrieben werden.

R-BASIC verfugt dabei tUber einige Mdglichkeiten, die den meisten Programmier-
sprachen fehlen, wie z.B. das direkte EinflUgen von Daten, ohne die darauf
folgenden Daten zu Uberschreiben.

Hier finden Sie eine Ubersicht tiber die Befehle zum Lesen aus und Schreiben von
Daten in Dateien, die in diesem Kapitel behandelt werden.

Dateiattribute (Abschnitt 9.2)

DOS-Attribute

FileGetAtirs, FileSetAttrs
Lesen und setzen die "Standard-Attribute" wie Archiv,
schreibgeschuitzt usw.

FileGetTime, FileSetTime
Lesen und setzen das Datum der letzten Anderung.

FileSize liefert die aktuelle DateigréBe.

GEOS-Attribute
Zusatzlich zu den DOS-Attributen haben GEOS-Dateien weitere Attribute.
R-BASIC unterstitzt die folgenden Attribute:

Token Dieses Attribut bestimmt das "lcon", dass im GeoManager flr
diese Datei angezeigt wird.
Befehle: FileSetToken, FileGetToken

Creator Erzeuger. Dieses Attribut enthalt das Token des Programms, das
die Datei angelegt hat.
Befehle: FileSetCreator, FileGetCreator
Token und Creator werden jeweils in einer GeodeToken Struktur
gespeichert.

CreationTime Datum und Zeit, zu der die Datei angelegt wurde.
Befehle: FileSetCreationTime, FileGetCreationTime

Usernotes Die Benutzer-Notizen. Ein String mit bis zu 99 Zeichen.
Befehle: FileSetUsernotes, FileGetUsernotes
Release Dieses Attribut entspricht der Versionsnummer der Datei. R-

BASIC und auch der Uni-Installer entscheiden dartber, ob eine
Datei neuer ist als eine andere gleichen Namens.
Befehle: FileSetRelease, FileGetRelease

Protocol Dieses Attribut beschreibt intern die "Fahigkeiten" einer Datei.
Befehle: FileSetProtocol, FileGetProtocol

Arbeit mit Dateien - 88

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Anlegen, Offnen und SchlieBen von Dateien (Abschnitt 9.3)

FileOpen Offnet eine vorhandene Datei
FileCreate Legt eine neue Datei an oder 6ffnet eine vorhandene Datei
FileClose SchlieBt eine Datei

Lesen und Schreiben von Daten - Bindrdateien (Abschnitt 9.4)

FileRead, FileWrite und Filelnsert sind Universalroutinen. Sie arbeiten mit allen
Dateien und allen Typen von Variablen, einschlieBlich Strings und Strukturen
zusammen. Fir die Arbeit mit Textdateien (lesen und schreiben von Textzeilen)
gibt es zusatzlich dazu spezialisierte Routinen (Abschnitt 9.5).

FileRead Liest eine bestimmte Anzahl von Bytes aus einer Datei.

FileWrite Schreibt eine bestimmte Anzahl von Bytes in eine Datei, indem
vorhandene Daten Uberschrieben werden. Bei Bedarf werden die
Daten angehangt, d.h. die Datei wird verlangert.

Filelnsert Flgt eine bestimmte Anzahl von Bytes in eine Datei ein, ohne das
vorhandene Daten Uberschrieben werden. Die Datei wird dadurch
automatisch verlangert. Dieser Befehl ist eine Besonderheit von
R-BASIC, die meisten Programmiersprachen kennen ihn nicht.

Lesen und Schreiben von Daten - Textdateien (Abschnitt 9.5)

Diese Routinen sind auf Textzeilen, die durch ein Zeilenendezeichen
abgeschlossen sind, spezialisiert. Das trifft fir normale Textdateien zu.
Zeilenendezeichen sind die ASCII-Codes 13 (Wagenrucklauf, Carriage return, CR)
bzw. 10 (Zeilenvorschub, LineFeed, LF) oder eine Kombination davon,
ublicherweise die Folge 13, 10 (CRLF).

FileReadLine$ Liest eine Textzeile aus einer Datei.

FileWriteLine Schreibt eine Textzeile, indem vorhandene Daten Uberschrieben
werden. Bei Bedarf wird die Textzeile angehangt, d.h. die Datei
wird verlangert.

FileInsertLine Schiebt eine Textzeile in die Datei ein. Die Datei wird dadurch
verlangert.

FileReplaceLine Ersetzt eine Textzeile in einer Datei durch eine andere.

Sonstige Funktionen (Abschnitt 9.6)

FileGetPos Liest den aktuellen Dateizeiger.

FileSetPos Setzt den Dateizeiger.

FileResize Andert die GréBe einer Datei, indem Daten eingefligt oder
geldscht werden.

FileTruncate Schneidet die Datei ab.

FileCommit Stellt sicher, dass eventuell vom System gepufferte Daten sofort,
d.h. schon vor einem FileClose auf die Platte geschrieben
werden.

Arbeit mit Dateien - 89

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

9.2 Dateiattribute

Neben dem Namen besitzt jede Datei eine eine Reihe von zusatzlichen
Eigenschaften, die sogenannten "Attribute". Es gibt zwei Gruppen von Attributen,
die "Standard-Attribute", einschlieBlich Dateigr6Be und dem Datum der letzten
Anderung, die bereits aus alten DOS-Tagen stammen, und die "GEOS-Attribute",
die nur fur GEOS-Dateien vorhanden sind.

Die meisten der in diesem Kapitel besprochenen Funktionen kénnen sowohl mit
offenen Dateien (referenziert tGber eine FILE-Variable) als auch mit geschlossenen
Dateien (referenziert Uber ihren Namen) umgehen.

Die Standard-Attribute

Die Standardattribute existieren fir JEDE Datei und sind als einzelne Bits in einem
Byte definiert. Sie kdnnen mit FileGetAttrs gelesen und mit FileSetAttrs gesetzt
werden. Es sind die folgenden Attribute definiert, die Zahlen in der ersten Spalte
sind die Bit-Nummer und der dazugehérige Wert.

Bit (Wert) BASIC-Konstante Bedeutung

Bit 0 (1) FA_READ_ONLY Read-Only. Die Datei ist schreibgeschutzt.

Bit 1 (2) FA_HIDDEN Hidden. Die Datei ist versteckt.

Bit 2 (4) FA_SYSTEM System. Es ist eine wichtige Systemdatei.

Bit 3 (8) FA_VOLUME Volume. Es ist keine Datei, sondern der
Eintrag fur die Datentrdgerbezeichnung.

Bit 4 (16) FA_SUBDIR Subdir. Es ist keine Datei, sondern ein
Verzeichnis (= Ordner).

Bit 5 (32) FA_ARCHIVE Archive. Die Datei wurde geédndert. Dieses

Bit wird bei jedem Schreibzugriff auf die
Datei wieder gesetzt, so das Backup-
Programm daran erkennen kdnnen, ob die
Datei gesichert werden muss. Sie setzten
dieses Bit nach dem Sicherungsprozess
zuruck.

Geos verwendet weiterhin:

Bit 6 (64) FA_LINK Link. Dies ist kein Standardattribut. Ist
dieses Bit gesetzt, handelt es sich nicht
um eine echte Datei, sondern einen
GEOS-internen Link auf eine Datei.

Arbeit mit Dateien - 9C

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FileGetAttrs

Liefert die DOS-Standardattribute einer Datei. Die Attribute sind einzelne Bits und
kénnen mit AND bzw. OR - Verknipfungen abgefragt werden.

Syntax: <numVar> = FileGetAttrs (fileName$)
oder: <numVar> = FileGetAttrs (<th>)

fileName$: Name der Datei. Pfadangaben im Namen sind zulassig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder geldscht.

Beispiel:

DIM attrs AS word
attrs = FileGetAttrs ("info.txt")
IF attrs AND FA_READ_ ONLY THEN Print "schreibgeschiitzt"

FileSetAttrs

Setzt die DOS-Standardattribute einer Datei. Die Attribute sind einzelne Bits und
kénnen mit AND bzw. OR verkn(pft werden.

Syntax: FileSetAttrs fileName$, atirs

fileName$: Name der Datei. Pfadangaben im Namen sind zulassig.
attrs: Neue Attribute

Die Systemvariable fileError wird gesetzt oder geldscht. FileSetAttrs kann nicht
mit einer offenen Datei verwendet werden.

Beispiele:

! Setzen von FA SYSTEM, loschen aller anderen Attribute
FileSetAttrs "liste.txt" , FA_SYSTEM

! Setzen von FA SYSTEM unter Beibehaltung der anderen Attribute
DIM attrs

attrs = FileGetAttrs ("liste.txt")

FileSetAttrs "liste.txt" , attrs OR FA SYSTEM

Arbeit mit Dateien - 91

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FileGetTime

Liefert das Datum und die Uhrzeit der letzten Anderung einer Datei. Das
Betriebssystem setzt diesen Wert jedes Mal, wenn der Dateiinhalt gedndert wird.

Syntax: <time> = FileGetTime (fileName$)
oder: <time> = FileGetTime (<fh>)

fileName$: Name der Datei. Pfadangaben im Namen sind zulassig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
<time>: Eine Variable vom Typ DateAndTime

Die Systemvariable fileError wird gesetzt oder geldscht.

Beispiel:

DIM time AS DateAndTime

time = FileGetTime "info.txt"

Print "Gedndert am: "; FormatDate$(time);
Print "um: "; FormatTimeS$ (time)
FileSetTime

Verandert das Datum und die Uhrzeit der letzen Anderung einer Datei.

Achtung! Sie Uberschreiben hiermit den Wert, den das Betriebssystem
automatisch vergibt. Wird die Datei anschlieBend nochmals geéndert, tiberschreibt
das Betriebssystem den Wert erneut.

Syntax: FileSetTime fileName$, <time>
oder: FileSetTime <fh>, <time>

fileName$: Name der Datei. Pfadangaben im Namen sind zulassig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
<time>: Eine Variable vom Typ DateAndTime

Fehlerbedingung: Die Systemvariable fileError wird gesetzt oder geldscht.

Beispiel:
DIM time AS DateAndTime
time = FileGetTime ("info.txt")

time.year = 2001
FileSetTime "info.txt", time

Arbeit mit Dateien - 92

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

FileSize

Liefert die aktuelle GroBe der Datei in Bytes. Der zurlickgegebene Wert liegt im
Bereich von 0 bis 4294967295, da Dateien maximal 4 GByte gro3 werden kdénnen.

Syntax: <numVar> = FileSize (fileName$)
oder: <numVar> = FileSize (<fh>)

fileName$: Name der Datei. Pfadangaben im Namen sind zulassig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder geldscht.

GEOS-Attribute

Zusatzlich zu den Standardattributen haben GEOS-Dateien weitere Attribute. R-
BASIC unterstitzt die wichtigen Attribute: Token (Anzeige-lcon), Creator (Icon
des zugehdrigen Programms), CreationTime (Datum der Dateierstellung),
UserNotes (Benutzernotizen), Release (Versionsnummer) und Protocol. Diese
werden im Dateikopf, den ersten 256 Byte der Datei gespeichert. Bei
Verzeichnissen befinden sich diese Attribute in der @dirname.000 - Datei.

CreationTime wird ein einer DateAndTime Struktur gespeichert.

STRUCT DateAndTime

year AS WORD * Jahr (z.B. 2014)
month AS WORD ’ Monat (1...12)
day AS WORD ' Tag (1 ... 31)
hour AS WORD ’ Stunde (0 ... 23)
minute AS WORD ' Minute (0 ... 59)
second AS WORD * Sekunde (0 ... 59)

END STRUCT

UserNotes ist ein String mit bis zu 99 Zeichen.

Token und Creator werden in einer Struktur gespeichert, die GeodeToken heif3t
und folgendermaBen definiert ist. Das Bild dazu befindet sich in der TokenDB-
Datei.

STRUCT GeodeToken
manufid AS WORD
' Manufacturer ID (Hersteller-Identifikation)
tokenChars AS STRING(4)
END STRUCT

Arbeit mit Dateien - 93

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Eine fehlerhafte Belegung der Werte fur Token oder Creator kann die Arbeit mit
der Datei unmoglich machen. Setzen Sie in diesem Fall einfach wieder den
korrekten Wert.

Release und Protocol werden in einer Struktur gespeichert die ReleaseNumber
heiBt und folgendermaBen definiert ist. R-BASIC verwendet die ersten beiden
Felder dieser Struktur auch fir die Protokollnummer.

STRUCT ReleaseNumber ' Bedeutung der Felder:
rnMajor as WORD groBe, meist inkompatible Neuerungen
rnMinor as WORD kleinere, kompatible Neuerungen
rnChange AS WORD interne Anderungen
rnEngineering as WORD kleine interne Anderungen

End STRUCT

~ ~ 0~ ~

Tritt ein Fehler auf, z.B. weil die Datei nicht gefunden wird oder weil das Attribut
nicht unterstitzt wird, (weil es eine DOS-Datei ist), wird die Systemvariable
fileError gesetzt. Im Erfolgsfall wird die fileError-Variable zurlickgesetzt (d.h. mit
Null belegt)

Die Bedeutung der Parameter der folgenden Ubersicht und Beispiele sind weiter
unten zu finden.

FileGetToken, FileSetToken

Liest bzw. setzt das "Token" der Datei.

Syntax: <token> = FileGetToken (ffileName$) ’ Auslesen des Token

oder: <token> = FileGetToken (<fh>)
Syntax: FileSetToken fileName$, <token> ’ Setzen des Token
oder: FileSetToken fh, <token>

FileGetCreator, FileSetCreator

Liest (FileGetCreator) oder setzt (FileSetCreator) das Creator-Token.

Syntax: <token> = FileGetCreator (fileName$) ’ Auslesen des Creator-Token

oder: <token> = FileGetCreator (<fh>)
Syntax: FileSetCreator fileName$, <token> ’ Setzen des Creator-Token
oder: FileSetCreator <fh>, <token>

Arbeit mit Dateien - 94

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FileGetCreationTime, FileSetCreationTime

Liest oder verandert das Datum, an dem die Datei angelegt wurde.

Syntax: <time> = FileGetCreationTime (fileName$) ' Auslesen der
Erstellungszeit
oder: <time> = FileGetCreationTime (<fh>)

Syntax: FileSetCreationTime fileName$, <time> ’ Setzen der Erstellungszeit
oder: FileSetCreationTime <fh>, <time>

FileGetUsernotes, FileSetUsernotes

Liest oder verandert die Benutzernotizen der Datei.

Syntax: notes$ = FileGetUsernotes (fileName$) " Auslesen der
Benutzernotizen
oder: notes$ = FileGetUsernotes (<fh>)

Syntax: FileSetUsernotes fileName$, notes$ ’ Setzen der Benutzernotizen
oder: FileSetUsernotes <fh>, notes$

FileGetRelease, FileSetRelease

Liest oder verandert die Releasenummer der Datei. Das GEOS System verwendet
die Releasenummer zum Versionscheck und zu Informationszwecken. R-BASIC
und der Uni-Installer verwenden die Releasenummer um zu entscheiden ob eine
Datei neuer ist als eine andere Datei mit gleichem Namen. Der R-BASIC Compiler
setzt die ersten drei Felder der Releasenummer von Launcher und BIN-Datei
entsprechend der Versionsnummer des Programms bzw. der Library (siehe Befehl
Version$).

Bei R-BASIC Libraries wird die Releasenummer (und damit die Versionsnummer
der Library) verwendet um zu entscheiden, ob ein BASIC Programm mit dieser
Library zusammenarbeiten kann.

Um zu entscheiden, ob die R-BASIC IDE die Datei 6ffnen und bearbeiten kann,
wird die Protokollnummer, nicht die Releasenummer, benutzt.

Syntax: <release> = FileGetRelease (fileName$)
oder: <release> = FileGetRelease (<fh>)’ Auslesen der Release-Nummer

Syntax: FileSetRelease fileName$, <release>
oder: FileSetRelease <fh>, <release> ’Setzen der Release-Nummer

Arbeit mit Dateien - 95

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

FileGetProtocol, FileSetProtocol

Liest oder verandert die Protokollnummer der Datei. Das GEOS System
verwendet die Protokollnummer um zu prufen, ob Programme, Dateien und
Libraries kompatibel zueinander sind. R-BASIC definiert keine eigene Struktur fiur
die Protokollnummer, sondern verwendet die Felder rnMajor und rnMinor der
ReleaseNumber Struktur. Vorsicht! Anderungen der Protokollnummer kdnnen
dazu fuhren, dass Programme nicht mehr funktionieren oder Dateien nicht mehr
gelesen werden kénnen.

Syntax: <protocol> = FileGetProtocol (fileName$)
oder: <protocol> = FileGetProtocol (<fh>)’ Auslesen der Protocol-Nummer

Syntax: FileSetProtocol fileName$, <protocol>
oder: FileSetProtocol <fh>, <protocol>’ Setzen der Protocol-Nummer

Angaben zu den Parametern und Ruckgabewerten:

<token>:
fileName$:
<fh>:

<time>:

notes$:

<release>
<protocol>:

Eine Variable vom Typ "GeodeToken"

Die Set- Routinen akzeptieren auch Funktionen, die eine
GeodeToken-Struktur zuriickgeben

Name der Datei

Stringausdruicke, auch mit Pfadangaben im Namen, sind zuldssig.
Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
Eine Variable vom Typ "DateAndTime".

Die Set- Routinen akzeptieren auch Funktionen, die eine
DateAndTime-Struktur zurlickgeben.

Ein String mit bis zu 99 Zeichen.

Fur FileSetUsernotes sind Stringausdriicke zuléssig. Ist der String
zu lang tritt ein Laufzeitfehler auf und das Programm wird
beendet.

Eine Variable vom Typ "ReleaseNumber". Fir die "Protocol"-
Funktionen werden nur die Felder rnMajor und rnMinor
verwendet. Die Set- Routinen akzeptieren auch Funktionen, die
eine ReleaseNumber-Struktur zuriickgeben.

Arbeit mit Dateien - 96

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Beispiel:

DIM token AS GeodeToken
DIM time AS DateAndTime
DIM release AS ReleaseNumber
DIM text$

SetStandardPath SP_SYSTEM

token = FileGetToken "geos.geo"

token = FileGetCreator "geos.geo"

time = FileGetCreationTime "geos.geo"

n

Print "Datum: "; FormatDate$ (time)
Print "Zeit: "; FormatTime$ (time)

release = FileGetRelease "geos.geo"

Print text$

release = FileGetProtocol "geos.geo"

Print text$

Print "Token: \"";token.tokenchars;"\","; token.manufid
' manufid = Manufacturer ID

Print "Creator: \"";token.tokenchars;"\","; token.manufid

text$ = "Version: "+ Trim$(Str$(release.rnMajor))

text$ = text$ + "."+ Trim$(Str$(release.rnMinor))

text$ = text$ + " "+ Trim$(Str$(release.rnChange))
text$ = text$ + "-"+ Trim$(Str$(release.rnEngineering))

text$ = "Protocol: "+ Trim$ (Str$(release.rnMajor))
text$ = text$ + "."+ Trim$(Str$(release.rnMinor))

Arbeit mit Dateien - 97

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

9.3 Anlegen, Offnen und SchlieBen von Dateien

Um mit einer Datei arbeiten zu kénnen, missen Sie sie zuerst "6ffnen" (was beim
Anlegen automatisch geschieht) und nach Gebrauch wieder "schlieBen". Dabei
legen Sie fest, ob Sie Daten in die Datei schreiben (write), aus ihr lesen (read)
oder beides (read/write) wollen (Parameter ’accessFlags$’). Read/Write ist der
Standard. Da GEOS ein MultiThread-System ist, kann es passieren, dass andere
Programme gleichzeitig auf diese Datei zugreifen wollen. Deswegen mussen Sie
festlegen ob und wie andere Programme gleichzeitig auf |hre Datei zugreifen
durfen (read, write, read/write bzw. gar nicht). Der Standard ist, keinerlei Zugriff
zu erlauben (Parameter 'alienFlags$’). Sie sollten davon nur abweichen, wenn es
unbedingt erforderlich ist, da das System in diesem Fall viele Daten
zwischenspeichern muss, was den Systemspeicher sehr belasten kann.

FileCreate

Legt eine Datei auf dem Datentrédger an und 6ffnet sie. Existiert die Datei schon,
kann sie auch verwendet (Daten bleiben erhalten) oder verworfen werden.

Syntax: <fh> = FileCreate fileName$ [, accessFlags$ [, alienFlags$]]

<fh>: Variable vom Typ FILE. fh enthélt dann eine Referenz auf die Datei
und wird fur alle anderen Dateioperationen bendtigt.

fileName$: Name der Datei.

accessFlags$: Zugriffsflags (optional): Zeichenkette, bestehend aus einer
Kombination der Buchstaben "otn g rw x", die den Zugriff auf
die Datei festlegen. Der Standard (accessFlags$ nicht
angegeben) ist "n rw": Neue Datei zum Lesen und Schreiben
anlegen.

alienFlags$: Fremdzugriffsflags (optional): Zeichenkette, bestehend aus
einer Kombination der Buchstaben "rw", die den Zugriff auf
die Datei festlegen. Der Standard (alienFlags$ nicht
angegeben) ist "": Keine Fremdzugriffe erlaubt.

Der Dateizeiger ist nach dem Anlegen einer Datei immer auf die Position O
gesetzt, auch wenn sie schon Daten enthélt. Wollen Sie Daten anhdngen, missen
Sie ihn zunachst mit der Anweisung FileSetPos ans Dateiende setzen.

Die Systemvariable fileError wird gesetzt oder geldscht. Beispiele und eine
ausfuhrliche Beschreibung der Flagzeichen finden Sie weiter unten.

Arbeit mit Dateien - 98

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Mogliche Fehlerbedingungen fir FileCreate sind unter anderem:
+ Die Datei existiert, aber es wurde 'n’ (nur neu anlegen) angegeben.
+ Die Datei existiert als DOS-Datei, aber es wurde 'g’ (GEOS Daten-Datei
anlegen) angegeben.
« Die Datei existiert und es wurde '0’ (open) bzw. t’ (truncate, abschneiden)
angegeben, aber sie ist von einem anderen Programm ge6ffnet, und dieses
verweigert den Zugriff.

FileOpen

Offnet eine Datei. Die Datei muss schon auf dem Datentréger vorhanden sein.

Syntax: <fh> = FileOpen fileName$ [, accessFlags$ [, alienFlags$]]

<fth> Variable vom Typ FILE. fh enthélt dann eine Referenz auf die Datei
und wird fir alle anderen Dateioperationen bendtigt.

fileName$: Name der Datei.

accessFlags$: Zugriffsflags, optional): Zeichenkette, bestehend aus einer
Kombination der Buchstaben "rwx", die den Zugriff auf die
Datei festlegen. Der Standard (accessFlags$ nicht angegeben)
ist "rw": Datei zum Lesen und Schreiben 6ffnen.

alienFlags$: Fremdzugriffsflags, optional): Zeichenkette, bestehend aus
einer Kombination der Buchstaben "rw", die den Zugriff auf die
Datei festlegen. Der Standard (alienFlags$ nicht angegeben)
ist ": Leerstring, keine Fremdzugriffe erlaubt.

Der Dateizeiger ist nach dem Offnen einer Datei immer auf die Position 0 gesetzt.
Wollen Sie Daten anhangen, mussen Sie ihn zunachst mit der Anweisung
FileSetPos ans Dateiende setzen.

Die Systemvariable fileError wird gesetzt oder geldéscht. Beispiele und eine
ausfuhrliche Beschreibung der Flagzeichen finden Sie weiter unten.

Mdgliche Fehlerbedingungen fir FileOpen sind unter anderem:
+ Die Datei existiert nicht.
+ Die Datei existiert, aber sie ist von einem anderen Programm gedéffnet, und
dieses verweigert den Zugriff.

Arbeit mit Dateien - 99

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Flagzeichen fir FileCreate und FileOpen

Die Befehle FileCreate und FileOpen erwarten ein oder zwei Zeichenketten, in
denen durch einzelnen Buchstaben symbolisiert ist, was Sie wollen. Das Setzen
einzelner Bits oder, wie hier, Zeichen, wird Ublicherweise als das Setzen von
"Flags" (Flaggen) bezeichnet.

accessFlags$ (Zugriffs-Flaggen-Zeichen) ist eine Zeichenkette, die bestimmt, wie
die Datei angelegt oder gedffnet werden soll und ob auf die Datei lesend
und/oder schreibend zugegriffen werden soll.
Mégliche accessFlags fir FileOpen: r, w, x (x nur fir Profis)
Mégliche accessFlags fir FileCreate: g, n, t, o, r, w, X (x nur fir Profis)

alienFlags$ (Fremd-Zugriffs-Flaggen-Zeichen) ist eine Zeichenkette, welche die
Zugriffsrechte fir andere Programme bestimmt, wahrend die Datei offen ist.
Wird alienFlags$ nicht angegeben, so wird " (leer, keine Zugriffsrechte)
angenommen. Sie sollten davon nur abweichen, wenn es unbedingt
erforderlich ist, da das System in diesem Fall viele Daten zwischenspeichern
muss, was den Systemspeicher sehr belasten kann.
Mogliche alienFlags$ fir FileOpen und FileCreate: r, w

Zugriffsflags (accessFlags$) fur FileCreate und FileOpen
r "read": Aus der Datei kann gelesen werden.
w "write" In die Datei kann geschrieben werden.

Wird weder ’r’ noch 'w’ angegeben, wird ’rw’ angenommen. Dies ist auch
der Standard, wenn accessFlags$ nicht angegeben wird.

Zugriffsflags (accessFlags$) nur flr FileCreate

g "GEOS": Es wird eine GEOS-Daten-Datei angelegt. Der Dateiname muss
den GEOS-Namenskonventionen (max. 32 Zeichen) entsprechen. Wird ’g’
nicht angegeben, wird eine DOS-Datei angelegt. Der Name muss dann
der Konvention 8.3 entsprechen.

n "neu": Nur Neuanlegen erlaubt. Es ist ein Fehler, wenn die Datei schon
existiert, die Systemvariable fileError wird entsprechend gesetzt.

o ‘"open": Existiert die Datei schon, wird sie normal gebffnet. Die
vorhandenen Daten bleiben erhalten.

t "truncate" (= abschneiden): Existiert die Datei schon, wird sie
abgeschnitten. Die vorhandenen Daten gehen verloren.

Wird weder 'n’, ‘0’ noch ’t’ angegeben, wird 'n’ angenommen. Dies ist auch
der Standard, wenn "accessFlags$ nicht angegeben wird.

Arbeit mit Dateien - 100

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiele:

FileOpen "info.txt", "r" Nur Lesezugriff zugelassen
Kein Fremdzugriff, da keine alienFlags$
angegeben.

FileCreate "info.txt", "orw" Offnen einer vorhandenen Datei oder
Anlegen einer Neuen mit Schreib- und Lesezugriff.
Eventuell vorhandenen Daten bleiben erhalten.
Kein Fremdzugriff, da keine alienFlags$
angegeben.

FileCreate "info.txt", "gtw" Offnen einer vorhandenen GEOS-Daten-
Datei oder Anlegen einer Neuen zum
Schreibzugriff, ohne Lesezugriff. Eventuell
vorhandene Daten werden geldscht. Kein
Fremdzugriff, da keine alienFlags$ angegeben.

Fremdzugriffsflags (alienFlags$) fir FileCreate und FileOpen
r "read": Andere Programme kénnen aus der Datei lesen
w "write" Andere Programme konnen in die Datei schreiben.

Wird weder ’r noch ’'w’ angegeben, wird " (keine Zugriffsrechte)
angenommen. Dies ist auch der Standard, wenn alienFlags$ nicht
angegeben wird.

Far die Flags sind GroB- und Kleinbuchstaben erlaubt.

+ Die Reihenfolge der Flagzeichen ist egal.

+ Stringausdricke sind erlaubt.

- Uberfliissige bzw. ungiiltige Zeichen werden ignoriert. Sie kénnen den
Flags-String so optisch strukturieren. Zu lange Zeichenketten (mehr als 32
Zeichen) kénnen aber zu einem Laufzeitfehler fihren.

+ Verwenden Sie statt der Buchstaben keine Worte wie z.B. "write" statt "w".

Sie wurden im Beispiel die Datei zum Schreib und Lesezugriff 6ffnen, da

write die Buchstaben w und r enthalt.

Sonstige accessFlags, nur fir Profis:
x '"eXtended": Erweiterter Zugriff, z.B. auf den Header einer GEOS-Datei.
Achtung! Ungiiltige Anderungen im Header kénnen die Arbeit mit der
Datei unmdglich machen! GEOS kann die Datei in bestimmten Faéllen
auch nicht mehr I6schen. Sie sollten hier ganz genau wissen, was Sie tun.
Der Programmierer von R-BASIC Ubernimmt keinerlei Haftung!

Arbeit mit Dateien - 101

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiele fir FileOpen und FileCreate:

Die folgenden Beispiele setzen voraus, dass eine FILE-Variable folgendermaBen
definiert ist:

DIM fh AS FILE

Anlegen einer DOS-Datei zum Lesen und Schreiben. Existiert die Datei schon, soll
die Variable fileError gesetzt werden. Fremdprogramme sollen wahrend dessen
keinen Zugriff haben.

fh = FileCreate "Info.TXT"
Diese Anweisung ist identisch mit: FileCreate "Info.TXT", "rw", ""

Anlegen einer GEOS-Daten-Datei zum Lesen und Schreiben. Es muss das Flag
"g" angegeben werden, damit eine GEOS-Datei erzeugt wird. Existiert die Datei
schon, soll die Variable fileError gesetzt werden. Fremdprogramme sollen
wahrend dessen Lesezugriff haben. Der Parameter "accessFlags$" muss
angegeben werden um "alienFlags$" angeben zu kénnen.

" n n n

fh = FileCreate "Meine Daten" , g", "r

Anlegen einer GEOS-Daten-Datei nur zum Schreiben. Existiert die Datei schon,
wird sie gedffnet und der Inhalt verworfen. Fremdprogramme sollen wéhrend
dessen keinen Zugriff haben.

fh = FileCreate "Mein Daten-Logbuch" , gtw

Anlegen einer DOS-Datei zum Lesen und Schreiben. Existiert die Datei schon,
wird sie geoffnet, der Inhalt bleibt erhalten. Fremdprogramme sollen wéhrend
dessen keinen Zugriff haben.

fh = FileCreate '"Data.dat" , "o"

Offnen einer Datei zum Lesen und Schreiben. Fremdprogramme sollen wahrend
dessen keinen Zugriff haben.

fh = FileOpen "Info.TXT"
Diese Anweisung ist identisch mit: FileOpen "Info. TXT", "rw", ™

Offnen einer GEOS-Daten-Datei zum Lesen und Schreiben. Beachten Sie, dass
das Flag ’g’ nicht angeben wird, R-BASIC erkennt selbststédndig, dass es sich um
eine GEOS-Datei handelt. Fremdprogramme sollen wahrend dessen Lesezugriff
haben. Der Parameter "accessFlags$" muss angegeben werden um "alienFlags$"
angeben zu kénnen.

Arbeit mit Dateien - 102

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

fh = FileOpen "Meine Daten" , rw", "r"

Offnen einer Datei nur zum Lesen. Fremdprogramme sollen wahrend dessen
keinen Zugriff haben.

fh = FileOpen "Daten.TXT" , "r"

Tipp 1:

Wenn Sie nicht sicher sein kénnen, ob die Datei schon existiert, verwenden Sie
FileCreate mit den accessFlags o (open) oder t (truncate). Um eventuell
vorhandene Daten nicht zu verlieren, verwenden Sie das Flag o.

fh = FileCreate '"Data.dat" , "o"

Tipp 2: i

Nach dem Offnen oder Anlegen einer Datei sollten Sie prifen, ob die Operation
erfolgreich war. Das kénnen Sie mithilfe der Funktion NullFile() (siehe unten) oder
der globalen Variablen fileError tun.

fh = FileCreate "Data.dat" , "o"
IF fh = NullFile() THEN

MsgBox "Fehler beim Anlegen der Datei. FehlerCode " + \
ErrorText$ (fileError)
END IF

fh = FileOpen "Info.TXT"

IF fileError <> 0 THEN
MsgBox "Fehler beim Offnen der Datei. FehlerCode " + \
ErrorText$ (fileError)

END IF

Arbeit mit Dateien - 103

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FileClose

SchlieBt eine offene Datei. Alle evt. noch im Hauptspeicher befindlichen Daten
werden auf den Datentrdger geschrieben. Nach dem SchlieBen haben andere
Programme wieder den vollen Zugriff auf die Datei, die von FileOpen bzw.
FileCreate gesetzten Restriktionen sind aufgehoben.

Syntax: FileClose <fh>
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder geldscht.

Beispiel:
DIM fh AS FILE
fh = FileOpen "info.txt"

FileClose fh

NullFile

Liefert eine "leere" Dateivariable zuriick, dient also zum Ldschen einer
Dateivariablen oder zum Prifen, ob sie leer ist.

Syntax: <dateiVariable> = NullFile()
Die Klammern sind erforderlich.
<dateiVariable>: Variable vom Typ FILE.

Nachdem die Datei geschlossen wurde (FileClose), sollten Sie der Dateivariablen
mit Hilfe der Funktion NullFile() die Information "keine Datei" zuweisen.

DIM fh AS FILE

FileClose fh
fh = NullFile ()

Sie kdbnnen dann prifen, ob eine Datei noch offen ist:

IF fh <> NullFile() THEN ...

Verwenden Sie im Falle eines Programmierfehlers eine schon geschlossene Datei
nochmals, z.B. in der Reihenfolge

FileClose fh
x = FileRead (fh)

gibt es einen BASIC Laufzeitfehler und das Programm wird beendet.

Arbeit mit Dateien - 104

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

9.4 Lesen und Schreiben von Binardateien

FileRead, FileWrite und Filelnsert sind Universalroutinen. Sie arbeiten mit allen
Dateien und allen Typen von Variablen zusammen, einschlieBlich Strings und
Strukturen. Dateien, die nicht aus einer Abfolge von Textzeilen bestehen werde
allgemein als bindre Dateien oder Binardateien bezeichnet. Fur die Arbeit mit
Textdateien (lesen und schreiben von Textzeilen) gibt es zuséatzlich darauf
spezialisierte Routinen, siehe Kapitel 9.5.

FileRead

Liest eine bestimmte Anzahl von Bytes aus einer Datei. Der Dateizeiger wird hinter
die gelesenen Daten gesetzt. Die Daten werden entsprechend dem Typ des
Ausdrucks, in dem FileRead vorkommt, interpretiert.

Syntax: <var> = FileRead (<fth>, size [, signed])

<var>: Variable von beliebigem Typ. Die gelesenen Daten werden in diese
Variable kopiert.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
size: Anzahl der zu lesenden Bytes. Bei numerischen Daten bestimmt size
den Datentyp (1 = Byte, 2 = Word oder Integer, 4 = DWord, LONGINT
oder WWFixed, 10 = Real).
Zulassige (Grenz~) Werte fir size: 1 <= size <= 16384 (16 kByte)
signed: (optional): TRUE oder FALSE (Default: FALSE).
Nur far numerische Daten der Gr6Be 2 Byte oder 4 Byte:
signed = TRUE: Daten sind Integer oder Longint (je nach size)
signed = FALSE: Daten sind Word oder DWord (je nach size)
Ist <var> vom Typ WWFixed wird signed ignoriert.

Die Systemvariable fileError wird gesetzt oder geldscht.

Beispiele:

y = FileRead (fh, 2) ' Lesen eines Word-Wertes (2 Byte)

y = FileRead (fh, 2, TRUE) ' Lesen eines Integerwertes (2 Byte)
text$ = FileRead (fh, 100) " 100 Byte lesen und als

' Text ansehen.
! Ein String endet, wenn eine bindre Null (ASCII-Code Null)
! gelesen wird.
! LEN(stringVariable) kann daher kleiner als 'size’ sein.
! Trotzdem werden 'size’ Bytes gelesen.

DIM time AS DateAndTime
time = FileRead (fh, SizeOf(time)) ' Lesen einer Struktur

Arbeit mit Dateien - 105

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FileWrite

Schreibt eine bestimmte Anzahl von Bytes in eine Datei, indem vorhandene Daten
Uberschrieben werden. Bei Bedarf werden die Daten angehéngt, d.h. die Datei
wird verlangert. Der Dateizeiger wird hinter die geschriebenen Daten gesetzt.

Syntax: FileWrite <fh> , <expression>, size [, signed])

<fth>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
<expression>: Ausdruck von beliebigem Typ. Das Ergebnis des Ausdrucks
(z.B. eine Zahl, eine Struktur oder ein Text) wird in die Datei kopiert.
size: Anzahl der zu schreibenden Bytes. Bei numerischen Daten bestimmt
size den Datentyp (Byte, Word, DWord, Integer, LONGINT, Real), in
den die Zahl vor dem Schreiben konvertiert wird.
Zulassige (Grenz~) Werte fir size: 1 <= size <= 16384 (16 kByte)
signed: (optional): TRUE oder FALSE (Default: FALSE).
Nur far numerische Daten der GréBe 2 Byte oder 4 Byte:
signed = TRUE: Daten sind Integer oder Longint (je nach size)
signed = FALSE: Daten sind Word oder DWord (je nach size)
Ist <var> vom Typ WWFixed wird signed ignoriert.

Die Systemvariable fileError wird gesetzt oder geldscht.

Beispiele:

FileWrite (fh, n, 2) ' Schreiben eines Word-Wertes
FileWrite (fh, 110, 2, TRUE) ' Schreiben eines Integer-Wertes
FileWrite (fh, text$, 100) " 100 Byte als Text schreiben.

! ist text$ langer, wird der String abgeschnitten
! es wird keine Textendekennung (Null) geschrieben
! ist text$ kiirzer, wird mit Nullen aufgefiillt

DIM time AS DateAndTime
FileWrite (fh, time, SizeOf(time)) ' Schreiben einer Struktur

Filelnsert

Flgt eine bestimmte Anzahl von Bytes in eine Datei ein, ohne das vorhandene
Daten Uberschrieben werden. Die Datei wird dadurch automatisch verlangert. Der
Dateizeiger wird hinter die geschriebenen Daten gesetzt.

Syntax: FileInsert <fh>, <expression>, size [, signed])
<fh>, <expression>, size [, signed]) siehe FileWrite.

Die Systemvariable fileError wird gesetzt oder geldscht.
Beispiele: siehe FileWrite.

Arbeit mit Dateien - 106

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Spezielle Hinweise zum Speichern von File-, Handle- und Objekt-Variablen in

Dateien

FileRead, FileWrite und Filelnsert kénnen mit File-, Handle und Objektvariablen
bzw. Ausdriicken umgehen. Verwenden Sie als DatengréBe die Werte
SizeOf(File) (=6), SizeOf(Handle) (=6), SizeOf(Object) (=8).

Es ist jedoch im Normalfall nicht sinnvoll, diese Werte in einer Datei zu
speichern, da die enthaltenen Werte nur zeitlich begrenzt giiltig sind.

File-Variablen sind nur solange gultig, wie die Datei getffnet ist. Wird die Datei
nach dem SchlieBen erneut gedffnet, ist der Inhalt der Dateivariablen NICHT
mit dem vom ersten Mal identisch.

Handle-Variablen sind nur solange gultig, wie das von Ihnen bezeichnete
Objekt bzw. die dahinter stehende Datenstruktur vorhanden ist. Beispielsweise
gilt das von FileFindFirst$ gelieferte Handle nur so lange, bis FileFindDone
gerufen wird. Ein erneutes FileFindFirst$ liefert eine anderes Handle, auch
wenn es im gleichen Verzeichnis sucht.

Die Ausnahme sind Handles, die von der VMFiles-Library geliefert werden und
sich auf Datenstrukturen in einer VM-Datei beziehen. Diese mussen
ublicherweise in der VM-Datei selber gespeichert werden und sind so lange
gultig, wie die Datenstrukturen selbst in der VM-Datei sind.

Objektvariablen sind so lange gultig, wie das Objekt, auf das die Variable
verweist, existiert.

Arbeit mit Dateien - 107

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Spezielle Hinweise zum Speichern von numerischen Werten in Dateien

R-BASIC kennt 3 vorzeichenlose (BYTE, WORD und DWord) und 4 vorzeichen-
behaftete (INTEGER, LONGINT, WWFixed und REAL) numerische Datentypen.

Um Zahlen mit diesen Datentypen sowohl in Dateien schreiben als auch aus Ihnen
lesen zu kdnnen, gelten folgende Konventionen:

Lesen von numerischen Werten:

Der Parameter size von FileRead bestimmt, wie viele Bytes gelesen und wie
sie interpretiert werden (d.h. welchem Datentyp sie entsprechen). Zulassig sind
die Werte

1 Lesen eines Byte

2 Lesen eines Word oder Integer

4 Lesen eines DWord, LongInt oder WWFixed

10 Lesen eines Real-Wertes
Andere Werte kbnnen zu unerwarteten Ergebnissen fuhren. Die ersten beiden
gelesenen Bytes werden als Word (bzw. Integer) interpretiert, die restlichen
Bytes werden verworfen.

Der Parameter signed bestimmt fir die 2 und 4-Byte Datentypen, ob die Bytes
als vorzeichenlose Zahl (word bzw. DWord, signed=FALSE, Default-Wert)
oder als vorzeichenbehaftete Zahl interpretiert werden (integer bzw. longint,
signed=TRUE, signed muss angegeben werden).

Fir WWFixed-Variablen wird signed ignoriert.

Verwenden Sie am besten den gleichen Wert fir signed, den Sie auch beim
Schreiben verwendet haben.

Nachdem die Daten gelesen und interpretiert wurden, werden sie von FileRead
in eine Realzahl konvertiert, so dass FileRead innerhalb von beliebigen
Ausdricken wie jede andere Funktion verwendet werden kann.

Beispiele:

DIM x, z AS Real
DIM n AS Word

n = FileRead (fh, 2) ' Lesen eines Word

x = FileRead (fh, 2, TRUE) ' Lesen eines Integerwertes,
' aber speichern als Real

X = FileRead (fh, 4, TRUE) ' Lesen eines LONGINT

x = FileRead (fh, 4) ' Lesen eines DWord

2.7 * FileRead (fh, 2) + FileRead (fh, 10)

Arbeit mit Dateien - 108

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Schreiben von numerischen Werten:

Die Parameterkonventionen sind denen von FileRead analog.

Der Parameter size von FileWrite bzw. Filelnsert wie viele Bytes geschrieben
werden und in welchen Datentyp die Zahl vorher konvertiert werden soll.
Zulassig sind die Werte:

1 Schreiben eines Byte

2 Schreiben eines Word oder Integer

4 Schreiben eines DWord oder Longint

10 Schreiben eines Realwertes

Bei unglltigen Werten wird zunéchst ein Word (bzw. Integer) geschrieben und
der Rest mit Nullen aufgefullt.

Der Parameter signed bestimmt fir die 2 und 4-Byte Datentypen, ob die Bytes
als vorzeichenlose Zahl (word bzw. dword, signed=FALSE, Default-Wert) oder
als vorzeichenbehaftete Zahl geschrieben werden (integer bzw. longint,
signed=TRUE, signed muss angegeben werden).

Dazu wird der von <expression> gelieferte (REAL~) Wert zunachst in den
entsprechenden Datentyp konvertiert und dann in die Datei geschrieben.

Bei einer ZahlenbereichslUberschreitung der 1, 2 und 4-Byte Datentypen (z.B.
100 000 fur Integer oder 500 fur Byte) werden intern die Uberschissigen Bits
ignoriert. FUr die vorzeichenlosen Datentypen (byte, word, dword) entspricht
das einer Modulo-Operation.

Bei vorzeichenbehafteten Werten (integer und longint, dh. signed = TRUE)
fihrt das dazu, dass aus einer zu groBen positiven Zahl eine negative Zahl wird
und umgekehrt.

Beispiele:

DIM x AS Real
DIM n AS Word

FileWrite (fh, n, 2) ' Schreiben eines Word
FileWrite (fh, x, 2, TRUE) ' x runden und Schreiben
' als Integerwert
FileWrite (fh, x, 4, TRUE) ' Schreiben eines LONGINT, x vorher
runden
FileWrite (fh, n, 4) ' Schreiben eines DWord, n
vorher

'’ in DWord konvertieren

Tipp:

Wenn Sie mehr als eine einzige numerische Variable speichern wollen ist es
sinnvoll, diese in eine Struktur zu packen. Damit ersparen Sie sich auch die
manuelle Typunterscheidung, das R-BASIC dies bei Strukturen automatisch

macht.

Arbeit mit Dateien - 109

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

9.5 Lesen und Schreiben von Textdateien

R-BASIC verfligt Uber Spezialbefehle zum Lesen und Schreiben von Zeilen aus
Textdateien. Diese Befehle arbeiten nur mit Stringvariablen zusammen und
werden in diesem Abschnitt erklart. Universelle Lese- und Schreibefehle finden
Sie im Abschnitt 9.4.

FileReadLine$, FileWriteLine, FilelnsertLine und FileReplaceLine sind auf
Textzeilen, die durch ein Zeilenendezeichen abgeschlossen sind, spezialisiert.
Das trifft fir normale Textdateien zu. Zeilenendezeichen sind die ASCII-Codes 13
(Wagenriicklauf, Carriage return, CR) bzw. 10 (Zeilenvorschub, LineFeed, LF)
oder eine Kombination davon, ublicherweise die Folge 13, 10 (CRLF).

Hinweis: Ein Texteditor und auch ein Text Objekt flgt haufig zur Gewahrleistung
der Lesbarkeit von Texten automatische (nur am Bildschirm vorhandene)
Zeilenumbrtiche ein. Die R-BASIC "Textzeilen" erscheinen daher als "Abséatze" in
einem Texteditor oder in einem Textobjekt.

FileReadLine$

Liest eine Textzeile aus einer Datei. Es werden maximal so viele Zeichen gelesen,
wie die zu belegende Variable aufnehmen kann. Ist die Zeile langer (d.h. es wurde
keine Zeilenendekennung gelesen), so wird fileError auf -11 (LINE_TO_LONG)
gesetzt. Inr Programm kann dann entsprechend reagieren. Die fehlenden Zeichen
werden nicht Gbergangen, das nachste FileReadLine$ liest sie ein.

Syntax: <z$> = FileReadLine$ (<fh> [, mode])
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
mode: (optional): Behandlung der Zeilen-Ende-Zeichen. Siehe Tabelle.

Die Systemvariable fileError wird gesetzt oder geldscht.

Mode-Konstanten fir FileReadLine$ (RLM = ReadLine Mode)

Konstante Wert Bedeutung

RLM_CLEAR 0 Defaultwert. Zeilen-Ende-Zeichen
abschneiden.

RLM_REPLACE_TO_CR 1 Zeilen-Ende-Zeichen durch CR (ASCII-

Code 13) ersetzen. Dieser Code wird
von GEOS-Textobjekten als
Zeilenendezeichen verwendet.

RLM_SET_CR 2 Zeilen-Ende-Zeichen entfernen und in
jedem Fall ein CR-Zeichen (Code 13)
anhangen, auch wenn kein
Zeilenendezeichen vorhanden war (z.B.
am Ende einer Datei).

Arbeit mit Dateien - 110

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

RLM_DONT_CHANGE 3 Text nicht andern, Zeilenendezeichen
bleiben erhalten.

Hinweise:

+ Als Zeilenendekennung werden CR (13), LF (10), CRLF und LFCR erkannt.

+ Am Dateiende wird eine fehlende Zeilenendekennung akzeptiert und fileError
auf Null (Kein Fehler) gesetzt.

* Lesen Uber das das Dateiende hinaus setzt fileError auf 128
(SHORT_READ_WRITE), siehe Beispiel 2

Beispiele:

z$ = FileReadLine$ (fh) ' eine Zeile lesen

WHILE fileError = 0

z$ = FileReadLine$ (fh) ' eine Zeile lesen
IF fileError <> 0 THEN Print z$ ' und ausgeben
WEND

z$ = FileReadLine$ (fh, RLM DONT_ CHANGE)
" eine Zeile incl.
' CR/LF lesen

FileWriteLine

Schreibt eine Textzeile, indem vorhandene Daten Uberschrieben werden. Bei
Bedarf wird die Textzeile angehéngt, d.h. die Datei wird verlangert.

Syntax: FileWriteLine <fh>, zeile$ [, mode])
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
zeile$: zu schreibender Text
mode: (optional): Behandlung der Zeilen-Ende-Zeichen. Siehe Tabelle.

Die Systemvariable fileError wird gesetzt oder geléscht.

Mode-Konstanten fir FileWriteLine, FilelnsertLine, FileReplaceLine

Konstante Wert Bedeutung

WLM_APPEND_CRLF 0 Defaultwert. Zeilenende-Zeichenfolge
CRLF (13, 10) anhangen.

WLM_CR_TO_CRLF 1 CR-Codes (ASCII-Code 13) durch CRLF

(Folge 13, 10) ersetzen. Dadurch
werden Texte, die von GEOS-
Textobjekten kommen, zur Verwendung
in DOS-Dateien angepasst.

WLM_SET _TO_CRLF 2 CR-Codes durch CRLF ersetzen, wie
mode WLM_CR_TO_CRLF.
Unterschied: War am Textende kein CR-
Code, so wird ein zuséatzliches CRLF
angehéangt.

Arbeit mit Dateien - 111

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

WLM_DONT_CHANGE 3 Text nicht andern, Zeilenendezeichen
bleiben erhalten.

Arbeit mit Dateien - 112

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

WLM_APPEND_LF

4 Zeilenende-Zeichen LF (10) anhéangen.

WLM_CR_TO_LF

5 CR-Codes (ASCII-Code 13) durch LF
(ASCII-Code 10) ersetzen. Dadurch
werden Texte, die von GEOS-
Textobjekten kommen, zur Verwendung
in Linux und macOS angepasst

WLM_SET_TO_LF

6 CR-Codes durch LF ersetzen, wie mode
WLM_CR_TO_LF. Unterschied: War am
Textende kein CR-Code, so wird ein
zusatzliches LF angehangt.

Beispiele:

FileWriteLine fh,

FileWriteLine fh,

FileWriteLine fh,

FileWriteLine fh,

"Hallo Welt" '’ CRLF automatisch
’ anhangen
"Hallo Welt\r", WLM SET TO CRLF
’ '\r’ (CR) durch CRLF
' ersetzen
"\r\r\r", WLM SET TO CRLF
' 3 Leerzeilen

FileWriteLine fh, \
"Text geschrieben von R-BASIC", WLM SET TO CRLF

"Letzte Zeile", WLM DONT CHANGE
' kein CRLF anhédngen

FilelnsertLine

Schiebt eine Textzeile in die Datei ein. Die Datei wird dadurch verléangert.

Syntax: FilelnsertLine <fh>, zeile$ [, mode])
<fth>, zeile$ [, mode]): siehe FileWriteLine

Die Systemvariable fileError wird gesetzt oder geléscht.

FileReplacelLine

Ersetzt eine Textizeile in einer Datei durch eine andere. Die ersetzte Zeile darf
maximal 1024 Zeichen lang sein (R-BASIC Begrenzung fir Strings).

Syntax: FileReplaceLine <fh>, zeile$ [, mode])
<fth>, zeile$ [, mode]): siehe FileWriteLine

Die Systemvariable fileError wird gesetzt oder geléscht.

Arbeit mit Dateien - 113

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

9.6 Sonstige Funktionen

Positionieren des Dateizeigers

Wahrend die Datei gedffnet ist, gibt es einen "Dateizeiger", der die Position
bestimmt, an der Daten gelesen oder geschrieben werden. Der Zugriff auf den
Dateizeiger einer Datei erfolgt Uber eine Variablen vom Typ FILE, die von
FileOpen bzw. FileCreate geliefert wird.

FileGetPos

Liest die aktuelle Position des Dateizeigers aus. Der zurtiickgegebene Wert liegt im
Bereich von 0 (Dateianfang) bis 4294967295, da Dateien maximal 4 GByte grof3
werden kdnnen.

Syntax: <numVar> = FileGetPos (<fh>)

<fth>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder geléscht.

Beispiel:

' Herausfinden, ob man schon am Dateiende ist
IF FileSize(fh) = FileGetPos(fh) THEN Print "Dateiende erreicht"

FileSetPos

Setzt den Dateizeiger an eine bestimmte Position. Die folgenden File~
Operationen lesen bzw. schreiben ab dieser neuen Position.

Syntax: FileSetPos <fh>, position [, fromEnd]

<fh>: Dateivariable, bestimmt die betroffene Datei.
position: neue Dateiposition
fromEnd: bestimmt den Positionierungsmodus
+ nicht angegeben oder Null: Ab Dateianfang
+ ungleich Null: Ab Dateiende
Achtung! "position" muss hier negativ sein, damit Sie eine
Position vor dem Dateiende anwéhlen. Ist "position" positiv, ist
das Ergebnis unbestimmt. Manchmal wird die Datei verlangert,
manchmal nicht.

Die Systemvariable fileError wird gesetzt oder geldscht.

Arbeit mit Dateien - 114

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Beispiele:

Setzen des Dateizeigers an den Dateianfang
FileSetPos fh, 0

Setzen des Dateizeigers ans Dateiende, so dass FileWrite Daten an
die Datei anhdngen kann:
FileSetPos fh, 0, TRUE

Setzen des Dateizeigers 100 Byte vor das Dateiende. Der Parameter
"position" ist hierzu negativ.
FileSetPos fh, -100, TRUE

Verschieben des Dateizeiger um 10 Byte nach hinten.
FileSetPos fh, FileGetPos(fh) + 10

Setzen des Dateizeigers hinter das 2. Byte (ab Dateianfang). Das
erste Byte hat die Position 0, das zweite die Position 1
FileSetPos fh, 2

Tipps & Tricks:

+ Benutzen Sie FileSize, um die aktuelle GréBe der Datei zu ermitteln.

+ Setzen Sie den Dateizeiger hinter das Dateiende (auf einen Wert, der gré6Ber
ist, als der von FileSize gelieferte), so ist das Ergebnis unbestimmt.
Anmerkung: In einigen Fallen wird die Datei verlangert (und die neu
angehangten Bytes mit Nullen initialisiert), in anderen Fallen wurde die
Dateilange nicht geandert.

Weitere Dateioperationen

FileResize

Einflgen oder Loschen von Bytes an der aktuellen Position einer Datei. Die
dahinter folgenden Daten werden automatisch verschoben. Eingeflugte Bytes
werden mit Null initialisiert. Der Dateizeiger wird hinter die eingefligten Bytes
gesetzt. FileResize eignet sich auch, um Null-Bytes an eine Datei anzuftigen.

Syntax: FileResize <fh>, bytesToDelete, bytesTolnsert

<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
bytesToDelete: Anzahl zu I6schender Bytes. Maximal 2 GByte.
bytesTolnsert: Anzahl einzufigender Bytes. Maximal 2 GByte.

Die Systemvariable fileError wird gesetzt oder geldscht.

Arbeit mit Dateien - 115

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Beispiele:

FileResize fh, 200, O0 ' 200 Bytes lOschen. Der Dateizeiger
bleibt an der aktuellen Position.

FileResize fh, 0, 200 ' 200 Bytes einfiigen, der Dateizeiger
steht hinter den eingefiligten Bytes.

FileResize fh, 100, 200 " 100 Byte loschen und durch 200

Null-Bytes ersetzen. Die Datei wird um 100
Byte verlangert, der Dateizeiger wird hinter
die 200 Null-Bytes gesetzt.

FileResize fh, 100, 40 ’ 100 Byte loschen und durch 40
Null-Bytes ersetzen. Die Datei wird um 60

Byte kiirzer, der Dateizeiger wird hinter die
40 Null-Bytes gesetzt.

FilePos fh, 0, TRUE ' Dateizeiger ans Dateiende
FileResize fh, 0, 800 ’* 800 Null-Bytes anhangen

FileTruncate

FileTruncate schneidet die Datei an der Position des aktuellen Dateizeigers ab.

Syntax: FileTruncate <fh>
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder geldscht.

Beispiel:

! Einkiirzen einer Datei auf die Lange Null, d.h. alle Daten
1loschen.

FileSetPos fh, 0

FileTruncate fh

FileCommit

Bewirkt, dass alle in Daten der Datei unverzlglich auf die Platte geschrieben
werden. Das GEOS-System hélt aus Performance-Griinden viele Daten oft bis
zum SchlieBen der Datei im Speicher, d.h. die Daten kommen manchmal erst
beim FileClose wirklich auf der Platte an. FileCommit ist sinnvoll, wenn mehrere
Programme gleichzeitig auf die gleiche Datei zugreifen und man kann damit einem

Datenverlust im Falle eines Systemabsturzes vorbeugen.

Syntax: FileCommit <fh>
<fth>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder geldscht.

Arbeit mit Dateien - 116

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

10 Arbeit mit Laufwerken und Datentragern

Mit DiskWriteable, DiskSpace, DiskExist und Drivelnfo erhalten Sie
Informationen Uber Datentrdger oder Laufwerke. DiskGetName$ und
DiskRename arbeiten mit der Datentrédgerbezeichung. Diese Befehle setzen alle
die Systemvariable fileError (z.B. wenn das Laufwerk nicht existiert) oder |I6schen
Sie, wenn kein Fehler auftrat.

DiskWriteable

Pruft, ob sich ein beschreibbarer Datentrager im Laufwerk befindet. DiskWriteable
liefert "wahr" (TRUE, -1) wenn sich ein beschreibbarer Datentrager im Laufwerk
befindet. Existiert das Laufwerk nicht, befindet sich kein, oder kein formatierter
Datentrager im Laufwerk, liefert DiskWriteable "falsch" (FALSE, 0).

Syntax: <numVar> = DiskWriteable (Iw$)

lw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"
<numVar> numerische Variable

Beispiel:
IF DiskWriteable("a:") = 0 THEN Print "Die Diskette ist
schreibgeschiitzt."

DiskSpace

Prift den auf einem Datentrager verfigbaren Platz.

Syntax: <numVar> = DiskSpace (Ilw$ [, all])

lw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"

all: (optional) Wenn angegeben und ungleich Null, liefert DiskSpace den
insgesamt auf dem Datentrager vorhandenen Platz.
Wenn nicht angegeben oder gleich Null, liefert DiskSpace den freien
Speicherplatz auf dem Datentrager.

<numVar> numerische Variable

Wenn mehr als 2 GB verfugbar bzw. vorhanden sind, liefert DiskSpace immer den
Maximalwert von 2 147 418 112 Byte zuruck.

Beispiel:

Print "Speicherstatus von Laufwerk C:"

n

Print DiskSpace ("C:", TRUE) " Bytes insgesamt"
Print DiskSpace ("C:") " Bytes verfiligbar"

Laufwerke und Datentrager -117

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

DiskExist

Pruft, ob sich ein formatierter Datentrager im Laufwerk befindet. Wenn Sie wissen
wollen, ob ein bestimmtes Laufwerk existiert, verwenden Sie Drivelnfo (unten).
DiskExist liefert "wahr" (TRUE, -1), wenn ein formatierter Datentrager im Laufwerk
ist. Das gilt auch fur Festplatten. Befindet sich kein oder nur ein unformatierter
Datentrager im Laufwerk, liefert DiskExist "falsch" (FALSE, 0).

Syntax: <numVar> = DiskExist (Iw$)

Iw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"

Hinweis: DiskExist setzt die Systemvariable fileError auf 0, wenn das Laufwerk
existiert aber kein Datentrager enthalten ist.

Beispiel:
IF DiskExist("a:") = 0 THEN Print "Legen Sie eine formatierte
Diskette ein!"

Drivelnfo

Liefert ausfuhrliche Informationen Uber das angegebene Laufwerk. Drivelnfo gibt
Null zurtck, wenn das Laufwerk nicht existiert, andernfalls einen Wert ungleich
Null.

Syntax: <numVar> = Drivelnfo (Iw$)

Iw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"

Beispiel:

IF DriveInfo("H:") = 0 THEN Print "Laufwerk H: existiert nicht"

Existiert das Laufwerk, enthélt der Rickgabewert vielféltige Informationen Uber
das Laufwerk, wobei jedes einzelne Bit eine Bedeutung hat. Die Auswertung
dieser Daten ist etwas fur Experten. Kenntnisse im Umgang mit Bits und logischen
Verknupfungen sind hilfreich. R-BASIC unterstitzt die Arbeit mit den wichtigsten
Eigenschaften durch ein paar vordefinierte Konstanten.

Laufwerke und Datentrager - 118

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Wert R-BASIC Konstante Bedeutung
15 DI_TYPE_MASK Maske zum Herausfiltern des
Laufwerkstyp
2 DI_FIXED Laufwerkstyp: Festplatte
4 DI_CD_ROM Laufwerkstyp: CD-ROM-Laufwerk
64 DI_REMOVABLE Datentrager ist wechselbar (CD,
Diskette)
2048 DI_READ_ONLY "Nur-Lesen" - Datentrager

Tabelle: R-BASIC Konstanten fir Drivelnfo. Eine komplette Beschreibung finden

Sie auf der néchsten Seite.
Verwenden Sie die Konstanten wie folgt:

Beispiel 1:

DIM bitfeld AS word

bitfeld = DriveInfo ("D:")
IF bitfeld = 0 THEN Print "Laufwerk D: existiert nicht"

! ## Abfragen fiir Experten
IF bitfeld AND DI_REMOVABLE THEN

Print "Datentrdger in D: ist entnehmbar"

END IF

IF (bitfeld AND DI_TYPE MASK) = DI_CD_ROM THEN
Print "Laufwerk D: ist ein CD-Laufwerk"
END IF

Beispiel 2:

DIM info, type AS word
info = DrivelInfo ("D:")

! ## Herausfinden des Laufwerkstypes

type = info AND DI_TYPE_MASK ' Bits 4 .. 15 Null setzen
IF type AND DI_FIXED THEN Print "Festplatte"
IF type AND DI_CD _ROM THEN Print "CD-ROM Laufwerk"

! ## Entnehmbar und beschreibbar

IF info AND DI_REMOVABLE THEN Print "Entnehmbarer
Datentrager"
IF info AND DI_READ ONLY THEN Print "Nur-Lesen Datentrdger"

Laufwerke und Datentrager - 119

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Bedeutung der Bits im Rickgabewert von Drivelnfo

Drivelnfo liefert eine 16-Bit Wert, der ausflhrliche Informationen Uber das
abgefragte Laufwerk enthalt. Hier finden Sie eine komplette Liste der Bits.
Kenntnisse im Umgang mit Bits und logischen Verknipfungen sind hilfreich.
Hinweis: Die meisten Infos sind der PC/GEOS-SDK-Dokumentation ungepruft
entnommen. Fur eventuelle Fehler in der PC/GEOS-SDK-Dokumentation kann R-
BASIC nichts.

Bit-Nummer | R-BASIC Konstante Bedeutung
0-3 DI_TYPE_MASK =15 Laufwerkstyp
0 : 5,25" Diskette
1 : 3,5" Diskette
DI_FIXED =2 2 : Fixed (Festplatte)
3 : RAM-Laufwerk
DI_CD_ROM =4 4 : CD-ROM-Laufwerk
5 : 8" Diskette
16: unbekannter Typ
4 (unbenutzt / reserviert)
5 Netzwerklaufwerk
6 DI_REMOVABLE = 64 Datentrager ist wechselbar (CD,
Diskette)
7 Laufwerk ist physisch vorhanden
8 "besetzt" - Laufwerk wird benutzt
9 "alias" - Laufwerk ist ein Alias fir einen
Pfad auf einem anderen Laufwerk
10 Datentrager ist formatierbar
11 DI_READ_ONLY =2048| "Nur-Lesen" - Datentrager, z.B. CD
12 Laufwerk ist nicht Uber das Netzwerk
sichtbar.
13 (unbenutzt / reserviert)
14 (unbenutzt / reserviert)
15 (unbenutzt / reserviert)

Tabelle: Bedeutung der Bits im Ruckgabewert von Drivelnfo.

Laufwerke und Datentrager - 120

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

DiskGetName$

Liest die Datentragerbezeichnung.

Syntax: <name$> = DiskGetName$ (Iw$)
Parameter: Iw$: Laufwerksbezeichnung
z.B. "A:" oder "D:"

Fehlerbedingung: Die Systemvariable fileError wird gesetzt oder zurlickgesetzt.

Beispiel:
DIM s$, n$
s$ = "a:"

n$ = DiskGetName$(s$)
IF fileError THEN

Print "Fehler beim Lesen der Bezeichnung von ";s$
ELSE

Print "Datentrdger im Laufwerk "; s$; "heiBt ";n$
END IF

DiskRename

Schreibt die Datentragerbezeichnung.

Syntax: DiskRename Iw$, name$
Parameter: Iw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"
name$: Neue Datentragerbezeichnung

Fehlerbedingung: Die Systemvariable fileError wird gesetzt oder zurtickgesetzt.

Beispiel:
DIM sS$
s$ = "a:
DiskRename s$, "Paul"
IF fileError THEN
Print "Fehler beim Setzen der Bezeichnung von ";s$
ELSE
Print "Datentrdger im Laufwerk "; s$; "heiBt jetzt";
DiskGetName$ (s$)
END IF

n

Laufwerke und Datentrager - 121

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

(Leerseite)

Laufwerke und Datentrager -122

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

11 Portzugriffe

Achtung! Die Befehle greifen direkt auf die Hardware des Computers zu!
INP

Die Funktion INP (= Input) greift auf die Hardware des Computers zu und liest ein
Byte von einem 1/O-Port. Sie missen sich mit der Hardware des Computers und
den Portadressen sowie deren Bedeutung auskennen, um diesen Befehl nutzen
zu kénnen.

Syntax: <numVar> = INP (port)
Parameter: port: Port-Adresse, von der gelesen werden soll

ouT

Der Befehl OUT (= Output) greift auf die Hardware des Computers zu und schreibt
ein Byte in einem 1/O-Port. Sie missen sich mit der Hardware des Computers und
den Portadressen sowie deren Bedeutung auskennen, um diesen Befehl nutzen
zu kénnen.

Syntax: OUT port, wert
Parameter: port: Port-Adresse, auf die ausgegeben werden soll
wert: auszugebender Wert

Achtung: Eine Ausgabe unglltiger Werte auf bestimmte 1/0-Ports des Computers
kénnte die Funktion des Computers schwer stéren oder unmdglich machen. Der
Programmierer von R-BASIC Ubernimmt keinerlei Haftung flr Schaden, die auf
eine fehlerhafte Verwendung der Befehle INP und OUT zurtckgehen!

WAIT

Die Funktion WAIT (= Warte) greift auf die Hardware des Computers zu und wartet
bis ein bestimmtes Bitmuster an einem 1/0O-Port anliegt. Sie missen sich mit der
Hardware des Computers und den Portadressen sowie deren Bedeutung
auskennen, um diesen Befehl nutzen zu kénnen.

Syntax: WAIT port, mask [, xBits [, mode]]
Parameter: port: Port-Adresse, von der gelesen werden soll
mask: Maske, welche Bits abgefragt werden sollen
xBits: Welche Bits davon Null sein massen.
xBits ist optional. Vorgabewert ist Null.
mode: mode = 0: WAIT wartet BIS das gesuchte Bitmuster
erscheint (Vorgabewert, wenn mode nicht angegeben).
mode = 1: WAIT wartet SOLANGE das gesuchte Bitmuster
am Port anliegt.
Soll mode angegeben werden, so ist auch xBits anzugeben.

Portzugriffe -123

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Funktion:

Beispiele:
Wir nutzen:

Einfach unter PC/GEOS programmieren

WAIT wartet, bis die bitweise logische Verknlpfung des Bitmusters

am abgefragten Port mit mask und (falls angegeben) xBits die

geforderte Bedingung (mode) erfilllt.

"mask" bestimmt, welche Bits berlcksichtigt werden sollen. Bits, die
in mask nicht gesetzt sind, kdbnnen beliebige Werte haben.

"xBits" bestimmt, welche Bits Null sein mussen. Bits, die in xBits
nicht gesetzt sind, missen Eins sein, damit die Bedingung
erfullt ist.

Intern werden "mask" und "xBits" (wenn angegeben) logisch XOR
verknUpft. Der von "port" gelesene Wert mit "mask" logisch UND
verknupft. Die genauen Formeln lauten:

erwartung = (mask XOR xBits) AND mask
gelesen = INP(port) AND mask

mode = 0 wartet, bis das gelesene Bitmuster erscheint:
Warte bis erwartung = gelesen

mode = 1 wartet, solange das gelesene Bitmuster korrekt ist:
Warte solange wie erwartung = gelesen

1 ist binar 0001, 2 ist binar 0010, 3 ist binar 0011

x ist ein Bit, das gesetzt sein kann oder nicht (d.h. egal ob 0 oder 1)

Warten auf ein bestimmtes Bitmuster an Port p:

wait p,
wait p,
wait p,

2 ' warten auf xxlx an Port p
2, 2 ' warten auf xx0x
3, 1 ' warten auf xx10

Warten solange ein bestimmtes Bitmuster an Port p anliegt:

wait p,
wait p,
wait p,

" WAIT

2, 0, 1 ' warten solange xxlx an Port p

2, 2, 1 ' warten solange xx0x anliegt

3, 3, 1 ' warten solange xx00 anliegt

setzt fort, wenn xx01, xx10 oder xx1ll1l erscheint.

Portzugriffe - 124

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

12 Focus und Target

Die Arbeit mit Focus und Target ist etwas fur erfahrene Programmierer und nur in
wenigen Fallen notwendig. Eine Ausnahme bildet die Implementation von
speziellen Menls wie dem "Bearbeiten" Menu. Diesem Thema ist deswegen ein
eigenes Kapitel (Kapitel 13) gewidmet.

12.1 Uberblick

Das GEOS-System benétigt einen oder mehrere Wege, auf dem Usereingaben zu
dem Objekt geleitet werden, fir das sie bestimmt sind. Neben dem Weg, den
Mausereignisse gehen, und der in einem eigenen Kapitel beschrieben wird, sind
das unter GEOS die Focus-Hierarchie und die Target-Hierarchie. Diese beiden
Hierarchien arbeiten sehr ahnlich und werden im Folgenden beschrieben.

Focus

Die Focus-Hierarchie beschreibt, an welches Objekt Tastatureingaben des
Nutzers gehen sollen. Das kann z.B. ein Textobjekt oder ein gedffnetes Menl
sein. Man sagt, das Objekt, an das letztlich die Tastatureingaben gehen, "hat den
Focus".

Eine Arbeit mit der Focus-Hierarchie ist nur sehr selten nétig, da Textobjekte
automatisch damit umgehen kdnnen. Ein Beispiel wére herauszufinden, welches
VisObj-Objekt als letztes angeklickt wurde, also das "aktive" Objekt ist. Dieses hat
namlich den Focus (und auch das Target).

Target

Die Target-Hierarchie (engl. target = Ziel) beschreibt das Zielobjekt einer
Operation, die der Nutzer ausfihrt. Ein gutes Beispiel ist ein Textobjekt, in das der
Nutzer gerade etwas eingibt. Wenn der Nutzer ein Menl benutzt um die GroBe
des Texts im aktiven Textobjekt zu &ndern, dann ist das Textobjekt das Ziel dieser
"Operation". Das Gleiche gilt, wenn er einen Eintrag aus dem Edit-Men(wahit, um
Text in die Zwischenablage zu kopieren oder von dort einzufigen. Man sagt, das
Objekt, mit dem gearbeitet werden kann "ist das Target", manchmal auch "hat das
Target".

Das letzte Beispiel zeigt auch sehr deutlich, warum zwei Hierarchien gebraucht
werden. Klickt der User mit der Maus auf ein Menu verliert der Text den Focus,
aber nicht das Target. Deswegen kann der Actionhandler des Menueintrags
entscheiden, mit welchem Objekt er interagieren soll - ndmlich mit dem Target.

Sowohl die Focus- als auch die Target-Hierarchie sind an die Tree-Struktur der
Objekte gekoppelt. Jedes Objekt kann genau eins seiner Children flir den Focus-
und eines flir den Target-Pfad auswahlen. Dasjenige Objekt, das am Ende dieses
Pfades steht hat den Focus bzw. das Target. Das folgende Bild verdeutlicht das.

Focus und Target - 125

R-BASIC Handbuch - Spezielle Themen - Vol. 2

Einfach unter PC/GEOS programmieren

Application Objekt

Inaktiver Pfad#
4

Obj 2

Aktiver Pfad

V4

Obj 2

Obj 4

Obj 5

Inaktives Target

Bild 1: Aktive und inaktive Targets und Pfade

V4

Obj 8

Application Objekt

\ Inaktiver Pfad
AN

Obj 3

4
V4
Obj6 || Obj7

Inaktives Target

Aktives Target

Die linke Abbildung zeigt den Ausgangszustand. Klickt der Nutzer jetzt mit der
Maus auf Objekt 2 (z.B. eine Dialogbox) so wird Objekt 9 (z.B. ein Textobjekt in
diesem Dialog) zum aktiven Target.

Jedes Mal, wenn ein Objekt Teil des aktiven Pfades wird oder den aktiven Pfad
verlasst kann es eine Message aussenden (Handler OnFocusChanged oder
OnTargetChanged). Auf diese Weise kann ein Programm stets Uber das aktuelle
Target- oder Focus-Objekt informiert sein und bei Bedarf die Ul anpassen, z.B. ein
Edit-MenU enablen oder disablen.

Zur Arbeit mit Focus und Target stehen die folgenden

Handlertypen und Systemvariablen zur Verfigung:

Instance-Variablen:

Instancevariablen,

Variable Syntax im Ul-Code Im BASIC-Code

OnFocusChanged OnFocusChanged = <Handler> nur schreiben

defaultFocus defaultFocus —

OnTargetChanged OnTargetChanged = <Handler> nur schreiben

targetable targetable = TRUE | FALSE lesen, schreiben

defaultTarget defaultTarget —
Action-Handler-Typen:

Handler-Typ Parameter

FocusAction (sender as object, hasFocus as integer)

TargetAction (sender as object, hasTarget as integer)

Systemvariablen:

Variable

Inhalt

Focus

enthalt das aktuelle Focus-Objekt

Target

enthélt das aktuelle Target-Objekt

Focus und Target - 126

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

12.2 Arbeit mit dem Focus

Héaufig wird der Hint defaultFocus verwendet um sicherzustellen, dass ein
bestimmtes Objekt am Anfang den Focus hat. Eine weitergehende Arbeit mit dem
Focus ist nur selten nétig. Alle Objekte kénnen Standardsituationen automatisch
handeln.

defaultFocus

Der Hint defaultFocus bewirkt, dass das Objekt am Anfang den Focus bekommt.
Meistens reicht es, dem Objekt selbst diesen Hint zu geben, bei komplexen Baum-
strukturen muss man ihn manchmal auch den Parents geben.

Syntax Ul-Code: defaultFocus

DefaultFocus ist auf GenericClass Level definiert und damit fur alle Abkémmlinge
der GenericClass verflgbar.

OnFocusChanged

Die Instancevariable OnFocusChanged enthélt den Namen des Actionhandlers,
der aufgerufen wird, wenn das Objekt den Focus erhélt oder verliert. Er wird auch
gerufen, wenn das Objekt Teil des aktiven Focuspfades wird oder vom aktiven

zum inaktiven Pfad wechselt.
OnFocusChanged Handler missen als FocusAction deklariert sein.

Der OnFocusChanged Handler ist fiir folgende Objektklassen definiert:
+ Application
* Primary
* Menu
+ Dialog
* Memo, InputLine, VisText, LargeText
* View
+ BitmapContent
* Display, DisplayGroup
* VisContent
* VisObj

Der dem Handler tGbergebene Parameter "hasFocus" ist TRUE, wenn das Objekt
den Focus erhalten hat (bzw. Teil des aktiven Pfades geworden ist), ansonsten ist
er FALSE.

Beispiel: Wir wollen sicherstellen, dass ein InputLine Objekt disabled wird, wenn
der Nutzer es verlassen hat.

Focus und Target - 127

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Ul-Code:

InputLine Textl

defaultFocus

OnFocusChanged = HandleFocus
End Object

BASIC-Code

FocusAction HandleFocus
IF hasFocus = FALSE THEN
Textl.enabled = FALSE
End IF
End Action

Focus

Die globale Systemvariable Focus enthalt das Objekt, das aktuell den Focus hat,
d.h. das sich am Ende des aktiven Focuspfades befindet. Der Wert kann gelesen
und geschrieben werden.

Beispiele
IF Focus = MyObj THEN ...
Focus.Capion$ = "Neuer Text"

' Ein bestimmtes Textobjekt als Focus auswdhlen, damit der
' User genau in dieses Objekt etwas eintragt
Focus = MyTextObject

Im Beispiel "Objekte\Visual Class\VisObj Keyboard Demo" finden Sie im OnDraw-
Handler der VisObj-Objekte den folgenden Code. Damit wird (nur) um das aktive
Objekt immer ein Rahmen gezeichnet.

IF sender = Focus THEN
Rectangle 5,5,MaxX-5, MaxY¥-5
End IF

Achtung! Wenn Sie der Variablen Focus ein Objekt zuweisen, dass nicht am Ende
eines Objektpfades steht (z.B. Focus = MyGroupWithChildren) kann das zu
"komischem" Verhalten oder Systeminstabilitat fihren.

Hinweis: Es gibt Situationen, in denen R-BASIC das Focus-Objekt nicht identi-
fizieren kann. Insbesondere ist das der Fall, wenn ein Number-Objekt oder ein
Eintrag in einer DynamicList den "Focus" hat. Die Systemvariable Focus enthélt
dann einen Verweis auf ein "leeres" oder ein "internes" Objekt. Sie kénnen die
Situation priifen, indem dem Sie die Instancevariable Class$ des Focus-Objekts
abfragen. Focus.Class$ liefert in diesem Fall einen leeren String.

Focus und Target - 128

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

View: focusable

Fir View-Objekte ist die numerische Instancevariable focusable definiert, die
TRUE oder FALSE sein kann. Sie muss TRUE sein, damit das View (und damit
sein Content) den Focus bekommen kann. Per Default ist sie TRUE.

12.3 Arbeit mit dem Target

Die Auswertung des Targets wird haufig benutzt um spezielle Menls zu
implementieren, z.B. das "Bearbeiten" Menu. Ein ausflhrlich kommentiertes
Beispiel finden Sie im nachsten Kapitel. Eine weitergehende Arbeit mit dem Target
ist etwas fur erfahrende Programmierer und nur selten nétig. Alle Objekte kdnnen
Standardsituationen automatisch handeln.

OnTargetChanged

Die Instancevariable OnTargetChanged enthalt den Namen des Actionhandlers,
der aufgerufen wird, wenn das Objekt zum Target wird oder diesen Status verliert.
Er wird auch gerufen, wenn das Objekt Teil des aktiven Targetpfades wird oder
vom aktiven zum inaktiven Pfad wechselt.

OnTargetChanged Handler missen als TargetAction deklariert sein.

Der OnTargetChanged Handler ist fur folgende Objektklassen definiert:
+ Application
* Primary
* Memo, InputLine, VisText, LargeText
+ Dialog
* View
+ BitmapContent
* Display, DisplayGroup
+ VisContent
* VisObj

Der dem Handler Gibergebene Parameter "hasTarget" ist TRUE, wenn das Objekt
zum Target geworden ist (bzw. Teil des aktiven Pfades geworden ist), ansonsten
ist er FALSE.

Beispiel:

Wenn Sie mehr als ein Textobjekt haben wird dieser Handler oft benutzt um die Ul
entsprechend den Attributen (Font, TextgréBe, Farben usw.) anzupassen, die im
Textobjekt dargestellt werden, mit dem der Nutzer gerade interagiert, d.h. dass
das Target ist. Der Code zeigt, wie man im OnTargetChanged Handler ein
Number-Objekt anspricht, so dass es die GréBe des verwendeten Fonts anzeigt.

Focus und Target - 129

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Ul-Code:

Memo Textl

fontSize = 14

fontID = FID MONO

defaultFocus

OnTargetChanged = HandleTarget
End Object

Memo Text2
fontSize = 24
fontID = FID SANS
OnTargetChanged = HandleTarget
End Object

Number PointInfoNumber

Caption$ = "Aktuelle Font GréBe:"
End Object

BASIC-Code

TargetAction HandleTarget
IF hasTarget THEN
' UI updaten
PointInfoNumber.value = sender.fontSize
End IF
End Action

Target

Die globale Systemvariable Target enthalt das Objekt, das aktuell das Target ist,
d.h. das sich am Ende des aktiven Targetpfades befindet. Der Wert kann gelesen
und geschrieben werden.

Die Variable wird oft in Actionhandlern verwendet, die auf das aktuelle Target

wirken sollen. Ein ausfihrlich kommentiertes Beispiel finden Sie im nachsten
Kapitel.

Beispiel: Ein MenlU enthélt eine OptionGroup, deren Actionhandler (namens
ChangeSize) die ZeichengrdBe bei einem Textobjekt &ndern soll.

LISTACTION ChangeSize

Target.fontsize = selection
END ACTION ' ChangeSize

Wenn man nicht sicher sein kann, dass das aktuelle Target ein Textobjekt ist,
muss man vorher die Klasse abfragen.

LISTACTION ChangeSize

IF Target.Class$ <> "MEMO" THEN RETURN
Target.fontSize = selection

END ACTION ' ChangeSize

Focus und Target - 130

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Achtung! Wenn Sie der Variablen Target ein Objekt zuweisen (z.B. Target =
MyObj), dass nicht am Ende eines Objektpfades steht oder nicht targetable ist, so
kann das zu "komischem" Vehalten oder Systeminstabilitat fihren.

targetable (selten verwendet)

Die Instancevariable targetable enthélt die Information, ob ein Objekt zum Target
werden kann oder nicht. Der Wert ist per Default bei allen Objektklassen, flr die
ein OnTargetChanged Handler definiert ist (siehe oben) auf TRUE gesetzt, fur alle
anderen Objektklassen ist er per Default FALSE. Im Normalfall besteht keine
Notwendigkeit daran etwas zu &andern. Setzen Sie z.B. bei einem der oben
genannten Objekte targetable = FALSE so kann weder dieses Objekt noch seine
Children (bzw. bei einem View sein Content) zum Target werden.

Syntax Ul-Code: targetable
Lesen: <numVar> = <obj>.targetable
Schreiben: <obj>.targetable = TRUE | FALSE

Targetable ist auf GenericClass Level definiert und damit fur alle Abkémmlinge der
GenericClass verfugbar.

Far View-Objekte gilt: Um mit einem ViewControl zusammenzuarbeiten muss das
View targetable sein. AuBerdem muss das Bit VA_CONTROLLED in der
Instancevariablen viewAttrs gesetzt sein.

defaultTarget
Der Hint defaultTarget bewirkt, dass das Objekt am Anfang das Target ist.

Syntax Ul-Code: defaultTarget

DefaultTarget ist auf GenericClass Level definiert und damit fir alle Abkémmlinge

der GenericClass verflgbar.

Tipp:

+ In vielen Féllen (z.B. Textobjekte) ist es notwendig statt defaultTarget den Hint
defaultFocus zu verwenden.

+ Wenn Sie View-Objekte haben, die mit einem ViewControl zusammenarbeiten
sollen missen Sie bei genau einem View den Hint defaultTarget setzen.

Focus und Target - 131

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

Focus und Target - 132

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

13 Implementieren von Menlis: Bearbeiten, TextgroBe und andere

Dieses Kapitel zeigt an einem Beispiel, wie man Menus implementiert, die mit dem
Target zusammenarbeiten sollen. Das sind

+ Ein "Bearbeiten" Menu (Kopieren, Einfugen usw.)

- Ein Menii "GréBe" (Andern der SchriftgroBe)

« Ein Menii "Font" (Andern des Textfonts)

Dazu schreiben wir ein Programm, dass neben den genannten Menus drei Text-
objekte enthélt, wobei zwei davon mit den Menls zusammenarbeiten sollen, eins
aber nicht.

== Edit Menii & mehr = =)

Der komplette Sourcecode, inklusive der hier nicht explizit dargestellten Objekte,
finden Sie bei den Beispielen unter "Objekte\Allgemeines\Edit Meni & mehr".

Die Grundidee ist folgende:

+ Kilickt der Nutzer mit der Maus in ein Textobjekt so wird es zum Target. Das
Objekt, das vorher das Target war verliert dabei diesen Status. Wir schreiben
also einen OnTargetChanged Handler, der die Menls updated, so dass sie
den Zustand des neuen Targetobjekts reflektieren.

+ Ist ein Objekt das Target, das nicht mit den Menis zusammenarbeiten soll,
werden die Menus komplett disabled.

+ Um die Buttons "Ausschneiden", "Kopieren" und "L&schen" zu verwalten
bendtigen wir auBerdem einen OnSelectionChanged Handler, der gerufen
wird, wenn der Nutzer in einem Textobjekt etwas selektiert oder deselektiert.

+ Um den Button "Einfligen" zu verwalten benétigen wir einen OnClpChange
Handler fir das Applicationobjekt.

Edit-Men(& Co - 133

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Die Textobjekte

Die ersten beiden Texte sollen mit den MenUs interagieren und haben deswegen
sowohl einen OnTargetChanged als auch einen OnSelectionChanged Handler.
Beachten Sie, dass die Handler fir beide Textobjekte die gleichen sind. FontSize
und FontlD sind jedoch unterschiedlich. Der dritte Text verfugt Uber keinerlei
Handler.

Memo Textl
fontSize = 14
fontID = FID MONO
text$ = "Ein Mops kam in die Kiiche"
defaultFocus
OnTargetChanged = HandleTarget
OnSelectionChanged = HandleSelection
fixedSize = 200, 150

End Object

Memo Text2
fontSize = 24
fontID = FID SANS
text$S = "und stahl dem Koch ein Ei."
OnTargetChanged = HandleTarget
OnSelectionChanged = HandleSelection
fixedSize = 200, 150

End Object

Memo Text3
text$ = "Ich interagiere nicht mit den Meniis!"
ExpandWidth

End Object

Die Meniis

Das Edit-Menu ("Bearbeiten") enthélt die Buttons flir die entsprechenden
Funktionen. Jeder Button hat seinen eigenen Actionhandler und einen Keyboard
Shortcut gesetzt. Keyboard Shortcuts sind im Kapitel 3.1.4 des Objekthandbuchs

beschrieben.

Menu EditMenu

Caption$ = "Bearbeiten" , 0

Children = CutButton, CopyButton, PasteButton, DeleteButton
End OBJECT

Button CutButton
Caption$ = "Ausschneiden", 0
ActionHandler = DoCut ’ ButtonAction
kbdShortcut = KSM_CTRL+ KSM_PHYSICAL+ ASC("x")

End OBJECT
Button CopyButton
Caption$ = "Kopieren" , 0

ActionHandler = DoCopy ' ButtonAction

Edit-Ment & Co - 134

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

kbdShortcut = KSM CTRL+ KSM PHYSICAL+ ASC("c")
End OBJECT

Button PasteButton
Caption$ = "Einfiigen" , 0
ActionHandler = DoPaste ' ButtonAction
kbdShortcut = KSM CTRL+ KSM PHYSICAL+ ASC("v")
End OBJECT

Button DeleteButton
Caption$ = "Loschen"’ , 0
ActionHandler = DoDelete '’ ButtonAction
kbdShortcut = &hF9A ' Siehe KeyCodes Library
End OBJECT

Die Menus far ZeichengréBe und Font sind prinzipiell gleich aufgebaut. Jedes
Meni enthélt eine RadioButtonGroup mit drei RadioButton-Objekten. Das
Besondere ist, das der Identifier der RadioButton-Objekte gleichzeitig die
Eigenschaft représentiert, die er einstellen soll. Die RadioButton-Objekte aus dem
FontSelector sind Font-ID’s und die aus dem SizeSelektor sind PunktgrdBen.

Menu FontMenu

Caption$ = "Font" , 0
Children = FontSelector
End OBJECT

RadioButtonGroup FontSelector
Children = FontOptionl, FontOption2, FontOption3
ApplyHandler = ChangeFont ’ ListAction
selection = FID_ MONO
End OBJECT

RadioButton FontOptionl

Caption$ = "Mono" : identifier = FID MONO
End OBJECT
RadioButton FontOption2
Caption$ = "Sans" : identifier = FID SANS
End OBJECT
RadioButton FontOption3
Caption$ = "Symbol" : identifier = FID SYMBOLPS

End OBJECT

Das Menu "SizeMenu" ist prinzipiell genauso aufgebaut.

Menu SizeMenu

Caption$ = "GroBe" , 0
Children = SizeSelector
End OBJECT

RadioButtonGroup SizeSelector
Children = SizeOptionl, SizeOption2, SizeOption3
orientChildren = ORIENT VERTICALLY ‘' ORIENT HORIZONTALLY
ApplyHandler = ChangeSize ' ListAction
selection = 14

Edit-Menl & Co - 135

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

End OBJECT

RadioButton SizeOptionl
Caption$ = "14 pt" : identifier = 14
End OBJECT

RadioButton SizeOption2
Caption$ = "18 pt" : identifier = 18
End OBJECT

RadioButton SizeOption3
Caption$ = "24 pt" : identifier = 24
End OBJECT

Das Application Objekt

Das Applicationobjekt muss einen OnClpChange Handler haben, damit das
Clipboard tberwacht werden kann.

Application DemoApplication
Children = DemoPrimary
OnClpChange = MonitorClipboard

END Object

Uberwachen des Clipboard

Der OnClIpChange Handler wird jedes Mal gerufen, wenn irgendeine Applikation
Anderungen am Clipboard vornimmt. Das schlieBt unser eigenes Programm mit
ein. Wir mussen daher nur nachschauen, ob ein Text im Clipboard ist und den
"Einfigen" Button enablen oder disablen. Dazu verwenden wir die BASIC Routine
ClipboardTest. Das Format der Daten, die sich im Clipboard befinden, wird durch
eine eindeutige Kombination aus ManufacturerID (manuflD) und Format-Nummer
(formatNo) gekennzeichnet. Fur Texte gilt: manuflD=0 (GeoWorks),
formatNo. =0 (TEXT). Mehr dazu finden Sie im Kapitel 5 "Arbeit mit der
Zwischenablage".

SYSTEMACTION MonitorClipboard
IF ClipboardTest(0, 0) then
PasteButton.enabled = TRUE

else
PasteButton.enabled = FALSE
End IF
END ACTION ' MonitorClipboard

Sollte gerade ein Objekt das Target sein, dass nicht mit den Menus
zusammenarbeiten soll oder kann, so stdrt uns das hier nicht, da wir an anderer
Stelle sicherstellen, dass das Menu-Objekt dann nicht enabled ist. Der
PasteButton ist dann niemals aktiv, auch wenn er enabled ist.

Edit-Menl & Co - 136

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Die anderen Buttons des Bearbeiten-Menus

Alle anderen Buttons des Bearbeiten-Menlis miissen enabled werden, wenn der
Nutzer Text selektiert hat, andernfalls missen sie disabled werden. Da diese
Abfrage mehrfach gebraucht wird lagern wir sie in eine SUB aus. Der Parameter
textObj bezeichnet das aktuelle Targetobjekt, die Instancevariable selectionLen
enthéalt die Anzahl der selektierten Zeichen.

SUB UpdateEditMenu (textObj as OBJECT)

IF textObj.selectionLen THEN ' d.h. selectionLen <> 0
CopyButton.enabled = TRUE
CutButton.enabled = TRUE
DeleteButton.enabled = TRUE
ELSE
CopyButton.enabled = FALSE
CutButton.enabled = FALSE
DeleteButton.enabled = FALSE
END IF

END SUB ’UpdateEditMenu

Die Textobjekt- Handler

Jetzt kimmern wir uns darum, was passiert, wenn der Nutzer ein Textobjekt
anklickt. Das entsprechende Objekt wird dann zum Target. Vorher - und das ist
sehr wichtig fur uns - verliert das Objekt, das bis dahin Target war, jedoch seine
Target-Status. Der OnTargetChanged Handler wird also zweimal gerufen: zuerst
von dem Objekt das bis dahin Target war (mit dem Parameter hasTarget =
FALSE) und danach von dem Objekt das jetzt Target wird (mit dem Parameter
hasTarget = TRUE).

Wird er Handler also wegen einem Targetverlust gerufen disablen wir einfach alle
MenUs, andernfalls enablen wir sie und updaten die Ul.

Das hat einen weiteren Vorteil: Klickt der User auf ein Objekt, dass nicht mit den
Menls zusammenarbeiten kann oder soll (in unserem Fall Text3), so wird der
OnTargetChanged Handler nur einmal gerufen (mit hasTarget = FALSE) und die
Menus bleiben so lange disabled, bis der Nutzer wieder in eins der Objekte Text1
oder Text2 klickt.

TARGETACTION HandleTarget

if hasTarget = FALSE THEN

Editmenu.enabled = FALSE
Fontmenu.enabled = FALSE
Sizemenu.enabled = FALSE
return
end if

EditMenu.enabled = TRUE
UpdateEditMenu (sender)

Edit-Ment & Co - 137

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

FontMenu.enabled = TRUE
FontSelector.selection = sender.fontID

SizeMenu.enabled = TRUE
SizeSelector.selection = sender.fontSize

END ACTION '’ HandleTarget

AuBerdem miuissen wir noch das Edit-Menl informieren, falls der Nutzer die
Textselektion andert.

TEXTACTION HandleSelection
UpdateEditMenu (sender)
END ACTION

Handler des Bearbeiten-Menus

Nun mussen wir die ActionHandler der Buttons aus dem Bearbeiten-Menu
implementieren. Da wir nicht wissen kdénnen, ob das aktuelle Target das Objekt
Text1 oder Text2 ist verwenden wir als Ziel die globale Variable Target. Wenn die
Handler der Menus aufgerufen werden kann dies nur eines der beiden genannten
Objekte sein, da wir vorne sichergestellt haben das die Menils nur aktiv sind,
wenn eines dieser Objekte das Target ist.

Die Handler an sich sind relativ einfach. Wir verwenden die fur alle GenericClass
Objekte definierten Clipboard-Methoden ClpCopy und ClpPaste. Ausschneiden
entspricht einem Kopieren in das Clipboard mit anschlieBendem Ldschen. Fir das
Léschen verwenden wir die Textobjekt Methode DeleteSelection. AuBerdem
mussen wir noch das Edit-MenU updaten, wenn wir etwas geldéscht haben. Dazu
greifen wir wieder auf die globale Variable Target zuriick

BUTTONACTION DoCut
Target.ClpCopy
Target.DeleteSelection
UpdateEditMenu (Target)

END ACTION

BUTTONACTION DoCopy
Target.ClpCopy
END ACTION

BUTTONACTION DoPaste
Target.ClpPaste
END ACTION

BUTTONACTION DoDelete
Target.DeleteSelection
UpdateEditMenu (Target)

END ACTION

Edit-Menl & Co - 138

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Die anderen Menii-Handler

Die Menus - und damit die RadioButtonGroups - sind nur aktiv, wenn eines der
Objekte Text1 oder Text2 das Target ist. Da die Identifier der RadioButton-Objekte
ihre Funktion (eine FontlID oder eine SchriftgroBe) widerspiegeln werden die
Actionhandler der RadioButtonGroups sehr einfach.

LISTACTION ChangeFont
Target.fontID = selection
END ACTION ' ChangeFont

LISTACTION ChangeSize
Target.fontsize = selection
END ACTION ' ChangeSize

AbschlieBende Uberlegungen

Besondere Aufmerksamkeit verdient die Frage, ob die Menls am Programmstart
wirklich immer die korrekte Situation widerspiegeln. In unserem Fall missen die
Menus die Eigenschaften des Objekts Text1 widerspiegeln, weil dieses Objekt den
Hint defaultFocus gesetzt hat. Hier ist manchmal etwas Handarbeit (setzen der
richtigen Startwerte) angesagt.

Der eleganteste und sicherste Weg um eventuell verbleibende Probleme zu
umgehen ist, einen OnStartup Handler fir das Applicationobjekt zu schreiben.
Dort kbnnen Sie die Ul-Objekte lhren Vorstellungen nach anpassen.

Application DemoApplication
Children = DemoPrimary
OnStartup = StartupCode

< o000 =

END Object

SYSTEMACTION StartupCode
UpdateEditMenu (Textl)
< o000 =

END ACTION ' StartupCode

Far den Anfanger ist es oft sehr schwer, die Zusammenhange zu Uberblicken. In
unserem Fall stellt sich die Situation fur einen erfahrenen Programmierer so dar:
Fir den Zustand der Menls sind genau zwei Routinen zusténdig: der
Actionhandler MonitorClipboard und die SUB UpdateEditMenu. MonitorClipboard
wird am Programmstart automatisch gerufen. Da das Objekt Text1 den Hint
defaultFocus gesetzt hat wird es am Programmstart auch gleichzeitig zum Target.
Damit wird der Handler HandleTarget mit dem Parameter hasTarget = TRUE am
Programmstart gerufen, was den Aufruf von UpdateEditMenu zur Folge hat. Damit
sind die MenUls auf dem aktuellen Stand. Wie gesagt, der Einsteiger tGberblickt so
etwas nicht.

Edit-Menl & Co - 139

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Deswegen die folgenden Tipps:

* Prufen Sie den Zustand der Menutpunkte am Programmstart bewusst nach.

+ Versuchen Sie, falls moglich, absichtlich verschiedene Zustande herzustellen
um die Schwachstellen zu finden. Starten Sie das Programm zum Beispiel
bewusst einmal mit und einmal ohne, dass sich Text im Clipboard befindet.

+ Disablen Sie die Menus per Default (enabled = FALSE), wenn Sie nicht sicher
wissen, dass sie aktiv sein durfen. Félschlicher Weise disablete Menus fallen
bei einer Sichtprifung eher auf als falschlicher Weise enablete Menis.

Edit-Ment & Co - 140

