

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Spezielle ThemenSpezielle Themen

Volume 2
Dateien, Laufwerke, Ports,
Focus, Target, Edit-Menü

Version 1.0

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

8 Verwaltung von Dateien ... 76
8.1 Kopieren, Verschieben und Löschen .. 76
8.2 Flagzeichen für FileCopy, FileMove und FileDelete 78
8.3 Arbeit mit Dateinamen ... 82
8.4 Suchen nach Dateien .. 84

9 Arbeit mit Dateien ... 88
9.1 Überblick zur Dateiarbeit ... 88
9.2 Dateiattribute ... 90
9.3 Anlegen, Öffnen und Schließen von Dateien 98
9.4 Lesen und Schreiben von Binärdateien ... 105
9.5 Lesen und Schreiben von Textdateien .. 110
9.6 Sonstige Funktionen .. 113

10 Arbeit mit Laufwerken und Datenträgern ... 116

11 Portzugriffe ...122

12 Focus und Target ...124
12.1 Überblick ...124
12.2 Arbeit mit dem Focus ..126
12.3 Arbeit mit dem Target ... 128

13 Implementieren von Menüs: Bearbeiten, Textgröße und andere132

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 76

8 Verwaltung von Dateien

8.1 Kopieren, Verschieben und Löschen

Die R-BASIC Befehle zum Kopieren, Verschieben und Löschen von Dateien sind
in ihrer Grundsyntax sehr einfach anzuwenden und tun ihren Job "so gut wie
möglich" indem sie z.B. auch versteckte, System- oder schreibgeschützte Dateien
löschen bzw. überschreiben. Durch die Möglichkeit Flagzeichen anzugeben kann
der ambitionierte Programmierer ihr Verhalten aber sehr gut steuern und sich
dadurch viel Programmierarbeit sparen. Am Ende des Abschnitts finden Sie eine
Beschreibung des Konzepts, das hinter den Flags steht und eine Auflistung aller
Flagzeichen und ihrer Bedeutung. Mögliche Fehlercodes für die Variable fileError
finden Sie im Anhang.

FileCopy

FileCopy kopiert eine Datei. Das kann eine DOS oder eine GEOS-Datei sein.

Syntax: FileCopy quelle$, ziel$ [, flags$]

quelle$: Bezeichnet die zu kopierende Datei. Pfadangaben sind zulässig
ziel$: Bezeichnet Ort und Namen, wohin die Datei kopiert werden soll.

Pfadangaben sind zulässig. Es muss der Name der neuen Datei
enthalten sein. Er darf vom Namen des Originals abweichen
(automatisches Umbenennen beim Kopieren).

flags$: Optional: Zeichenkette. Bestimmt das Verhalten für den Fall, das die
durch ziel$ spezifizierte Datei schon existiert.
Standard (ohne flags$): vorhandene Dateien (ziel$) immer
überschreiben, auch schreibgeschützte und Systemdateien
(entspricht dem Flagzeichen "a").
Ein oft sinnvoller Wert ist "am": Wie Standard, aber bei Problemen
eine passende Meldungsbox ("m") anzeigen.
Im Abschnitt 8.3 finden Sie eine Auflistung aller Flagzeichen und ihrer
Bedeutung sowie Beispiele für ihre Anwendung.

FileCopy kann keine Links kopieren. Die Variable fileError wird belegt (d.h.
gesetzt oder gelöscht).

Beispiele:
Beispiele unter Verwendung des Flagstrings finden Sie im Abschnitt 8.2.
FileCopy "Termine von heute", "Backup der Termine von heute"

! Kopie in ein entferntes Verzeichnis
datei$ = "Meine Daten"
FileCopy datei$, "F:\\Backup\\Januar\\" + datei$, "am"

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 77

FileMove

FileMove verschiebt eine Datei, indem zuerst FileCopy ausgeführt wird und
anschließend die Originaldatei gelöscht wird.

Syntax: FileMove quelle$, ziel$ [, flags$]

quelle$, ziel$, flags$: Siehe FileCopy.

FileMove kann keine Links verschieben. Die Variable fileError wird belegt (d.h.
gesetzt oder gelöscht).

Beispiele:
FileMove "Termine von heute", "Alte Version\\Termine von heute"

! Verschieben aus einem entfernten Verzeichnis
datei$ = "Brief an Willi"
FileMove "F:\\Briefe\\Umzug\\" + datei$, datei$, "am"

Beispiele unter Verwendung des Flagstrings finden Sie im Abschnitt 8.2.

FileDelete

FileDelete löscht eine Datei. Das kann eine DOS oder eine GEOS-Datei oder ein
Link sein. Um einen Ordner zu löschen, verwenden Sie bitte FileDeleteDir.

Syntax: FileDelete datei$ [, flags$]

datei$ Bezeichnet die zu löschende Datei. Pfadangaben sind zulässig.
flags$ Optional: Einstellung der Reaktion auf Fehler oder bestimmte

Situationen.
Standard (ohne flags$): Dateien immer löschen, auch
schreibgeschützte und Systemdateien (entspricht "a").
Es sind die gleichen Flagzeichen wie bei FileCopy und FileMove
zulässig. Ein oft sinnvoller Wert ist "am": Wie Standard, aber bei
Problemen eine passende Meldungsbox ("m") anzeigen.

Die Variable fileError wird belegt (d.h. gesetzt oder gelöscht). Es ist ein Fehler,
wenn die Datei nicht existiert.

Beispiele:
Beispiele unter Verwendung des Flagstrings finden Sie im Abschnitt 8.2.
FileDelete "Meine Daten"
FileDelete "C:\\TEMP\\Logfile.log" , "am"

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 78

8.2 Flagzeichen für FileCopy, FileMove und FileDelete

Die Flagzeichen modifizieren das Verhalten von FileCopy, FileMove und
FileDelete. Für FileDelete kann man so z.B. angeben ob bestimmte Dateien
automatisch gelöscht werden oder ob nachgefragt werden soll. Bei FileCopy oder
FileMove kann es passieren, dass das Kopierziel bereits existiert. Hier bestimmen
die Flags z.B. ob diese schon vorhandene Datei automatisch gelöscht werden soll
oder ob nachgefragt werden soll.

Geben Sie kein Flagzeichen an, so wird der Standard "a" genommen.

FileCopy, FileMove und FileDelete sind standardmäßig (d.h. ohne Angabe
spezieller Flagzeichen) so eingestellt, dass sie ihren Dienst "bestmöglich"
verrichten. FileDelete versucht alle Dateien, auch schreibgeschützte und
Systemdateien, zu löschen und FileMove bzw. FileCopy versuchen, wenn das
Kopierziel schon existiert, es zu überschreiben. Für viele Anwendungsfälle ist es
daher nicht nötig, sich mit der komplexen Materie der Flagzeichen
auseinanderzusetzen.

Konzeption:

Mit Hilfe der Flagzeichen können Sie angeben:

• Welche Dateitypen automatisch überschrieben bzw. gelöscht werden sollen
(Flagzeichen "a", "f" und "L"). R-BASIC orientiert sich dabei am Dateityp (siehe
Kapitel 6.1). Für schreibgeschützte und Systemdateien gibt es extra
Flagzeichen ("r" und "h"). "f" ist eine Abkürzung für "evgd".

• Ob nachgefragt werden soll, wenn eine Datei nicht automatisch überschrieben
bzw. gelöscht werden soll ("q" oder "u"), oder ob dies als Fehler gewertet
werden soll.

• Ob R-BASIC im Fehlerfall (z.B. Datei nicht gefunden oder Zugriff verweigert)
eine Meldung an den Nutzer ausgeben soll ("m") oder ob Sie das selbst
programmieren wollen (kein "m" angegeben). Der Standard ist, das R-BASIC
keine Meldungsbox erzeugt. Es ist oft sinnvoll, "m" anzugeben. Die Variable
fileError wird in jedem (Fehler-) Fall gesetzt.

• Ob in bestimmten Situationen immer ein Fehler erzeugt werden soll, d.h. die
fileError-Variable gesetzt werden soll. (Flagzeichen "o", "i", "t")

Sie können den Flagzeichenstring durch Leerzeichen oder Bindestriche über-
sichtlicher gestalten. Er darf aber nicht länger als 64 Zeichen werden, sonst wird
ein Laufzeitfehler erzeugt und das Programm beendet. Die Groß- bzw. Klein-
schreibung wird ignoriert.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 79

Allgemeine Flags, die mit allen anderen kombiniert werden können
m Message: Dialogbox anzeigen, wenn ein Fehler auftrat. Unabhängig davon

wird die Variable fileError gesetzt.
o Read-Only-Fehler: Erzwingt, dass beim Versuch, eine schreibgeschützte

Datei zu überschreiben oder zu löschen immer eine Fehlermeldung erzeugt
wird.

i Hidden-Fehler: Erzwingt, dass beim Versuch, eine versteckte oder
Systemdatei (Attribute FA_HIDDEN oder FA_SYSTEM) zu überschreiben
oder zu löschen immer eine Fehlermeldung erzeugt wird.

t Type-Fehler (nur FileMove und FileCopy): Erzwingt, dass beim Versuch, eine
DOS- durch eine GEOS-Datei (oder umgekehrt) zu überschreiben, immer
eine Fehlermeldung erzeugt wird.

Das Flags "o" "i" "t" haben Vorrang vor allen anderen Flags. Die Variable fileError
wird gesetzt und falls das Flag "m" angegeben wurde wird eine entsprechende
Dialogbox angezeigt.

Flags für Dateien, die gelöscht bzw. überschrieben werden können
f Files (=Dateien) Normale Dateien sollen ohne Nachfragen überschrieben

bzw. gelöscht werden.
Das schließt nicht ein: Links, schreibgeschützte, versteckte und
Systemdateien.

 Das Flag "f" ist eine Abkürzung für "e v g d". Statt "f" anzugeben kann man
einzelne Dateitypen angeben:
e Executable: Applikationen bzw. Libraries
v VM-Dateien
g Geos-Daten-Dateien
d DOS-Dateien

L Links sollen ohne Nachfragen überschrieben bzw. gelöscht werden.
r Read-only: Schreibgeschützte Dateien sollen ohne Nachfragen

überschrieben bzw. gelöscht werden.
h Hidden: Versteckte Dateien (Attribute FA_HIDDEN oder FA_SYSTEM)

sollen ohne Nachfragen überschrieben bzw. gelöscht werden.
a Alle Dateien: "a" ist eine Abkürzung für "f L r h"

Behandlung von Dateien, die überschrieben oder gelöscht werden solle, aber
nicht durch die Dateiflags oben erfasst sind
q oder u Question: R-BASIC fragt nach, ob die Datei gelöscht / überschreiben

werden soll. Der Unterschied ist:
q Antwortet der Nutzer mit "Nein" so wird Variable fileError auf –1 (Abbruch

durch Nutzer) gesetzt.
u Antwortet der Nutzer mit "Nein" so wird Variable fileError gelöscht (Wert Null,

OK).
Wird weder "q" noch "u" angegeben, so wird die Datei nicht gelöscht /
überschrieben und die Variable fileError wird auf +5 (Zugriff verweigert) gesetzt.
Das ermöglicht Ihnen, ein flexibles Fehlerhandling zu implementieren.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 80

Beispiele für sinnvolle Flagzeichenstrings:

"a " Dies ist der Standard für FileCopy, FileMove und FileDelete.
Alle Dateien und Links löschen / überschreiben, aber bei Fehler keine
Meldung machen (nur fileError setzen). Ihr Programm übernimmt die
Fehlerbehandlung selbst.

"a m" Alle gefunden Dateien und Links werden überschrieben bzw. gelöscht
(auch schreibgeschützte und Systemdateien).
Meldung machen bei Fehler ("m"), z.B. Datei nicht gefunden.

"" (leerer String) Niemals Dateien löschen/überschreiben (sinnvoll für
FileCopy und FileMove). fileError wird auf +5 (Zugriff verweigert)
gesetzt, falls das Ziel schon existiert. Ihr Programm übernimmt die
Fehlerbehandlung selbst.

"f Lq m" Alle Dateien ("f") und Links ("L") löschen / überschreiben, aber
Nachfragen (Question "q") bei schreibgeschützten und
Systemdateien (diese sind von "f" nicht abgedeckt).
Meldung machen bei Fehler ("m").

"f Lrq m" Wie "f Lq m" (siehe letztes Beispiel), aber schreibgeschützte Dateien
("r") automatisch überschreiben und nur bei Systemdateien
nachfragen.

"f Lq m i" Alle Dateien ("f") und Links ("L") löschen / überschreiben, Nachfragen
(Question "q") bei schreibgeschützten Dateien, aber bei
Systemdateien ("i") immer eine Fehler erzeugen (fileError setzen,
aber nicht nachfragen)
Meldung machen bei Problemen ("m").

"a o i t m" Alle Dateien und Links löschen / überschreiben, außer bei
schreibgeschützten ("o"), versteckten bzw. Systemdateien ("i") und
bei Typ-Fehlern ("t"): diese nicht löschen/überschreiben, Meldung
machen ("m") und die fileError-Variable setzen.

Codebeispiele unter Verwendung der Flagzeichen

Wenn es zu einem Problem kommt (z.B. Datei nicht gefunden) wird immer die
Variable fileError gesetzt. Mit dem Flagzeichen "m" erzeugt R-BASIC zusätzlich
eine Dialogbox, die den Fehler beschreibt.

Vorhandene Datei immer löschen, und bei Fehler eine Dialogbox ausgeben.

FileCopy "Meine Daten" , "A:\\Meine Daten" ,"am"
FileDelete "A:\\Meine Daten" ,"am"

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 81

Der Standard ist, bei Problemen keine Meldungsbox auszugeben. Das entspricht
dem Flagzeichenstring "a". Das Programm sollte dann eventuelle Fehler selbst
behandeln.

FileDelete "A:\\Meine Daten" ’ Entspricht "a"
IF fileError THEN

Immer nachfragen wenn, wenn das Ziel schon existiert. Mit "m": R-BASIC meldet,
wenn sich das Ziel nicht überschrieben lässt (ohne "m" wird nur fileError gesetzt)
Antwortet der Nutzer auf Nachfrage mit "Nein", wird fileError auf –1 (Abbruch
durch Nutzer) gesetzt.

FileMove quelle$, ziel$, "q"
FileMove quelle$, ziel$, "qm"

Wie letztes Beispiel, aber bei "Nein" wird fileError auf Null gesetzt.

FileMove quelle$, ziel$, "u"
FileMove quelle$, ziel$, "um"

Normale Dateien überschrieben ("f"), bei schreibgeschützten und Systemdateien
nachfragen. Mit "m": R-BASIC erzeugt eine Fehlerbox, wenn es ein Problem gab.
Ohne "m": Ihr Programm ist verantwortlich indem es die Variable fileError abfragt.

FileCopy quelle$, ziel$, "fqm"

FileCopy quelle$, ziel$, "fq"
IF fileError THEN
MsgBox "Fehler beim Kopieren von "+datei$ + " :\r" +

ErrorText$(fileError)
END IF

Normale Dateien überschreiben bzw. löschen ("f"), bei schreibgeschützten
nachfragen ("q") und bei Systemdateien immer fileError setzen ("i"). Die
Leerzeichen zwischen den Flagzeichen sind zulässig und verbessern die
Übersicht.

FileCopy quelle$, ziel$, "f q i m"
FileDelete ziel$, "f q i m"

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 82

8.3 Arbeit mit Dateinamen

GEOS-Dateien und Ordner haben neben ihrem langen, unter GEOS sichtbaren
Namen noch einen DOS-Namen. Normalerweise wird der DOS-Name vom
System automatisch vergeben. R-BASIC hat Zugriff sowohl auf den GEOS- als
auch auf den DOS-Namen von Dateien und verfügt über die einzigartige Fähigkeit,
den DOS-Namen bewusst zu manipulieren.

FileRename

Ändert den Namen einer DOS- oder GEOS-Datei oder eines Ordners. Der DOS-
Name einer GEOS-Datei wird dabei vom System ebenfalls geändert.

Syntax: FileRename oldName$, newName$ [, flags$]

oldName$: Alter Dateiname. oldName$ darf einen kompletten Pfad enthalten.
Bei GEOS-Dateien bzw. Ordnern ist die Groß- Kleinschreibung zu
beachten.

newName$: Neuer Dateiname. newName$ darf keinen Pfad enthalten. Für
DOS-Dateien muss newName$ der Konvention 8.3 entsprechen.

flags$: (optional): Zeichenkette, bestehend aus dem Buchstaben "m" (für
Message), die festlegt, ob im Fehlerfall (z.B. Datei nicht gefunden,
neuer Name ungültig) eine Meldungsbox angezeigt wird.

Wird flags$ nicht angegeben, gibt es keine Meldungsbox.

Auch schreibgeschützte, System- oder versteckte Dateien sowie GEOS-Links
können umbenannt werden. Die Systemvariable fileError wird gesetzt oder
gelöscht.

Beispiele:
’ Einfaches umbenennen
FileRename "E:\\Dateien\\info.txt", "info.bak"

’ Umbenennen mit automatischer Fehlermeldung durch R-BASIC
FileRename "E:\\Dateien\\info.txt", "info.bak", "m"

’ Umbenennen mit eigener Fehlermeldung
FileRename "E:\\Dateien\\info.txt", "info.bak"
IF fileError THEN MsgBox("Die Datei konnte nicht umbenannt

werden\rFehler: " +
ErrorText$(fileError))

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 83

FileGetDosName$

Liefert den DOS-Namen einer Datei oder eines Ordners.

Syntax: FileGetDosName$ (geosName$)

geosName$: Der GEOS-Name der Datei.
geosName$ darf auch eine DOS-Datei bezeichnen.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiel:
DIM name$
name$ = "Write unbenannt"
Print name$, FileGetDosName$ (name$)

FileSetDosName

Ändert den DOS-Namen einer GEOS-Datei oder eines Ordners. Der lange GEOS-
Name wird nicht geändert.

Syntax: FileSetDosName oldName$, newName$ [, flags$]

oldName$, newName$, flags$: siehe FileRename

Die Systemvariable fileError wird gesetzt oder gelöscht. Auch schreibgeschützte,
System- oder versteckte Dateien können umbenannt werden.

Beispiele:
’ Einfaches umbenennen
FileSetDosName "E:\\Dateien\\Draw Beispiel", "DRAW.777"

’ Umbenennen mit automatischer Fehlermeldung durch R-BASIC
FileSetDosName "E:\\Dateien\\Draw Beispiel", "DRAW.777", "m"

’ Umbenennen mit eigener Fehlermeldung
FileSetDosName "E:\\Dateien\\Draw Beispiel", "DRAW.777"
IF fileError THEN MsgBox("Der DOS-Name der Datei konnte nicht

geändert werden\rFehler: " +
ErrorText$(fileError))

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 84

8.4 Suchen nach Dateien

R-BASIC unterstützt die Suche nach Dateien und Ordnern mit den Befehlen
FileFindFirst$, FileFindNext$ und FileFindDone. FileFindFirst$ durchsucht den
Ordner und initialisiert ein Handle, das von FileFindNext$ und FileFindDone
verwendet wird. FileFindFirst$ liefert den ersten Datei- bzw. Ordnernamen. Die
nächsten Datei- bzw. Ordnernamen werden von FileFindNext$ geliefert.
FileFindDone gibt nach getaner Arbeit das Handle wieder frei.
FileFindFirst$, FileFindNext$ und FileFindDone beeinflussen fileError nicht.

FileFindFirst$

Sucht den ersten Datei- bzw. Ordnernamen. Initialisiert ein Handle, dass von
FileFindNext$ und FileFindDone verwendet wird.

Syntax: <name$> = FileFindFirst$ (<han> [, mask$ [, flags$ [, <token>]]])

<han>: Variable vom Typ Handle. Ausdrücke (z.B. Funktionsaufrufe) sind nicht
zulässig.

mask$: (optional) Dateimaske, die auf die zu findende Datei passen muss.
Default: "*" (= alle Dateien und Ordner finden)
Es gelten die GEOS-Namens-Konventionen:

* (Sternchen): beliebige Anzahl (oder Null) Zeichen oder Ziffern
? Genau ein Zeichen oder eine Ziffer
: und \ sind nicht zulässig

Groß- bzw. Kleinschreibung und Leerzeichen werden berücksichtigt.
Für DOS-Dateien sind Großbuschstaben anzugeben.
Die Maske darf keinen Pfadanteil enthalten!
Beispiele: "*a*" findet alle Dateien, deren Name ein ’a’ enthält

"X*" findet alle Dateien, deren Name mit ’X’ beginnt
"X*e" Der Name muss mit ’X’ beginnen und auf "e" enden.

flags$: (optional) Zeichenkette, die bestimmt, welche Dateitypen gefunden
werden sollen. Zulässig sind:

 e Executable: Applikationen bzw. Libraries
 g oder v Geos-Daten-Dateien bzw. VM-Dateien
 Eine Unterscheidung zwischen beiden ist nicht möglich
 d DOS-Dateien
 f oder o Folders (Ordner)

 a Alle Dateien und Ordner. Abkürzung für "e g d f"
 L Links

Wird flags$ nicht angegeben wird "a L" angenommen (alles finden).
<token>: (optional) GeodeToken der zu findenden Datei. Wird "token" nicht

angegeben, gibt es keine Einschränkung. Um "token" angeben zu
können, muss man "flags$" angeben und "flags$" muss GEOS-
Dateien einschließen (e, g bzw. a).
Hinweis: Ordner werden immer gefunden (wenn das Flag "f" ange-
geben ist), auch wenn sie nicht das entsprechende Token haben.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 85

Die Systemvariable fileError wird nicht beeinflusst. Ist im aktuellen Ordner keine
Datei oder Unter-Ordner enthalten, auf welche die Suchkriterien passen, wird ein
Leerstring (Länge Null) zurückgegeben. Auch in diesem Fall muss FileFindDone
gerufen werden!

FileFindNext$

Sucht den nächsten Datei- bzw. Ordnernamen. Ist keine weitere Datei oder
Ordner verfügbar, wird ein Leerstring (Länge Null) zurückgegeben.

Syntax: <name$> = FileFindNext$ (<han>)
<han>: Variable (oder Ausdruck) vom Typ Handle. han muss von
 FileFindFirst$ initialisiert worden sein.

Die Systemvariable fileError wird nicht beeinflusst.

FileFindDone

Gibt das von FileFindFirst$ initialisierte Handle frei, indem die dahinterliegenden
Datenstrukturen und Speicherbereiche freigeben werden. Dieser Schritt ist sehr
wichtig, da Speicher im GEOS-System knapp ist.

Syntax: FileFindDone <han>
<han>: Variable (oder Ausdruck) vom Typ Handle. han muss von

FileFindFirst$ initialisiert worden sein.

Die Systemvariable fileError wird nicht beeinflusst.

Beispiel 1: Dateien und Ordner auflisten:
DIM han AS HANDLE
DIM name$

name$ = FileFindFirst$ (han) ! Handle initialisieren
WHILE (name$ <> "") ! Vergleich auf Leerstring
Print name$, ! Komma am Ende

! --> tabuliert
IF FileType(name$) = GFT_DIRECTORY THEN

 Print "<DIR>"
ELSE
 Print FileSize(name$); " Bytes"
END IF

name$ = FileFindNext$ (han) ! Handle benutzen
WEND

FileFindDone (han) ! Handle freigeben.
! Die Klammern sind optional.

! Die von han referenzierten Datenstrukturen werden
! freigegeben.
! Die in han gespeicherten Werte sind jetzt ungültig.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 86

Beispiel 2: Alle Write-Dateien im Geos Top-Folder auflisten:
DIM han AS HANDLE
DIM name$
DIM token AS GeodeToken

token.manufid = 0
token.tokenChars = "WDAT"

CLS
SetStandardPath SP_TOP

name$ = FileFindFirst$ (han, "*", "aL", token) !
WHILE (name$ <> "")
if FileType(name$) <> GFT_DIRECTORY THEN Print name$
name$ = FileFindNext$ (han) ! Handle benutzen

WEND

FileFindDone (han) ! free handle

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Verwaltung von Dateien - 87

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 88

9 Arbeit mit Dateien

9.1 Überblick zur Dateiarbeit

Für R-BASIC ist jede Datei zunächst eine einfache Abfolge von Bytes. Um auf die
Daten in einer Datei zugreifen zu können, müssen Sie sie zuerst "öffnen" und
nach Gebrauch wieder "schließen". Während die Datei geöffnet ist, erfolgt der
Zugriff auf eine Datei über eine Variablen vom Typ FILE, die von FileOpen bzw.
FileCreate geliefert wird. GEOS verwaltet außerdem einen "Dateizeiger", der die
Position bestimmt, an der Daten gelesen oder geschrieben werden.

R-BASIC verfügt dabei über einige Möglichkeiten, die den meisten Programmier-
sprachen fehlen, wie z.B. das direkte Einfügen von Daten, ohne die darauf
folgenden Daten zu überschreiben.

Hier finden Sie eine Übersicht über die Befehle zum Lesen aus und Schreiben von
Daten in Dateien, die in diesem Kapitel behandelt werden.

Dateiattribute (Abschnitt 9.2)

DOS-Attribute
FileGetAttrs, FileSetAttrs

Lesen und setzen die "Standard-Attribute" wie Archiv,
schreibgeschützt usw.

FileGetTime, FileSetTime
Lesen und setzen das Datum der letzten Änderung.

FileSize liefert die aktuelle Dateigröße.

GEOS-Attribute
Zusätzlich zu den DOS-Attributen haben GEOS-Dateien weitere Attribute.
R-BASIC unterstützt die folgenden Attribute:

Token Dieses Attribut bestimmt das "Icon", dass im GeoManager für
diese Datei angezeigt wird.
Befehle: FileSetToken, FileGetToken

Creator Erzeuger. Dieses Attribut enthält das Token des Programms, das
die Datei angelegt hat.
Befehle: FileSetCreator, FileGetCreator
Token und Creator werden jeweils in einer GeodeToken Struktur
gespeichert.

CreationTime Datum und Zeit, zu der die Datei angelegt wurde.
Befehle: FileSetCreationTime, FileGetCreationTime

Usernotes Die Benutzer-Notizen. Ein String mit bis zu 99 Zeichen.
Befehle: FileSetUsernotes, FileGetUsernotes

Release Dieses Attribut entspricht der Versionsnummer der Datei. R-
BASIC und auch der Uni-Installer entscheiden darüber, ob eine
Datei neuer ist als eine andere gleichen Namens.
Befehle: FileSetRelease, FileGetRelease

Protocol Dieses Attribut beschreibt intern die "Fähigkeiten" einer Datei.
Befehle: FileSetProtocol, FileGetProtocol

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 89

Anlegen, Öffnen und Schließen von Dateien (Abschnitt 9.3)

FileOpen Öffnet eine vorhandene Datei
FileCreate Legt eine neue Datei an oder öffnet eine vorhandene Datei
FileClose Schließt eine Datei

Lesen und Schreiben von Daten - Binärdateien (Abschnitt 9.4)

FileRead, FileWrite und FileInsert sind Universalroutinen. Sie arbeiten mit allen
Dateien und allen Typen von Variablen, einschließlich Strings und Strukturen
zusammen. Für die Arbeit mit Textdateien (lesen und schreiben von Textzeilen)
gibt es zusätzlich dazu spezialisierte Routinen (Abschnitt 9.5).

FileRead Liest eine bestimmte Anzahl von Bytes aus einer Datei.
FileWrite Schreibt eine bestimmte Anzahl von Bytes in eine Datei, indem

vorhandene Daten überschrieben werden. Bei Bedarf werden die
Daten angehängt, d.h. die Datei wird verlängert.

FileInsert Fügt eine bestimmte Anzahl von Bytes in eine Datei ein, ohne das
vorhandene Daten überschrieben werden. Die Datei wird dadurch
automatisch verlängert. Dieser Befehl ist eine Besonderheit von
R-BASIC, die meisten Programmiersprachen kennen ihn nicht.

Lesen und Schreiben von Daten - Textdateien (Abschnitt 9.5)

Diese Routinen sind auf Textzeilen, die durch ein Zeilenendezeichen
abgeschlossen sind, spezialisiert. Das trifft für normale Textdateien zu.
Zeilenendezeichen sind die ASCII-Codes 13 (Wagenrücklauf, Carriage return, CR)
bzw. 10 (Zeilenvorschub, LineFeed, LF) oder eine Kombination davon,
üblicherweise die Folge 13, 10 (CRLF).

FileReadLine$ Liest eine Textzeile aus einer Datei.
FileWriteLine Schreibt eine Textzeile, indem vorhandene Daten überschrieben

werden. Bei Bedarf wird die Textzeile angehängt, d.h. die Datei
wird verlängert.

FileInsertLine Schiebt eine Textzeile in die Datei ein. Die Datei wird dadurch
verlängert.

FileReplaceLine Ersetzt eine Textzeile in einer Datei durch eine andere.

Sonstige Funktionen (Abschnitt 9.6)

FileGetPos Liest den aktuellen Dateizeiger.
FileSetPos Setzt den Dateizeiger.
FileResize Ändert die Größe einer Datei, indem Daten eingefügt oder

gelöscht werden.
FileTruncate Schneidet die Datei ab.
FileCommit Stellt sicher, dass eventuell vom System gepufferte Daten sofort,

d.h. schon vor einem FileClose auf die Platte geschrieben
werden.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 90

9.2 Dateiattribute

Neben dem Namen besitzt jede Datei eine eine Reihe von zusätzlichen
Eigenschaften, die sogenannten "Attribute". Es gibt zwei Gruppen von Attributen,
die "Standard-Attribute", einschließlich Dateigröße und dem Datum der letzten
Änderung, die bereits aus alten DOS-Tagen stammen, und die "GEOS-Attribute",
die nur für GEOS-Dateien vorhanden sind.

Die meisten der in diesem Kapitel besprochenen Funktionen können sowohl mit
offenen Dateien (referenziert über eine FILE-Variable) als auch mit geschlossenen
Dateien (referenziert über ihren Namen) umgehen.

Die Standard-Attribute

Die Standardattribute existieren für JEDE Datei und sind als einzelne Bits in einem
Byte definiert. Sie können mit FileGetAttrs gelesen und mit FileSetAttrs gesetzt
werden. Es sind die folgenden Attribute definiert, die Zahlen in der ersten Spalte
sind die Bit-Nummer und der dazugehörige Wert.

Bit (Wert) BASIC-Konstante Bedeutung
Bit 0 (1) FA_READ_ONLY Read-Only. Die Datei ist schreibgeschützt.
Bit 1 (2) FA_HIDDEN Hidden. Die Datei ist versteckt.
Bit 2 (4) FA_SYSTEM System. Es ist eine wichtige Systemdatei.
Bit 3 (8) FA_VOLUME Volume. Es ist keine Datei, sondern der

Eintrag für die Datenträgerbezeichnung.
Bit 4 (16) FA_SUBDIR Subdir. Es ist keine Datei, sondern ein

Verzeichnis (= Ordner).
Bit 5 (32) FA_ARCHIVE Archive. Die Datei wurde geändert. Dieses

Bit wird bei jedem Schreibzugriff auf die
Datei wieder gesetzt, so das Backup-
Programm daran erkennen können, ob die
Datei gesichert werden muss. Sie setzten
dieses Bit nach dem Sicherungsprozess
zurück.

Geos verwendet weiterhin:
Bit 6 (64) FA_LINK Link. Dies ist kein Standardattribut. Ist

dieses Bit gesetzt, handelt es sich nicht
um eine echte Datei, sondern einen
GEOS-internen Link auf eine Datei.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 91

FileGetAttrs

Liefert die DOS-Standardattribute einer Datei. Die Attribute sind einzelne Bits und
können mit AND bzw. OR - Verknüpfungen abgefragt werden.

Syntax: <numVar> = FileGetAttrs (fileName$)
oder: <numVar> = FileGetAttrs (<fh>)

fileName$: Name der Datei. Pfadangaben im Namen sind zulässig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiel:
DIM attrs AS word
attrs = FileGetAttrs ("info.txt")
IF attrs AND FA_READ_ONLY THEN Print "schreibgeschützt"

FileSetAttrs

Setzt die DOS-Standardattribute einer Datei. Die Attribute sind einzelne Bits und
können mit AND bzw. OR verknüpft werden.

Syntax: FileSetAttrs fileName$, attrs

fileName$: Name der Datei. Pfadangaben im Namen sind zulässig.
attrs: Neue Attribute

Die Systemvariable fileError wird gesetzt oder gelöscht. FileSetAttrs kann nicht
mit einer offenen Datei verwendet werden.

Beispiele:
! Setzen von FA_SYSTEM, löschen aller anderen Attribute
FileSetAttrs "liste.txt" , FA_SYSTEM

! Setzen von FA_SYSTEM unter Beibehaltung der anderen Attribute
DIM attrs
attrs = FileGetAttrs ("liste.txt")
FileSetAttrs "liste.txt" , attrs OR FA_SYSTEM

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 92

FileGetTime

Liefert das Datum und die Uhrzeit der letzten Änderung einer Datei. Das
Betriebssystem setzt diesen Wert jedes Mal, wenn der Dateiinhalt geändert wird.

Syntax: <time> = FileGetTime (fileName$)
oder: <time> = FileGetTime (<fh>)

fileName$: Name der Datei. Pfadangaben im Namen sind zulässig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
<time>: Eine Variable vom Typ DateAndTime

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiel:
DIM time AS DateAndTime
time = FileGetTime "info.txt"
Print "Geändert am: "; FormatDate$(time);
Print "um: "; FormatTime$(time)

FileSetTime

Verändert das Datum und die Uhrzeit der letzen Änderung einer Datei.
Achtung! Sie überschreiben hiermit den Wert, den das Betriebssystem
automatisch vergibt. Wird die Datei anschließend nochmals geändert, überschreibt
das Betriebssystem den Wert erneut.

Syntax: FileSetTime fileName$, <time>
oder: FileSetTime <fh> , <time>

fileName$: Name der Datei. Pfadangaben im Namen sind zulässig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
<time>: Eine Variable vom Typ DateAndTime

Fehlerbedingung: Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiel:
DIM time AS DateAndTime
time = FileGetTime ("info.txt")
time.year = 2001
FileSetTime "info.txt", time

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 93

FileSize

Liefert die aktuelle Größe der Datei in Bytes. Der zurückgegebene Wert liegt im
Bereich von 0 bis 4294967295, da Dateien maximal 4 GByte groß werden können.

Syntax: <numVar> = FileSize (fileName$)
oder: <numVar> = FileSize (<fh>)

fileName$: Name der Datei. Pfadangaben im Namen sind zulässig.
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder gelöscht.

GEOS-Attribute

Zusätzlich zu den Standardattributen haben GEOS-Dateien weitere Attribute. R-
BASIC unterstützt die wichtigen Attribute: Token (Anzeige-Icon), Creator (Icon
des zugehörigen Programms), CreationTime (Datum der Dateierstellung),
UserNotes (Benutzernotizen), Release (Versionsnummer) und Protocol. Diese
werden im Dateikopf, den ersten 256 Byte der Datei gespeichert. Bei
Verzeichnissen befinden sich diese Attribute in der @dirname.000 - Datei.

CreationTime wird ein einer DateAndTime Struktur gespeichert.

STRUCT DateAndTime
year AS WORD ’ Jahr (z.B. 2014)
month AS WORD ’ Monat (1...12)
day AS WORD ’ Tag (1 ... 31)
hour AS WORD ’ Stunde (0 ... 23)
minute AS WORD ’ Minute (0 ... 59)
second AS WORD ’ Sekunde (0 ... 59)

END STRUCT

UserNotes ist ein String mit bis zu 99 Zeichen.

Token und Creator werden in einer Struktur gespeichert, die GeodeToken heißt
und folgendermaßen definiert ist. Das Bild dazu befindet sich in der TokenDB-
Datei.

STRUCT GeodeToken
manufid AS WORD

’ Manufacturer ID (Hersteller-Identifikation)
tokenChars AS STRING(4)

END STRUCT

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 94

Eine fehlerhafte Belegung der Werte für Token oder Creator kann die Arbeit mit
der Datei unmöglich machen. Setzen Sie in diesem Fall einfach wieder den
korrekten Wert.

Release und Protocol werden in einer Struktur gespeichert die ReleaseNumber
heißt und folgendermaßen definiert ist. R-BASIC verwendet die ersten beiden
Felder dieser Struktur auch für die Protokollnummer.

STRUCT ReleaseNumber ’ Bedeutung der Felder:
rnMajor as WORD ’ große, meist inkompatible Neuerungen
rnMinor as WORD ’ kleinere, kompatible Neuerungen
rnChange AS WORD ’ interne Änderungen
rnEngineering as WORD ’ kleine interne Änderungen

End STRUCT

Tritt ein Fehler auf, z.B. weil die Datei nicht gefunden wird oder weil das Attribut
nicht unterstützt wird, (weil es eine DOS-Datei ist), wird die Systemvariable
fileError gesetzt. Im Erfolgsfall wird die fileError-Variable zurückgesetzt (d.h. mit
Null belegt)

Die Bedeutung der Parameter der folgenden Übersicht und Beispiele sind weiter
unten zu finden.

FileGetToken, FileSetToken

Liest bzw. setzt das "Token" der Datei.

Syntax: <token> = FileGetToken (ffileName$) ’ Auslesen des Token
oder: <token> = FileGetToken (<fh>)

Syntax: FileSetToken fileName$, <token> ’ Setzen des Token
oder: FileSetToken fh, <token>

FileGetCreator, FileSetCreator

Liest (FileGetCreator) oder setzt (FileSetCreator) das Creator-Token.

Syntax: <token> = FileGetCreator (fileName$) ’ Auslesen des Creator-Token
oder: <token> = FileGetCreator (<fh>)

Syntax: FileSetCreator fileName$, <token> ’ Setzen des Creator-Token
oder: FileSetCreator <fh> , <token>

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 95

FileGetCreationTime, FileSetCreationTime

Liest oder verändert das Datum, an dem die Datei angelegt wurde.

Syntax: <time> = FileGetCreationTime (fileName$) ’ Auslesen der
Erstellungszeit

oder: <time> = FileGetCreationTime (<fh>)

Syntax: FileSetCreationTime fileName$, <time> ’ Setzen der Erstellungszeit
oder: FileSetCreationTime <fh> , <time>

FileGetUsernotes, FileSetUsernotes

Liest oder verändert die Benutzernotizen der Datei.

Syntax: notes$ = FileGetUsernotes (fileName$) ’ Auslesen der
 Benutzernotizen

oder: notes$ = FileGetUsernotes (<fh>)

Syntax: FileSetUsernotes fileName$, notes$ ’ Setzen der Benutzernotizen
oder: FileSetUsernotes <fh>, notes$

FileGetRelease, FileSetRelease

Liest oder verändert die Releasenummer der Datei. Das GEOS System verwendet
die Releasenummer zum Versionscheck und zu Informationszwecken. R-BASIC
und der Uni-Installer verwenden die Releasenummer um zu entscheiden ob eine
Datei neuer ist als eine andere Datei mit gleichem Namen. Der R-BASIC Compiler
setzt die ersten drei Felder der Releasenummer von Launcher und BIN-Datei
entsprechend der Versionsnummer des Programms bzw. der Library (siehe Befehl
Version$).
Bei R-BASIC Libraries wird die Releasenummer (und damit die Versionsnummer
der Library) verwendet um zu entscheiden, ob ein BASIC Programm mit dieser
Library zusammenarbeiten kann.
Um zu entscheiden, ob die R-BASIC IDE die Datei öffnen und bearbeiten kann,
wird die Protokollnummer, nicht die Releasenummer, benutzt.

Syntax: <release> = FileGetRelease (fileName$)
oder: <release> = FileGetRelease (<fh>) ’ Auslesen der Release-Nummer

Syntax: FileSetRelease fileName$, <release>
oder: FileSetRelease <fh> , <release> ’ Setzen der Release-Nummer

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 96

FileGetProtocol, FileSetProtocol

Liest oder verändert die Protokollnummer der Datei. Das GEOS System
verwendet die Protokollnummer um zu prüfen, ob Programme, Dateien und
Libraries kompatibel zueinander sind. R-BASIC definiert keine eigene Struktur für
die Protokollnummer, sondern verwendet die Felder rnMajor und rnMinor der
ReleaseNumber Struktur. Vorsicht! Änderungen der Protokollnummer können
dazu führen, dass Programme nicht mehr funktionieren oder Dateien nicht mehr
gelesen werden können.

Syntax: <protocol> = FileGetProtocol (fileName$)
oder: <protocol> = FileGetProtocol (<fh>) ’ Auslesen der Protocol-Nummer

Syntax: FileSetProtocol fileName$, <protocol>
oder: FileSetProtocol <fh> , <protocol> ’ Setzen der Protocol-Nummer

Angaben zu den Parametern und Rückgabewerten:

<token>: Eine Variable vom Typ "GeodeToken"
Die Set- Routinen akzeptieren auch Funktionen, die eine
GeodeToken-Struktur zurückgeben

fileName$: Name der Datei
Stringausdrücke, auch mit Pfadangaben im Namen, sind zulässig.

<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
<time>: Eine Variable vom Typ "DateAndTime".

Die Set- Routinen akzeptieren auch Funktionen, die eine
DateAndTime-Struktur zurückgeben.

notes$: Ein String mit bis zu 99 Zeichen.
Für FileSetUsernotes sind Stringausdrücke zulässig. Ist der String
zu lang tritt ein Laufzeitfehler auf und das Programm wird
beendet.

<release>
<protocol>: Eine Variable vom Typ "ReleaseNumber". Für die "Protocol"-

Funktionen werden nur die Felder rnMajor und rnMinor
verwendet. Die Set- Routinen akzeptieren auch Funktionen, die
eine ReleaseNumber-Struktur zurückgeben.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 97

Beispiel:

DIM token AS GeodeToken
DIM time AS DateAndTime
DIM release AS ReleaseNumber
DIM text$

SetStandardPath SP_SYSTEM

token = FileGetToken "geos.geo"
Print "Token: \"";token.tokenchars;"\","; token.manufid

’ manufid = Manufacturer ID

token = FileGetCreator "geos.geo"
Print "Creator: \"";token.tokenchars;"\","; token.manufid

time = FileGetCreationTime "geos.geo"
Print "Datum: "; FormatDate$(time)
Print "Zeit: "; FormatTime$(time)

release = FileGetRelease "geos.geo"
text$ = "Version: "+ Trim$(Str$(release.rnMajor))
text$ = text$ + "."+ Trim$(Str$(release.rnMinor))
text$ = text$ + " "+ Trim$(Str$(release.rnChange))
text$ = text$ + "-"+ Trim$(Str$(release.rnEngineering))
Print text$

release = FileGetProtocol "geos.geo"
text$ = "Protocol: "+ Trim$(Str$(release.rnMajor))
text$ = text$ + "."+ Trim$(Str$(release.rnMinor))
Print text$

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 98

9.3 Anlegen, Öffnen und Schließen von Dateien

Um mit einer Datei arbeiten zu können, müssen Sie sie zuerst "öffnen" (was beim
Anlegen automatisch geschieht) und nach Gebrauch wieder "schließen". Dabei
legen Sie fest, ob Sie Daten in die Datei schreiben (write), aus ihr lesen (read)
oder beides (read/write) wollen (Parameter ’accessFlags$’). Read/Write ist der
Standard. Da GEOS ein MultiThread-System ist, kann es passieren, dass andere
Programme gleichzeitig auf diese Datei zugreifen wollen. Deswegen müssen Sie
festlegen ob und wie andere Programme gleichzeitig auf Ihre Datei zugreifen
dürfen (read, write, read/write bzw. gar nicht). Der Standard ist, keinerlei Zugriff
zu erlauben (Parameter ’alienFlags$’). Sie sollten davon nur abweichen, wenn es
unbedingt erforderlich ist, da das System in diesem Fall viele Daten
zwischenspeichern muss, was den Systemspeicher sehr belasten kann.

FileCreate

Legt eine Datei auf dem Datenträger an und öffnet sie. Existiert die Datei schon,
kann sie auch verwendet (Daten bleiben erhalten) oder verworfen werden.

Syntax: <fh> = FileCreate fileName$ [, accessFlags$ [, alienFlags$]]

<fh>: Variable vom Typ FILE. fh enthält dann eine Referenz auf die Datei
und wird für alle anderen Dateioperationen benötigt.

fileName$: Name der Datei.
accessFlags$: Zugriffsflags (optional): Zeichenkette, bestehend aus einer

Kombination der Buchstaben "otn g rw x", die den Zugriff auf
die Datei festlegen. Der Standard (accessFlags$ nicht
angegeben) ist "n rw": Neue Datei zum Lesen und Schreiben
anlegen.

alienFlags$: Fremdzugriffsflags (optional): Zeichenkette, bestehend aus
einer Kombination der Buchstaben "rw", die den Zugriff auf
die Datei festlegen. Der Standard (alienFlags$ nicht
angegeben) ist "": Keine Fremdzugriffe erlaubt.

Der Dateizeiger ist nach dem Anlegen einer Datei immer auf die Position 0
gesetzt, auch wenn sie schon Daten enthält. Wollen Sie Daten anhängen, müssen
Sie ihn zunächst mit der Anweisung FileSetPos ans Dateiende setzen.

Die Systemvariable fileError wird gesetzt oder gelöscht. Beispiele und eine
ausführliche Beschreibung der Flagzeichen finden Sie weiter unten.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 99

Mögliche Fehlerbedingungen für FileCreate sind unter anderem:
• Die Datei existiert, aber es wurde ’n’ (nur neu anlegen) angegeben.
• Die Datei existiert als DOS-Datei, aber es wurde ’g’ (GEOS Daten-Datei

anlegen) angegeben.
• Die Datei existiert und es wurde ’o’ (open) bzw. ’t’ (truncate, abschneiden)

angegeben, aber sie ist von einem anderen Programm geöffnet, und dieses
verweigert den Zugriff.

FileOpen

Öffnet eine Datei. Die Datei muss schon auf dem Datenträger vorhanden sein.

Syntax: <fh> = FileOpen fileName$ [, accessFlags$ [, alienFlags$]]

<fh> Variable vom Typ FILE. fh enthält dann eine Referenz auf die Datei
und wird für alle anderen Dateioperationen benötigt.

fileName$: Name der Datei.
accessFlags$: Zugriffsflags, optional): Zeichenkette, bestehend aus einer

Kombination der Buchstaben "rwx", die den Zugriff auf die
Datei festlegen. Der Standard (accessFlags$ nicht angegeben)
ist "rw": Datei zum Lesen und Schreiben öffnen.

alienFlags$: Fremdzugriffsflags, optional): Zeichenkette, bestehend aus
einer Kombination der Buchstaben "rw", die den Zugriff auf die
Datei festlegen. Der Standard (alienFlags$ nicht angegeben)
ist "": Leerstring, keine Fremdzugriffe erlaubt.

Der Dateizeiger ist nach dem Öffnen einer Datei immer auf die Position 0 gesetzt.
Wollen Sie Daten anhängen, müssen Sie ihn zunächst mit der Anweisung
FileSetPos ans Dateiende setzen.

Die Systemvariable fileError wird gesetzt oder gelöscht. Beispiele und eine
ausführliche Beschreibung der Flagzeichen finden Sie weiter unten.

Mögliche Fehlerbedingungen für FileOpen sind unter anderem:
• Die Datei existiert nicht.
• Die Datei existiert, aber sie ist von einem anderen Programm geöffnet, und

dieses verweigert den Zugriff.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 100

Flagzeichen für FileCreate und FileOpen

Die Befehle FileCreate und FileOpen erwarten ein oder zwei Zeichenketten, in
denen durch einzelnen Buchstaben symbolisiert ist, was Sie wollen. Das Setzen
einzelner Bits oder, wie hier, Zeichen, wird üblicherweise als das Setzen von
"Flags" (Flaggen) bezeichnet.

accessFlags$ (Zugriffs-Flaggen-Zeichen) ist eine Zeichenkette, die bestimmt, wie
die Datei angelegt oder geöffnet werden soll und ob auf die Datei lesend
und/oder schreibend zugegriffen werden soll.

Mögliche accessFlags für FileOpen: r, w, x (x nur für Profis)
Mögliche accessFlags für FileCreate: g, n, t, o, r, w, x (x nur für Profis)

alienFlags$ (Fremd-Zugriffs-Flaggen-Zeichen) ist eine Zeichenkette, welche die
Zugriffsrechte für andere Programme bestimmt, während die Datei offen ist.
Wird alienFlags$ nicht angegeben, so wird "" (leer, keine Zugriffsrechte)
angenommen. Sie sollten davon nur abweichen, wenn es unbedingt
erforderlich ist, da das System in diesem Fall viele Daten zwischenspeichern
muss, was den Systemspeicher sehr belasten kann.

Mögliche alienFlags$ für FileOpen und FileCreate: r, w

Zugriffsflags (accessFlags$) für FileCreate und FileOpen
r "read": Aus der Datei kann gelesen werden.
w "write" In die Datei kann geschrieben werden.

Wird weder ’r’ noch ’w’ angegeben, wird ’rw’ angenommen. Dies ist auch
der Standard, wenn accessFlags$ nicht angegeben wird.

Zugriffsflags (accessFlags$) nur für FileCreate
g "GEOS": Es wird eine GEOS-Daten-Datei angelegt. Der Dateiname muss

den GEOS-Namenskonventionen (max. 32 Zeichen) entsprechen. Wird ’g’
nicht angegeben, wird eine DOS-Datei angelegt. Der Name muss dann
der Konvention 8.3 entsprechen.

n "neu": Nur Neuanlegen erlaubt. Es ist ein Fehler, wenn die Datei schon
existiert, die Systemvariable fileError wird entsprechend gesetzt.

o "open": Existiert die Datei schon, wird sie normal geöffnet. Die
vorhandenen Daten bleiben erhalten.

t "truncate" (= abschneiden): Existiert die Datei schon, wird sie
abgeschnitten. Die vorhandenen Daten gehen verloren.

Wird weder ’n’, ’o’ noch ’t’ angegeben, wird ’n’ angenommen. Dies ist auch
der Standard, wenn "accessFlags$ nicht angegeben wird.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 101

Beispiele:
FileOpen "info.txt", "r" Nur Lesezugriff zugelassen

Kein Fremdzugriff, da keine alienFlags$
angegeben.

FileCreate "info.txt", "orw" Öffnen einer vorhandenen Datei oder
Anlegen einer Neuen mit Schreib- und Lesezugriff.
Eventuell vorhandenen Daten bleiben erhalten.
Kein Fremdzugriff, da keine alienFlags$
angegeben.

FileCreate "info.txt", "gtw" Öffnen einer vorhandenen GEOS-Daten-
Datei oder Anlegen einer Neuen zum
Schreibzugriff, ohne Lesezugriff. Eventuell
vorhandene Daten werden gelöscht. Kein
Fremdzugriff, da keine alienFlags$ angegeben.

Fremdzugriffsflags (alienFlags$) für FileCreate und FileOpen
r "read": Andere Programme können aus der Datei lesen
w "write" Andere Programme können in die Datei schreiben.

Wird weder ’r’ noch ’w’ angegeben, wird "" (keine Zugriffsrechte)
angenommen. Dies ist auch der Standard, wenn alienFlags$ nicht
angegeben wird.

Tipps:
• Für die Flags sind Groß- und Kleinbuchstaben erlaubt.
• Die Reihenfolge der Flagzeichen ist egal.
• Stringausdrücke sind erlaubt.
• Überflüssige bzw. ungültige Zeichen werden ignoriert. Sie können den

Flags-String so optisch strukturieren. Zu lange Zeichenketten (mehr als 32
Zeichen) können aber zu einem Laufzeitfehler führen.

• Verwenden Sie statt der Buchstaben keine Worte wie z.B. "write" statt "w".
Sie würden im Beispiel die Datei zum Schreib und Lesezugriff öffnen, da
write die Buchstaben w und r enthält.

Sonstige accessFlags, nur für Profis:
x "eXtended": Erweiterter Zugriff, z.B. auf den Header einer GEOS-Datei.

Achtung! Ungültige Änderungen im Header können die Arbeit mit der
Datei unmöglich machen! GEOS kann die Datei in bestimmten Fällen
auch nicht mehr löschen. Sie sollten hier ganz genau wissen, was Sie tun.
Der Programmierer von R-BASIC übernimmt keinerlei Haftung!

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 102

Beispiele für FileOpen und FileCreate:

Die folgenden Beispiele setzen voraus, dass eine FILE-Variable folgendermaßen
definiert ist:

DIM fh AS FILE

Anlegen einer DOS-Datei zum Lesen und Schreiben. Existiert die Datei schon, soll
die Variable fileError gesetzt werden. Fremdprogramme sollen während dessen
keinen Zugriff haben.

fh = FileCreate "Info.TXT"

Diese Anweisung ist identisch mit: FileCreate "Info.TXT", "rw", ""

Anlegen einer GEOS-Daten-Datei zum Lesen und Schreiben. Es muss das Flag
"g" angegeben werden, damit eine GEOS-Datei erzeugt wird. Existiert die Datei
schon, soll die Variable fileError gesetzt werden. Fremdprogramme sollen
während dessen Lesezugriff haben. Der Parameter "accessFlags$" muss
angegeben werden um "alienFlags$" angeben zu können.

fh = FileCreate "Meine Daten" , "g", "r"

Anlegen einer GEOS-Daten-Datei nur zum Schreiben. Existiert die Datei schon,
wird sie geöffnet und der Inhalt verworfen. Fremdprogramme sollen während
dessen keinen Zugriff haben.

fh = FileCreate "Mein Daten-Logbuch" , "gtw"

Anlegen einer DOS-Datei zum Lesen und Schreiben. Existiert die Datei schon,
wird sie geöffnet, der Inhalt bleibt erhalten. Fremdprogramme sollen während
dessen keinen Zugriff haben.

fh = FileCreate "Data.dat" , "o"

Öffnen einer Datei zum Lesen und Schreiben. Fremdprogramme sollen während
dessen keinen Zugriff haben.

fh = FileOpen "Info.TXT"

Diese Anweisung ist identisch mit: FileOpen "Info.TXT", "rw", ""

Öffnen einer GEOS-Daten-Datei zum Lesen und Schreiben. Beachten Sie, dass
das Flag ’g’ nicht angeben wird, R-BASIC erkennt selbstständig, dass es sich um
eine GEOS-Datei handelt. Fremdprogramme sollen während dessen Lesezugriff
haben. Der Parameter "accessFlags$" muss angegeben werden um "alienFlags$"
angeben zu können.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 103

fh = FileOpen "Meine Daten" , "rw", "r"

Öffnen einer Datei nur zum Lesen. Fremdprogramme sollen während dessen
keinen Zugriff haben.

fh = FileOpen "Daten.TXT" , "r"

Tipp 1:
Wenn Sie nicht sicher sein können, ob die Datei schon existiert, verwenden Sie
FileCreate mit den accessFlags o (open) oder t (truncate). Um eventuell
vorhandene Daten nicht zu verlieren, verwenden Sie das Flag o.

fh = FileCreate "Data.dat" , "o"

Tipp 2:
Nach dem Öffnen oder Anlegen einer Datei sollten Sie prüfen, ob die Operation
erfolgreich war. Das können Sie mithilfe der Funktion NullFile() (siehe unten) oder
der globalen Variablen fileError tun.

fh = FileCreate "Data.dat" , "o"
IF fh = NullFile() THEN

MsgBox "Fehler beim Anlegen der Datei. FehlerCode " + \
ErrorText$(fileError)

END IF

fh = FileOpen "Info.TXT"
IF fileError <> 0 THEN

MsgBox "Fehler beim Öffnen der Datei. FehlerCode " + \
ErrorText$(fileError)

END IF

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 104

FileClose

Schließt eine offene Datei. Alle evt. noch im Hauptspeicher befindlichen Daten
werden auf den Datenträger geschrieben. Nach dem Schließen haben andere
Programme wieder den vollen Zugriff auf die Datei, die von FileOpen bzw.
FileCreate gesetzten Restriktionen sind aufgehoben.

Syntax: FileClose <fh>
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiel:
DIM fh AS FILE
fh = FileOpen "info.txt"
...
FileClose fh

NullFile

Liefert eine "leere" Dateivariable zurück, dient also zum Löschen einer
Dateivariablen oder zum Prüfen, ob sie leer ist.

Syntax: <dateiVariable> = NullFile()
Die Klammern sind erforderlich.

<dateiVariable>: Variable vom Typ FILE.

Nachdem die Datei geschlossen wurde (FileClose), sollten Sie der Dateivariablen
mit Hilfe der Funktion NullFile() die Information "keine Datei" zuweisen.

DIM fh AS FILE
....
FileClose fh
fh = NullFile ()

Sie können dann prüfen, ob eine Datei noch offen ist:

IF fh <> NullFile() THEN ...

Verwenden Sie im Falle eines Programmierfehlers eine schon geschlossene Datei
nochmals, z.B. in der Reihenfolge

FileClose fh
x = FileRead (fh)

gibt es einen BASIC Laufzeitfehler und das Programm wird beendet.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 105

9.4 Lesen und Schreiben von Binärdateien

FileRead, FileWrite und FileInsert sind Universalroutinen. Sie arbeiten mit allen
Dateien und allen Typen von Variablen zusammen, einschließlich Strings und
Strukturen. Dateien, die nicht aus einer Abfolge von Textzeilen bestehen werde
allgemein als binäre Dateien oder Binärdateien bezeichnet. Für die Arbeit mit
Textdateien (lesen und schreiben von Textzeilen) gibt es zusätzlich darauf
spezialisierte Routinen, siehe Kapitel 9.5.

FileRead

Liest eine bestimmte Anzahl von Bytes aus einer Datei. Der Dateizeiger wird hinter
die gelesenen Daten gesetzt. Die Daten werden entsprechend dem Typ des
Ausdrucks, in dem FileRead vorkommt, interpretiert.

Syntax: <var> = FileRead (<fh> , size [, signed])

<var>: Variable von beliebigem Typ. Die gelesenen Daten werden in diese
Variable kopiert.

<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
size: Anzahl der zu lesenden Bytes. Bei numerischen Daten bestimmt size

den Datentyp (1 = Byte, 2 = Word oder Integer, 4 = DWord, LONGINT
oder WWFixed, 10 = Real).
Zulässige (Grenz~) Werte für size: 1 <= size <= 16384 (16 kByte)

signed: (optional): TRUE oder FALSE (Default: FALSE).
Nur für numerische Daten der Größe 2 Byte oder 4 Byte:

signed = TRUE: Daten sind Integer oder Longint (je nach size)
signed = FALSE: Daten sind Word oder DWord (je nach size)
Ist <var> vom Typ WWFixed wird signed ignoriert.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiele:
y = FileRead (fh, 2) ’ Lesen eines Word-Wertes (2 Byte)

y = FileRead (fh, 2, TRUE) ’ Lesen eines Integerwertes (2 Byte)

text$ = FileRead (fh, 100) ’ 100 Byte lesen und als
’ Text ansehen.

! Ein String endet, wenn eine binäre Null (ASCII-Code Null)
! gelesen wird.
! LEN(stringVariable) kann daher kleiner als ’size’ sein.
! Trotzdem werden ’size’ Bytes gelesen.

DIM time AS DateAndTime
time = FileRead (fh, SizeOf(time)) ’ Lesen einer Struktur

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 106

FileWrite

Schreibt eine bestimmte Anzahl von Bytes in eine Datei, indem vorhandene Daten
überschrieben werden. Bei Bedarf werden die Daten angehängt, d.h. die Datei
wird verlängert. Der Dateizeiger wird hinter die geschriebenen Daten gesetzt.

Syntax: FileWrite <fh> , <expression> , size [, signed])

<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
<expression>: Ausdruck von beliebigem Typ. Das Ergebnis des Ausdrucks

(z.B. eine Zahl, eine Struktur oder ein Text) wird in die Datei kopiert.
size: Anzahl der zu schreibenden Bytes. Bei numerischen Daten bestimmt

size den Datentyp (Byte, Word, DWord, Integer, LONGINT, Real), in
den die Zahl vor dem Schreiben konvertiert wird.
Zulässige (Grenz~) Werte für size: 1 <= size <= 16384 (16 kByte)

signed: (optional): TRUE oder FALSE (Default: FALSE).
Nur für numerische Daten der Größe 2 Byte oder 4 Byte:

signed = TRUE: Daten sind Integer oder Longint (je nach size)
signed = FALSE: Daten sind Word oder DWord (je nach size)
Ist <var> vom Typ WWFixed wird signed ignoriert.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiele:
FileWrite (fh, n, 2) ’ Schreiben eines Word-Wertes

FileWrite (fh, 110, 2, TRUE) ’ Schreiben eines Integer-Wertes

FileWrite (fh, text$, 100) ’ 100 Byte als Text schreiben.
! ist text$ länger, wird der String abgeschnitten

 ! es wird keine Textendekennung (Null) geschrieben
! ist text$ kürzer, wird mit Nullen aufgefüllt

DIM time AS DateAndTime
FileWrite (fh, time, SizeOf(time)) ’ Schreiben einer Struktur

FileInsert

Fügt eine bestimmte Anzahl von Bytes in eine Datei ein, ohne das vorhandene
Daten überschrieben werden. Die Datei wird dadurch automatisch verlängert. Der
Dateizeiger wird hinter die geschriebenen Daten gesetzt.

Syntax: FileInsert <fh> , <expression> , size [, signed])
<fh> , <expression> , size [, signed]) siehe FileWrite.

Die Systemvariable fileError wird gesetzt oder gelöscht.
Beispiele: siehe FileWrite.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 107

Spezielle Hinweise zum Speichern von File-, Handle- und Objekt-Variablen in
Dateien

FileRead, FileWrite und FileInsert können mit File-, Handle und Objektvariablen
bzw. Ausdrücken umgehen. Verwenden Sie als Datengröße die Werte
SizeOf(File) (=6), SizeOf(Handle) (=6), SizeOf(Object) (=8).

Es ist jedoch im Normalfall nicht sinnvoll, diese Werte in einer Datei zu
speichern, da die enthaltenen Werte nur zeitlich begrenzt gültig sind.

• File-Variablen sind nur solange gültig, wie die Datei geöffnet ist. Wird die Datei
nach dem Schließen erneut geöffnet, ist der Inhalt der Dateivariablen NICHT
mit dem vom ersten Mal identisch.

• Handle-Variablen sind nur solange gültig, wie das von Ihnen bezeichnete
Objekt bzw. die dahinter stehende Datenstruktur vorhanden ist. Beispielsweise
gilt das von FileFindFirst$ gelieferte Handle nur so lange, bis FileFindDone
gerufen wird. Ein erneutes FileFindFirst$ liefert eine anderes Handle, auch
wenn es im gleichen Verzeichnis sucht.

Die Ausnahme sind Handles, die von der VMFiles-Library geliefert werden und
sich auf Datenstrukturen in einer VM-Datei beziehen. Diese müssen
üblicherweise in der VM-Datei selber gespeichert werden und sind so lange
gültig, wie die Datenstrukturen selbst in der VM-Datei sind.

• Objektvariablen sind so lange gültig, wie das Objekt, auf das die Variable
verweist, existiert.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 108

Spezielle Hinweise zum Speichern von numerischen Werten in Dateien

R-BASIC kennt 3 vorzeichenlose (BYTE, WORD und DWord) und 4 vorzeichen-
behaftete (INTEGER, LONGINT, WWFixed und REAL) numerische Datentypen.

Um Zahlen mit diesen Datentypen sowohl in Dateien schreiben als auch aus Ihnen
lesen zu können, gelten folgende Konventionen:

Lesen von numerischen Werten:

• Der Parameter size von FileRead bestimmt, wie viele Bytes gelesen und wie
sie interpretiert werden (d.h. welchem Datentyp sie entsprechen). Zulässig sind
die Werte

1 Lesen eines Byte
2 Lesen eines Word oder Integer
4 Lesen eines DWord, LongInt oder WWFixed
10 Lesen eines Real-Wertes

Andere Werte können zu unerwarteten Ergebnissen führen. Die ersten beiden
gelesenen Bytes werden als Word (bzw. Integer) interpretiert, die restlichen
Bytes werden verworfen.

• Der Parameter signed bestimmt für die 2 und 4-Byte Datentypen, ob die Bytes
als vorzeichenlose Zahl (word bzw. DWord, signed=FALSE, Default-Wert)
oder als vorzeichenbehaftete Zahl interpretiert werden (integer bzw. longint,
signed=TRUE, signed muss angegeben werden).
Für WWFixed-Variablen wird signed ignoriert.
Verwenden Sie am besten den gleichen Wert für signed, den Sie auch beim
Schreiben verwendet haben.

• Nachdem die Daten gelesen und interpretiert wurden, werden sie von FileRead
in eine Realzahl konvertiert, so dass FileRead innerhalb von beliebigen
Ausdrücken wie jede andere Funktion verwendet werden kann.

Beispiele:
DIM x, z AS Real
DIM n AS Word

n = FileRead (fh, 2) ’ Lesen eines Word
x = FileRead (fh, 2, TRUE) ’ Lesen eines Integerwertes,

’ aber speichern als Real
x = FileRead (fh, 4, TRUE) ’ Lesen eines LONGINT
x = FileRead (fh, 4) ’ Lesen eines DWord
z = 2.7 * FileRead (fh, 2) + FileRead (fh, 10)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 109

Schreiben von numerischen Werten:

Die Parameterkonventionen sind denen von FileRead analog.

• Der Parameter size von FileWrite bzw. FileInsert wie viele Bytes geschrieben
werden und in welchen Datentyp die Zahl vorher konvertiert werden soll.
Zulässig sind die Werte:

1 Schreiben eines Byte
2 Schreiben eines Word oder Integer
4 Schreiben eines DWord oder LongInt
10 Schreiben eines Realwertes

Bei ungültigen Werten wird zunächst ein Word (bzw. Integer) geschrieben und
der Rest mit Nullen aufgefüllt.

• Der Parameter signed bestimmt für die 2 und 4-Byte Datentypen, ob die Bytes
als vorzeichenlose Zahl (word bzw. dword, signed=FALSE, Default-Wert) oder
als vorzeichenbehaftete Zahl geschrieben werden (integer bzw. longint,
signed=TRUE, signed muss angegeben werden).

Dazu wird der von <expression> gelieferte (REAL~) Wert zunächst in den
entsprechenden Datentyp konvertiert und dann in die Datei geschrieben.

• Bei einer Zahlenbereichsüberschreitung der 1, 2 und 4-Byte Datentypen (z.B.
100 000 für Integer oder 500 für Byte) werden intern die überschüssigen Bits
ignoriert. Für die vorzeichenlosen Datentypen (byte, word, dword) entspricht
das einer Modulo-Operation.
Bei vorzeichenbehafteten Werten (integer und longint, dh. signed = TRUE)
führt das dazu, dass aus einer zu großen positiven Zahl eine negative Zahl wird
und umgekehrt.

Beispiele:
DIM x AS Real
DIM n AS Word

FileWrite (fh, n, 2) ’ Schreiben eines Word
FileWrite (fh, x, 2, TRUE) ’ x runden und Schreiben

’ als Integerwert
FileWrite (fh, x, 4, TRUE) ’ Schreiben eines LONGINT, x vorher

runden
FileWrite (fh, n, 4) ’ Schreiben eines DWord, n

vorher
’ in DWord konvertieren

Tipp:
Wenn Sie mehr als eine einzige numerische Variable speichern wollen ist es
sinnvoll, diese in eine Struktur zu packen. Damit ersparen Sie sich auch die
manuelle Typunterscheidung, das R-BASIC dies bei Strukturen automatisch
macht.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 110

9.5 Lesen und Schreiben von Textdateien

R-BASIC verfügt über Spezialbefehle zum Lesen und Schreiben von Zeilen aus
Textdateien. Diese Befehle arbeiten nur mit Stringvariablen zusammen und
werden in diesem Abschnitt erklärt. Universelle Lese- und Schreibefehle finden
Sie im Abschnitt 9.4.

FileReadLine$, FileWriteLine, FileInsertLine und FileReplaceLine sind auf
Textzeilen, die durch ein Zeilenendezeichen abgeschlossen sind, spezialisiert.
Das trifft für normale Textdateien zu. Zeilenendezeichen sind die ASCII-Codes 13
(Wagenrücklauf, Carriage return, CR) bzw. 10 (Zeilenvorschub, LineFeed, LF)
oder eine Kombination davon, üblicherweise die Folge 13, 10 (CRLF).

Hinweis: Ein Texteditor und auch ein Text Objekt fügt häufig zur Gewährleistung
der Lesbarkeit von Texten automatische (nur am Bildschirm vorhandene)
Zeilenumbrüche ein. Die R-BASIC "Textzeilen" erscheinen daher als "Absätze" in
einem Texteditor oder in einem Textobjekt.

FileReadLine$

Liest eine Textzeile aus einer Datei. Es werden maximal so viele Zeichen gelesen,
wie die zu belegende Variable aufnehmen kann. Ist die Zeile länger (d.h. es wurde
keine Zeilenendekennung gelesen), so wird fileError auf -11 (LINE_TO_LONG)
gesetzt. Ihr Programm kann dann entsprechend reagieren. Die fehlenden Zeichen
werden nicht übergangen, das nächste FileReadLine$ liest sie ein.

Syntax: <z$> = FileReadLine$ (<fh> [, mode])
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
mode: (optional): Behandlung der Zeilen-Ende-Zeichen. Siehe Tabelle.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Mode-Konstanten für FileReadLine$ (RLM = ReadLine Mode)
Konstante Wert Bedeutung
RLM_CLEAR 0 Defaultwert. Zeilen-Ende-Zeichen

abschneiden.
RLM_REPLACE_TO_CR 1 Zeilen-Ende-Zeichen durch CR (ASCII-

Code 13) ersetzen. Dieser Code wird
von GEOS-Textobjekten als
Zeilenendezeichen verwendet.

RLM_SET_CR 2 Zeilen-Ende-Zeichen entfernen und in
jedem Fall ein CR-Zeichen (Code 13)
anhängen, auch wenn kein
Zeilenendezeichen vorhanden war (z.B.
am Ende einer Datei).

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 111

RLM_DONT_CHANGE 3 Text nicht ändern, Zeilenendezeichen
bleiben erhalten.

Hinweise:
• Als Zeilenendekennung werden CR (13), LF (10), CRLF und LFCR erkannt.
• Am Dateiende wird eine fehlende Zeilenendekennung akzeptiert und fileError

auf Null (Kein Fehler) gesetzt.
• Lesen über das das Dateiende hinaus setzt fileError auf 128

(SHORT_READ_WRITE), siehe Beispiel 2

Beispiele:
z$ = FileReadLine$ (fh) ’ eine Zeile lesen

WHILE fileError = 0
z$ = FileReadLine$ (fh) ’ eine Zeile lesen
IF fileError <> 0 THEN Print z$ ’ und ausgeben
WEND

z$ = FileReadLine$ (fh, RLM_DONT_CHANGE)
’ eine Zeile incl.
’ CR/LF lesen

FileWriteLine

Schreibt eine Textzeile, indem vorhandene Daten überschrieben werden. Bei
Bedarf wird die Textzeile angehängt, d.h. die Datei wird verlängert.

Syntax: FileWriteLine <fh>, zeile$ [, mode])
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
zeile$: zu schreibender Text
mode: (optional): Behandlung der Zeilen-Ende-Zeichen. Siehe Tabelle.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Mode-Konstanten für FileWriteLine, FileInsertLine, FileReplaceLine
Konstante Wert Bedeutung
WLM_APPEND_CRLF 0 Defaultwert. Zeilenende-Zeichenfolge

CRLF (13, 10) anhängen.
WLM_CR_TO_CRLF 1 CR-Codes (ASCII-Code 13) durch CRLF

(Folge 13, 10) ersetzen. Dadurch
werden Texte, die von GEOS-
Textobjekten kommen, zur Verwendung
in DOS-Dateien angepasst.

WLM_SET_TO_CRLF 2 CR-Codes durch CRLF ersetzen, wie
mode WLM_CR_TO_CRLF.
Unterschied: War am Textende kein CR-
Code, so wird ein zusätzliches CRLF
angehängt.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 112

WLM_DONT_CHANGE 3 Text nicht ändern, Zeilenendezeichen
bleiben erhalten.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 113

WLM_APPEND_LF 4 Zeilenende-Zeichen LF (10) anhängen.
WLM_CR_TO_LF 5 CR-Codes (ASCII-Code 13) durch LF

(ASCII-Code 10) ersetzen. Dadurch
werden Texte, die von GEOS-
Textobjekten kommen, zur Verwendung
in Linux und macOS angepasst

WLM_SET_TO_LF 6 CR-Codes durch LF ersetzen, wie mode
WLM_CR_TO_LF. Unterschied: War am
Textende kein CR-Code, so wird ein
zusätzliches LF angehängt.

Beispiele:
FileWriteLine fh, "Hallo Welt" ’ CRLF automatisch

’ anhängen
FileWriteLine fh, "Hallo Welt\r", WLM_SET_TO_CRLF

’ ’\r’ (CR) durch CRLF
’ ersetzen

FileWriteLine fh, "\r\r\r", WLM_SET_TO_CRLF
’ 3 Leerzeilen

FileWriteLine fh, \
"Text geschrieben von R-BASIC", WLM_SET_TO_CRLF

FileWriteLine fh, "Letzte Zeile", WLM_DONT_CHANGE
’ kein CRLF anhängen

FileInsertLine

Schiebt eine Textzeile in die Datei ein. Die Datei wird dadurch verlängert.

Syntax: FileInsertLine <fh>, zeile$ [, mode])
<fh>, zeile$ [, mode]): siehe FileWriteLine

Die Systemvariable fileError wird gesetzt oder gelöscht.

FileReplaceLine

Ersetzt eine Textzeile in einer Datei durch eine andere. Die ersetzte Zeile darf
maximal 1024 Zeichen lang sein (R-BASIC Begrenzung für Strings).

Syntax: FileReplaceLine <fh>, zeile$ [, mode])
<fh>, zeile$ [, mode]): siehe FileWriteLine

Die Systemvariable fileError wird gesetzt oder gelöscht.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 114

9.6 Sonstige Funktionen

Positionieren des Dateizeigers

Während die Datei geöffnet ist, gibt es einen "Dateizeiger", der die Position
bestimmt, an der Daten gelesen oder geschrieben werden. Der Zugriff auf den
Dateizeiger einer Datei erfolgt über eine Variablen vom Typ FILE, die von
FileOpen bzw. FileCreate geliefert wird.

FileGetPos

Liest die aktuelle Position des Dateizeigers aus. Der zurückgegebene Wert liegt im
Bereich von 0 (Dateianfang) bis 4294967295, da Dateien maximal 4 GByte groß
werden können.

Syntax: <numVar> = FileGetPos (<fh>)

<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiel:
’ Herausfinden, ob man schon am Dateiende ist
IF FileSize(fh) = FileGetPos(fh) THEN Print "Dateiende erreicht"

FileSetPos

Setzt den Dateizeiger an eine bestimmte Position. Die folgenden File~
Operationen lesen bzw. schreiben ab dieser neuen Position.

Syntax: FileSetPos <fh>, position [, fromEnd]

<fh>: Dateivariable, bestimmt die betroffene Datei.
position: neue Dateiposition
fromEnd: bestimmt den Positionierungsmodus

• nicht angegeben oder Null: Ab Dateianfang
• ungleich Null: Ab Dateiende

Achtung! "position" muss hier negativ sein, damit Sie eine
Position vor dem Dateiende anwählen. Ist "position" positiv, ist
das Ergebnis unbestimmt. Manchmal wird die Datei verlängert,
manchmal nicht.

Die Systemvariable fileError wird gesetzt oder gelöscht.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 115

Beispiele:
Setzen des Dateizeigers an den Dateianfang
FileSetPos fh, 0

Setzen des Dateizeigers ans Dateiende, so dass FileWrite Daten an
die Datei anhängen kann:
FileSetPos fh, 0, TRUE

Setzen des Dateizeigers 100 Byte vor das Dateiende. Der Parameter
"position" ist hierzu negativ.
FileSetPos fh, -100, TRUE

Verschieben des Dateizeiger um 10 Byte nach hinten.
FileSetPos fh, FileGetPos(fh) + 10

Setzen des Dateizeigers hinter das 2. Byte (ab Dateianfang). Das
erste Byte hat die Position 0, das zweite die Position 1
FileSetPos fh, 2

Tipps & Tricks:
• Benutzen Sie FileSize, um die aktuelle Größe der Datei zu ermitteln.
• Setzen Sie den Dateizeiger hinter das Dateiende (auf einen Wert, der größer

ist, als der von FileSize gelieferte), so ist das Ergebnis unbestimmt.
Anmerkung: In einigen Fällen wird die Datei verlängert (und die neu
angehängten Bytes mit Nullen initialisiert), in anderen Fällen wurde die
Dateilänge nicht geändert.

Weitere Dateioperationen

FileResize

Einfügen oder Löschen von Bytes an der aktuellen Position einer Datei. Die
dahinter folgenden Daten werden automatisch verschoben. Eingefügte Bytes
werden mit Null initialisiert. Der Dateizeiger wird hinter die eingefügten Bytes
gesetzt. FileResize eignet sich auch, um Null-Bytes an eine Datei anzufügen.

Syntax: FileResize <fh>, bytesToDelete, bytesToInsert

<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.
bytesToDelete: Anzahl zu löschender Bytes. Maximal 2 GByte.
bytesToInsert: Anzahl einzufügender Bytes. Maximal 2 GByte.

Die Systemvariable fileError wird gesetzt oder gelöscht.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Arbeit mit Dateien - 116

Beispiele:
FileResize fh, 200, 0 ’ 200 Bytes löschen. Der Dateizeiger

bleibt an der aktuellen Position.

FileResize fh, 0, 200 ’ 200 Bytes einfügen, der Dateizeiger
steht hinter den eingefügten Bytes.

FileResize fh, 100, 200 ’ 100 Byte löschen und durch 200
Null-Bytes ersetzen. Die Datei wird um 100
Byte verlängert, der Dateizeiger wird hinter
die 200 Null-Bytes gesetzt.

FileResize fh, 100, 40 ’ 100 Byte löschen und durch 40
Null-Bytes ersetzen. Die Datei wird um 60
Byte kürzer, der Dateizeiger wird hinter die
40 Null-Bytes gesetzt.

FilePos fh, 0, TRUE ’ Dateizeiger ans Dateiende
FileResize fh, 0, 800 ’ 800 Null-Bytes anhängen

FileTruncate

FileTruncate schneidet die Datei an der Position des aktuellen Dateizeigers ab.

Syntax: FileTruncate <fh>
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder gelöscht.

Beispiel:
! Einkürzen einer Datei auf die Länge Null, d.h. alle Daten
löschen.

FileSetPos fh, 0
FileTruncate fh

FileCommit

Bewirkt, dass alle in Daten der Datei unverzüglich auf die Platte geschrieben
werden. Das GEOS-System hält aus Performance-Gründen viele Daten oft bis
zum Schließen der Datei im Speicher, d.h. die Daten kommen manchmal erst
beim FileClose wirklich auf der Platte an. FileCommit ist sinnvoll, wenn mehrere
Programme gleichzeitig auf die gleiche Datei zugreifen und man kann damit einem
Datenverlust im Falle eines Systemabsturzes vorbeugen.

Syntax: FileCommit <fh>
<fh>: Variable (oder Funktion) vom Typ FILE. Bezeichnet die Datei.

Die Systemvariable fileError wird gesetzt oder gelöscht.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Laufwerke und Datenträger - 117

10 Arbeit mit Laufwerken und Datenträgern

Mit DiskWriteable, DiskSpace, DiskExist und DriveInfo erhalten Sie
Informationen über Datenträger oder Laufwerke. DiskGetName$ und
DiskRename arbeiten mit der Datenträgerbezeichung. Diese Befehle setzen alle
die Systemvariable fileError (z.B. wenn das Laufwerk nicht existiert) oder löschen
Sie, wenn kein Fehler auftrat.

DiskWriteable

Prüft, ob sich ein beschreibbarer Datenträger im Laufwerk befindet. DiskWriteable
liefert "wahr" (TRUE, -1) wenn sich ein beschreibbarer Datenträger im Laufwerk
befindet. Existiert das Laufwerk nicht, befindet sich kein, oder kein formatierter
Datenträger im Laufwerk, liefert DiskWriteable "falsch" (FALSE, 0).

Syntax: <numVar> = DiskWriteable (lw$)

lw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"
<numVar> numerische Variable

Beispiel:
IF DiskWriteable("a:") = 0 THEN Print "Die Diskette ist
schreibgeschützt."

DiskSpace

Prüft den auf einem Datenträger verfügbaren Platz.

Syntax: <numVar> = DiskSpace (lw$ [, all])

lw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"
all: (optional) Wenn angegeben und ungleich Null, liefert DiskSpace den

insgesamt auf dem Datenträger vorhandenen Platz.
Wenn nicht angegeben oder gleich Null, liefert DiskSpace den freien
Speicherplatz auf dem Datenträger.

<numVar> numerische Variable

Wenn mehr als 2 GB verfügbar bzw. vorhanden sind, liefert DiskSpace immer den
Maximalwert von 2 147 418 112 Byte zurück.

Beispiel:
Print "Speicherstatus von Laufwerk C:"
Print DiskSpace ("C:", TRUE) " Bytes insgesamt"
Print DiskSpace ("C:") " Bytes verfügbar"

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Laufwerke und Datenträger - 118

DiskExist

Prüft, ob sich ein formatierter Datenträger im Laufwerk befindet. Wenn Sie wissen
wollen, ob ein bestimmtes Laufwerk existiert, verwenden Sie DriveInfo (unten).
DiskExist liefert "wahr" (TRUE, -1), wenn ein formatierter Datenträger im Laufwerk
ist. Das gilt auch für Festplatten. Befindet sich kein oder nur ein unformatierter
Datenträger im Laufwerk, liefert DiskExist "falsch" (FALSE, 0).

Syntax: <numVar> = DiskExist (lw$)

lw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"

Hinweis: DiskExist setzt die Systemvariable fileError auf 0, wenn das Laufwerk
existiert aber kein Datenträger enthalten ist.

Beispiel:
IF DiskExist("a:") = 0 THEN Print "Legen Sie eine formatierte
Diskette ein!"

DriveInfo

Liefert ausführliche Informationen über das angegebene Laufwerk. DriveInfo gibt
Null zurück, wenn das Laufwerk nicht existiert, andernfalls einen Wert ungleich
Null.

Syntax: <numVar> = DriveInfo (lw$)

lw$: Laufwerksbezeichnung, z.B. "A:" oder "D:"

Beispiel:
IF DriveInfo("H:") = 0 THEN Print "Laufwerk H: existiert nicht"

Existiert das Laufwerk, enthält der Rückgabewert vielfältige Informationen über
das Laufwerk, wobei jedes einzelne Bit eine Bedeutung hat. Die Auswertung
dieser Daten ist etwas für Experten. Kenntnisse im Umgang mit Bits und logischen
Verknüpfungen sind hilfreich. R-BASIC unterstützt die Arbeit mit den wichtigsten
Eigenschaften durch ein paar vordefinierte Konstanten.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Laufwerke und Datenträger - 119

Wert R-BASIC Konstante Bedeutung
15 DI_TYPE_MASK Maske zum Herausfiltern des

Laufwerkstyp
2 DI_FIXED Laufwerkstyp: Festplatte
4 DI_CD_ROM Laufwerkstyp: CD-ROM-Laufwerk
64 DI_REMOVABLE Datenträger ist wechselbar (CD,

Diskette)
2048 DI_READ_ONLY "Nur-Lesen" - Datenträger

Tabelle: R-BASIC Konstanten für DriveInfo. Eine komplette Beschreibung finden
Sie auf der nächsten Seite.

Verwenden Sie die Konstanten wie folgt:

Beispiel 1:
DIM bitfeld AS word

bitfeld = DriveInfo ("D:")
IF bitfeld = 0 THEN Print "Laufwerk D: existiert nicht"

! ## Abfragen für Experten
IF bitfeld AND DI_REMOVABLE THEN
Print "Datenträger in D: ist entnehmbar"
END IF

IF (bitfeld AND DI_TYPE_MASK) = DI_CD_ROM THEN
Print "Laufwerk D: ist ein CD-Laufwerk"
END IF

Beispiel 2:
DIM info, type AS word

info = DriveInfo ("D:")

! ## Herausfinden des Laufwerkstypes
type = info AND DI_TYPE_MASK ’ Bits 4 .. 15 Null setzen
IF type AND DI_FIXED THEN Print "Festplatte"
IF type AND DI_CD_ROM THEN Print "CD-ROM Laufwerk"

! ## Entnehmbar und beschreibbar
IF info AND DI_REMOVABLE THEN Print "Entnehmbarer

Datenträger"
IF info AND DI_READ_ONLY THEN Print "Nur-Lesen Datenträger"

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Laufwerke und Datenträger - 120

Bedeutung der Bits im Rückgabewert von DriveInfo

DriveInfo liefert eine 16-Bit Wert, der ausführliche Informationen über das
abgefragte Laufwerk enthält. Hier finden Sie eine komplette Liste der Bits.
Kenntnisse im Umgang mit Bits und logischen Verknüpfungen sind hilfreich.
Hinweis: Die meisten Infos sind der PC/GEOS-SDK-Dokumentation ungeprüft
entnommen. Für eventuelle Fehler in der PC/GEOS-SDK-Dokumentation kann R-
BASIC nichts.

Bit-Nummer R-BASIC Konstante Bedeutung
0 - 3 DI_TYPE_MASK = 15 Laufwerkstyp

0 : 5,25" Diskette
1 : 3,5" Diskette

DI_FIXED = 2 2 : Fixed (Festplatte)
3 : RAM-Laufwerk

DI_CD_ROM = 4 4 : CD-ROM-Laufwerk
5 : 8" Diskette
16: unbekannter Typ

4 (unbenutzt / reserviert)
5 Netzwerklaufwerk
6 DI_REMOVABLE = 64 Datenträger ist wechselbar (CD,

Diskette)
7 Laufwerk ist physisch vorhanden

8 "besetzt" - Laufwerk wird benutzt
9 "alias" - Laufwerk ist ein Alias für einen

Pfad auf einem anderen Laufwerk
10 Datenträger ist formatierbar
11 DI_READ_ONLY = 2048 "Nur-Lesen" - Datenträger, z.B. CD
12 Laufwerk ist nicht über das Netzwerk

sichtbar.
13 (unbenutzt / reserviert)
14 (unbenutzt / reserviert)
15 (unbenutzt / reserviert)

Tabelle: Bedeutung der Bits im Rückgabewert von DriveInfo.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Laufwerke und Datenträger - 121

DiskGetName$

Liest die Datenträgerbezeichnung.

Syntax: <name$> = DiskGetName$ (lw$)
Parameter: lw$:Laufwerksbezeichnung

z.B. "A:" oder "D:"

Fehlerbedingung: Die Systemvariable fileError wird gesetzt oder zurückgesetzt.

Beispiel:
DIM s$, n$
s$ = "a:"
n$ = DiskGetName$(s$)
IF fileError THEN
Print "Fehler beim Lesen der Bezeichnung von ";s$

ELSE
Print "Datenträger im Laufwerk "; s$; "heißt ";n$

END IF

DiskRename

Schreibt die Datenträgerbezeichnung.

Syntax: DiskRename lw$, name$
Parameter: lw$:Laufwerksbezeichnung, z.B. "A:" oder "D:"

name$: Neue Datenträgerbezeichnung

Fehlerbedingung: Die Systemvariable fileError wird gesetzt oder zurückgesetzt.

Beispiel:
DIM s$
s$ = "a:"
DiskRename s$, "Paul"
IF fileError THEN
Print "Fehler beim Setzen der Bezeichnung von ";s$

ELSE
Print "Datenträger im Laufwerk "; s$; "heißt jetzt";

DiskGetName$(s$)
END IF

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Laufwerke und Datenträger - 122

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Portzugriffe - 123

11 Portzugriffe

Achtung! Die Befehle greifen direkt auf die Hardware des Computers zu!

INP

Die Funktion INP (= Input) greift auf die Hardware des Computers zu und liest ein
Byte von einem I/O-Port. Sie müssen sich mit der Hardware des Computers und
den Portadressen sowie deren Bedeutung auskennen, um diesen Befehl nutzen
zu können.

Syntax: <numVar> = INP (port)
Parameter: port: Port-Adresse, von der gelesen werden soll

OUT

Der Befehl OUT (= Output) greift auf die Hardware des Computers zu und schreibt
ein Byte in einem I/O-Port. Sie müssen sich mit der Hardware des Computers und
den Portadressen sowie deren Bedeutung auskennen, um diesen Befehl nutzen
zu können.

Syntax: OUT port, wert
Parameter: port: Port-Adresse, auf die ausgegeben werden soll

wert: auszugebender Wert

Achtung: Eine Ausgabe ungültiger Werte auf bestimmte I/O-Ports des Computers
könnte die Funktion des Computers schwer stören oder unmöglich machen. Der
Programmierer von R-BASIC übernimmt keinerlei Haftung für Schäden, die auf
eine fehlerhafte Verwendung der Befehle INP und OUT zurückgehen!

WAIT

Die Funktion WAIT (= Warte) greift auf die Hardware des Computers zu und wartet
bis ein bestimmtes Bitmuster an einem I/O-Port anliegt. Sie müssen sich mit der
Hardware des Computers und den Portadressen sowie deren Bedeutung
auskennen, um diesen Befehl nutzen zu können.

Syntax: WAIT port, mask [, xBits [, mode]]
Parameter: port: Port-Adresse, von der gelesen werden soll

mask: Maske, welche Bits abgefragt werden sollen
xBits: Welche Bits davon Null sein müssen.

xBits ist optional. Vorgabewert ist Null.
mode: mode = 0: WAIT wartet BIS das gesuchte Bitmuster

erscheint (Vorgabewert, wenn mode nicht angegeben).
mode = 1: WAIT wartet SOLANGE das gesuchte Bitmuster
am Port anliegt.
Soll mode angegeben werden, so ist auch xBits anzugeben.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Portzugriffe - 124

Funktion: WAIT wartet, bis die bitweise logische Verknüpfung des Bitmusters
am abgefragten Port mit mask und (falls angegeben) xBits die
geforderte Bedingung (mode) erfüllt.
"mask" bestimmt, welche Bits berücksichtigt werden sollen. Bits, die

in mask nicht gesetzt sind, können beliebige Werte haben.
"xBits" bestimmt, welche Bits Null sein müssen. Bits, die in xBits

nicht gesetzt sind, müssen Eins sein, damit die Bedingung
erfüllt ist.

Intern werden "mask" und "xBits" (wenn angegeben) logisch XOR
verknüpft. Der von "port" gelesene Wert mit "mask" logisch UND
verknüpft. Die genauen Formeln lauten:

erwartung = (mask XOR xBits) AND mask
gelesen = INP(port) AND mask

mode = 0 wartet, bis das gelesene Bitmuster erscheint:
Warte bis erwartung = gelesen

mode = 1 wartet, solange das gelesene Bitmuster korrekt ist:
Warte solange wie erwartung = gelesen

Beispiele:
Wir nutzen: 1 ist binär 0001, 2 ist binär 0010, 3 ist binär 0011
x ist ein Bit, das gesetzt sein kann oder nicht (d.h. egal ob 0 oder 1)

Warten auf ein bestimmtes Bitmuster an Port p:
wait p, 2 ’ warten auf xx1x an Port p
wait p, 2, 2 ’ warten auf xx0x
wait p, 3, 1 ’ warten auf xx10

Warten solange ein bestimmtes Bitmuster an Port p anliegt:
wait p, 2, 0, 1 ’ warten solange xx1x an Port p
wait p, 2, 2, 1 ’ warten solange xx0x anliegt

 wait p, 3, 3, 1 ’ warten solange xx00 anliegt
’ WAIT setzt fort, wenn xx01, xx10 oder xx11 erscheint.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 125

12 Focus und Target

Die Arbeit mit Focus und Target ist etwas für erfahrene Programmierer und nur in
wenigen Fällen notwendig. Eine Ausnahme bildet die Implementation von
speziellen Menüs wie dem "Bearbeiten" Menü. Diesem Thema ist deswegen ein
eigenes Kapitel (Kapitel 13) gewidmet.

12.1 Überblick

Das GEOS-System benötigt einen oder mehrere Wege, auf dem Usereingaben zu
dem Objekt geleitet werden, für das sie bestimmt sind. Neben dem Weg, den
Mausereignisse gehen, und der in einem eigenen Kapitel beschrieben wird, sind
das unter GEOS die Focus-Hierarchie und die Target-Hierarchie. Diese beiden
Hierarchien arbeiten sehr ähnlich und werden im Folgenden beschrieben.

Focus
Die Focus-Hierarchie beschreibt, an welches Objekt Tastatureingaben des
Nutzers gehen sollen. Das kann z.B. ein Textobjekt oder ein geöffnetes Menü
sein. Man sagt, das Objekt, an das letztlich die Tastatureingaben gehen, "hat den
Focus".
Eine Arbeit mit der Focus-Hierarchie ist nur sehr selten nötig, da Textobjekte
automatisch damit umgehen können. Ein Beispiel wäre herauszufinden, welches
VisObj-Objekt als letztes angeklickt wurde, also das "aktive" Objekt ist. Dieses hat
nämlich den Focus (und auch das Target).

Target
Die Target-Hierarchie (engl. target = Ziel) beschreibt das Zielobjekt einer
Operation, die der Nutzer ausführt. Ein gutes Beispiel ist ein Textobjekt, in das der
Nutzer gerade etwas eingibt. Wenn der Nutzer ein Menü benutzt um die Größe
des Texts im aktiven Textobjekt zu ändern, dann ist das Textobjekt das Ziel dieser
"Operation". Das Gleiche gilt, wenn er einen Eintrag aus dem Edit-Menü wählt, um
Text in die Zwischenablage zu kopieren oder von dort einzufügen. Man sagt, das
Objekt, mit dem gearbeitet werden kann "ist das Target", manchmal auch "hat das
Target".

Das letzte Beispiel zeigt auch sehr deutlich, warum zwei Hierarchien gebraucht
werden. Klickt der User mit der Maus auf ein Menü verliert der Text den Focus,
aber nicht das Target. Deswegen kann der Actionhandler des Menüeintrags
entscheiden, mit welchem Objekt er interagieren soll - nämlich mit dem Target.

Sowohl die Focus- als auch die Target-Hierarchie sind an die Tree-Struktur der
Objekte gekoppelt. Jedes Objekt kann genau eins seiner Children für den Focus-
und eines für den Target-Pfad auswählen. Dasjenige Objekt, das am Ende dieses
Pfades steht hat den Focus bzw. das Target. Das folgende Bild verdeutlicht das.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 126

Obj 1

Obj 2

Obj 4 Obj 5

Obj 3

Obj 6 Obj 7

Obj 8 Obj 9

Application Objekt

Aktives Target

Inaktives Target

Aktiver PfadInaktiver Pfad

Obj 1

Obj 2

Obj 4 Obj 5

Obj 3

Obj 6 Obj 7

Obj 8 Obj 9

Application Objekt

Aktives Target

Inaktives Target

Aktiver Pfad Inaktiver Pfad

Bild 1: Aktive und inaktive Targets und Pfade

Die linke Abbildung zeigt den Ausgangszustand. Klickt der Nutzer jetzt mit der
Maus auf Objekt 2 (z.B. eine Dialogbox) so wird Objekt 9 (z.B. ein Textobjekt in
diesem Dialog) zum aktiven Target.

Jedes Mal, wenn ein Objekt Teil des aktiven Pfades wird oder den aktiven Pfad
verlässt kann es eine Message aussenden (Handler OnFocusChanged oder
OnTargetChanged). Auf diese Weise kann ein Programm stets über das aktuelle
Target- oder Focus-Objekt informiert sein und bei Bedarf die UI anpassen, z.B. ein
Edit-Menü enablen oder disablen.

Zur Arbeit mit Focus und Target stehen die folgenden Instancevariablen,
Handlertypen und Systemvariablen zur Verfügung:

Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnFocusChanged OnFocusChanged = <Handler> nur schreiben
defaultFocus defaultFocus ––
OnTargetChanged OnTargetChanged = <Handler> nur schreiben
targetable targetable = TRUE | FALSE lesen, schreiben
defaultTarget defaultTarget ––

Action-Handler-Typen:
Handler-Typ Parameter
FocusAction (sender as object, hasFocus as integer)
TargetAction (sender as object, hasTarget as integer)

Systemvariablen:
Variable Inhalt
Focus enthält das aktuelle Focus-Objekt
Target enthält das aktuelle Target-Objekt

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 127

12.2 Arbeit mit dem Focus

Häufig wird der Hint defaultFocus verwendet um sicherzustellen, dass ein
bestimmtes Objekt am Anfang den Focus hat. Eine weitergehende Arbeit mit dem
Focus ist nur selten nötig. Alle Objekte können Standardsituationen automatisch
handeln.

defaultFocus

Der Hint defaultFocus bewirkt, dass das Objekt am Anfang den Focus bekommt.
Meistens reicht es, dem Objekt selbst diesen Hint zu geben, bei komplexen Baum-
strukturen muss man ihn manchmal auch den Parents geben.

Syntax UI-Code: defaultFocus

DefaultFocus ist auf GenericClass Level definiert und damit für alle Abkömmlinge
der GenericClass verfügbar.

OnFocusChanged

Die Instancevariable OnFocusChanged enthält den Namen des Actionhandlers,
der aufgerufen wird, wenn das Objekt den Focus erhält oder verliert. Er wird auch
gerufen, wenn das Objekt Teil des aktiven Focuspfades wird oder vom aktiven
zum inaktiven Pfad wechselt.
OnFocusChanged Handler müssen als FocusAction deklariert sein.

Der OnFocusChanged Handler ist für folgende Objektklassen definiert:
• Application
• Primary
• Menu
• Dialog
• Memo, InputLine, VisText, LargeText
• View
• BitmapContent
• Display, DisplayGroup
• VisContent
• VisObj

Der dem Handler übergebene Parameter "hasFocus" ist TRUE, wenn das Objekt
den Focus erhalten hat (bzw. Teil des aktiven Pfades geworden ist), ansonsten ist
er FALSE.

Beispiel: Wir wollen sicherstellen, dass ein InputLine Objekt disabled wird, wenn
der Nutzer es verlassen hat.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 128

UI-Code:
InputLine Text1
defaultFocus
OnFocusChanged = HandleFocus

End Object

BASIC-Code
FocusAction HandleFocus
IF hasFocus = FALSE THEN
Text1.enabled = FALSE

End IF
End Action

Focus

Die globale Systemvariable Focus enthält das Objekt, das aktuell den Focus hat,
d.h. das sich am Ende des aktiven Focuspfades befindet. Der Wert kann gelesen
und geschrieben werden.

Beispiele
IF Focus = MyObj THEN ...
Focus.Capion$ = "Neuer Text"

’ Ein bestimmtes Textobjekt als Focus auswählen, damit der
’ User genau in dieses Objekt etwas einträgt
Focus = MyTextObject

Im Beispiel "Objekte\Visual Class\VisObj Keyboard Demo" finden Sie im OnDraw-
Handler der VisObj-Objekte den folgenden Code. Damit wird (nur) um das aktive
Objekt immer ein Rahmen gezeichnet.

IF sender = Focus THEN
Rectangle 5,5,MaxX-5, MaxY-5

End IF

Achtung! Wenn Sie der Variablen Focus ein Objekt zuweisen, dass nicht am Ende
eines Objektpfades steht (z.B. Focus = MyGroupWithChildren) kann das zu
"komischem" Verhalten oder Systeminstabilität führen.

Hinweis: Es gibt Situationen, in denen R-BASIC das Focus-Objekt nicht identi-
fizieren kann. Insbesondere ist das der Fall, wenn ein Number-Objekt oder ein
Eintrag in einer DynamicList den "Focus" hat. Die Systemvariable Focus enthält
dann einen Verweis auf ein "leeres" oder ein "internes" Objekt. Sie können die
Situation prüfen, indem dem Sie die Instancevariable Class$ des Focus-Objekts
abfragen. Focus.Class$ liefert in diesem Fall einen leeren String.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 129

View: focusable

Für View-Objekte ist die numerische Instancevariable focusable definiert, die
TRUE oder FALSE sein kann. Sie muss TRUE sein, damit das View (und damit
sein Content) den Focus bekommen kann. Per Default ist sie TRUE.

12.3 Arbeit mit dem Target

Die Auswertung des Targets wird häufig benutzt um spezielle Menüs zu
implementieren, z.B. das "Bearbeiten" Menü. Ein ausführlich kommentiertes
Beispiel finden Sie im nächsten Kapitel. Eine weitergehende Arbeit mit dem Target
ist etwas für erfahrende Programmierer und nur selten nötig. Alle Objekte können
Standardsituationen automatisch handeln.

OnTargetChanged

Die Instancevariable OnTargetChanged enthält den Namen des Actionhandlers,
der aufgerufen wird, wenn das Objekt zum Target wird oder diesen Status verliert.
Er wird auch gerufen, wenn das Objekt Teil des aktiven Targetpfades wird oder
vom aktiven zum inaktiven Pfad wechselt.
OnTargetChanged Handler müssen als TargetAction deklariert sein.

Der OnTargetChanged Handler ist für folgende Objektklassen definiert:
• Application
• Primary
• Memo, InputLine, VisText, LargeText
• Dialog
• View
• BitmapContent
• Display, DisplayGroup
• VisContent
• VisObj

Der dem Handler übergebene Parameter "hasTarget" ist TRUE, wenn das Objekt
zum Target geworden ist (bzw. Teil des aktiven Pfades geworden ist), ansonsten
ist er FALSE.

Beispiel:

Wenn Sie mehr als ein Textobjekt haben wird dieser Handler oft benutzt um die UI
entsprechend den Attributen (Font, Textgröße, Farben usw.) anzupassen, die im
Textobjekt dargestellt werden, mit dem der Nutzer gerade interagiert, d.h. dass
das Target ist. Der Code zeigt, wie man im OnTargetChanged Handler ein
Number-Objekt anspricht, so dass es die Größe des verwendeten Fonts anzeigt.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 130

UI-Code:
Memo Text1
fontSize = 14
fontID = FID_MONO
defaultFocus
OnTargetChanged = HandleTarget

End Object

Memo Text2
fontSize = 24
fontID = FID_SANS
OnTargetChanged = HandleTarget

End Object

Number PointInfoNumber
Caption$ = "Aktuelle Font Größe:"

End Object

BASIC-Code
TargetAction HandleTarget
IF hasTarget THEN
’ UI updaten
PointInfoNumber.value = sender.fontSize

End IF
End Action

Target

Die globale Systemvariable Target enthält das Objekt, das aktuell das Target ist,
d.h. das sich am Ende des aktiven Targetpfades befindet. Der Wert kann gelesen
und geschrieben werden.
Die Variable wird oft in Actionhandlern verwendet, die auf das aktuelle Target
wirken sollen. Ein ausführlich kommentiertes Beispiel finden Sie im nächsten
Kapitel.

Beispiel: Ein Menü enthält eine OptionGroup, deren Actionhandler (namens
ChangeSize) die Zeichengröße bei einem Textobjekt ändern soll.

LISTACTION ChangeSize
Target.fontsize = selection

END ACTION ’ ChangeSize

Wenn man nicht sicher sein kann, dass das aktuelle Target ein Textobjekt ist,
muss man vorher die Klasse abfragen.

LISTACTION ChangeSize
IF Target.Class$ <> "MEMO" THEN RETURN
Target.fontSize = selection

END ACTION ’ ChangeSize

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 131

Achtung! Wenn Sie der Variablen Target ein Objekt zuweisen (z.B. Target =
MyObj), dass nicht am Ende eines Objektpfades steht oder nicht targetable ist, so
kann das zu "komischem" Vehalten oder Systeminstabilität führen.

targetable (selten verwendet)

Die Instancevariable targetable enthält die Information, ob ein Objekt zum Target
werden kann oder nicht. Der Wert ist per Default bei allen Objektklassen, für die
ein OnTargetChanged Handler definiert ist (siehe oben) auf TRUE gesetzt, für alle
anderen Objektklassen ist er per Default FALSE. Im Normalfall besteht keine
Notwendigkeit daran etwas zu ändern. Setzen Sie z.B. bei einem der oben
genannten Objekte targetable = FALSE so kann weder dieses Objekt noch seine
Children (bzw. bei einem View sein Content) zum Target werden.

Syntax UI-Code: targetable
Lesen: <numVar> = <obj>.targetable
Schreiben: <obj>.targetable = TRUE | FALSE

Targetable ist auf GenericClass Level definiert und damit für alle Abkömmlinge der
GenericClass verfügbar.
Für View-Objekte gilt: Um mit einem ViewControl zusammenzuarbeiten muss das
View targetable sein. Außerdem muss das Bit VA_CONTROLLED in der
Instancevariablen viewAttrs gesetzt sein.

defaultTarget

Der Hint defaultTarget bewirkt, dass das Objekt am Anfang das Target ist.

Syntax UI-Code: defaultTarget

DefaultTarget ist auf GenericClass Level definiert und damit für alle Abkömmlinge
der GenericClass verfügbar.
Tipp:
• In vielen Fällen (z.B. Textobjekte) ist es notwendig statt defaultTarget den Hint

defaultFocus zu verwenden.
• Wenn Sie View-Objekte haben, die mit einem ViewControl zusammenarbeiten

sollen müssen Sie bei genau einem View den Hint defaultTarget setzen.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Focus und Target - 132

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 133

13 Implementieren von Menüs: Bearbeiten, Textgröße und andere

Dieses Kapitel zeigt an einem Beispiel, wie man Menüs implementiert, die mit dem
Target zusammenarbeiten sollen. Das sind

• Ein "Bearbeiten" Menü (Kopieren, Einfügen usw.)
• Ein Menü "Größe" (Ändern der Schriftgröße)
• Ein Menü "Font" (Ändern des Textfonts)

Dazu schreiben wir ein Programm, dass neben den genannten Menüs drei Text-
objekte enthält, wobei zwei davon mit den Menüs zusammenarbeiten sollen, eins
aber nicht.

Der komplette Sourcecode, inklusive der hier nicht explizit dargestellten Objekte,
finden Sie bei den Beispielen unter "Objekte\Allgemeines\Edit Menü & mehr".

Die Grundidee ist folgende:
• Klickt der Nutzer mit der Maus in ein Textobjekt so wird es zum Target. Das

Objekt, das vorher das Target war verliert dabei diesen Status. Wir schreiben
also einen OnTargetChanged Handler, der die Menüs updated, so dass sie
den Zustand des neuen Targetobjekts reflektieren.

• Ist ein Objekt das Target, das nicht mit den Menüs zusammenarbeiten soll,
werden die Menüs komplett disabled.

• Um die Buttons "Ausschneiden", "Kopieren" und "Löschen" zu verwalten
benötigen wir außerdem einen OnSelectionChanged Handler, der gerufen
wird, wenn der Nutzer in einem Textobjekt etwas selektiert oder deselektiert.

• Um den Button "Einfügen" zu verwalten benötigen wir einen OnClpChange
Handler für das Applicationobjekt.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 134

Die Textobjekte

Die ersten beiden Texte sollen mit den Menüs interagieren und haben deswegen
sowohl einen OnTargetChanged als auch einen OnSelectionChanged Handler.
Beachten Sie, dass die Handler für beide Textobjekte die gleichen sind. FontSize
und FontID sind jedoch unterschiedlich. Der dritte Text verfügt über keinerlei
Handler.

Memo Text1
fontSize = 14
fontID = FID_MONO
text$ = "Ein Mops kam in die Küche"
defaultFocus
OnTargetChanged = HandleTarget
OnSelectionChanged = HandleSelection
fixedSize = 200, 150

End Object

Memo Text2
fontSize = 24
fontID = FID_SANS
text$ = "und stahl dem Koch ein Ei."
OnTargetChanged = HandleTarget
OnSelectionChanged = HandleSelection
fixedSize = 200, 150

End Object

Memo Text3
text$ = "Ich interagiere nicht mit den Menüs!"
ExpandWidth

End Object

Die Menüs

Das Edit-Menü ("Bearbeiten") enthält die Buttons für die entsprechenden
Funktionen. Jeder Button hat seinen eigenen Actionhandler und einen Keyboard
Shortcut gesetzt. Keyboard Shortcuts sind im Kapitel 3.1.4 des Objekthandbuchs
beschrieben.

Menu EditMenu
Caption$ = "Bearbeiten" , 0
Children = CutButton, CopyButton, PasteButton, DeleteButton

End OBJECT

Button CutButton
Caption$ = "Ausschneiden", 0
ActionHandler = DoCut ’ ButtonAction
kbdShortcut = KSM_CTRL+ KSM_PHYSICAL+ ASC("x")

End OBJECT
Button CopyButton
Caption$ = "Kopieren" , 0
ActionHandler = DoCopy ’ ButtonAction

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 135

kbdShortcut = KSM_CTRL+ KSM_PHYSICAL+ ASC("c")
End OBJECT

Button PasteButton
Caption$ = "Einfügen" , 0
ActionHandler = DoPaste ’ ButtonAction
kbdShortcut = KSM_CTRL+ KSM_PHYSICAL+ ASC("v")

End OBJECT

Button DeleteButton
Caption$ = "Löschen"’ , 0
ActionHandler = DoDelete ’ ButtonAction
kbdShortcut = &hF9A ’ Siehe KeyCodes Library

End OBJECT

Die Menüs für Zeichengröße und Font sind prinzipiell gleich aufgebaut. Jedes
Menü enthält eine RadioButtonGroup mit drei RadioButton-Objekten. Das
Besondere ist, das der Identifier der RadioButton-Objekte gleichzeitig die
Eigenschaft repräsentiert, die er einstellen soll. Die RadioButton-Objekte aus dem
FontSelector sind Font-ID’s und die aus dem SizeSelektor sind Punktgrößen.

Menu FontMenu
Caption$ = "Font" , 0
Children = FontSelector

End OBJECT

RadioButtonGroup FontSelector
Children = FontOption1, FontOption2, FontOption3
ApplyHandler = ChangeFont ’ ListAction
selection = FID_MONO

 End OBJECT
RadioButton FontOption1
Caption$ = "Mono" : identifier = FID_MONO

 End OBJECT
RadioButton FontOption2
Caption$ = "Sans" : identifier = FID_SANS

 End OBJECT
RadioButton FontOption3
Caption$ = "Symbol" : identifier = FID_SYMBOLPS

 End OBJECT

Das Menü "SizeMenu" ist prinzipiell genauso aufgebaut.

Menu SizeMenu
Caption$ = "Größe" , 0
Children = SizeSelector

End OBJECT

RadioButtonGroup SizeSelector
Children = SizeOption1, SizeOption2, SizeOption3
orientChildren = ORIENT_VERTICALLY ’ ORIENT_HORIZONTALLY
ApplyHandler = ChangeSize ’ ListAction
selection = 14

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 136

 End OBJECT
RadioButton SizeOption1
Caption$ = "14 pt" : identifier = 14

 End OBJECT
RadioButton SizeOption2
Caption$ = "18 pt" : identifier = 18

 End OBJECT
RadioButton SizeOption3
Caption$ = "24 pt" : identifier = 24

 End OBJECT

Das Application Objekt

Das Applicationobjekt muss einen OnClpChange Handler haben, damit das
Clipboard überwacht werden kann.

Application DemoApplication
 Children = DemoPrimary
 OnClpChange = MonitorClipboard
END Object

Überwachen des Clipboard

Der OnClpChange Handler wird jedes Mal gerufen, wenn irgendeine Applikation
Änderungen am Clipboard vornimmt. Das schließt unser eigenes Programm mit
ein. Wir müssen daher nur nachschauen, ob ein Text im Clipboard ist und den
"Einfügen" Button enablen oder disablen. Dazu verwenden wir die BASIC Routine
ClipboardTest. Das Format der Daten, die sich im Clipboard befinden, wird durch
eine eindeutige Kombination aus ManufacturerID (manufID) und Format-Nummer
(formatNo) gekennzeichnet. Für Texte gilt: manufID = 0 (GeoWorks),
formatNo. = 0 (TEXT). Mehr dazu finden Sie im Kapitel 5 "Arbeit mit der
Zwischenablage".

SYSTEMACTION MonitorClipboard
IF ClipboardTest(0, 0) then
PasteButton.enabled = TRUE

else
PasteButton.enabled = FALSE

End IF

END ACTION ’ MonitorClipboard

Sollte gerade ein Objekt das Target sein, dass nicht mit den Menüs
zusammenarbeiten soll oder kann, so stört uns das hier nicht, da wir an anderer
Stelle sicherstellen, dass das Menu-Objekt dann nicht enabled ist. Der
PasteButton ist dann niemals aktiv, auch wenn er enabled ist.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 137

Die anderen Buttons des Bearbeiten-Menüs

Alle anderen Buttons des Bearbeiten-Menüs müssen enabled werden, wenn der
Nutzer Text selektiert hat, andernfalls müssen sie disabled werden. Da diese
Abfrage mehrfach gebraucht wird lagern wir sie in eine SUB aus. Der Parameter
textObj bezeichnet das aktuelle Targetobjekt, die Instancevariable selectionLen
enthält die Anzahl der selektierten Zeichen.

SUB UpdateEditMenu (textObj as OBJECT)

IF textObj.selectionLen THEN ’ d.h. selectionLen <> 0
CopyButton.enabled = TRUE
CutButton.enabled = TRUE
DeleteButton.enabled = TRUE

ELSE
CopyButton.enabled = FALSE
CutButton.enabled = FALSE
DeleteButton.enabled = FALSE

END IF

END SUB ’UpdateEditMenu

Die Textobjekt- Handler

Jetzt kümmern wir uns darum, was passiert, wenn der Nutzer ein Textobjekt
anklickt. Das entsprechende Objekt wird dann zum Target. Vorher - und das ist
sehr wichtig für uns - verliert das Objekt, das bis dahin Target war, jedoch seine
Target-Status. Der OnTargetChanged Handler wird also zweimal gerufen: zuerst
von dem Objekt das bis dahin Target war (mit dem Parameter hasTarget =
FALSE) und danach von dem Objekt das jetzt Target wird (mit dem Parameter
hasTarget = TRUE).
Wird er Handler also wegen einem Targetverlust gerufen disablen wir einfach alle
Menüs, andernfalls enablen wir sie und updaten die UI.

Das hat einen weiteren Vorteil: Klickt der User auf ein Objekt, dass nicht mit den
Menüs zusammenarbeiten kann oder soll (in unserem Fall Text3), so wird der
OnTargetChanged Handler nur einmal gerufen (mit hasTarget = FALSE) und die
Menüs bleiben so lange disabled, bis der Nutzer wieder in eins der Objekte Text1
oder Text2 klickt.

TARGETACTION HandleTarget

if hasTarget = FALSE THEN
Editmenu.enabled = FALSE
Fontmenu.enabled = FALSE
Sizemenu.enabled = FALSE
return
end if

EditMenu.enabled = TRUE
UpdateEditMenu (sender)

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 138

FontMenu.enabled = TRUE
FontSelector.selection = sender.fontID

SizeMenu.enabled = TRUE
SizeSelector.selection = sender.fontSize

END ACTION ’ HandleTarget

Außerdem müssen wir noch das Edit-Menü informieren, falls der Nutzer die
Textselektion ändert.

TEXTACTION HandleSelection
UpdateEditMenu (sender)

END ACTION

Handler des Bearbeiten-Menüs

Nun müssen wir die ActionHandler der Buttons aus dem Bearbeiten-Menü
implementieren. Da wir nicht wissen können, ob das aktuelle Target das Objekt
Text1 oder Text2 ist verwenden wir als Ziel die globale Variable Target. Wenn die
Handler der Menüs aufgerufen werden kann dies nur eines der beiden genannten
Objekte sein, da wir vorne sichergestellt haben das die Menüs nur aktiv sind,
wenn eines dieser Objekte das Target ist.

Die Handler an sich sind relativ einfach. Wir verwenden die für alle GenericClass
Objekte definierten Clipboard-Methoden ClpCopy und ClpPaste. Ausschneiden
entspricht einem Kopieren in das Clipboard mit anschließendem Löschen. Für das
Löschen verwenden wir die Textobjekt Methode DeleteSelection. Außerdem
müssen wir noch das Edit-Menü updaten, wenn wir etwas gelöscht haben. Dazu
greifen wir wieder auf die globale Variable Target zurück

BUTTONACTION DoCut
Target.ClpCopy
Target.DeleteSelection
UpdateEditMenu (Target)

END ACTION

BUTTONACTION DoCopy
Target.ClpCopy

END ACTION

BUTTONACTION DoPaste
Target.ClpPaste

END ACTION

BUTTONACTION DoDelete
Target.DeleteSelection
UpdateEditMenu (Target)

END ACTION

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 139

Die anderen Menü-Handler

Die Menüs - und damit die RadioButtonGroups - sind nur aktiv, wenn eines der
Objekte Text1 oder Text2 das Target ist. Da die Identifier der RadioButton-Objekte
ihre Funktion (eine FontID oder eine Schriftgröße) widerspiegeln werden die
Actionhandler der RadioButtonGroups sehr einfach.

LISTACTION ChangeFont
Target.fontID = selection

END ACTION ’ ChangeFont

LISTACTION ChangeSize
Target.fontsize = selection

END ACTION ’ ChangeSize

Abschließende Überlegungen

Besondere Aufmerksamkeit verdient die Frage, ob die Menüs am Programmstart
wirklich immer die korrekte Situation widerspiegeln. In unserem Fall müssen die
Menüs die Eigenschaften des Objekts Text1 widerspiegeln, weil dieses Objekt den
Hint defaultFocus gesetzt hat. Hier ist manchmal etwas Handarbeit (setzen der
richtigen Startwerte) angesagt.

Der eleganteste und sicherste Weg um eventuell verbleibende Probleme zu
umgehen ist, einen OnStartup Handler für das Applicationobjekt zu schreiben.
Dort können Sie die UI-Objekte Ihren Vorstellungen nach anpassen.

Application DemoApplication
 Children = DemoPrimary
 OnStartup = StartupCode
< ... >

END Object

SYSTEMACTION StartupCode
UpdateEditMenu (Text1)
< ... >

END ACTION ’ StartupCode

Für den Anfänger ist es oft sehr schwer, die Zusammenhänge zu überblicken. In
unserem Fall stellt sich die Situation für einen erfahrenen Programmierer so dar:
Für den Zustand der Menüs sind genau zwei Routinen zuständig: der
Actionhandler MonitorClipboard und die SUB UpdateEditMenu. MonitorClipboard
wird am Programmstart automatisch gerufen. Da das Objekt Text1 den Hint
defaultFocus gesetzt hat wird es am Programmstart auch gleichzeitig zum Target.
Damit wird der Handler HandleTarget mit dem Parameter hasTarget = TRUE am
Programmstart gerufen, was den Aufruf von UpdateEditMenu zur Folge hat. Damit
sind die Menüs auf dem aktuellen Stand. Wie gesagt, der Einsteiger überblickt so
etwas nicht.

R-BASIC Handbuch - Spezielle Themen - Vol. 2
Einfach unter PC/GEOS programmieren

Edit-Menü & Co - 140

Deswegen die folgenden Tipps:
• Prüfen Sie den Zustand der Menüpunkte am Programmstart bewusst nach.
• Versuchen Sie, falls möglich, absichtlich verschiedene Zustände herzustellen

um die Schwachstellen zu finden. Starten Sie das Programm zum Beispiel
bewusst einmal mit und einmal ohne, dass sich Text im Clipboard befindet.

• Disablen Sie die Menüs per Default (enabled = FALSE), wenn Sie nicht sicher
wissen, dass sie aktiv sein dürfen. Fälschlicher Weise disablete Menüs fallen
bei einer Sichtprüfung eher auf als fälschlicher Weise enablete Menüs.

