R-BASIC

Einfach unter PC/GEOS programmieren

\CO

ol
9’

Spezielle Themen

Volume 3
Tastatur, Document-Interface, Timer, Maus,
Abwartskompatibiltat, Objekte individualisieren

Version 1.0

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

14 Arbeit mit der Tastatur ..o ——————————————— 144
14.1 Uberblick (iber Tastaturereignisseccceorereeerrreeneeresereeneenens 144
14.2 Schreiben eines Tastaturhandlersccccccoviiiiiiiiiviv i 146
14.3 Simulieren von Tastaturereignissencccccccvvviciieeeeeeeee e 151
14.4 Komplexes Beispiel - Filtern von Tastaturereignissen 153
15 Implementieren eines Dokument-Interfaces -----ccccoooviiiiiiiiiiininncccn, 156
15.1 Konzeptionellesooovvviiiiiiiii 156
15.2 Die Ul: Datei-MenU und Toolbar «..ccoveeiieiiiiiiciece e, 159
15.3 Kernroutinen und TOOIScoouiiiiiiiiiiiiiie e 161
15.4 Standard Dokument Operationencccccccuvvviiieiieeeiiiiiiiiieeeeeen. 167
15.4.1 Ein neues Dokument anlegen ..., 168

15.4.2 OffNen €INEE DAt - ceneneeae e e 169

15.4.3 Speichern der geanderten Datencccccoecieeiiiiiininn. 170

15.4.4 Speichern unter neuem Namenccccooeeeeeiiiiiccciiie e 171

15.4.5 SchlieBen des Dokumentscccooeccniviiiiiieeinniiireeeeeee, 173

15.5 Erweiterte Dateioperationenccccueiiiiiiiiieeiiiiiiiieeeeeeeeeeeeeee 175
15.6 Letzter Stand ... 178
15.7 QUiCK BaCKUP «-ooooeeeeeeeieieee s 180
15.8 Verwendung von Muster-Dateiencccccooooiiiiininis 181
15.9 Schnittstelle zu GEOS Dateisystemccccceeeeiiiiiiiieine e 184
15.10 Ein einfaches Beispieleeveiiiiiiiiiiiiiiiiien 189

B IS TR I 10 7= 194
17 Arbeit mit der Maus ... 198
171 UDEIDICK ...vvveeiieiees st 198
17.2 Maus Grabbingcceeiiiiiiiiie e 199
17.3 Aufruf der Actionhandler...............ciiiiiiiiiiii e 200
17.4 Typische Situationenccccoeeviiiiiiiii 203
17.4.1 Behandlung der Mousebuttonscccccvvvvinee, 203

17.4.2 Arbeit mit dem OnMouseMove Handlerccccvvvninnenee. 204

17.4.3 Zeichnen auf den Bildschirm ..o, 206

17.4.4 Behandeln von MouseOver Ereignissencccccccveeeenneee. 209

17.4.5 Abfrage der Tastaturcccoeeeiiiniiiiiiii 211

17.5 Utility Methodencoooiiiiiii 212
18 Abwartskompatibilitat --....ccccvmrrmmn e 214
18.1 Der klassische BASIC MOAUS - cvveureeiiiiiiiiiee i 214
18.2 ZelleNNUMMEIN ..o 214
18.3 Kompatibilitat mit dem KC-85-BASICcoooeeiiiiiiiiiii e 216

19 Objekte individualisierenccccccvvrirnieinnssssnns e 224

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

14 Arbeit mit der Tastatur

Zur Entgegennahme von Nutzereingaben Uber die Tastatur stehen dem R-BASIC
Programmierer drei Moglichkeiten zur Verfigung

1.

Im Klassischen BASIC Mode wird die Tastatur direkt abgefragt. Dazu stehen
z.B. die Befehle INPUT, Inkey$ und GetKey zur Verfligung. Unter einem
objektorientierten System wie GEOS sollten Sie diesen Weg vermeiden.

Insbesondere die stédndige Abfrage der Tastatur in einer Schleife bremst das

System massiv aus und erhéht die CPU-Last.

. Der einfachste Weg ist die Verwendung von Textobjekten (Memo, InputLine,
VisText oder LargeText). Diese Objekte konnen intelligent mit Tastatur und
Maus umgehen und reichen fur viele Zwecke véllig aus.

. Der universellste Weg ist das Schreiben eines Tastaturhandlers. Tastatur-

handler werden automatisch gerufen, wenn der Nutzer eine Taste drickt. Sie

kénnen die geruckte Taste mitlesen und entscheiden, ob Sie sie selbst
behandeln oder einfach weitergeben wollen. Dieser Weg wird z.B. benutzt um
ein Spielprogramm zu schreiben, dass mit der Tastatur gesteuert wird.

Dieses Kapitel widmet sich dem Schreiben von Tastaturhandlern, welche
Mdglichkeiten sich daraus ergeben und was es zu beachten gilt.

14.1 Uberblick liber Tastaturereignisse

Um mit den Tastaturhandlern arbeiten zu kdénnen sollte man mindestens in
Grundzigen verstanden haben, wie GEOS mit Tastaturereignissen umgeht. Im

Folgenden wir das Prinzip erklart, fur vollstdndige Informationen muss auf
weiterfihrende Literatur verweisen werden.

Es gibt genau drei Situationen, in denen ein Tastaturereignis erzeugt wird:

1. Der Nutzer driickt eine Taste nieder. Dieses Ereignis heit FIRST_PRESS.

2. Der Nutzer hélt die Taste langer gedrlickt. Dieses Ereignis heifB3t
REPEAT_PRESS. Es wird immer wieder gesendet, solange der Nutzer die
Taste unten hélt. Die Haufigkeit (Tastatur-Wiederholungsrate) kann in den
Voreinstellungen ausgewéhlt werden.

3. Der Nutzer lasst die Taste wieder los. Dieses Ereignis heiBt RELEASE.

Bei jedem dieser Tastaturereignisse passiert intern folgendes:

1

. Die Tastatur sendet die Nummer der Taste, den sogenannten Scancode, an

den Computer. Dieser Scancode ist unabhangig vom eingestellten Tastatur-
layout. Im Kapitel 14.3 finden Sie ein Bild mit den Scancodes einer PC-
Tastatur.

Der Tastaturtreiber kennt das Tastaturlayout und wandelt den Scancode in den
zugehdrigen ASCII-Code (0 ... 255) um. Dabei werden die "Modifier"-Tasten
wie Shift oder AltGr bereits berucksichtigt.

Tastaturhandler - 144

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tasten, denen kein ASCII-Code zugeordnet ist wie F1 oder die Cursortasten,
erzeugen einen "erweiterten" ASCII-Code im Bereich von 65280 bis 65535
(hexadezimal &hFFO0O0 bis &hFFFF).

3. Jetzt erzeugt der Tastaturtreiber ein "Tastaturereignis" fir das System und gibt
es als Message an das Application-Objekt des aktiven Programms weiter.
Diese Message enthélt unter anderem den ASCII-Code (das schlieBt erweiterte
ASCII-Codes ein), den Typ des Ereignisses (FIRST_PRESS usw.) und den
aktuellen Zustand der Steuertasten (z.B. linke Strg-Taste gedruckt).

4. Das Application-Objekt leitet das Ereignis an das Objekt weiter, dass den
Focus hat.

Anmerkungen:

Zu Punkt 2:
Bei den erweiterten ASCII-Codes sind die héherwertigen 8 Bit immer gesetzt,
die unteren 8 Bit enthalten die Information, z.B. den Steuercode der zur
gedrlckten Taste gehért. Man kann ihn abfragen indem man die oberen 8 Bit
mit der AND-Operation ausblendet.

code = character AND 255 " d.h. AND &hFF

Diese Codes sind oft, aber nicht immer identisch mit den fir das PRINT-
Kommando verwendeten Steuercodes (siehe Anhang, Kapitel A). Zum Beispiel
ist der PRINT Code fur "Cursor nach links" 14 (&hOE), der Tastencode ist
jedoch 147 (&h93).
In der Library "KeyCodes" finden Sie symbolische Konstanten und die Werte
fur die erweiterten Tastencodes.

Zu Punkt 3:
Drickt der Nutzer die Tasten Shift + 'a’ wird der Buchstabe ’A’ erzeugt. Die
Shift-Taste ist damit ausgewertet und wird NICHT mehr in das Tastaturereignis
aufgenommen.

Es ist nun mdglich sich unter R-BASIC an bestimmten Stellen in den
Tastaturhandler einzuklinken und Tastaturereignisse zu "Uberschreiben". Das
heiBt man kann sie mitlesen, bei Bedarf verhindern dass sie weitergeleitet werden
oder auch dem System eigene "Ereignisse" unterschieben. Der folgende Abschnitt
beschreibt die Konzepte dahinter.

Tastaturhandler - 145

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

14.2 Schreiben eines Tastaturhandlers

Um sich in das Tastaturhandling einzuklinken muss man einen Tastaturhandler
(auch Keyboardhandler) schreiben. Dazu stehen die folgenden Instancevariablen
zur Verfugung:

Variable Syntax im Ul-Code Im BASIC-Code
OnKeyPressed OnKeyPressed = <Handler> nur schreiben
inputFlags inputFlags = <numWert> lesen, schreiben
Handler-Typ Parameter
KeyboardAction (sender as object, character as word, keyState as word,
keyFlags as byte, scanCode as byte)

Der OnKeyPressed Handler wird gerufen, wenn das Objekt ein Tastaturereignis
erhélt. Er muss als KeyboardAction deklariert werden. Die inputFlags bestimmen,
in welchen Féllen das Ereignis vom Objekt selbst, vom BASIC Handler oder von
beiden behandelt werden soll.

Far die folgenden Objektklassen sind Keyboardhandler und inputFlags definiert:
+ Application
* Memo, InputLine, VisText und LargeText
* View
* VisContent
+ BitmapContent
* VisObj

Wichtig: Es ist grundsatzlich so, dass zuerst das Objekt das Tastaturereignis
behandelt (bzw. weiterleitet) und erst danach der BASIC Handler gerufen wird. Im
Abschnitt 14.4 ist beschrieben, wie man trotzdem bestimmte Zeichen herausfiltern
kann.

Einige der Objekte (z.B. alle Textobjekte) behandeln das Ereignis per Default
selbst, andere (z.B. View oder VisContent) leiten es nur an untergeordnete
Objekte weiter. Details oder Besonderheiten zum Tastaturhandling der einzelnen
Objekte finden Sie in den entsprechenden Kapiteln zu den Objekten.

Tastaturhandler - 146

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

OnKeyPressed

Der OnKeyPressed Handler wird aufgerufen, wenn das Objekt ein Tastatur-
ereignis erhalt. Der Handler muss als KeyboardAction deklariert sein. Der BASIC
Handler wird erst gerufen nachdem das Objekt das Ereignis selbst behandelt bzw.
an untergeordnete Objekte weitergeleitet hat.

Syntax Ul- Code: OnKeyPressed = <Handler>
Schreiben: <obj>.0nKeyPressed = <Handler>

KeyboardAction Handler haben die folgenden Parameter:

sender: Das Objekt, welches den Handler aufgerufen hat

character: ASCII-Code oder erweiterter ASCII-Code der Taste
Tipp: In der Library "KeyCodes" finden Sie symbolische
Konstanten fur die erweiterten ASCII-Codes.

keyState: Information, welche Status- oder Steuertasten aktuell gedrickt
sind.

keyFlags: Information ob der Nutzer die Taste gerade gedruckt hat, sie
gedrlckt halt oder gerade losgelassen hat.

scanCode: Der Scancode der gedriickten Taste. Fur Ereignisse, die mit der
Methode KbdEvent erzeugt wurden hat scanCode den Wert Null.

KeyState enthélt genau die Informationen, die man auch mit der BASIC Funktion
GetKeyState erhalten kann. Der Zugriff auf den Parameter keyState ist jedoch
wesentlich schneller. KeyState sind Bitflags. Jedes Bit hat eine eigene Bedeutung.
Das niederwertige Byte enthalt den "Shift"-Status, das héherwertige Byte (Bitwerte
256 und aufwarts) den "Toggle"- Status.

Folgende Werte bzw. Konstanten sind definiert:

Konstante (Shift-State) Wert (hex.) Bedeutung
- 1 &h01 Feuertaste 1 am Joystick
- 2 &h02 Feuertaste 2 am Joystick
KS_RSHIFT 4 &h04 Rechte Shift-Taste
KS_LSHIFT 8 &h08 Linke Shift-Taste
KS_RCTRL 16 &h10 Rechte Strg-Taste
KS_LCTRL 32 &h20 Linke Strg-Taste
KS_RALT 64 &h40 Rechte Alt-Taste
KS_LALT 128 &h80 Linke Alt-Taste

Tastaturhandler - 147

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

Konstante (Toggle-State) Wert Bedeutung
KS_SCROLL_LOCK 256 (&h100) | Scroll-Lock-Taste (Rollen) eingerastet
KS_NUM_LOCK 512 (&h200) | Num-Lock-Taste eingerastet
KS_CAPS_LOCK 1024 (&h400) [Shift-Lock Taste eingerastet
Anmerkungen:

1.

Die Bits werden vom Host-System an GEOS und von dort an den R-BASIC
Handler Ubergeben. Nicht verwendete Bits sind intern verwendet und
kdnnten gesetzt sein oder nicht.

. Die Bits fur "Modifier"-Tasten wie Shift oder AltGr sind i.A. nicht gesetzt, auch

wenn die Tasten gedrickt sind. Sie wurden bei der Erzeugung des ASCII-
Codes vom Tastaturtreiber "geschluckt".

. Die Toggle-State Bits enthalten die Information, ob der entsprechende

Zustand eingerastet ist oder nicht. Auf der Tastatur sollten dann die
entsprechenden Leuchtdioden aktiv sein. ErfahrungsgemaB haben
verschiedene Hostsysteme und/oder Emulatoren damit aber Probleme, so
dass die LED’s nicht immer den aktuellen Zustand widerspiegeln.
Beispielsweise startet die DosBox unter Windows 7 immer mit dem Zustand
"NumLock nicht aktiv", obwohl die LED leuchtet und man muss die Taste
zweimal betatigen um den NumLock Zustand zu andern.

KeyFlags sind Bitflags. Jedes Bit hat eine eigene Bedeutung. Folgende Werte

bzw. Konstanten sind definiert.
Konstante Wert Bedeutung
KF_STATE_KEY 128 (&h80) | Status-Taste (Shift, Strg, Alt ...)
KF_EXTENDED 16 (&h10) | "Erweiterte" Taste (abgesetzte Steuertaste)

(Cursor, Einfg, Pos1 ...)

— 8 (&h08) temporéare Accent-Taste
KF_FIRST_PRESS 4 (&h04) Taste wurde gerade frisch gedrickt
KF_REPEAT_PRESS 2 (&h02) Taste gehalten, Autorepeat Funktion
KF_RELEASE 1 (&h01) Taste wurde losgelassen

inputFlags

Mit Hilfe der Instancevariablen inputFlags kann man steuern, ob ein

Tastaturereignis vom Objekt selbst, vom BASIC Handler oder von beiden
behandelt werden soll.

Syntax Ul-Code: inputFlags = bits

bits: Kombination der IF_-Werte laut Tabelle unten
Lesen: <numVar> = <obj>.inputFlags
Schreiben: <obj>.inputFlags = bits

Tastaturhandler - 148

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Per Default ist inputFlags Null, d.h. Tastaturereignisse werden sowohl vom Objekt
als auch vom BASIC-Handler (so einer gesetzt ist) behandelt. Als Faustregel gilt:
Setzen Sie nur die Bits, die sie auch wirklich fur die Programmfunktion benétigen.

Die folgenden Werte bzw. Konstanten sind definiert:

Konstante Wert hexadezimal
IF_IGNORE_FIRST_PRESS 1 &h01
IF_IGNORE_REPEAT_PRESS 2 &h02
IF_IGNORE_RELEASE 4 &h04
IF_IGNORE_ANY_KEY 7 (7=1+2+4)
IF_FILTER_GENERATED_EVENTS 8 &h08
IF_HANDLER_NO_FIRST_PRESS 16 &h10
IF_HANDLER_NO_REPEAT_PRESS 32 &h20
IF_HANDLER_NO_RELEASE 64 &h40
IF_HANDLER_GENERATED_EVENTS 128 &h80
IF_DONT_MAP_NUM_PAD 256 &h100
IF_MAPPED_NUM_PAD_STATE_BIT 512 &h200

IF_IGNORE_FIRST_PRESS

IF_IGNORE_REPEAT_PRESS

IF_IGNORE_RELEASE

IF_IGNORE_ANY_KEY
Diese Bits verhindern, dass das Objekt die entsprechenden Ereignisse selbst
behandelt bzw. an seine Children / sein Content weiterleitet. Das betrifft jedoch
nur "echte" Tastendricke. Tastaturereignisse, die mit der Methode KbdEvent
erzeugt wurden, werden immer vom Objekt behandelt bzw. weitergeleitet.

IF_FILTER_GENERATED_EVENTS
Dieses Bit bewirkt, dass die Bits IF_IGNORE_FIRST_PRESS, IF_IGNORE._-
REPEAT_PRESS, IF_IGNORE_RELEASE und IF_IGNORE_ANY_KEY auch
auf Ereignisse wirken, die mit der Methode KbdEvent erzeugt wurden. Das Bit
IF_FILTER_GENERATED_EVENTS wird sehr selten gebraucht.

IF_HANDLER_NO_FIRST_PRESS

IF_HANDLER_NO_REPEAT_PRESS

IF_HANDLER_NO_RELEASE
Diese Bits verhindern, dass der BASIC Handler die entsprechenden
Ereignisse behandeln kann.

IF_HANDLER_GENERATED_EVENTS
Per Default wird der BASIC Handler fur Tastaturereignisse, die mit KbdEvent
erzeugt wurden, nicht gerufen. Dieses Bit aktiviert den Handler fur solche
Ereignisse. Die IF_HANDLER_NO_~ Bits werden dabei berlcksichtigt.
Das Bit IF_HANDLER_GENERATED_EVENTS wird sehr selten gebraucht.

Tastaturhandler - 149

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

IF_DONT_MAP_NUM_PAD

IF_MAPPED_NUM_PAD_EXT_BIT
Aus historischen Griinden senden die Ziffern und Operatorzeichen vom abge-
setzten Ziffernblock eigentlich erweiterte Tastencodes. Das erschwert die
Auswertung der Tasten jedoch sehr. Deshalb wandelt R-BASIC diese
Tastencodes intern in "normale" Codes um, so dass fur den BASIC Keyboard-
handler kein Unterschied besteht. Das Flag
IF_MAPPED_NUM_PAD_STATE_BIT weist R-BASIC an, fiur diese
Tastencodes das Bit KF_EXTENDED zu setzen, so dass Sie diese Tasten
wieder von den "normalen" Tasten unterscheiden kénnen. Das Bit
IF_DONT_MAP_NUM_PAD schaltet die Umwandlung komplett aus. Damit
haben Sie die volle Kontrolle aber auch sehr viel mehr Aufwand.

Beispiel: Die Cursortasten sollen die Spielfigur Willy steuern.

Das Tastaturhandling wird von einem BitmapContent gemacht. Da dieses
keinen eigenen Tastaturhandler und keine Children hat bendtigen wir kein
IF_IGNORE~ Bits. AuBerdem wollen wir bei jedem Tastendruck nur genau
einen Schritt machen, auch wenn die Taste langer gedrickt ist. Deswegen
leiten wir REPEAT_PRESS und RELEASE-Ereignisse nicht an den BASIC
Handler weiter. Die SUB’s MoveWillyUp usw. miuissen natulrlich irgendwo
definiert sein.

Ul-Code

BitmapContent GameBoard
OnKeyPressed = KeyHandler
inputFlags = IF HANDLER NO REPEAT PRESS + \
IF HANDLER NO RELEASE

End Object

BASIC Code

Include "KeyCodes" ' Konstanten KEY UP usw. einbinden

KEYBOARDACTION KeyHandler
ON character SWITCH
CASE KEY UP: ' Cursor nach oben
MoveWillyUp
END CASE
CASE KEY DOWN: ' Cursor nach unten
MoveWillyDown
END CASE
CASE KEY LEFT: " Cursor nach links
MoveWillyLeft
END CASE
CASE KEY_ RIGHT: ' Cursor nach rechts
MoveWillyRight
END CASE
END SWITCH
End ACTION

Tastaturhandler - 150

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

14.3 Simulieren von Tastaturereignissen

Methode Aufgabe
KbdEvent Erzeugt ein Tastaturereignis (Scancode ist Null)
KbdEventWithScancode Erzeugt ein Tastaturereignis mit Scancode

Die Methoden KbdEvent und KbdEventWithScancode erzeugen ein Tastatur-
ereignis und senden es an das entsprechende Objekt. Diese Methoden sind fur
alle Objektklassen definiert.

In den meisten Féllen reicht es aus, KbdEvent zu verwenden.

KbdEvent

Syntax im BASIC Code: <obj>.KbdEvent character, keyState, keyFlags
character: ASCII-Code oder erweiterter ASCII-Code
keyState: Kombination von KS_~Bits (siehe OnKeyPressed)
keyFlags: Eines der KF_~ Bits (siehe OnKeyPressed)

Die Ubergebenen Werte character, keyState und keyFlags werden 1:1 als Para-
meter an den Tastaturhandler des Objekts und an den BASIC Tastaturhandler
weitergegeben. Im Unterschied zum echten Tastendruck Ubergibt KbdEvent als
"scanCode" jedoch den Wert Null an das Objekt, so dass sowohl das Objekt als
auch der BASIC Handler echte von vorgetauschten Tastendriicken unterscheiden
kénnen. Per Default werden mit KbdEvent simulierte Tastaturereignisse nicht
vom Objekt behandelt, sondern sie werden gleich an den BASIC Handler
weitergegeben. Details dazu siehe auch: inputFlags.

Beispiel 1: Kopieren der Tastatureingaben an ein zweites Textobjekt
Ul-Code

Memo Textl
OnKeyPressed = KeyHandler
End OBJECT

Memo Text2
End OBJECT

BASIC Code

KEYBOARDACTION KeyHandler
' Handler von Textl sendet an Text2
Text2.KbdEvent character, keyState, keyFlags
End ACTION

Beispiel 2: Senden eines Zeichens an das Application-Objekt. Das Ereignis wird
dann intern an das Objekt, das den Focus hat, weitergeleitet.

DemoApplication.KbdEvent ASC("A"), 0, KF FIRST PRESS
DemoApplication.KbdEvent ASC("A"), 0, KF RELEASE

Tastaturhandler - 151

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel 3: Senden eines Zeichens an das Target-Objekt.

Target.KbdEvent ASC("Z"), 0, KF_FIRST PRESS
Target.KbdEvent ASC("Z"), 0, KF_RELEASE

KbdEventWithScancode

In einigen Fallen werten die Objekte auBer dem ASCII-Code und dem Tastatur-
status auch den Scancode der Taste aus. Das ist insbesondere bei der
Tastaturnavigation durch Menls der Fall, wenn bei der Definition des
Tastenkirzels (siehe Instancevariable kbdShortcut, Objekthandbuch, Kapitel
3.1.4) das Bit KSM_PHYSICAL gesetzt ist. Typischer Weise ist dieses Bit bei den
Menueintragen zum Drucken (Strg-P), Kopieren (Strg-C), Einfligen (Strg-V) usw.
gesetzt.

Fir den seltenen Fall, dass Sie einen solchen Button durch ein simuliertes
Tastaturereignis aktivieren wollen gibt es die Methode KbdEventWithScancode. In
allen anderen Fallen sollten Sie die Methode KbdEvent verwenden.

Syntax im BASIC Code:

<obj>.KbdEventWithScancode character, keyState, keyFlags, scanCode
character: ASCII-Code oder erweiterter ASCII-Code
keyState: Kombination von KS_~Bits (siehe OnKeyPressed)
keyFlags: Eines der KF_~ Bits (siehe OnKeyPressed)
scanCode: Scancode der zu ‘character’ gehérenden Taste

Die Ubergebenen Werte werden 1:1 als Parameter an den Tastaturhandler des
Objekts und an den BASIC Tastaturhandler weitergegeben. Im Unterschied zu
KbdEvent muss der Scancode der simulierten Taste Ubergeben werden. Das
Objekt kann jetzt den simulierten Tastendruck nicht mehr von einem echten
Tastendruck unterscheiden.

Passen ASCII-Code und Scancode nicht zueinander, so erkennen Objekte, die
den Scancode auswerten, die Taste nicht. Das folgende Bild zeigt die Scancodes
einer MF Il Tastatur. Diese Codes sind auch flr neuere Tastaturen gultig, die
weitere Tasten (und damit weitere Scancodes) haben.

(59]60] 61]62] [63] 646568 (6768 [o783 o o o

41]02]03]04 05|06]07 |08 [09] 10] 11] 12]13] 14 | [82]71]73] 69) 74

[15 [16]17]18]19]20] 21]22] 23] 24]25 |26 27] 28

| 58 [30]31]32]33[34]35]36]37]38[39]40]43

428644 [45]46]47[48]49]50] 51[52]58] 54 | o8
NE 5 o] 25 (el s

Scancodes einer MF |l Tastatur

Tastaturhandler - 152

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

14.4 Komplexes Beispiel - Filtern von Tastaturereignissen

Wir wollen bei einem Textobjekt nur Ziffern zulassen sowie die Buchstaben im
Bereich von ’A’ bis 'F’. Das Objekt soll alle anderen Buchstaben und Zeichen
herausfiltern. Ein Blick auf die Instancevariable textFilter ergibt, dass es daflr
keinen passenden Wert gibt.

Diese Aufgabe erfordert eine komplexe Lésung, da das Objekt per Default das
Tastaturereignis zuerst selbst behandelt. Im Anschluss daran ruft es den BASIC
Handler. Wir wollen jedoch, dass der BASIC Handler das Ereignis zuerst erhlt,
damit wir unerwinschte Zeichen herausfiltern kénnen. Erst danach darf das
Textobjekt das Ereignis behandeln.

Um das zu erreichen muss man die inputFlags auf den Wert
IF_IGNORE_ANY_KEY setzen und einen Keyboardhandler implementieren.

Ul Code

Memo Textl
OnKeyPressed = KeyHandler
inputFlags = IF_IGNORE_ANY KEY ' betrifft nur echte
' Tastendriicke

End OBJECT

Intern passiert jetzt folgendes:

1.Das Textobjekt erhalt ein Tastaturereignis. Es pruft die inputFlags und den
scanCode und stellt fest:
- Ereignis nicht selbst behandeln
- BASIC Handler rufen

2.Der BASIC Handler erhalt das Tastaturereignis. Er prift den Tastencode und
entscheidet, ob er den Tastendruck ignorieren oder an das Textobjekt
zuruckgeben soll. In folgenden Féllen soll der Tastendruck an das Textobjekt
zurtckgegeben werden:
- Es ist ein Steuerzeichen oder eine Sondertaste.
- Es ist ein erwlinschtes ASCII-Zeichen (0 ... 9und A ... F)
Um das Ereignis an das Objekt zurlickzusenden verwenden wir die Methode
KbdEvent.

3.Das Textobjekt erhalt das vom BASIC-Handler "klnstlich" erzeugte
Tastaturereignis. Das Objekt erkennt automatisch, dass es sich um einen
"unechten" Tastendruck handelt (weil der Parameter scanCode = 0 ist) und
behandelt es deshalb jetzt, ohne den BASIC-Handler noch einmal zu rufen.

Im OnKeyPressed-Handler missen wir unbedingt dafir sorgen, dass alle
Steuertasten, Shift, Alt usw. durchgereicht werden. Sonst funktionieren die
Keyboard Shortcuts und schlimmstenfalls die gesamte Tastaturnavigation nicht
mehr. Ausnahmen wéaren Tastencodes, die wir bewusst selbst verwenden.
Beispielsweise konnten wir die Entertaste herausfiltern. In unserem Fall lassen wir
alle erweiterten Tasten passieren und blocken nur diejenige darstellbaren ASCII-
Codes, die uns nicht interessieren. Bei der Gelegenheit wandeln wir auch gleich
Kleinbuchstaben in GroBbuchstaben um.

Tastaturhandler - 153

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

BASIC Code

] - Handler KeyHandler -----—--—-
Aufgabe: Tastaturereignisse ausfiltern

1
! Parameter: sender AS Object, character AS Word,
1
1

keyState AS Word, keyFlags AS Byte, scanCode AS Byte
scanCode = Null wenn mit Methode KbdEvent erzeugt

KEYBOARDACTION KeyHandler
DIM ch

' Statt den Befehl GOTO zu verwenden erzeugen wir

'’ eine "Endlos-Schleife"

' Diese verlassen wir mit BREAK, wenn wir einen

' akzeptablen ASCII-Code gefunden haben. Dann wird

' hinter der Schleife weiter gemacht.

' Wir verlassen sie mit RETURN, wenn wir den ASCII-Code
’ ignorieren wollen

REPEAT

' Steuerzeichen und Sondertasten haben die hoherwertigen
’ Bits im Parameter "character" gesetzt.

'’ Wir verlassen in diesem Fall die Schleife mit BREAK.
IF character AND &hFF00 THEN BREAK

'’ Normale Codes priifen

ch = character ' Das ist kiirzer zu schreiben
' aber eigentlich iliberfliissig

' Ziffer ?

IF (ch >= ASC("0")) AND (ch <= ASC("9")) THEN BREAK

' Buchstabe von A bis F ?
IF (ch >= ASC("A")) AND (ch <= ASC("F")) THEN BREAK

'’ Kleinbuchstabe von a bis f ?

IF (ch >= ASC("a")) AND (ch <= ASC("f")) THEN
character = ch - 32 ' a->A usw.
BREAK ' Buchstabe
End IF
RETURN ' Code nicht akzeptieren
UNTIL TRUE

' Jetzt ASCII-Code an das Textobjekt zurilicksenden
sender .KbdEvent character, keyState, keyFlags

END ACTION

Den kompletten Quellcode hierfir finden Sie bei den Beispielen unter
"Objekte\Text\Keyboard Handler Demo".

Tastaturhandler - 154

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

(Leerseite)

Tastaturhandler - 155

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15 Implementieren eines Dokument-Interfaces

Im PC/GEOS SDK wird die Arbeit mit Dokumenten durch drei Objektklassen
realisiert. Diese Klassen erzeugen die bendtigte Ul selbst und arbeiten eng
zusammen. Dazu missen bestimmte Messages in bestimmter Weise gehandelt
werden. Das ist so in R-BASIC nicht realisierbar. Deswegen muss sowohl die Ul
als auch die Routinen mit BASIC-Mitteln nachgebildet werden.

Dieses Kapitel beschreibt, wie man zur Realisierung eines Dokument-Interfaces
unter R-BASIC vorgehen muss. Alle hier beschriebenen Routinen und Ul-Objekte
sind dem Beispiel "Dokument Interface" entnommen, das sich im Ordner "R-
BASIC\Beispie\Objekte\Dateiarbeit" befindet. Dort finden Sie auch die hier aus
Platzgrinden nicht aufgefihrten Objekte.

Um ein eigenes Dokument-Interface zu erstellen sollten Sie in R-BASIC im Meni
"Extras" den Punkt "Code-Sequenz" -> "Dokument-Interface" verwenden. Dort
werden die in diesem Kapitel beschriebenen Routinen bzw. UI-Objekte
bereitgestellt und automatisch in |hren Code eingefligt. Dabei kénnen Sie
auswahlen, ob Sie das komplette hier beschriebene Interface implementieren
wollen oder nur Teile davon. Wenn Sie einmal verstanden haben, wie das Prinzip
geht, kénnen Sie auch leicht weitere Features, die hier nicht besprochen sind,
hinzuftgen.

15.1 Konzeptionelles
Unser Dokument-Interface soll folgendes leisten:

Standard-Dateioperationen:

- Neu, Offnen, SchlieBen, letzter Stand, Speichern, Speichern unter

* Quick-Backup: Backup anlegen und aus Backup wiederherstellen.

« Muster: Als Muster speichern, Muster 6ffnen

+ Verschieben nach ... , Kopieren nach ..., Umbenennen

+ Bearbeiten der Benutzernotizen

+ Die Funktionen "Import" und "Benutzerebene &ndern" werden zur Demon-
stration vorbereitet, aber nicht implementiert.

Fahigkeiten:

+ Arbeit mit DOS- und GEOS-Dateien (auch mit schreibgeschutzten) ist méglich

- Wenn die aktuelle Datei ungeéndert ist kann man "Neu" und "Offnen"
anwahlen ohne die aktuelle Datei vorher schlieBen zu missen.

+ Es kann immer nur eine Datei gleichzeitig offen sein.

« Das Programm kann darauf reagieren, wenn der Nutzer eine verknipfte Datei
doppelklickt. Fir DOS-Dateien muss der Nutzer dazu das Programm Uber
einen entsprechenden Eintrag in der GEOS.INI mit einer Dateierweiterung
verknupfen. Fir GEOS Dateien setzt das Programm das Token und das
Creator-Token der Datei automatisch.

- Jedes Mal, wenn eine Applikations-spezifische Operation nétig ist, z.B. Daten
in die Datei schreiben, wird stattdessen eine MessageBox aufgerufen.

+ Ein offenes Dokument soll einen Systemrestart "Uberleben".

Dokument-Interface - 156

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Software Entscheidungen:

- Alle Buttons aus dem Datei-Mentu und aus der Toolbar bekommen einen
actionData-Wert, der ihre Funktion beschreibt. Ein einziger, zentraler Action-
Handler (DocumentAndToolButtonHandler), der von allen Buttons aktiviert
wird, ruft dann die entsprechenden Routinen auf.

- Eine einzige zentrale Routine (DoUpdateDocButtons) ist dafiir zustandig die
zum Dokument-Interface gehdérenden Buttons an den aktuellen Zustand des
Dokuments anzupassen.

- Anderungen werden erst dann in die Datei geschrieben, wenn der Nutzer dies
explizit anweist. In diesem Kontext bedeutet der Terminus "das Dokument
wurde geandert", dass der Nutzer die Daten im Programm verandert hat. Er
bedeutet nicht, dass die Anderungen schon in die Datei geschrieben wurden!
Wenn Sie VM-Dateien verwenden dirfen Sie von diesem Prinzip abweichen.

Grundstruktur des Dokument-Interface

Das folgende Bild zeigt alle Routinen, die zur vollstdndigen Implementation der
oben genannten Fahigkeiten notwendig sind.

DocStartup DocConnection DocExit
Handler Handler Handler DocumentAndToolButtonHandler
* * BasicChan
. ge
Open = Usernotes
ExternalFile
Basic Basic Basic Basic
CreateNewDoc == — OpenTemplate QuickBackup o1 CopyToDoc
R Up R Up S Up S
Basic BasicSave BasicRestore Basic
OpenDoc |= AsTemplate FromBackup ¢+ MoveToDoc
R Up R Up Up
* - - DoSave Basic Basic
Basic — el Bale RevertDoc —p»1 RenameDoc
CloseDoc |q | R Up Up
—p! BasicSaveDoc !
S Up
DoRead : |
™™ CachedData ¥ ‘J Isnat%ﬁ
Basic S Up
o+l SaveAsDoc
L DolnitDocument
Guardian
vy v V ¢
Up R S
DoUpdate DoReadData || DoSaveData DoEnter Dogﬁg&:‘ied Dogg(\:/ert
DocButtons FromDoc ToDoc DocumentPath Up

Die unten links angeordneten Routinen werden an vielen Stellen aufgerufen. Die
Zuordnung erfolgt deshalb nicht durch Pfeile, sondern durch die in den Kastchen
vermerkten Buchstaben. Zum Beispiel rufen alle Routinen, die ein "R" im Késtchen
haben die Routine DoReadDataFromDoc.

Dokument-Interface - 157

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Im Bild sind drei Gruppen von Routinen zu sehen:

+ Routinen, die in Cyan unterlegt sind, sind ActionHandler. Sie werden vom
System gerufen und milssen als die passenden Actionhandler in das
Application-Objekt eingebunden werden.

+ Routinen, die in Rot unterlegt sind, sind Programmspezifisch. Sie miissen
diese Routinen anpassen bzw. erweitern um die Funktionen lhres Programms
zu realisieren.

+ Ob die Routinen, die in Gelb unterlegt sind, geéndert / angepasst werden
mussen hangt von der Komplexitat Ihres Programms ab.

* Routinen, die in Grau unterlegt sind, enthalten allgemeingultigen Code. Im
Normalfall ist es nicht notwendig diese Routinen anzupassen.

Bei der Verwaltung von Dokumenten fallen eine Reihe von Aufgaben an, die unab-
hangig von der Art und der Struktur der eigentlichen Dokumentdatei sind. R-
BASIC unterstitzt das durch die Bereitstellung einer Objektklasse und einer
Library. Beide arbeiten eng zusammen.

Die Objektklasse DocumentGuardian erleichtert lhnen den Umgang mit
Dokumenten, indem Sie allgemeine Informationen, die bei der Arbeit mit
Dokumenten anfallen, verwalten. Dazu zahlen z.B. der Name und der Pfad zur
Dokumentendatei sowie das FileHandle der offenen Datei. AuBerdem k&nnen
Objekte der Klasse DocumentGuardian vorhandenen Dokumente 6ffnen, neue
Dokumente anlegen und offene Dokumente schlieBen. Dabei bertcksichtigen sie
z.B. den Dateityp und das Token, behandeln schreibgeschitzte Dateien korrekt
und vieles mehr. Auf diese Weise entlasten diese Objekte den BASIC-
Programmierer von einer Vielzahl von Standardaufgaben.

Die Library DocumentTools stellt eine Reihe von Funktionen bereit, die Sie bei
der Arbeit mit Dokumenten unterstitzen. Dazu geh6ren zum Beispiel die typischen
Dialogboxen zum Offnen oder Speichern einer Datei. Um die DocumentTools
Library nutzen zu kénnen mussen Sie sie ihn lhr Programm einbinden:

Include "DocumentTools"

Die DocumentTools Library muss separat heruntergeladen werden, sie ist nicht
Teil des R-BASIC Standard-Pakets. Wenn Sie mit VM-Dateien als Dokumente
arbeiten wollen missen Sie auBerdem die VMFiles Library herunterladen und
includen.

Um die in diesem Kapitel beschriebenen Funktionen und Zusammenhange zu
verstehen sollten Sie zumindest den einfihrenden Abschnitt zum Document-
Guardian-Objekt (Objekt Handbuch, Kapitel 4.13) sowie das Kapitel 1
(Konzeptionelles) aus dem Handbuch der DocumentTools Library gelesen haben.

Dokument-Interface - 158

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.2 Die Ul: Datei-Meni und Toolbar

Das Dateimeni und die
Toolbar bestehen aus einer
Reihe von Buttons. Die
Grafiken flar die Buttons
finden wir im Ordner "lcon
Tool Graphics\Document",
einem Unterordner von
"USERDATA\R-

BASICAIMAGES".

Jeder Button hat als ActionHandler den zentralen Handler DocumentAnd-
ToolButtonHandler gesetzt und der actionData-Wert bestimmt die Funktion des
Buttons. Aus Platzgriinden sind nur einige der Objekte gezeigt.

Group DocumentMenuButtons
Children = MenuNewOpenButton, MenuOpenButton, MenuCloseButton,
MenuSaveButton, MenuSaveAsButton, MenuBackupGroup,
MenuOtherGroup
End OBJECT

Button MenuNewOpenButton
Caption$ = "Neu/Offnen ", 0
ActionHandler = DocumentAndToolButtonHandler
actionData = ID NEW OPEN DIALOG
BringsUpWindow

End OBJECT

Button MenuOpenButton
Caption$ = "Offnen " , 1
ActionHandler = DocumentAndToolButtonHandler
actionData = ID_ OPEN_DOC
BringsUpWindow

End OBJECT

<eoe>

Einzige Besonderheit im Ul-Code der Group DocumentToolButtons ist der Hint
ExpandHeight bei der Group und den Buttons selbst, der bewirkt, dass sich die
Buttons vergréBern, wenn sie gemeinsam mit gréBeren Objekten in der Group
DocumentToolGroup verwendet werden.

Group DocumentToolGroup
Children = DocumentToolButtons
ExpandWidth

End OBJECT

Dokument-Interface - 159

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Group DocumentToolButtons
Children = ToolNewButton, ToolOpenButton, ToolTemplateButton,
ToolCloseButton, ToolSaveButton, ToolBackupButton
OrientChildren = ORIENT HORIZONTALLY
MakeToolbox
ExpandHeight
End OBJECT
Button ToolNewButton
CaptionImage = "Icon Tool Graphics\\Document\\NEW.GIF"
ActionHandler = DocumentAndToolButtonHandler
actionData = ID NEW DOC
ExpandHeight
End OBJECT
Button ToolOpenButton
CaptionImage = "Icon Tool Graphics\\Document\\OPEN.GIF"
ActionHandler = DocumentAndToolButtonHandler
actionData = ID OPEN DOC
ExpandHeight
End OBJECT
<..0.>

Dokument-Interface - 160

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.3 Kernroutinen und Tools

Dieser Abschnitt behandelt grundlegende Routinen, die zur Implementation der in
den folgenden Abschnitten besprochenen Funktionen benétigt werden. Im
Einzelnen sind das

+ der Actionhandler DocumentAndToolButtonHandler. Im Normalfall mussen
Sie an dieser Routine nichts &ndern. Nur bei sehr komplexen Programmen kann
manchmal nétig sein, sie anzupassen. In diese Gruppe gehért auch die Sub
DoRevertDoc. Sie wird im Kapitel 15.6 (Letzter Stand) beschrieben.

+ die Subs DoSetDocModified, DolnitDocumentGuardian, DoUpdateDoc-
Buttons, DoReadDataFromDoc, DoSaveDataToDoc, DoReadCachedData,
DoSaveCachedData und DoEnterDocumentPath. Sie alle miissen angepasst
werden um die Funktionen |hres Programms zu implementieren.

Der zentrale Handler DocumentAndToolButtonHandler handelt jeden Klick auf
einen Button im Datei-Menu. Um die Buttons zu unterscheiden muss jeder Button
einen actionData-Wert gesetzt haben, der seine Funktion beschreibt. Die
entsprechenden Konstanten sind in der Library DocumentTools definiert und auch
dort beschrieben.

Der Handler ist im Folgenden in Teilen wiedergegeben. In der ON - SWICTH
Anweisung werden die Anweisungen entsprechend dem actionData Wert des
gedrickten Buttons ausgefihrt. Die dort verwendeten Routinen haben héufig
selbsterklarende Namen. Sie werden weiter unten ausfuhrlich beschrieben.

Hingewiesen werden soll auf drei Dinge:

1.Im Fall ID_NEW_OPEN_DIALOG wird nur die NewOpenDialogBox gedéffnet,
danach ist der Handler beendet. R-BASIC lauft dann solange im Leerlauf bis der
Nutzer einen Button aus diesem Dialog anklickt. Das ist so gewollt.

2. Die Routine BasicCloseDoc schlie3t das aktuelle Dokument. Sie erwartet einen

Parameter, der bestimmt, ob versucht werden soll, eventuell gednderte Daten
zu speichern. Sollte es ein Problem dabei geben liefert BasicCloseDoc TRUE
zurtick und wir kdnnen die gewunschte Aktion abbrechen.
Im Gegensatz zu den meisten anderen Routinen updatet BasicCloseDoc die Ul
nicht. Deswegen muss das hier erledigt werden. Der Grund daflr ist, dass
BasicCloseDoc von verschiedenen anderen Routinen gerufen wird, z.B. wenn
ein neues Dokument gedffnet wird.

3. Wir brauchen keine Abfragen, ob die gewtinschte Aktion gerade erlaubt ist. Das
erledigt die Routine DoUpdateDocButtons fir uns, indem sie Buttons, die
gerade nicht erlaubte Aktionen ausfiihren wirden, disabled.

BUTTONACTION DocumentAndToolButtonHandler
DIM err

ON ACTIONData SWITCH

CASE ID NEW OPEN DIALOG:
DTShowNewOpenDialog(ConvertObjForSDK (DocumentObj),
NOF NEW OPEN TEMPLATE + NOF_CONFIG + NOF_IMPORT, "")
END CASE

Dokument-Interface - 161

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

CASE ID NEW_DOC:
BasicCreateNewDoc
END CASE

CASE ID OPEN _DOC:
BasicOpenDoc

END CASE

CASE ID CLOSE_DOC:

err = BasicCloseDoc (TRUE) ! Anderungen speichern
IF err THEN RETURN

DoReadDataFromDoc ' UI updaten
DoUpdateDocButtons

End CASE

CASE ID_SAVE_DOC:
BasicSaveDoc

END CASE

< ve. USW. ...>

END SWICTH

END ACTION

Die Routine DoSetDocModified ermdglicht die Verwaltung der Information, ob
das aktuelle Dokument geédndert wurde oder nicht. Das ermoglicht z.B. der
Routine BasicCloseDoc den Nutzer zu fragen, ob er die Anderungen speichern
mochte oder nicht. Fur diesen Zweck verwaltet das DocumentGuardian-Objekt
das Bit DOCS_MODIFIED in seiner Instancevariablen documentState. Der
Parameter "modi" bestimmt, ob das Dokument als "modifiziert" (modi = TRUE)
oder als "nicht modifiziert" (modi=FALSE) gekennzeichnet werden soll.
Entsprechend setzt die Methode SetDocumentState dieses Bit oder setzt es
zurlick. AbschlieBend wird mit DoUpdateDocButtons die Ul angepasst.

Sie sollten die Routine DoSetDocModified jedes Mal rufen, wenn der Nutzer
Daten des Dokuments andert. Typische Situationen sind der OnModified-Handler
von Text-Objekten, die Apply-Handler der Objektklassen Number, Memo,
InputLine sowie der Listenobjekte oder der ColorChangedHandler von
ColorSelector-Objekten. Die Routine fragt jeweils selbst ab, ob sich der
"modifiziert"-Zustand geéndert hat und kehrt sofort zurtick, wenn dem nicht so ist.

Wichtig: Nehmen wir an, Sie haben ein Text-Objekt (Memo, InputLine, VisText
oder LargeText), und das Dokument soll "modifiziert" sein, wenn der Nutzer etwas
eingibt.

Text-Objekte senden ihre OnModified-Message aber nur aus, wenn der Nutzer
"erstmalig" etwas eingibt, das heif3t wenn sie vom Zustand "nicht modifiziert" in
den Zustand "modifiziert" wechseln. Deswegen missen Sie den "modified"
Zustand der betroffenen Textobjekte zurlicksetzen, wenn DoSetDocModified mit
dem Parameter modi=FALSE gerufen wird.

Der Apply-Handler von Listen- und Number-Objekten wird im Allgemeinen jedes
Mal aufgerufen, wenn er Nutzer etwas &ndert. Deswegen ist es normalerweise
nicht nétig, den Modified-Zustand dieser Objekte hier zu andern.

Dokument-Interface - 162

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

SUB DoSetDocModified (modi as INTEGER)

IF modi THEN
' ist schon "modified"? => Return
IF DocumentObj.documentState AND DOCS_MODIFIED THEN RETURN
DocumentObj.SetDocumentState DOCS_MODIFIED, 0
ELSE
' ist schon "nicht modified"? => Return
IF (DocumentObj.documentState AND DOCS MODIFIED) = 0 THEN
RETURN
DocumentObj.SetDocumentState 0, DOCS_MODIFIED
End IF

' -X- Bei Bedarf: weitere Aktionen.

'’ -> den "Modified" Status von Textobjekten (z.B. Memo),

! manchmal auch von Number und Listen-Objekten anpassen
' Sie sollten hier NICHT DoReadDataFromDoc rufen
DoUpdateDocButtons

END SUB

Die Sub DolnitDocumentGuardian initialisiert das DocumentGuardian-Objekt mit
den Daten, die Ihrem Programm entsprechen. Im Beispiel soll das Document-
Guardian-Objekt eine GEOS Datendatei (fileType = GFT_DATA) mit dem Token
"PHO2", 5 und dem CreatorToken "PHON",5 verwalten. Es ist wichtig, dass das
hier angegeben Token mit dem DocToken-Statement und das CreatorToken mit
dem AppToken-Statement des Application-Objekts im Ul-Code Ubereinstimmen.
Mit der Anweisung "guardian.ConfigData = dc" werden die Einstellungen an das
DocumentGuardian-Objekt Gbertragen. i

Der ButtonHandler wird von der DocumentTools-Library fur den "Neuen/Offnen"
Dialog bendtigt.

SUB DoInitDocumentGuardian(guardian as object)
DIM dc AS DocumentConfigStruct

guardian.ButtonHandler = DocumentAndToolButtonHandler

dc.noDocumentString$ = "kein Dokument"
dc.templateFolder$ = "DemoTemplates"
dc.nameForNew$ = "Unbenanntes Dokument "

dc.fileType = GFT DATA
dc.creatorToken.tokenChars = "PHON"
dc.creatorToken.manufid = 5
dc.token.manufid = 5
dc.token.tokenChars = "PHO2"
dc.matchFlags = DOC_MATCH_ TOKEN

guardian.ConfigData = dc

END SUB

Dokument-Interface - 163

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Eine der wichtigsten Routinen ist die Sub DoUpdateDocButtons. Sie hat die
Aufgabe, die Dokument-Buttons aus dem Datei-Menu und aus der Dokument-
Toolbar sowie ihre eigene Ul entsprechend der aktuellen Situation zu enablen
oder zu disablen. Dadurch sorgt diese Routine dafur, dass einzelne Funktionen
nur dann aufgerufen werden kénnen, wenn sie zulassig sind. Zum Beispiel wird
der "Speichern" Button disabled, wenn keine Datei offen ist. Im Allgemeinen
mussen Sie diese Routine erganzen. Ein typischer Fall ist, dass Sie Ul Objekte
haben (z.B. ein Memo-Objekt), in die der Nutzer Daten flir das aktuelle Dokument
eingeben kann. Diese Ul muss disabled werden, wenn kein Dokument offen ist.

Die Entscheidung, ob ein Button enabled sein soll oder nicht kann komplex und
unubersichtlich sein. Deswegen stellt die DocumentTools Library die Routine
DTFindEnabled bereit, die genau diese Information liefert. Welcher Button gemeint
ist wird Uber eine Konstante bestimmt, die in der Library definiert ist. Sie wird auch
fir den actionData-Wert des Buttons benutzt wird. Der folgende Code zeigt die
Routine in Ausschnitten. DTFindEnabled erwartet eine Referenz auf das
DocumentGuardian-Objekt, die mit der BASIC-Routine ConvertObjForSDK
konvertiert wurde. Die Variable docObj speichert die konvertierte Referenz auf das
Objekt.

Die Anweisung "DemoPrimary.Caption2$ = DocumentObj.documentName$"
bewirkt, dass der Name des aktuell offenen Dokuments in der Titelzeile des
Primary-Objekts angezeigt wird. Hier missen Sie den Namen ihres eigenen
Primary-Objekts verwenden.

SUB DoUpdateDocButtons ()
DIM docObj as Object
DIM docState

docObj = ConvertObjForSDK (DocumentObj)

MenuNewOpenButton.enabled = DTFindEnabled(docObj,

ID NEW_OPEN DIALOG)
MenuOpenButton.enabled = DTFindEnabled(docObj, ID OPEN _DOC)
MenuSaveAsButton.enabled = DTFindEnabled(docObj,

ID SAVE AS DOC)
MenuCloseButton.enabled = DTFindEnabled(docObj, ID CLOSE DOC)
ToolNewButton.enabled = DTFindEnabled(docObj, ID NEW DOC)
ToolOpenButton.enabled = DTFindEnabled(docObj, ID OPEN DOC)
ToolCloseButton.enabled = DTFindEnabled(docObj, ID CLOSE DOC)

< .. UsSwW ...>

DemoPrimary.Caption2$ = DocumentObj.documentNames$
< .. hier eigene UI enablen/disablen ...>
END SUB

Dokument-Interface - 164

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Die Sub DoReadDataFromDoc hat die Aufgabe die im Dokument gespeicherten
Daten auszulesen und darzustellen. Weil das immer vom konkreten Programm
abhangt erinnert uns eine MsgBox daran, dass wir hier noch etwas
programmieren mussen. Wichtig ist, dass wir den Fall "Kein Dokument offen"
ebenfalls berucksichtigen. Das kdnnen wir durch Abfrage der Instancevariablen
documentState auf Null oder wie im Beispiel durch Abfrage der Instancevariablen
documentHandle auf NullFile() tun. Haufig werden hier UI-Objekte "geleert", Listen
mit Null Eintragen versehen, Texte geldscht usw.

SUB DoReadDataFromDoc ()

IF DocumentObj.documentHandle == NullFile() THEN
MsgBox "DoReadDataFromDoc: Keine Datei offen. UI anpassen."
ELSE

MsgBox "DoReadDataFromDoc: Hier Daten aus der Datei lesen und
zugehorige UI anpassen."
End IF

END SUB

Die Routine DoSaveDataToDoc wird jedes Mal gerufen, wenn Daten dauerhaft in
der Datei gespeichert werden sollen. Fir VM-Dateien heif3t das, dass VMSave
gerufen werden muss. In welche Datei die Daten geschrieben werden sollen wird
durch den Ubergebenen Parameter fh bestimmt. Sie duarfen hier NICHT auf
DocumentObj.documentHandle zurlickgreifen, weil die Routine je nach Kontext
(z.B. erstellen eines Backups) auch fur andere Dateien gerufen wird.

SUB DoSaveDataToDoc (fh as FILE)
MsgBox "DoSaveDataToDoc: Hier Daten in der Datei fh speichern"
' bei Bedarf: FileCommit (fh)

END SUB

Beim Herunterfahren von GEOS missen Dokument-Daten, die in globalen
Variablen zwischengespeichert sind, an einem sicheren Platz abgelegt werden.
Ein sicherer Speicherplatz fir globalen Variablen sind Instancevariablen von
Objekten. Diese werden vom System automatisch gesichert. Wenn man genau
eine globale Struktur hat bietet sich die Instancevariable privData des Document-
Guardian-Objekts dafur geradezu an.

Die Routine DoSaveCachedData wird vom OnExit-Handler gerufen und muss die
globalen Variablen sichern. Das Gegenstick DoReadCachedData wird vom
OnStartup Handler gerufen und muss die globalen Variablen wieder herstellen.
Far den Fall, dass Sie keine Dokument-Daten in globalen Variablen zwischen-
speichern, kédnnen Sie diese Routinen I6schen.

SUB DoSaveCachedData (docObj as Object)

' Globals Struktur in "privData" speichern

' —X- docObj.privData = globalData, sizeof(GlobalDataStruct)
END SUB 'DoSaveCachedData

Dokument-Interface - 165

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

SUB DoReadCachedData (docObj as Object)
' DoReadCachedData: Hier globale Variablen wiederherstellen.
' Die UI muss nicht upgedatet werden
' -X- globalData = docObj.privData
END SUB 'DoReadCachedData

Das Tool DoEnterDocumentPath wahlt den Pfad an, in dem die Dokumente
gespeichert werden sollen. Weil das von lhrem Programm abhé&ngt missen Sie
diese Routine &ndern. Wenn der Parameter forNew TRUE ist wird der Pfad
angewahlt, in dem neu angelegte Dokumente gespeichert werden sollen. Haufig
ist das der GEOS-Top-Ordner (SP_TOP). Wenn der forNew FLASE ist wéhlt die
Routine den Ordner an, in dem standardmé&Big benannte Dokumente abgelegt
werden. Die Anweisung CreateDir stellt sicher, dass der Ordner existiert.
CreateDir hat kein Problem damit, wenn der Ordner bereits existiert. Sie kbnnen
die letzten beiden Statements auskommentieren um den Dokument-Ordner direkt
zu verwenden.

SUB DoEnterDocumentPath (forNew as Integer)

IF forNew THEN
SetStandardPath SP_TOP
ELSE
SetStandardPath SP_DOCUMENT
CreateDir "Subfolder"
SetCurrentPath "Subfolder"
END IF

END SUB

Dokument-Interface - 166

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

15.4 Standard Dokument Operationen

Alle far die Dateioperationen notwendigen Dialoge werden von der Document-
Tools Library bereitgestellt. Die entsprechenden Routinen liefern eine Struktur
zurlick, die folgendermaBen definiert ist:

End Struct

STRUCT DialogReturnStruct

fileName$ as String[32]
retInfo As Word

Das Feld "fleName$" enthélt den vom Nutzer eingegeben bzw. ausgewéhlten
Dateinamen. Das Feld "retInfo" enthalt die Information, welchen Button im Dialog
der Nutzer gedrickt hat. Daflr dien folgenden Konstanten definiert:

Konstante Wert Bedeutung

DRI_CANCEL 1 Der Nutzer hat "Abbrechen" gewahilt.

DRI_OK 2 Der Nutzer hat "Speichern", "Offnen" oder
ahnliches gewabhilt.

DRI_READ_ONLY 3 Der Nutzer hat "Offnen" oder &hnliches

gewahlt, die ausgewahlte Datei ist jedoch
schreibgeschutzt oder soll schreibgeschutzt
gebffnet werden.

Dokument-Interface - 167

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.4.1 Ein neues Dokument anlegen

Klickt der Nutzer im Menl auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicCreateNewDoc gerufen.

Um ein neues, leeres Dokument anzulegen muss BasicCreateNewDoc folgende

Schritte durchfihren:

1. SchlieBen eines eventuell noch offenen Dokuments. BasicCloseDoc(TRUE)
erledigt alle dafiir nétigen Schritte, einschlieBlich der Nachfrage beim Nutzer, ob
eventuelle Anderungen gespeichert werden sollen.

2. Wechseln in den Ordner, in dem die neue Datei angelegt werden soll.

3. Anlegen der Datei. Alle dafir nétigen Schritte erledigt die Methode
CreateNewDocument. Das DocumentGuardian-Objekt kennt sowohl den
Dateityp als auch das Token der Datei und initialisiert die neue Datei
entsprechend. VM-Dateien werden so initialisiert, dass sie mit den Routinen aus
der VMFiles Library verwendet werden kann.

4. Fir den (extrem unwahrscheinlichen) Fall, dass es beim Anlegen der Datei ein
Problem gegeben hat, geben wir eine Fehlermeldung aus und verlassen die
Sub.

5. Die Datei initialisieren. Hier schreibt man die Daten in die Datei, die auch bei
Leeren Dateien vorhanden sein missen. Ob es da etwas gibt und was das
genau sein muss hangt von lhrem Programm ab.

6. Update der Ul mit DoReadDataFromDoc und DoUpdateDocButtons.

SUB BasicCreateNewDoc ()
DIM err

err = BasicCloseDoc (TRUE)
IF err THEN RETURN

DoEnterDocumentPath (TRUE)
DocumentObj.CreateNewDocument
IF fileError THEN
MsgBox "Fehler beim Anlegen der neuen Datei. Fehlercode:
+ ErrorText$ (fileError)

n

RETURN
End IF

! Datei initialisieren
MsgBox "BasicCreateNewDoc: Hier Datei initialisieren."

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

Dokument-Interface - 168

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

15.4.2 Offnen einer Datei

Klickt der Nutzer im Menl auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicOpenDoc gerufen.

BasicOpenDoc fuhrt die folgenden Schritte aus:

1.
2.

oo

Wechseln in den Pfad, in dem Dokumente normalerweise abgelegt werden.
Aufruf der Routine DTOpenDialog aus der DocumentTools Library. Diese
Routine zeigt den "Offnen" Dialog an. Sie liefert eine DialogReturnStruct
Struktur zurlck (siehe oben). Wenn der Nutzer "Abbrechen gewdahlt hat
verlassen wir die Routine.

. BasicCloseDoc(TRUE) sorgt daflr, dass eine eventuell noch offene Datei jetzt

geschlossen wird. Im Fehlerfall (z.B. wenn der Nutzer "Abbrechen" wéhlt)
verlassen wir die Routine.

. Offnen der ausgewéhlten Datei. Die Methode OpenDocument erledigt alle dazu

notwendigen Schritte. Dazu gehért auch, dass schreibgeschitzte Dateien
schreibgeschitzt gedffnet werden. Wird als zweiter Parameter "TRUE"
angegeben 6ffnet die Methode die Datei auf jeden Fall schreibgeschutzt.

. Sollte das Offnen fehlschlagen geben wir eine Fehlermeldung aus.

In allen Féllen updaten wir die Ul mit DoReadDataFromDoc und DoUpdate-
DocButtons.

SUB BasicOpenDoc ()
DIM ret as DialogReturnStruct
DIM err

END SUB

DoEnterDocumentPath (FALSE)

ret = DTOpenDialog(ConvertObjForSDK(DocumentObj), "")
IF ret.retInfo = DRI CANCEL THEN RETURN

err = BasicCloseDoc (TRUE)
IF err THEN RETURN

IF ret.retInfo = DRI_OK THEN
DocumentObj.OpenDocument ret.fileName$
ELSE
' DRI_READ ONLY, read-only 6ffnen

DocumentObj.OpenDocument ret.fileName$, TRUE
End IF

IF fileError THEN
MsgBox "Fehler beim Offnen der Datei "+ret.fileName$+".
Fehlercode: "+ ErrorText$(fileError)
End IF

DoReadDataFrombDoc
DoUpdateDocButtons

Dokument-Interface - 169

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.4.3 Speichern der geanderten Daten

Klickt der Nutzer im MenU auf den Speichern-Button im Men(oder in der Toolbar
so wird im DocumentAndToolButtonHandler die Routine BasicSaveDoc gerufen.

BasicSaveDoc dient als Verteiler fur die verschiedenen méglichen Falle:

+ Wenn die Datei ungeandert ist ((docState AND DOCS_MODIFIED)=0) kehrt die
Routine ohne weitere Aktion zurlick. Diese Abfrage greift auch dann, wenn gar
keine Datei offen ist (docState = 0).

+ Ist die Datei noch unbenannt (docState AND DOCS_UNTITLED ist nicht Null)
wird die Datei automatisch unter einem neuen Namen gespeichert. BasicSave-
AsDoc() erledigt alle daftir notwendigen Aufgaben.

+ Read-Only-Dateien kann man nicht speichern. Deswegen fragen wir den
Nutzer ob er die Datei unter einem anderen Namen speichern mdchte und
starten gegebenenfalls wieder BasicSaveAsDoc().

In allen anderen Fallen rufen wir DoSaveDataToDoc (DocumentObj.document-
Handle). Diese Routine erledigt die eigentliche Arbeit. Sie wurde weiter oben
(Kapitel 15.3) beschrieben.

Wichtig ist, dass wir den "modified" Status des Dokuments zurlcksetzen. Das
erledigt die Routine DoSetDocModified(FALSE). AbschlieBend updaten wir mit
DoUpdateDocButtons die Menus und ggf. andere wichtige Ul.

SUB BasicSaveDoc ()
DIM docState, ans

docState = DocumentObj.documentState
IF (docState AND DOCS MODIFIED)=0 THEN RETURN

IF docState AND DOCS UNTITLED THEN
BasicSaveAsDoc ()
RETURN
END IF

IF docState AND DOCS READ ONLY THEN
ans = QuestionBox ("Die Datei ist schreibgeschiitzt. Wollen
Sie sie unter einem neuen Namen speichern?")
IF ans = YES THEN
BasicSaveAsDoc ()
End IF
RETURN
End IF

DoSaveDataToDoc (DocumentObj.documentHandle)
DoSetDocModified(FALSE)
DoUpdateDocButtons

END SUB

Dokument-Interface - 170

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.4.4 Speichern unter neuem Namen

Klickt der Nutzer im Menl auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicSaveAsDoc gerufen. Diese Routine
wechselt in den Pfad, in dem Dokumente im Normalfall abgelegt werden und
6ffnet dann mit DTDaveAsDialog den "Speichern unter" Dialog. Sie ist in der
DocumentTools Library definiert und kiimmert sich z.B. auch darum, dass der
Nutzer nur einen fir den vom DocumentGuardian verwalteten Dateityp gulltigen
Dateinamen eingeben kann. Der Parameter "FALSE" bewirkt, dass die Dateien im
FileSelector des "Speichern unter"-Dialogs nicht wie sonst unter GEOS (ublich
grau angezeigt werden. Dadurch kann der Nutzer z.B. die Datei, die er Uber-
schreiben méchte, anklicken.

DTSaveAsDialog wechselt in den Pfad, der im "Speichern unter" Dialog
ausgewahlt wurde. Sie liefert eine DialogReturnStruct-Struktur zurtck (siehe
oben), die unter anderem den neuen Namen fir die Datei enthalt.

Die eigentliche Arbeit erledigt dann die Routine InternalSaveAs, die auch von
BasicSaveAsTemplate gerufen wird.

FUNCTION BasicSaveAsDoc () AS REAL

Dim err

DIM ret as DialogReturnStruct
DoEnterDocumentPath (FALSE)

ret = DTSaveAsDialog(ConvertObjForSDK(DocumentObj), "", FALSE)
IF ret.retInfo = DRI _CANCEL THEN RETURN TRUE

err = InternalSaveAs(ret)
RETURN err

END FUNCTION

Sowohl BasicSaveAsDoc als auch InternalSaveAs liefern den Fehlerwert TRUE
zurtck, wenn der Nutzer den Vorgang abgebrochen hat oder ein anderer Fehler
auftrat.

Die Funktion InternalSaveAs erledigt die Hauptarbeit zum Speichern einer Datei

unter neuem Namen. Dabei sind die folgenden Schritte zu erledigen:

1. Wir stellen sicher, dass die neue Datei im aktuellen Ordner nicht existiert. Die
Routine DTConfirmAndDelete aus der DocumentTools Library prift das, fragt
gaf. den Nutzer, ob er die Datei Uberschreiben méchte und l6scht diese dann.
Falls das nicht moglich ist, z.B. weil der Nutzer "Abbrechen" gewahlt hat oder
weil die Datei in Benutzung ist, liefert dir Routine TRUE zurick und wir
verlassen die Routine InternalSaveAs mit dem Returnwert TRUE.

2. Wir fertigen mit DTCloneFile eine 1:1 Kopie des aktuell vom DocumentGuardian
gebffneten Dokuments an. Fur den sehr unwahrscheinlichen Fall, dass es dabei
ein Problem gibt, setzt DTCloneFile die globale Variable fileError und wir
brechen den Vorgang ab.

3. Jetzt kbnnen wir die aktuelle Datei schlieBen. Vorher merken wir uns den
modified-Status und bringen die Datei mit DoRevertDoc auf den letzten
gespeicherten Stand.

Dokument-Interface - 171

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

4. Nun kénnen wir die neue Datei 6ffnen. War die Datei geadndert speichern wir die
den aktuellen Stand in der Datei und setzen den modified-Status zurlck.

5. AbschlieBend bringen wir die Buttons und in den Menls auf den neuesten
Stand und kehren durch "RETURN FALSE" mit der Information "alles OK"
zuruck.

FUNCTION InternalSaveAs (ret as DialogReturnStruct) AS Real
DIM err, modi

err = DTConfirmAndDelete(ret.fileName$)
IF err THEN RETURN true

DTCloneFile(ConvertObjForSDK (DocumentObj), ret.fileName$)
IF fileError THEN RETURN TRUE

modi = DocumentObj.documentState AND DOCS_ MODIFIED
DoRevertDoc
DocumentObj.CloseDocument

DocumentObj.OpenDocument ret.fileName$

IF modi THEN
DocumentObj.SetDocumentState DOCS_MODIFIED, 0
DoSaveDataToDoc (DocumentObj.documentHandle)
DoSetDocModified(FALSE)

END IF

DoUpdateDocButtons
RETURN FALSE
END FUNCTION

Dokument-Interface - 172

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.4.5 SchlieBen des Dokuments

Klickt der Nutzer im Menl auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicCloseDoc aufgerufen. AuBerdem wird
BasicCloseDoc an verschiedenen anderen Stellen des Programms gerufen, z.B.
wenn eine neue Datei gedffnet werden soll wahrend noch eine andere offen ist.

Die Funktion BasicCloseDoc schlieBt das aktuelle Dokument und liefert im
Erfolgsfall den Wert FALSE zurlck. Im Fehlerfall gibt BasicCloseDoc den Fehler-
Wert TRUE zuruck.

Wenn ein Dokument geschlossen werden soll kébnnen vorher andere Aktionen
notwendig sein. Zum Beispiel konnte es notig sein, gednderte Daten in die Datei
zu schreiben oder die Datei unter einem anderen Namen zu speichern. Da hier
sehr viele Félle moglich sind bietet die DocumentTools Library die Funktion
DTConfirmClose an. Sie pruft die Instancevariable "documentState" des Uber-
gebenen DocumentGuardian-Objekts, ob das vom DocumentGuardian-Objekt
gedffnete Dokument einfach geschlossen werden kann oder ob weitere Aktionen
nétig sind. Im Zweifelsfall wird der Nutzer durch eine Dialogbox gefragt, wie weiter
zu verfahren ist. DTConfirmClose handelt alle denkbaren Falle und liefert einen
der folgenden Werte zurlck:

Konstante Wert Vorgehen

CLOSE_DISCARD 0 Die Datei soll ohne Speichern geschlossen
werden, d.h. Anderungen werden verworfen.

CLOSE_SAVE 1 Die Datei soll vor dem SchlieBen gespeichert
werden.

CLOSE_SAVE_AS 2 Die Datei ist neu oder schreibgeschutzt und

soll vor dem SchlieBen unter neuem Namen
gespeichert werden.

CLOSE_CANCEL 3 Die Datei soll doch nicht geschlossen werden
weil der Nutzer "Abbrechen" gewahlt hat.
CLOSE_NO_FILE 4 Es ist keine Datei offen.

Entsprechend besteht die Routine BasicCloseDoc nur aus dem Aufruf der Routine
DTConfirmClose sowie einer ON-SWICTH Anweisung, die die mdéglichen Falle
behandelt. Der Parameter saveData bestimmt, ob eventuell geanderte Daten in
der Datei gespeichert werden sollen oder nicht. Ist er FALSE oder wahlt der
Nutzer "Anderungen vergessen" wird die Datei auf den letzten gespeicherten
Stand zurlckgesetzt und dann geschlossen.

Dokument-Interface - 173

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

FUNCTION BasicCloseDoc (saveData as INTEGER) AS REAL
DIM cmd, err

IF saveData THEN

cmd = DTConfirmClose(ConvertObjForSDK(DocumentObj), TRUE)
ELSE

cmd = CLOSE_DISCARD

END IF

ON cmd SWITCH

CASE CLOSE CANCEL: " Abbruch
RETURN TRUE

CASE CLOSE _NO _FILE: ’ Keine Datei offen
RETURN FALSE

CASE CLOSE DISCARD: ' Anderungen nicht speichern
DoRevertDoc
END CASE

CASE CLOSE_SAVE: ' Anderungen speichern
BasicSaveDoc ' Handelt alle denkbaren Falle
END CASE

CASE CLOSE_SAVE AS:
err = BasicSaveAsDoc()
IF err THEN RETURN TRUE
END SWITCH

DocumentObj.CloseDocument
RETURN FALSE

END FUNCTION

Dokument-Interface - 174

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.5 Erweiterte Dateioperationen

In diesem Abschnitt wird beschrieben, wie die Operationen "Kopieren nach",
"Verschieben nach", "Umbenennen" und das Andern der Benutzernotizen
implementiert werden. Die entsprechenden Routinen BasicCopyToDoc,
BasicMoveToDoc, BasicRenameDoc und BasicChangeUsernotes werden vom
DocumentAndToolButtonHandler aufgerufen, wenn der Nutzer den ent-
sprechenden Menupunkt anklickt.

Kopieren nach ...

Die Funktion "Kopieren nach" erstellt eine Kopie des aktuellen Standes unseres

Dokuments unter einem neuen Namen. Die von BasicCopyToDoc aufgerufenen

Routinen haben im Folgenden dargestellten Aufgaben. Sollte ein Fehler oder ein

Nutzerabbruch mdéglich sein wird dieser jeweils abgefragt und die Routine

BasicCopyToDoc wird verlassen.

+ DoEnterDocumentPath wechselt in den Pfad, in dem Dokumente normaler-
weise abgelegt werden.

+ DTMoveCopyDialog(... FALSE) zeigt den "Kopieren nach..."-Dialog an. Die
Strukturvariable ret enthalt danach alle nétigen Informationen.

« DTConfirmAndDelete(ret.fileName$) prift, ob schon eine Datei des
gewulnschten Namens vorhanden ist und l6scht diese nach entsprechender
Nachfrage beim Nutzer.

+ DTCloneAndOpenFile legt eine 1:1-Kopie des aktuell geéffneten Dokuments an
und 6ffnet diese. NewFile enthélt das FILE Handle der Kopie und die globale
Variable fileError enthalt im (sehr unwahrscheinlichen) Falle eines Fehlers den
Fehlercode.

+ DoSaveDataToDoc(newFile) bringt die Kopie auf den neuesten Stand und
DTCloseClone(newFile) schlieB3t die Kopie.

Da wir an der Originaldatei nichts geé&ndert haben brauchen wir die Ul nicht

upzudaten.

SUB BasicCopyToDoc ()

DIM ret as DialogReturnStruct
DIM err

DIM newFile AS FILE

DoEnterDocumentPath (FALSE)

ret = DTMoveCopyDialog(ConvertObjForSDK(DocumentObj), "", FALSE)
IF ret.retInfo = DRI _CANCEL THEN RETURN

err = DTConfirmAndDelete(ret.fileNameS$)
IF err THEN RETURN

newFile = DTCloneAndOpenFile(ConvertObjForSDK(DocumentObj),
ret.fileNameS$)
IF fileError THEN RETURN
DoSaveDataToDoc (newFile)
DTCloseClone(newFile)
END SUB

Dokument-Interface - 175

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

Verschieben nach ...

Die Funktion "Verschieben nach" verschiebt das aktuelle Dokument an einen
neuen Ort. Dazu muss das aktuelle Dokument zunachst kopiert werden. War das
erfolgreich wird es geschlossen und geléscht. Danach wird die Kopie geoffnet.
Beachten Sie, dass sich durch dieses Vorgehen das FILE Handle des Dokuments
andert.

Die Sequenz aus DoEnterDocumentPath und DTMoveCopyDialog(... FALSE)
l&dsst den Nutzer den neuen Namen und den neuen Pfad des Dokuments
eingeben und wechselt in den neuen Pfad. DTConfirmAndDelete(ret.fileName$)
stellt sicher, dass keine Datei mit dem neuen Namen am Zielort existiert.
DTCloneFile legt die erforderliche 1:1-Kopie an. Schlagt das fehl brechen wir
den Vorgang ab.

Eigentlich kann ab jetzt nichts mehr schief gehen. Trotzdem programmieren wir
etwas auf Sicherheit.

Wir merken uns den vollstdndigen Pfad zur aktuell gedffneten Datei sowie ihren
"modified" Zustand. Beachten Sie, dass oldFile$ als String(230) deklariert ist,
damit wirklich der komplette Pfad abgelegt werden kann.

Die Methode CloseDocument schieBt das aktuelle Dokument, OpenDocument
(ret.FileName$) 6ffnet die 1:1-Kopie.

War das Offnen erfolgreich enthéalt die Instancevariable documentState einen
Wert ungleich Null. In diesem Fall kbnnen wir die Originaldatei beruhigt I6schen.
AuBerdem passen wird den Documentstatus an.

AbschlieBend rufen wir DoUpdateDocButtons. Das bewirkt insbesondere, dass
der Name der neuen Datei in der Titelzeile des Primary-Objekts angezeigt wird.

SUB BasicMoveToDoc ()

DIM ret as DialogReturnStruct
DIM err, oldState

DIM oldFile$ as STRING(230)

END SUB

DoEnterDocumentPath (FALSE)

ret = DTMoveCopyDialog(ConvertObjForSDK(DocumentObj), "", TRUE)
IF ret.retInfo = DRI _CANCEL THEN RETURN

err = DTConfirmAndDelete(ret.fileName$)

IF err THEN RETURN

DTCloneFile(ConvertObjForSDK (DocumentObj), ret.fileName$)
IF fileError THEN RETURN

oldFile$ = DocumentObj.documentPath$ + "\\" + \
DocumentObj.documentname$
oldState = DocumentObj.documentState AND \

(DOCS_MODIFIED OR DOCS EDIT TEMPLATE)
DocumentObj.CloseDocument
DocumentObj.OpenDocument (ret.FileName$)
if (DocumentObj.documentState) THEN
DocumentObj.SetDocumentState oldState, 0
FileDelete oldFile$
END TIF
DoUpdateDocButtons

Dokument-Interface - 176

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

Umbenennen

Um eine Datei umbenennen zu kédnnen muissen wir sie zunachst schlieBen. Dann
kdnnen wir sie umbenennen und mit neuem Namen wieder 6ffnen.

+ SetCurrentPath(DocumentObj.documentPath$) wechselt in den Pfad, in dem
sich das aktuell getffnete Dokument befindet.

« Die Sequenz aus DTRenameDialog und DTConfirmAndDelete(ret.fileName$)
ermoglicht dem Nutzer einen neuen Namen einzugeben und stellt sicher, dass
keine Datei mit diesem Namen im aktuellen Ordner existiert.

« Wir merken uns den Namen (oldFile$) und den Zustand (oldState) des aktuell
gedffneten Dokuments und schlieBen es dann mit CloseDocument.

+ FileRename oldFile$, ret.fleName$, "m" erledigt das Umbenennen. Der Para-
meter "m" bewirkt, dass im (extrem unwahrscheinlichen Fall) eines Problems
eine entsprechende Fehlermeldung ausgegeben wird.

+ Im Fehlerfall enthalt die globale Variable fileError einen Fehlerwert (ungleich
Null). In diesem Fall 6ffnen wird die originale Datei wieder, ansonsten die

umbenannte.
* In jedem Fall updaten wir den Dokumentstatus (SetDocumentState) und die Ul

(DoUpdateDocButtons).

SUB BasicRenameDoc ()

DIM ret as DialogReturnStruct
DIM err, oldState

DIM oldFile$ as STRING(32)

SetCurrentPath (DocumentObj.documentPaths$)

ret = DTRenameDialog(ConvertObjForSDK(DocumentObj), "")
IF ret.retInfo = DRI _CANCEL THEN RETURN

err = DTConfirmAndDelete(ret.fileNameS$)

IF err THEN RETURN

oldFile$ = DocumentObj.documentName$
oldState DocumentObj.documentState AND (DOCS_ MODIFIED OR

DOCS_EDIT TEMPLATE)
DocumentObj.CloseDocument
FileRename oldFile$, ret.fileName$, "m"

IF fileError THEN
DocumentObj.OpenDocument (0ldFile$)

ELSE

DocumentObj.OpenDocument (ret.FileName$)
END IF

DocumentObj.SetDocumentState oldState, 0
DoUpdateDocButtons

END SUB

Dokument-Interface - 177

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Benutzernotizen andern

Das Andern der Benutzernotizen libernimmt die Routine DTChangeUsernotes aus
der DocumentTools Library. Sie erledigt alle notwendigen Schritte, einschlieBlich
der Anzeige der entsprechenden Dialogbox sowie der Prifung, ob das aktuell
gebffnete Dokument Uberhaupt Benutzernotizen unterstitzt.

SUB BasicChangeUsernotes ()
DTChangeUsernotes (ConvertObjForSDK (DocumentObj))

END SUB

15.6 Letzter Stand

Klickt der Nutzer im MenU auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicRevertDoc gestartet. Diese Routine pruft
zur Sicherheit, ob das Dokument Uberhaupt geadndert wurde und fragt dann den
User, ob er sicher ist. Sodann ruft es DoRevertDoc, dass die eigentliche Arbeit
erledigt und updatet dann mit DoReadDataFromDoc und DoUpdateDocButtons
die Ul. Wichtig ist, dass mit DoSetDocModified (FALSE) der "modified" Zustand

des Dokuments zurtckgesetzt wird.

SUB BasicRevertDoc ()
DIM ans, docState

docState = DocumentObj.documentState
IF (docState AND DOCS MODIFIED) = 0 THEN RETURN

ans = QuestionBox ("Sind Sie sicher, dass Sie alle Anderungen
seit dem letzten Speichern verwerfen wollen?")
IF ans <> YES THEN RETURN

DoRevertDoc

DoSetDocModified (FALSE)
DoReadDataFromDoc
DoUpdateDocButtons

END SUB

Nur VM-Dateien unterstitzen ein echtes "Zurlick zum letzten gespeicherten
Stand". Wenn Sie VM-Dateien als Dokumente benutzen kénnen Sie beliebig
Daten in die Datei schreiben und trotzdem VMRevert verwenden, um den letzten
gespeicherten Stand wieder herzustellen. Deshalb werden VM-Dateien von allen
groBen Applikationen wie GeoWrite und auch R-BASIC selbst als Dokumente

benutzt.

Dokument-Interface - 178

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Wenn Sie sich, wie in unserem Beispiel, gegen VM-Dateien entscheiden ist der
einfachste Weg, eine "Revert"-Funktion zu unterstiitzen, alle Anderungen der
Dokumentdaten in Instancevariablen oder globalen Variablen zu speichern und
nicht in die Datei zu schreiben, bis der Nutzer explizit "Speichern" wahlt. In diesem
Fall besteht das Wiederherstellen des letzten gespeicherten Standes einfach
darin, die (ungeanderten) Daten aus dem Dokument wieder auszulesen.
DoRevertDoc hat dann nichts zu tun, weil das Auslesen der Daten von
BasicRevertDoc erledigt wird, nachdem es DoRevertDoc aufgerufen hat.

Dieses Konzept hat einen groBen Nachteil. Im Falle eines Fehlers gehen alle
geanderten Daten verloren, weil sie nirgends in einer Datei gespeichert wurden.

Auch wenn DoRevertDoc nichts tut wird es von allen Routinen, die ein
Zurlcksetzen der Datei auf den letzten gespeicherten Stand erwarten, gerufen.
Deshalb, wenn Sie ein Konzept haben, nicht-VM-Dateien auf ihren letzten
gespeicherten Stand zurlickzusetzen, so kénnen Sie es hier implementieren.

Wenn Sie VM-Dateien benutzen braucht DoRevertDoc nur VMRevert aufzurufen.

SUB DoRevertDoc ()
MsgBox "DoRevertDoc: Datei auf den letzten gespeicherten Stand
bringen - falls es dazu etwas zu tun gibt."
' Im aktuellen Konzept hat DoRevertDoc nichts zu tun
' Sie konnen die MsgBox einfach entfernen
' Flir VM-Dateien: VMRevert (DocumentObj.documentHandle) rufen
END SUB

Dokument-Interface - 179

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.7 Quick Backup

Klickt der Nutzer im Menl auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicQuickBackup bzw. BasicRestoreFrom-
Backup gerufen.

BasicQuickBackup legt eine Kopie der Datei im Backup-Ordner (SP_BACKUP) an.
Dort werden Ublicherweise keine Unterordner verwaltet. Zuné&chst wird ein
eventuell vorhandenes alteres Backup geléscht. DTCloneAndOpenFile legt eine
1:1 Kopie der aktuell offenen Datei an und 6ffnet diese. Im Fehlerfall gibt es eine
Fehlermeldung, ansonsten wird die Backupkopie mit DoSaveDataToDoc auf den
neuesten Stand gebracht und danach geschlossen. In jedem Fall rufen wir
DoUpdateDocButtons um den "Aus Backup wiederherstellen"-Button zu updaten.

SUB BasicQuickBackup ()

DIM fileName$ ’, docState, ro
DIM docPath$ as string(200)
DIM backupFile as FILE

fileName$ = DocumentObj.documentNames$
SetStandardPath SP_BACKUP

FileDelete fileName$
backupFile = DTCloneAndOpenFile(ConvertObjForSDK(DocumentObj),
fileName$)
IF fileError THEN
MsgBox "Konnte Backup-Datei nicht anlegen. Fehlercode:
+ ErrorText$(fileError)

ELSE
DoSaveDataToDoc (backupFile)
DTCloseClone (backupFile)
End IF

DoUpdateDocButtons

END SUB

BasicRestoreFromBackup stellt eine Datei aus einer Backupkopie wieder her.

Dazu gehen wir folgendermaBen vor:

« Wir merken uns Name (fileName$) und Pfad (docPath$) der aktuell offenen
Datei.

+ Nach dem Wechsel in den Backup-Ordner prifen wir mit der Routine DTCheck-
FileType aus der DocumentTools Library ob eine Backupdatei existiert und ob
diese kompatibel zur aktuell offenen Datei ist. Das umfasst den Dateityp, den
Dateinamen und fur GEOS bzw. VM-Dateien auch das Token bzw. das
CreatorToken. Im Fehlerfall brechen wir den Prozess ab.

+ Das "Wiederherstellen" der Datei besteht aus vier Schritten:

1. SchlieBen des aktuellen Dokuments.

2. Kopieren der Backupkopie an die Stelle des aktuellen Dokuments. Das alte
Dokument wird dabei automatisch Gberschrieben.

3. Offnen der herkopierten Backupkopie.

4. Update der Ul mit DoReadDataFromDoc und DoUpdateDocButtons.

Dokument-Interface - 180

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

SUB BasicRestoreFromBackup ()
DIM docPath$ as String(200)
DIM fileName$, err

fileName$ = DocumentObj.documentnames$
docPath$ = DocumentObj.documentPath$

SetStandardPath SP_BACKUP
err = DTCheckFileType (ConvertObjForSDK (DocumentObj),
fileName$, "*")
IF err THEN
MsgBox "Kann Backup nicht wieder herstellen. Fehlercode:
" + ErrorText$ (err)
RETURN
End IF

DocumentObj.CloseDocument

FileCopy fileName$, docPath$ + "\\" + fileName$
SetCurrentPath docPath$
DocumentObj.OpenDocument fileName$

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

15.8 Verwendung von Muster-Dateien

Muster-Dateien werden immer in einem Unterordner des Ordners
"USERDATA\TEMPLATE" gespeichert. Klickt der Nutzer im Menu auf einen der
zugehdrigen Buttons so wird im DocumentAndToolButtonHandler eine der
Routinen BasicOpenTemplate oder BasicSaveAsTemplate gerufen.

Die Routine BasicOpenTemplate 6ffnet eine Musterdatei indem entweder eine

neue Datei angelegt wird oder das Muster zum Bearbeiten gedffnet wird.

+ DTOpenTemplateDialog erlaubt es dem Nutzer eine Musterdatei auszuwahlen.
StandardméBig ist die Option "Zum Bearbeiten" deaktiviert und ret.retinfo
enthalt den Wert DRI_READ_ONLY. Aktiviert der Nutzer die genannte Option
enthélt ret.retinfo den Wert DRI_OK.
srcFile$ speichert den kompletten Pfad zu ausgewahlten Musterdatei.

+ BasicCloseDoc(TRUE) schlieBt die aktuell getffnete Datei und fragt den Nutzer
gegebenenfalls ob er seine Anderungen speichern will usw. Wéhit der Nutzer
"Abbrechen" wird die Datei nicht geschlossen und wir verlassen die Routine.

+ Fur den Fall, dass der Nutzer die Musterdatei bearbeiten will (ret.retinfo =
DRI_OK) offnen wir die Musterdatei selbst (ret.fileName$) und teilen dem
DocumentGuardian-Objekt mit, dass wir eine Musterdatei bearbeiten
(DocumentObj.SetDocumentState DOCS_EDIT_TEMPLATE, 0). Dieses Flag

Dokument-Interface - 181

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

bewirkt nur, dass der néchste "Offnen"-Dialog den Dokument-Ordner anzeigt,
und nicht dem der aktuell offenen Datei (den Template-Ordner).
+ Wenn der Nutzer das Muster verwenden will um eine neue Datei anzulegen
gehen wir folgendermalBen vor:
1. DoEnterDocumentPath(TRUE) wechselt in den Pfad, wo neue Dokumente
abgelegt werden.
2. DTFindNameForNew findet einen passenden (und noch unbenutzten)
Namen fir das neue Dokument.
3. FileCopy srcFile$, fileName$, "m" kopiert das Musterdokument unter dem
neuen Namen in den aktuellen Ordner (siehe Punkt 1.)
4. Fur den Fall dass alles gut gegangen ist 6ffnen wir das neue Dokument und
markieren es als "unbenannt".
+ AbschlieBend passen wir die Ul mit der Standardsequenz aus DoReadData-
FromDoc und DoUpdateDocButtons an.

SUB BasicOpenTemplate ()

DIM fileName$ as string(32)
DIM srcFile$ as String(240)
DIM err

DIM ret as DialogReturnStruct

ret = DTOpenTemplateDialog(ConvertObjForSDK(DocumentObj), "")
IF ret.retInfo = DRI _CANCEL THEN RETURN
srcFile$ = currentPath$ + "\\" + ret.fileName$S

err = BasicCloseDoc (TRUE)
IF err THEN RETURN

IF ret.retInfo = DRI_OK THEN ' => zum Bearbeiten
DocumentObj.OpenDocument ret.fileName$
DocumentObj.SetDocumentState DOCS EDIT TEMPLATE, 0

ELSE
DoEnterDocumentPath (TRUE)
fileName$ = DTFindNameForNew(ConvertObjForSDK (DocumentObj))
FileCopy srcFile$, fileName$, "m"

IF fileError = 0 THEN
DocumentObj.OpenDocument fileName$
DocumentObj.SetDocumentState DOCS_UNTITLED, O
End IF
End IF

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

BasicSaveAsTemplate speichert eine Datei als Muster im Template-Ordner. Dazu
ruft es zuerst DTSaveAsTemplateDialog. Diese Routine erlaubt es dem Nutzer
einen Namen und ggf. einen anderen Pfad flir die Musterdatei einzugeben. Die

Dokument-Interface - 182

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

nachsten Schritte sind identisch mit dem "normalen" Speichern einer Datei mit
einem neuen Namen. Deswegen kdénnen wir diese Aufgabe an InternalSaveAs
delegieren. Diese Routine ist im Abschnitt 15.4.4 (Speichern unter neuem Namen)
beschrieben. Sie speichert die aktuell offene Datei mit einem neuen Namen und
offnet diese zum Bearbeiten.

Nun informieren wir das DocumentGuardian-Objekt, dass eine Musterdatei in
Bearbeitung ist und wir haben die Mdglichkeit "Muster-typische" Anderungen an
der Datei vorzunehmen. Ob es da etwas gibt und was das ist hangt wieder vom
Ihrem Programm ab. AbschlieBend geben wir noch eine Erfolgsmeldung an den
Nutzer aus.

SUB BasicSaveAsTemplate ()
DIM err
DIM ret as DialogReturnStruct

ret = DTSaveAsTemplateDialog(ConvertObjForSDK (DocumentObj),
"", FALSE)
IF ret.retInfo = DRI _CANCEL THEN RETURN

err = InternalSaveAs(ret)
IF err THEN RETURN

DocumentObj.SetDocumentState DOCS _EDIT TEMPLATE, O
MsgBox("BasicSaveAsTemplate: Datei gespeichert. Hier eventuell
Sonderaufgaben fiir \"Muster\" erledigen")
MsgBox "Die Datei wurde als Muster gespeichert und zum
Bearbeiten gecffnet."
RETURN

END SUB

Das GEOS-System hat fir "Muster" Dateien ein spezielles Attribut, das dem
Dokument-Interface mitteilt, dass es sich nicht um ein normales Dokument
handelt. R-BASIC unterstlitzt dieses Attribut nicht. Wenn Sie méchten kénnen Sie
an dieser Stelle einen bestimmten Wert in Ihrem Muster-Dokument setzen, der
das Dokument als "Muster" kennzeichnet. Diesen kénnen Sie beim Offnen des
Dokuments auslesen und entsprechend (analog zu BasicOpenTemplate)
reagieren.

Dokument-Interface - 183

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.9 Schnittstelle zum GEOS Dateisystem

Ein Programm, das mit Dokumenten arbeitet, muss mit folgenden Situationen

umgehen kénnen:

« Der Nutzer 6ffnet im GeoManager ein zu dem Programm gehérendes
Dokument. In diesem Fall unterscheidet das System zwei Falle. Wenn das
Programm noch nicht lauft wird es gestartet und der OnStartup-Handler (in
unserem Fall die Routine DocStartupHandler) des Programms wird ausge-
fuhrt. Lauft das Programm bereits wird stattdessen der OnConnection-Handler
des Programms ausgefuhrt (in unserem Fall die Routine DocConnection-
Handler). In beiden Féllen wird den Handlern der komplette Pfad zur Datei
Ubergeben und das Programm muss in der Lage sein diese Datei zu 6ffnen.

Das erledigen wir mit der Routine OpenExternalFile.

+ Der Nutzer selektiert im GeoManager ein Dokument und wéhlt den Menupunkt
"Drucken". Diese Situation wird nicht hier, sondern im Objekthandbuch, beim
PrintControl-Objekt, Kapitel 4.14.8, besprochen.

+ Der Nutzer schlieBt das Programm wahrend noch ein Dokument offen ist. Dann
muss der OnExit-Handler (in unserem Fall die Routine DocExitHandler) daftir
sorgen, dass die Dokumentendatei geschlossen wird. Falls erforderlich muss
der Nutzer vorher gefragt werden, ob er Anderungen in der Datei speichern will.

+ GEOS fahrt bei offenem Programm herunter. Auch hier ist der OnExit-Handler
gefragt. Er muss dafur sorgen, dass die Datei so geschlossen wird, dass sie
beim Wiederhochfahren automatisch geéffnet werden kann. Diese Aufgabe
delegieren wir an das DocumentGuardian-Objekt. Vorher missen wir eventuell
in globalen Variablen gecachte Daten sichern.

+ Wenn GEOS wieder hochfédhrt muss die beim Herunterfahren geschlossene
Datei automatisch wieder gedffnet werden. Auch das delegieren wir komplett an
das DocumentGuardian-Objekt. Danach missen wir gegebenenfalls globale
Variablen wiederherstellen.

Alle drei Handler missen wie folgt im Ul-Code als Handler des Application-Objekts
vereinbart werden. Wenn Sie bereits einen entsprechenden Handler haben reicht
es, wenn Sie den Code in den bereits definierten Handler verschieben.

Application MyAppObject
OnStartup = DocStartupHandler
OnExit = DocExitHandler
OnConnection = DocConnectionHandler
<..>

End Object

AuBerdem benutzen wir die Tatsache, dass alle Instancevariablen von Generic-
Class Objekten eine Systemrestart automatisch Uberleben. Das Document-
Guardian-Objekt merkt sich also z.B. den Namen und den Pfad der aktuell offenen
Datei automatisch, ohne unser Zutun. Wenn wir weiterhin darauf achten, dass alle
geanderten Daten des Dokument in irgendwelchen Instancevariablen gespeichert
sind (das ist z.B. automatisch der Fall beim Text eines Memo-Objekts, dem
ausgewahlten Eintrag einer Liste oder der aktuellen Farbe bei einem
ColorSelector), stehen uns diese Daten nach einem Systemneustart automatisch
wieder zur Verfigung. Kimmern mussen Sie sich nur, wenn Sie Daten in globalen

Dokument-Interface - 184

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Variablen haben. Diese kdnnten Sie z.B. in der Instancevariablen "document-
UserData" des DocumentGuardian-Objekts "retten".

Um eine DOS-Datei mit einem Programm zu verknupfen muss in der GEOS.INI in
der Kategorie [flemanager] unter "fileNameTokens" ein Eintrag der Form

* EXT="DTOK", 0, "AppT", 16600
existieren, wobei *.EXT die DOS-Datei beschreibt, "DTOK", 0 das Token ist, das
der GeoManager zur Anzeige der Datei verwenden soll und "AppT", 16600 das
Token unseres Programms ist.
R-BASIC unterstiitzt das Setzen eines solchen Eintrags nicht. Der Nutzer muss
das selbst tun, z.B. mit Hilfe des Voreinstellungs-Moduls.

Far GEOS- und VM-Dateien missen wir nicht in die GEOS.INI eingreifen. Wir
mussen der Datei nur ein CreatorToken zuweisen. Damit wei3 das System zu
welchem Programm die Datei gehort. Sinnvoller Weise geben wir der Datei auch
noch ein eigenes Token. Das alles erledigt das DocumentGuardian-Objekt flr uns.
Wir missen nur Token und CreatorToken bei der Konfiguration des Objekts
angeben (siehe Kapitel 15.3, Routine DolnitDocumentGuardian).

Der OnStartup-Handler

Wie oben beschrieben muss der OnStartup-Handler (er hei3t DocStartupHandler)
unterscheiden, ob das Programm neu startet oder ob GEOS gerade wieder
hochfahrt. AuBerdem muss er wissen, ob eine Datendatei (Dokument) ibergeben
wurde oder nicht. Die entsprechende Information ist im Parameter "flags" zu
finden. Ist das Bit AF_RESTORE gesetzt fahrt GEOS nach einem Shutdown
wieder hoch. Das Bit AF_DATA_FILE ist gesetzt, wenn eine Datei an den Handler
ubergeben wurde. Das ermdglicht uns folgendes Vorgehen:

« Wir prifen zunéachst das Bit AF_RESTORE. Ist es gesetzt rufen wir die
Methode HandleRestart des DocumentGuardian-Objekts. Diese erledigt die
notwendigen Schritte. DoReadCachedData stellt bei Bedarf die globalen
Variablen wieder her.

+ Ist das Bit AF_RESTORE nicht gesetzt startet das Programm gerade neu. In
diesem Fall missen wir unbedingt das DocumentGuardian-Obijekt initialisieren.
Das erledigt die weiter oben beschriebene Routine DolnitDocumentGuardian.

+ Falls eine Datendatei Ubergeben wurde (das Bit AF_DATA_FILE ist gesetzt)
6ffnen wir diese mit OpenExternalFile, andernfalls blenden wir mit DTShow-
NewOpenDialog den "Neu/Offnen" Dialog ein. DTShowNewOpenDialog wartet
nicht bis der Nutzer etwas eingibt sondern 6ffnet nur den Dialog und kehrt dann
zurick, so dass die Startup-Sequenz des Programms fortgesetzt werden kann.
Der Nutzer kann irgendwann spéter einen Button im "Neu/Offnen" Dialog
anklicken und die DocumentTools Library ruft dann, wie vorn beschrieben, den
DocumentAndToolButtonHandler.

Dokument-Interface - 185

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

SYSTEMACTION DocStartupHandler

IF flags AND AF_RESTORE THEN
DocumentObj.HandleRestart
DoReadCachedData (DocumentObj)
RETURN

End IF

DoInitDocumentGuardian(DocumentObj)

IF flags AND AF_DATA FILE THEN
OpenExternalFile(dataFile$)
ELSE
DTShowNewOpenDialog(ConvertObjForSDK (DocumentObj),
NOF STARTUP + NOF_NEW OPEN TEMPLATE + NOF CONFIG +
NOF_ IMPORT, "")
End IF

END ACTION

Der OnExit-Handler

Der OnExit-Handler namens DocExitHandler hat nicht zu tun, wenn gar kein

Dokument offen ist. Das wird deswegen zuerst abgefragt.

Ist ein Dokument offen muss er zwischen zwei Féllen unterscheiden:

+ GEOS fahrt herunter. In diesem Fall ist das Bit AF_SHUTDOWN im Parameter
"flags" gesetzt. Dann sichern wir die wichtigen globalen Variablen (mit
DoSaveCachedData) und rufen die Methode HandleShutdown des Document-
Guardian-Objekts. Diese erledigt die notwendigen Schritte. Dazu gehdrt vor
allem die Datei zu schlieBen, sich aber den Namen und den Pfad zu merken, so
dass die Methode HandleRestart genau diese Datei wieder 6ffnen kann.

+ Das Programm schlieBt. In diesem Fall muss das Dokument geschlossen
werden. Vorher miissen wir den Nutzer fragen, ob er eventuelle Anderungen
speichern will. Dazu verwenden wir die im Kapitel 15.4.5 (SchlieBen des
Dokuments) beschriebene Funktion DTConfirmClose. Der Parameter "FALSE"
bewirkt, dass der Nutzer die Option "Abbrechen" nicht hat. Je nach zuriickge-
gebenem Wert rufen wir BasicSaveDoc (CLOSE_SAVE), BasicSaveAsDoc
(CLOSE_SAVE_AS) oder nichts davon (CLOSE_DISCARD, Anderungen
verwerfen).

AbschlieBend kénnen wir mit der Methode CloseDocument die Datei schlieen.

SYSTEMACTION DocExitHandler
DIM cmd

IF DocumentObj.documentHandle = NullFile() THEN RETURN
IF flags AND AF_SHUTDOWN THEN
DoSaveCachedData (DocumentObj)
DocumentObj.HandleShutdown
RETURN
End IF

Dokument-Interface - 186

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

cmd = DTConfirmClose(ConvertObjForSDK(DocumentObj), FALSE)
ON cmd SWITCH

CASE CLOSE_SAVE: ' Anderungen speichern
BasicSaveDoc ' Handelt alle denkbaren Falle
END CASE

CASE CLOSE_SAVE AS:
BasicSaveAsDoc ()

END SWITCH

DocumentObj.CloseDocument

END ACTION

Der OnConnection-Handler

Der OnConnection-Handler (er heiBt DocConnectionHandler) wird gerufen, wenn
der Nutzer ein Dokument im GeoManager doppelklickt, das zugehérige Programm
aber schon lauft. Der vollstandige Pfad zu diesem Dokument wird dem Handler im
Parameter dataFile$ Uibergeben. Da es nicht auszuschlieBen ist, dass GEOS den
Handler auch in anderen Zusammenhangen ruft, fragen wir das Bit
AF_DATA_FILE ab, bevor wir OpenExternalFile zum Offnen der Datei rufen.

SYSTEMACTION DocConnectionHandler
IF flags AND AF DATA FILE THEN
OpenExternalFile(dataFile$)

End IF

END ACTION

OpenExternalFile

Die Routine OpenExternalFile erledigt alles was nétig ist um eine Datei zu 6ffnen,
die einem der Handler DocStartupHandler oder DocConnectionHandler tbergeben
wurde.

SUB OpenExternalFile (file$ as string(235))
DIM err, n, state

DIm fileName$ as String(32)

DIM path$ as String(235)

state = DocumentObj.documentState
IF state THEN

err = BasicCloseDoc (True)

IF err THEN RETURN
END IF

Dokument-Interface - 187

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

path$ = file$

n = InStr("\\", path$)

WHILE n <> 0
path$ = Right$(path$, len(path$) - n)
n = InStr("\\", path$)

WEND

fileName$ = path$
path$ = left$(file$, len(file$) - len(fileName$) - 1)

SetCurrentPath path$
DocumentObj.OpenDocument fileName$

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

Zunéachst prufen wir ob noch eine Datei offen ist (die Variable state ist dann
ungleich Null). In diesem Fall erledigt BasicCloseDoc das SchlieBen der Datei mit
vorheriger Nachfrage beim Nutzer. Entscheidet sich der Nutzer die Datei doch
nicht zu schlieBen liefert BasicCloseDoc TRUE und wir verlassen die Routine
OpenExternalFile.

Der néachste Schritt ist das Separieren von Pfad und Dateinamen. Daflr
verwenden wir die lokale Variable path$ denn der Parameter file$ wird spater noch
gebraucht. Die WHILE Schleife sucht jeweils den né&chsten Backslash. Aus
"C\GEOS\DOCUMENT\NAME.EXT" wird so schrittweise "GEOS\DOCUMENT\
NAME.EXT", "DOCUMENT\NAME.EXT" und schlieBlich "NAME.EXT". Das ist der
Dateiname, also speichern wir ihn in fileName$. Der Pfad ist dann alles links
davon, mit Ausnahme des letzten Backslash-Zeichens.

Jetzt kdnnen wir mit SetCurrentPath in den richtigen Ordner wechseln und mit der

Methode OpenDocument das Dokument 6ffnen. AbschlieBend rufen wir
DoReadDataFromDoc und DoUpdateDocButtons um die Ul zu updaten.

Dokument-Interface - 188

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

15.10 Ein einfaches Beispiel

Am Beispiel der Programms "Yellow Notes", das im Ordner "Beispiele\Objekte
\Dateiarbeit" gefunden werden kann, soll gezeigt werden, wie man die zum
Dokumentinterface gehérende Routinen an das eigene Programm anpassen kann.

Kernobjekte des Programms sind ein Textobjekt (YNotesText) und ein Menu
(YNotesColorMenu) mit zwei ColorSelektoren (YNotesTextColor und YNotesBack-
Color) fur die Vordergrund- und die Hintergrundfarbe.

Sehr haufig ist es sinnvoll, die Dokumentdaten in einer Struktur zu speichern. Das
vereinfacht den Zugriff auf die Daten und deren Verwaltung, insbesondere das
Speichern in einer Dokumentdatei, enorm. Fir das "Yellow-Notes"-Beispiel
bendtigen wir die Farben von Text und Hintergrund sowie den Notiztext selbst.
AuBerdem haben wir 8 Word Reserve vorgesehen, die wir spater zur kompatiblen
Erweiterung des Programms verwenden kénnen.

STRUCT NotesData
backcolor, textColor as word
reserve[8] as word
text as String(1024)

End STRUCT

Als Dokumentdatei wahlen wir eine GEOS Datendatei. Eine DOS-Datei sollte man
nur verwenden, wenn es erforderlich ist. Der Zugriff auf eine GEOS Datendatei ist
genau so einfach wie der auf eine DOS-Datei, aber man kann ein Token und ein
CreatorToken vergeben, so dass die Verknipfung mit dem zugehdrigen
Programm ohne Eingriff in die GEOS.INI erfolgt.

Wie am Anfang des Kapitels beschrieben beschrankt sich die Anpassung des
Dokument-Interfaces auf die folgenden Routinen:

* DolnitDocumentGuardian

* BasicCreateNewDoc

* DoUpdateDocButtons

* DoReadDataFromDoc

* DoSaveDataToDoc

* DoEnterDocumentPath

* DoSetDocModified

* DoRevertDoc

In der Routine DolnitDocumentGuardian missen alle das Dokument betreffen-
den Daten an das eigene Programm angepasst werden. Wichtig ist, dass der Wert
fur CreatorToken dem AppToken-Statement im Ul-Code des Application-Objekts
entspricht.

Dokument-Interface - 189

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

SUB DoInitDocumentGuardian(guardian as object)
DIM dc as DocumentConfigStruct

guardian.buttonhandler = DocumentAndToolButtonHandler

dc.noDocumentString$ = "leer"
dc.nameForNew$ = "Notiz "

dc.fileType = GFT_ DATA

dc.creatorToken.tokenChars = "YNot"
dc.creatorToken.manufid = 16600
dc.token.tokenChars = "YNOD"

dc.token.manufid = 16600

dc.matchFlags = DOC_MATCH TOKEN
guardian.ConfigData = dc

END SUB

In der Routine BasicCreateNewDoc muss der Teil angepasst werden, der fir das
Initialisieren des neu angelegten Dokuments zusténdig ist. Im Yellow Notes
Beispiel wird dazu die Sub YNoteslnitializeDocument aufgerufen. Sie belegt eine
NotesData-Struktur mit den Standardfarben und einem leeren Text und schreibt
sie dann in die neu angelegt Datei. Token und CreatorToken werden automatisch

vom DocumentGuardian-Objekt gesetzt.

SUB YNotesInitializeDocument ()
DIM notes as NotesData

notes.textColor = BLACK
notes.backColor YELLOW
notes.text = ""

FileSetPos DocumentObj.documentHandle , 0
FileWrite DocumentObj.documentHandle , notes, sizeof(NotesData)

END SUB

Die Routine DoUpdateDocButtons hat die Aufgabe, die Ul des Programms zu
enablen oder zu disablen, je nachdem ob ein Dokument offen ist und welchen
Status es hat. Im Yellow Notes Beispiel ruft sie dazu die SUB YNotesUpdateUl,
die im Folgenden gezeigt ist. DocumentObj.documentState ist ungleich Null, wenn
ein Dokument offen ist. Dann wird die Ul enabled, ansonsten wird sie disabled.

Dokument-Interface - 190

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

SUB YNotesUpdateUI ()
IF DocumentObj.documentState THEN

YNotesText.enabled = TRUE
YNotesColorMenu.enabled = TRUE
ELSE
YNotesText.enabled = FALSE
YNotesColorMenu.enabled = FALSE
End IF
END SUB

Die Routine DoReadDataFromDoc wird jedes Mal gerufen, wenn Daten aus der
Datei gelesen werden sollen oder ein Dokument geschlossen wurde. Sie liest die
NotesData-Struktur aus der Datei und verteilt die Informationen an die
entsprechenden Ul-Objekte. Falls keine Datei offen ist muss sie dafir sorgen,
dass das Objekt YNotesText leer ist. Das Enablen bzw. Disablen der Ul-Objekte

ubernimmt die Routine DoUpdateDocButtons.

SUB DoReadDataFromDoc ()
DIM notes as NotesData

IF DocumentObj.documentHandle == NullFile() THEn
YNotesText.text$ = ""
ELSE

'’ Text und Farben updaten
FileSetPos DocumentObj.documentHandle, 0

notes = FileRead DocumentObj.documentHandle,sizeof (NotesData)
YNotesText.textColor = notes.textColor

YNotesText.backColor = notes.backColor

YNotesText.text$ = notes.text

YNotesTextColor.csColor = notes.textColor
YNotesBackColor.csColor = notes.backColor

End IF

END SUB

Die Routine DoSaveDataToDoc schreibt die aktuellen Daten in die Datei, indem
sie die Struktur "notes" mit den aktuellen Werten, gelesen vom Textobjekt und den
ColorSelektoren, belegt und sie dann mit einem einzigen FileWrite in die Datei
schreibt. Wir durfen natdrlich nicht vergessen vorher mit FileSetPos die korrekte
Schreibposition anzuwahlen.

SUB DoSaveDataToDoc (fh as FILE)

DIM notes AS NotesData
notes.textColor = YNotesText.textColor

notes.backColor = YNotesText.backColor
notes.text = YNotesText.text$
FileSetPos fh, 0

FileWrite fh, notes, sizeof (NotesData)

END SUB

Dokument-Interface - 191

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

DoEnterDocumentPath wechselt in dem Pfad, in dem die Dateien angelegt
werden sollen. Wir entscheiden uns bei neuen Dateien fir den GEOS-Top-Ordner
und fur die Notiz-Dateien selbst fir den Document-Ordner ohne Unterordner.

SUB DoEnterDocumentPath (forNew as Integer)
IF forNew THEN
SetStandardPath SP_TOP
ELSE
SetStandardPath SP_DOCUMENT
END IF
END SUB

In der Routine DoSetDocModified gibt es eine wichtige Anpassung: Wir missen
sicherstellen, dass nach dem Speichern des Dokuments (in diesem Fall wird

DoSetDocModified automatisch mit dem Parameter FALSE aufgerufen) die
nachste Nutzereingabe wieder den OnModified Handler des Textobjekts ruft. Dazu
setzen wir den modified-Status des Textobjekts zurtck.

SUB DoSetDocModified (modi as INTEGER)

IF modi THEN
' ist schon "modified"? => Return
IF DocumentObj.documentState AND DOCS MODIFIED THEN RETURN
DocumentObj.SetDocumentState DOCS MODIFIED, 0

ELSE
' ist schon "not modified"? => Return
IF (DocumentObj.documentState AND DOCS MODIFIED) = 0 \

THEN RETURN

DocumentObj.SetDocumentState 0, DOCS_MODIFIED
YNotesText.modified = FALSE

End IF

DoUpdateDocButtons

END SUB

Da sich das Zuriicksetzen des Dokuments auf den letzten gespeicherten Stand in
unserem einfachen Konzept darauf beschrankt, die die Dokument-Daten aus der
(ungeénderten) Datei wieder auszulesen, hat die Routine DoRevertDoc nichts zu

tun. Sie kénnte komplett aus dem Code entfernt werden.

SUB DoRevertDoc ()
END SUB

Zusatzlich bendtigt das Yellow Notes Beispiel ein paar weitere Routinen. Die
wichtigsten davon sind der OnModified-Handler des YNotesText-Objekts und der

Dokument-Interface - 192

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

ColorChangedHander der beiden ColorSelektoren, da diese das Dokument als
"modified" markieren muissen, wenn der Nutzer etwas andert.

Der OnModified Handler des Textobjekts ist sehr einfach. Er ruft nur
DoSetDocModified (TRUE). Diese Routine informiert das DocumentGuardian-
Objekt und ruft DoUpdateDocButtons. Mehr ist nicht zu tun.

TEXTACTION TextModifedHandler
DoSetDocModified (TRUE)
END ACTION

Beide ColorSelektoren haben den gleichen ColorChangedHander. Seine Aufgabe
ist es, dem Text-Objekt eine neue Vorder- und Hintergrundfarbe zuzuweisen
sowie das Dokument als "geédndert" zu markieren.

ColorSelector Objekte haben die Eigenart, dass der Handler 6fter gerufen wird, als
es fur unsere Zwecke sinnvoll ist, z.B. wenn sie erstmalig auf dem Schirm
erscheinen. Das kbnnte dazu fuhren, dass das Dokument als "ge&ndert" markiert
wird, obwohl es eigentlich nicht geandert wurde. Deswegen fragen wir die
aktuellen Farben des Textobjekts ab und rufen DoSetDocModified (TRUE) nur
dann, wenn sie sich wirklich geandert haben.

COLORACTION NewColorHandler
dim tc, bc

YNotesText.textColor
YNotesText.backColor

tc
bc

YNotesTextColor.csIndexColor
YNotesBackColor.csIndexColor

YNotesText.textColor =
YNotesText.backColor =
IF (tc <> YNotesText.textColor) \
OR (bc <> YNotesText.backColor) THEN
DoSetDocModified (TRUE)
End IF
END ACTION

Den kompletten Quellcode fir dieses Beispiel sowie die Iconeditor-Datei mit den
Iconbildern findet man im Ordner "Beispiele\Objekte\Dateiarbeit".

Dokument-Interface - 193

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

16 Timer

Timer erlauben es, einen Actionhandler in bestimmten Zeitabstanden automatisch
aufzurufen. Man kann sich das so vorstellen, als ob jemand einen Button in regel-
maBigen Abstanden drickt. Damit kann man beispielsweise eine blinkende Schrift
realisieren, eine Spielfigur Uber das Spielfeld bewegen oder eine Uhr weiter-
zéhlen.

Die Routine TimerStart aktiviert einen Timer. Sie erwartet den Namen des
Actionhandlers, der aufgerufen werden soll, sowie einen oder zwei numerische
Werte. Der erste Wert gibt an, wie lange es dauern soll, bis der Timer das erste
Mal auslést. Die Zeitangabe erfolgt in "tics", das sind 1/60s. Der zweite Wert gibt
das Zeitintervall an, in dem der Timer danach periodisch auslésen soll (ebenfalls
in tics). Wird der zweite Wert nicht angegeben oder ist er Null, so 16st der Timer
nur genau einmal aus (Single-Shot Timer). Das maximale Zeitintervall betragt
jeweils 65535 tics, das entspricht etwa 18 Minuten.

Um einen Timer zu stoppen verwenden Sie TimerStop. Single-Shot Timer
brauchen nicht gestoppt zu werden. Es ist ein guter Stil alle Timer am
Programmende, vorzugsweise im OnExit-Handler, zu stoppen. Sollten Sie das
vergessen, stoppt das System die aktiven Timer.

Wenn ein Timer auslést erzeugt er ein BASIC-Event, das wie allen anderen

Events (Aktivieren eines Button, Klick in eine Liste usw.) behandelt wird. Das

bedeutet:

+ Timerevents unterbrechen laufende Actionhandler nicht. Das Timerevent wird
erst behandelt, wenn der laufende Actionhandler beendet ist.

« Timerevents haben keine erhdhte Prioritat. Sie reihen sich wie jedes andere
Ereignis in der Ereigniswarteschlage hinten ein.

Bei sehr schnellen Timern kann es vorkommen, dass der Timer bereits wieder
ausldst, bevor das letzte Timerevent behandelt wurde. Damit diese Situation nicht
zu einem Uberlaufen der Warteschlange fiihrt, stellt der Eventmanager sicher,
dass sich fur jeden Timer maximal ein Event in der Warteschlage befindet. Zu
schnell aufeinander folgende Events werden verworfen.

Verwechseln Sie Timerevents nicht mit den Befehlen Delay und Pause! Delay und
Pause unterbrechen die Abarbeitung eines Handlers fiir eine bestimmte Zeit
wahrend Timer einen eigenen Handler aufrufen.

Timer - 194

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

TimerStart

TimerStart aktiviert einen Timer. Das kann eine einmaliger Timer (Single-Shot-
Timer) oder ein periodischer Timer sein.

Syntax: <th> = TimerStart (<Handler>, tics1 [, tics2])

<th>: Variable vom Typ HANDLE.
Der Wert wird fir TimerStop benétigt.

<Handler>: Name des ActionHandlers, der vom Timer aufgerufen werden soll
Er muss als TimerAction deklariert sein.

tics1: Zeit, bis der Timer erstmalig ausldst (in 1/60s)

tics2: Intervall (in 1/60s), in dem der Timer periodisch auslésen soll. Wird
tics2 nicht angegeben (oder wenn er Null ist) 16st der Timer nur einmal
aus (Single-Shot-Timer).

Erlaubte Werte fir tics1 und tics2: 0 ... 65535

TimerStop

TimerStop hélt einen Timer an. Es erwartet das Handle, das von TimerStart
zuruckgegeben wurde. Es ist explizit erlaubt:

+ Einen Timer zu stoppen, der bereits gestoppt wurde.

+ Einen Single-Shot-Timer zu stoppen, der bereits ausgeldst hat.

Hinweis: TimerStop entfernt keine Timerevents aus der Warteschlange. Falls sich
beim Aufruf von TimerStop noch ein Timerevent in der Warteschlange befindet, so
wird dieses noch ausgefinhrt.

Syntax: TimerStop <th>
<th>: Handle, das von TimerStart geliefert wurde

TimerAction

Actionhandler, die von einem Timer aufgerufen werden, missen als TimerAction
deklariert sein.

Handler-Typ Parameter
TimerAction (sender as object, actionData as integer)

Der Parameter "sender" enthédlt das Application-Objekt des Programms, der
Parameter "actionData" ist unbenutzt und enthalt den Wert Null.

Beispiele. Den folgenden Code finden Sie komplette im R-BASIC Beispiel "Datum
und Zeit\TimerDemo".

Timer -195

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Beispiel 1: Blinkende Schrift
Eine globale Variable z bestimmt, ob die Schrift gezeigt wird oder nicht. Das
TimerHandle th ist ebenfalls global, damit wir dem Timer wieder anhalten kénnen.

DIM z
DIM th as HANDLE

Mit TimerStart aktivieren wir die blinkende Schrift. Der erste Timerevent soll sofort
ausgeldst werden (zweiter Parameter ist Null), dann soll der Timer alle 0,5
Sekunden auslésen (dritter Parameter: 30 tics).

th = TimerStart (TimerBlink, 0, 30)

TimerStop schaltet die blinkende Schrift wieder aus. Wir kiimmern uns nicht
darum, ob die Schrift gerade zu sehen ist oder nicht.

TimerStop th

Der eigentliche TimerHandler pruft die globale Variable z. Ist sie ungleich Null wird
dein Leertext ausgegeben und z auf Null gesetzt. Beim nachsten Handleraufruf ist
z dann Null und der Text selbst wird ausgegeben. z wird auf 1 gesetzt.

TIMERACTION TimerBlink

IF z THEN
Print at 3, 5; " "
z = 0;

ELSE
print at 3, 5;"R-BASIC Timer Demo"
z =1

End IF

END ACTION

Beispiel 2: Willkommensbox

Viele Programme zeigen am Start eine Infobox an, die dann von allein wieder
verschwindet. Dafir eignet sich ein Single-Shot-Timer. Im OnStartup-Handler
Offnen wir die Dialogbox und starten den Timer. Das Timerhandle th2 wird bei
Single-Shot-Timern nicht weiter gebraucht.

SYSTEMACTION DemoStartupHandler

DemoStartupDialog.Open
th2 = TimerStart (StartupTimerHandler, 180) ’ 3 sek.

END ACTION

Timer - 196

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Der Timerhandler muss nur die Dialogbox schlieBen.

TIMERACTION StartupTimerHandler
DemoStartupDialog.Close
END ACTION

Die Dialogbox selbst sollte das Attribut DA_HIDDEN_UNTIL_OPENED gesetzt
haben, damit das System keinen Button erzeugt, mit dem man die Dialogbox
manuell 6ffnen kann. Die Anweisung "modal = APP_MODAL" ist auskommentiert.
Sie wurde bewirken, dass der Nutzer nicht mit dem Programm interagieren kann,
solange die Dialogbox noch offen ist.

Dialog DemoStartupDialog
Caption$ = "Willkommen!"
Children = TimerStartupText
attrs = DA HIDDEN UNTIL OPENED
‘modal = APP_ MODAL

End OBJECT

Tipps & Tricks

+ Actionhandler vom Typ TimerAction sind kompatibel mit dem Typ ButtonAction.
Das heiB3t, Sie kdnnen einem Button einen Timer-Handler als ActionHandler
zuweisen und so ihren Timerhandler komfortabel testen. In diesem Fall wird der
Parameter "actionData" mit dem actionData-Wert des Buttons belegt.

* Der zwei- oder mehrmalige Aufruf von TimerStop mit dem gleichen TimerHandle
oder mit einem Null-Handle (leeres Handle) ist erlaubt. Sie kénnen deshalb in
Ihrem OnExit-Handler einfach samtliche Timer stoppen (Aufruf von TimerStop),
egal ob die Timer noch laufen oder ob sie je benutzt wurden (unbenutzte
Handles sind leere Handles).

Timer - 197

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17 Arbeit mit der Maus

17.1 Uberblick

Die meisten GEOS-Objekte kdnnen automatisch auf Mausereignisse reagieren.
So weil3 ein Button was zu tun ist, wenn er mit der Maus angeklickt wird. Hier
braucht und kann der R-BASIC Programmierer nicht eingreifen. In vielen Fallen
muss der R-BASIC Programmierer jedoch die Reaktion auf ein Mausereignis
selbst behandeln. Deshalb gibt es eine Reihe von Objekten, die eine explizite
Mausunterstiitzung anbieten. Das sind die Objekte:

VisContent, BitmapContent, VisObj, Canvas und Image

Dazu sind die folgenden Actionhandler, Instancevariablen und Methoden definiert.
Details dazu, insbesondere unter welchen Bedingungen die entsprechenden
Handler gerufen werden, finden Sie in den nachsten Abschnitten.

Action-Handler-Typen:
Handler-Typ Parameter
MouseAction (sender as object, xPos, yPos, event as Integer)

Spezielle Instance-Variablen:

Variable Syntax im Ul-Code Im BASIC-Code
OnMouseButton OnMouseButton = <Handler> nur schreiben
OnMouseMove OnMouseMove = <Handler> nur schreiben
OnMouseOver OnMouseOver = <Handler> nur schreiben
sendMouseEvents sendMouseEvents = bits [, mode] lesen, schreiben

Methoden:
Methode Aufgabe
GrabMouse Objekt "greift sich" die Maus
ReleaseMouse Objekt lasst die Maus wieder los
Testlnside Prift ob ein Koordinatenpaar im Objektbereich liegt
TestinsideAC Prift ob ein Koordinatenpaar im Objektbereich liegt

Ein einfaches Beispiel

Canvas MyMouseObj
OnMouseButton = ButtonPressed

End Object

MOUSEACTION ButtonPressed
IF event = ME LEFT DOWN THEN MsgBox("Linke Maustaste gedriickt")
End Action

Maushandling - 198

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.2 Maus Grabbing

Die folgenden Aussagen gelten nicht fur VisContent und BitmapContent Objekte.

Im Normalfall wird ein Mausereignis von einem zum né&chsten Objekt weiter-
gereicht, bis es das Objekt erreicht hat, das sich direkt unter dem Mauszeiger
befindet. Einige Ereignisse, insbesondere das Loslassen der Maustasten und das
Verlassen des Objektbereichs, werden im Normalfall gar nicht durchgestellt.

Es ist deshalb oft erforderlich, dass ein Objekt die Mausereignisse exklusiv und
komplett zu sehen bekommt. Dieser Prozess heiBt "Grabbing". Das Objekt "greift"
sich die Mausereignisse direkt und ohne Umweg. Daflur stehen die folgenden
Methoden zur Verfugung:

Methode Aufgabe
GrabMouse Objekt "greift sich" die Maus
ReleaseMouse Objekt lasst die Maus wieder los

Syntax im BASIC Code: <obj>.GrabMouse
<obj>.ReleaseMouse

Das Objekt zahlt nicht mit, wie oft es die Maus gegrabbt hat. Grabbt ein Objekt die
Maus mehrfach so wird trotzdem bei ersten ReleaseMouse die Maus wieder
freigegeben.

Durch das Grabben der Maus wird erreicht, dass das System alle Mausereignisse
direkt an das Objekt sendet, unabhéngig davon, wo sich der Mauspointer gerade
befindet. Das bedeutet insbesondere, dass das Objekt auch dann die Maus-
ereignisse erhélt, wenn sich der Mauszeiger nicht mehr ber dem Objekt befindet.

Das Objekt bekommt solange alle Mausereignisse, bis es die Maus wieder freigibt.
In der Zwischenzeit ist weder die Bedienung von Menlis mdglich noch kann sich
ein anderes Objekt die Maus grabben. Haufig ist es so, dass sich ein Objekt beim
Dricken einer Maustaste die Maus grabbt und sie beim Loslassen der Taste
wieder freigibt. Entsprechende Beispiele finden Sie in den nachsten Kapiteln.

VisContent und BitmapContent

VisContent und BitmapContent Objekte kdénnen die Maus nicht grabben. Die
Methoden GrabMouse und ReleaseMouse sind wirkungslos. Im Gegenzug
erhalten diese Objekte stets alle Mausevents, so dass ein Grabbing der Maus gar
nicht nétig ist. Sobald eine Maustaste Uber einem VisContent- oder BitmapContent
geruckt wird grabbt das Objekt die Maus implizit, d.h. alle Mausereignisse gehen
an dieses Objekt, auch wenn der Mauszeiger das zugehdérige View zwischen-
zeitlich verlasst. Im Unterschied zum expliziten Grabbing gehen die Maus-
ereignisse zusatzlich an eventuelle Children des VisContent-Objekts. Diese
Children (vom Typ VisObj) kénnen dann die Maus explizit grabben.

Maushandling - 199

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.3 Aufruf der Actionhandler

Die Mausereignisse sind in drei Gruppen eingeteilt, fir die es jeweils einen
eigenen Actionhandler gibt.

Handler Zugeordnete Ereignisse

OnMouseButton Linke Maustaste wird gedrickt
Doppelklick mit der linken Maustaste
Linke Maustaste wird gehalten (G)
Linke Maustaste wird losgelassen (G)

Rechte Maustaste wird gedruckt
Doppelklick mit der rechten Maustaste
Rechte Maustaste wird gehalten (G)
Rechte Maustaste wird losgelassen (G)

OnMouseMove Maus bewegt sich im Objektbereich

OnMouseOver Maus "betritt" den Objektbereich
Maus "verlasst" den Objektbereich (G)

Die genannten Ereignisse fuhren nur dann zum Aufruf des Actionhandlers, wenn
die folgenden Bedingungenerfiillt sind
+ Es ist ein Handler zugewiesen.
+ Das entsprechende Bit ist in der Instancevariablen sendMouseEvents
gesetzt.
+ Bei den mit (G) gekennzeichneten Ereignissen: Das Objekt hat die Maus
"gegrabbt".
Diese Beschrankung gilt nicht fir VisContent und BitmapContent. Flr sie
gelten nur die ersten beiden Bedingungen.

Syntax Ul- Code: OnMouseButton = <Handler>
OnMouseMove = <Handler>
OnMouseOver = <Handler>
Schreiben: <obj>.0nMouseButton = <Handler>
<obj>.0nMouseMove = <Handler>
<obj>.0nMouseOver = <Handler>

Durch Zuweisen des speziellen "Handlers" NoAction kann man die Zuweisung
eines Handlers aufheben, z.B.

sender .OnMouseMove = NoAction
NoAction kann mit allen Handlern, nicht nur mit Maushandlern, benutzt werden.

Alle Mausaction Handler haben die folgenden Parameter:

sender: Das Objekt, welches das Mausereignis ausgeldst hat

xPos, yPos: Die Koordinaten des Mauszeigers, relativ zur linken oberen Ecke
des Objekts.

event: Information welches Ereignis zum Aufruf gefuhrt hat.

Maushandling -200

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Far event sind folgenden Konstanten definiert.

Konstante Wert Bedeutung
ME_LEFT_DOWN 1 Linke Maustaste wird gedruckt
ME_LEFT_UP 2 Linke Maustaste wird losgelassen
ME_LEFT_DOUBLE 4 Doppelklick links
ME_LEFT_HOLD 8 Linke Maustaste wird gedrlckt gehalten
ME_RIGHT_DOWN 16 Rechte Maustaste wird gedruckt
ME_RIGHT_UP 32 Rechte Maustaste wird losgelassen
ME_RIGHT_DOUBLE 64 Doppelklick rechts
ME_RIGHT_HOLD 128 Rechte Maustaste wird gedrickt gehalten
ME_MOVE 256 Maus bewegt sich im Objektbereich
ME_ENTER 512 Maus "betritt" den Objektbereich
ME_LEAVE 1024 Maus "verlasst" den Objektbereich
Anmerkungen
Doppelklicks:

Drickt der Nutzer z.B. die linke Maustaste erstmalig so wird zunéchst ein
LEFT_DOWN-Ereignis erzeugt. L&sst der Nutzer die Taste kurz darauf los und
drickt sie ein zweites Mal (dh. er fihrt einen Doppelklick aus) so wird zuséatzlich
ein LEFT_DOUBLE-Ereignis erzeugt.

Hold-Ereignisse
Driackt der Nutzer z.B. die linke Maustaste so wird zun&chst wieder ein
LEFT_DOWN-Ereignis erzeugt. Halt er jetzt die Maustaste fir eine bestimmte
Zeit gedrickt (ca. 0,5 Sekunden) so wird zusétzlich ein LEFT_HOLD-Ereignis
erzeugt. Sie kdénnen damit z.B. unterscheiden ob der Nutzer etwas nur
anklicken oder es festhalten und bewegen will.

sendMouseEvents

Die Instancevariable sendMouseEvents bietet die Moglichkeit die Behandlung von
Mausereignissen schnell ein- und auszuschalten. Das ist wesentlich effektiver als
jedes Mal den entsprechenden Handler aufzurufen und dort abzufragen, ob er
aktuell auch erwiinscht ist. Insbesondere der OnMouseMove Handler wird, wenn
sich die Maus Uber dem Objekt befindet, extrem héufig gerufen. Das kann zu einer
unerwinschten Belastung und zur Verlangsamung des Systems fuhren.

SendMouseEvents ist ein Bitfeld, d.h. jedes Bit hat eine bestimmte Bedeutung. Die
Bits sind identisch mit den ME_-Werten aus der Tabelle oben.

Hinweis: Per Default sind alle Bits gesetzt, die sollten daher im Ul-Code immer

genau die Bits (ME_-Werte) setzen, die Sie bendtigen. Nicht in der Tabelle
aufgefuhrte Bits sind reserviert und sollten Null bleiben.

Maushandling - 201

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Syntax Ul-Code: sendMouseEvents = bits [, mode]
bits: Kombination der ME_-Werte (siehe oben)
mode: bestimmt, wie der Ubergebene Bit-Wert zu
behandeln ist (siehe Tabelle unten)
Defaultwert: 0 (REPALACE_BITS)
Lesen: <numVar> = <obj>.sendMouseEvents (0)
Die BASIC Syntax verlangt beim Lesen von send-
MouseEvents einen Parameter, weil sendMouseEvents
beim Schreiben zwei Parameter hat. Der in der
Klammer stehende Wert wird jedoch ignoriert.
Schreiben: <obj>.sendMouseEvents = bits [, mode]

Far Mode sind die folgenden Konstanten definiert:

Konstante Wert Bedeutung

REPLACE_BITS 0 Der Wert wird 1:1 zugewiesen, d.h. der
Instancewert wird, wie bei einer normalen
Zuweisung, mit dem neuen Wert Uber-
schrieben. Das ist der Defaultwert und wird
meist im Ul-Code benutzt.

SET_BITS 1 Angegebene Bits auf den Wert 1 setzen.
Die anderen Bits werden nicht beeinflusst.
Verwenden Sie diesen Mode-Wert wenn
Sie die Behandlung einen Ereignisses
aktivieren wollen.

CLEAR_BITS 2 Angegebene Bits auf den Wert 0 setzen.
Die anderen Bits werden nicht beeinflusst.
Verwenden Sie diesen Mode-Wert wenn
Sie die Behandlung einen Ereignisses
ausschalten wollen.

Beispiele

'’ Ein und Ausschalten der Mauszeiger-Ereignisse
MyMouseObj.sendMouseEvents = ME MOVE, SET BITS
MyMouseObj.sendMouseEvents ME_MOVE, CLEAR_BITS

' Lesen des sendMouseEvents-Werts und Priifen, ob ME MOVE
' gesetzt ist
DIM bits as WORD

bits = MyMouseObj.sendMouseEvents (0)

IF bits AND ME MOVE THEN MsgBox "Ja"

' Priifen ob ME MOVE ODER ME LEFT UP gesetzt ist
IF bits AND (ME MOVE OR ME LEFT UP) THEN MsgBox "Ja"

Maushandling -202

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.4 Typische Situationen

Dieser Abschnitt beschreibt die Behandlung typischer Félle, die beim Arbeiten mit
der Maus auftreten kénnen.

17.4.1 Behandlung der Mousebuttons

In diesem Abschnitt wird am Beispiel der linken Maustaste das typische Vorgehen
fur diesen Fall erklart.

Im Ul-Code sollten wir nur die Bits im Feld sendMouseEvents setzen, die wir auch
wirklich benétigen. Das sind ME_LEFT_DOWN und ME_LEFT_UP, alle anderen
Mausereignisse werden dann vom Objekt ignoriert.

Canvas MyOutputObj

sendMouseEvents = ME LEFT DOWN + ME LEFT UP
OnMouseButton = ButtonPressed
End Object

Im Actionhandler unterscheiden wir mit einer On - SWITCH Anweisung zwischen
den beiden Ereignissen. AuBerdem muissen wir beim Dricken der linken
Maustaste die Maus "grabben" (GrabMouse), sonst wird das Ereignisse
"Loslassen" nicht an den Handler weitergeleitet. Das ist eine GEOS-intere
Optimierungsfunktion. Entsprechend missen wir beim Loslassen die Maus wieder
freigeben (ReleaseMouse)

MOUSEACTION ButtonPressed
ON event SWITCH

CASE ME_LEFT_DOWN:
sender.GrabMouse

'<... hier Aktionen ausfihren ...>
End CASE

CASE ME_LEFT UP:
sender.ReleaseMouse
'<.. hier Aktionen ausfiihren ...>
End CASE

End SWITCH

End Action

Statt des LEFT_DOWN-Ereignisses kénnte man auch das LEFT_HOLD-Ereignis
abfragen. Das hétte den Vorteil, dass ein kurzer - eventuell versehentlicher - Klick
wirkungslos bleibt. Entsprechende Beispiele finden Sie im nachsten Kapitel.

Bei entsprechender Programmierung kann man auch zwischen einem
Einfachklick, einem Doppelklick und einem langeren Festhalten (HOLD) des
Mausbuttons unterscheiden.

Maushandling -203

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.4.2 Arbeit mit dem OnMouseMove Handler

Wenn Sie wahrend der Bewegung des Mauszeigers bestimmte Aktionen auslésen
wollen (z.B. etwas zeichnen, siehe néachster Abschnitt) missen Sie einen
OnMouseMove Handler benutzen. Der Handler wird gerufen, sobald sich die Maus
uber dem Objekt bewegt. Da das in schneller Folge passiert ist es sinnvoll, diesen
Handler nur freizuschalten, wenn er gebraucht wird. Ein sehr haufiger Fall ist, dass
er nur bendtigt wird, wahrend die linke Maustaste gedrickt ist. Diese Situation wird
im Folgenden beschrieben.

Im Ul-Code setzen wir in sendMouseEvents nur die Bits ME_LEFT_HOLD und
ME_LEFT_UP, d.h. der OnMouseMove Handler ist zunéchst inaktiv, weil wir das
Bit ME_MOVE nicht setzen.

Ob wir zum Starten der Aktion das Ereignis ME_LEFT_DOWN oder
ME_LEFT_HOLD verwenden hangt von der konkreten Situation und von den
Intentionen des Programmierers ab. In einem Zeichenprogramm wird h&ufig
ME_LEFT_DOWN bevorzugt wéhrend zum Bewegen von Objekten Uber den
Schirm ME_LEFT_HOLD der Vorzug gegeben wird.

Der Code verwendet ein VisObj, er ist aber genauso auf jedes andere Objekt,
dass die Maus unterstutzt, anwendbar.

VisObj MyObj

sendMouseEvents = ME_LEFT_HOLD + ME_LEFT UP

OnMouseButton = ButtonPressed
OnMouseMove = Movelt

End Object

Im Actionhandler "ButtonPressed" muissen wir zuséatzlich zum Beispiel aus dem
vorherigen Kapitel noch den OnMouseMove Handler freischalten bzw.
deaktivieren. Der Parameter SET_BITS sorgt dafur, dass das Bit ME_MOVE
gesetzt wird, alle anderen Bits aber nicht geandert werden. Analog sorgt
CLEAR_BITS dafirr, dass das Bit ME_MOVE zurlickgesetzt (auf Null gesetzt)
wird, ohne dass die anderen Bits beeinflusst werden.

MOUSEACTION ButtonPressed
ON event SWITCH

CASE ME_LEFT HOLD:
sender.GrabMouse
sender.sendMouseEvents = ME_MOVE, SET_BITS
'<... hier weitere Aktionen ausfiihren ...>
End CASE

CASE ME LEFT UP:
sender.ReleaseMouse
sender.sendMouseEvents = ME MOVE, CLEAR BITS
'<.. hier weitere Aktionen ausfiihren ...>
End CASE

End SWITCH
End Action

Maushandling - 204

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Der OnMouseMove Handler "Movelt" wird nun nur gerufen, wahrend die linke
Maustaste gedriickt ist. Die Anweisung "sender.GrabMouse" sorgt im Ubrigen
auch daflr, dass dieser Handler auch dann gerufen wird, wenn der Nutzer die
Maus aus dem Objekt herausbewegt. Das ist sehr praktisch, da wir diesen Fall
dann nicht extra behandeln muissen. Das Grafiksystem von GEOS sorgt dabei
dafir, dass wir nicht Uber den Rand des zugehdrigen Views (bzw. bei Canvas und
Image Objekten nicht Gber den Rand des Objekts) malen kénnen.

MOUSEACTION MovelIt
'<... hier Aktionen ausfiihren ...>

End Action

Maushandling - 205

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.4.3 Zeichnen auf den Bildschirm

Sehr haufig wollen wir mit der Maus etwas auf den Bildschirm zeichnen. Dieser
Abschnitt beschreibt, wie man dazu vorgehen muss. Wir setzen den folgenden Ul-
Code voraus:

BitmapContent MyBitmap

sendMouseEvents = ME_LEFT HOLD + ME_LEFT_ UP
OnMouseButton = ButtonPressed

OnMouseMove = Movelt
End Object

Beim Drlcken der Linken Maustaste missen wir jetzt unser Objekt zum "Screen"
machen. Damit gehen alle Grafik- und Textausgaben an dieses Objekt und
erscheinen somit auf dem Bildschirm. Analog muissen wir den Screen wieder
zurlicksetzen, wenn die Maustaste losgelassen wird. AuBerdem muissen wir
unbedingt den vorher aktiven Screen in einer (globalen) Variablen speichern.

Beim BitmapContent (wie im Beispiel) gehen die Grafik- und Textausgaben
parallel dazu in die Bitmap, so dass sie automatisch "gespeichert" werden. Bei
anderen Objekten, wie z.B. einem Canvas oder einem VisObj gehen sie nur auf
den Bildschirm und wir missen selbst dafur sorgen, dass unser "Ergebnis" auf
geeignete Weise gespeichert wird.

Weil wir ein BitmapContent verwenden brauchen wir die Maus nicht zu Grabben
und zu Releasen. Sobald eine Maustaste Uber einem VisContent- oder
BitmapContent gerlickt und festgehalten wird gehen alle Mausereignisse an
dieses Objekt, auch wenn der Mauszeiger das zugehorige View zwischenzeitlich
verlasst.

DIM oldScreen as Object * Zur Veranschaulichung rot

MOUSEACTION ButtonPressed
ON event SWITCH

CASE ME_LEFT HOLD:

sender.sendMouseEvents
oldScreen = Screen

Screen = sender
'< ... mehr ..>
End CASE

ME_MOVE, SET BITS

CASE ME_LEFT UP:
sender.sendMouseEvents
Screen = oldScreen
'< ... mehr ..>
End CASE

ME MOVE, CLEAR_BITS

End SWITCH

End Action

Maushandling - 206

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Zur Demonstration wollen wir eine "Gummilinie" implementieren. Dazu bendtigen
wir globale Variablen. X0 und yO0 sind der Startpunkt, x1, und y1 der sich mit der
Mausbewegung andernde Endpunkt der Linie. OldScreen soll den beim Aufruf des
Maushandlers aktiven Screen zwischenspeichern.

DIM x0, y0, x1, yl
DIM oldScreen as Object * Zur Veranschaulichung rot

Beim Dricken der linken Maustaste missen wir die Linienkoordinaten auf die
aktuelle Mausposition setzen. Wir stellen den MixMode MM_INVERT ein, der wie
fur eine Gummilinie gemacht ist. In diesem Modus werden die Pixels, auf die
Linien und andere Grafikausgaben wirken, nicht mit der Vordergrundfarbe
uberschrieben, sondern die Farbcodes werden invertiert. Das hat zwei
Konsequenzen. Erstens ist die Linie immer zusehen, egal welche Farbe der
Hintergrund hat und zweitens bewirkt ein zweimaliges Zeichnen der gleichen Linie,
dass sie wieder verschwindet. Das ist genau das, was wir brauchen.

SchlieBlich stellen wir noch eine Linienbreite von 8 Pixeln ein und zeichnen sie
erstmalig. In unserem Fall ergibt das nur einen Punkt auf dem Schirm, der aber
notig ist, weil der OnMove-Handler ihn wieder |6scht.

Der fertige Codeabschnitt sieht also so aus:

CASE ME_ LEFT HOLD:
sender.GrabMouse
sender.sendMouseEvents = ME MOVE, SET BITS
oldScreen = Screen
Screen = sender
x0 = xPos : y0 = yPos
x1 = xPos : yl = yPos
graphic.MixMode = MM _INVERT
graphic.lineWidth = 8
Line x0, yO, x1, yl
End CASE

Der OnMove Handler hat nun nur wenig zu tun. Unser Objekt ist noch der Screen.
Die erste Line Anweisung l6scht die aktuelle Line vom Bildschirm. Das geht, weil
wir den MixMode MM_INVERT eingestellt haben. Dann speichern wir die neuen
Endkoordinaten und zeichnen die Line erneut.

MOUSEACTION MovelIt
Line x0, y0, x1, yl
x1 xPos
vyl yPos
Line x0, y0, x1, yl

End Action

Etwas schneller - und damit weniger anféllig gegen Flackern - wére folgende
Sequenz:

Maushandling -207

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Line x0, y0, x1, yl

Line x0, y0, xPos, yPos ' Koordinaten beachten!
x1l = xPos

yl = yPos

Beim Loslassen der Maustaste I6schen wir zuerst die vorhandene Linie, stellen
den "normalen" MixMode MM_SET ein und zeichnen die Line dann permanent in
weiBer Farbe. SchlieBlich setzen wir den Screen zurilck.

CASE ME_LEFT UP:
sender .ReleaseMouse
sender.sendMouseEvents = ME MOVE, CLEAR BITS
Line x0, yO, x1, yl
graphic.MixMode = MM_SET
INK WHITE
Line x0, yO, x1, yl
Screen = oldScreen " nicht vergessen!
End CASE

Wichtige Hinweise:

Wir missen der Zuweisung der globalen Screen-Variablen groBe Aufmerksamkeit
widmen, insbesondere wenn Sie mehrere Objekte haben, die Grafik ausgeben
kénnen (z.B. ein VisContent und/oder mehrere VisObj-Objekte). Deswegen der
scheinbar umstandliche Weg mit der globalen Variablen oldScreen. Vergessen wir
das "Zuricksetzen" des Screens kann GEOS crashen - entweder gleich oder beim
Beenden des Programms.

AuBerdem sollten wir uns in einer globalen Variablen merken, dass die Maustaste
gedrlckt ist und dies im OnMove Hander abfragen. Der Grund ist, dass nach dem
Loslassen der Maustaste noch ein OnMove Event in der Wartschlange sein
kénnte, dass dann auf den falschen Screen zeichnet. Die folgenden Codezeilen
sind an den entsprechenden Stellen einzuflgen.

DIM mouseDown ' globale Variable

' Im ME_LEFT HOLD-Zweig:
mouseDown = TRUE

" Im ME_LEFT_UP—Zweig:
mouseDown = FALSE

' Im Movelt Handler:
IF mouseDown = FALSE THEN RETURN

Weitere Beispiele zum Thema Maushandling finden Sie bei der Beschreibung der
Objekte VisContent und VisObj.

Maushandling -208

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.4.4 Behandeln von MouseOver Ereignissen

Gelegentlich ist es sinnvoll einfach nur zu wissen, ob sich die Maus Uber dem vom
Objekt eingenommen Bildschirmbereich befindet oder nicht. Diesem Zweck dient
der OnMouseOver Handler. Er wird gerufen, wenn die Maus den Bereich des
Objekts betritt (event = ME_ENTER) oder ihn verlésst (event = ME_LEAVE).

Beachten Sie, dass das Ereignis "Verlassen des Objektsbereichs" nur gesendet
wird, wenn das Objekt die Maus gegrabbt hat. Ausnahmen sind die Objekte
VisContent und BitmapContent. Sie senden dieses ME_LEAVE-Ereignis in jedem
Fall.

Eine typische Implementation kénnte also wie folgt aussehen. Das Objekt stellt
eine gelbe Ellipse dar, die rot wird, wenn sich der Mauszeiger Uber dem Objekt
befindet.

Ul-Code:

Canvas Area
fixedSize = 200, 100
sendMouseEvents = ME ENTER + ME LEAVE
OnMouseOver = OverHandler
OnDraw = DrawHandler
End Object

BASIC-Code:

DrawAction DrawHandler
Rectangle 0, 0, MaxX, MaxY, Black
Fillellipse 2, 2, MaxX-2, MaxY¥-2, Yellow
End Action

Im Handler fur den Mauszeiger machen wir zunachst das das Canvas-Objekt zum
Screen, grabben uns die Maus (damit das ME_LEAVE-Ereignis gesendet wird)
und zeichnen dann eine rote Ellipse. Beim Verlassen des Objektbereichs machen
wir die Ellipse wieder gelb, setzen den Screen zuriick und geben die Maus wieder
frei.

MouseAction OverHandler
ON event Switch
case ME ENTER
Screen = sender
Sender.GrabMouse
FillEllipse 2, 2, MaxX-2, Max¥Y-2, RED
End CASE
case ME LEAVE
FillEllipse 2, 2, MaxX-2, MaxY-2, YELLOW
Screen = NullObj()
Sender.ReleaseMouse
End CASE
End SWITCH
End Action

Maushandling -209

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Das néchste Beispiel fur einen OnMouseOver-Handler gibt eine Information an ein
Textobjekt aus, je nachdem, ob sich die Maus Uber dem Objekt befindet oder
nicht.

MouseAction OverHandler
ON event Switch
case ME ENTER
Sender.GrabMouse
InfoText.text$ = "Maus ist iiber dem Objekt"
End CASE
case ME LEAVE
InfoText.text$ = ""
Sender .ReleaseMouse
End CASE
End SWITCH
End Action

Hinweise / Technische Details

1. Um zu erkennen, ob der Mauszeiger gerade den Objektbereich betritt oder
verlasst muss sich das Objekt merken, ob der Mauszeiger vorher innerhalb
oder auBerhalb der Grenzen des Objekts war. Die Information, dass sich der
Mauszeiger auBerhalb der Grenzen des Objekts befindet bekommt es aber nur,
wenn es die Maus gegrabbt hat. Unterlassen Sie das Grabben der Maus beim
Betreten des Objekts, so erkennt das Objekt nicht mehr, wenn der Mauszeiger
seine Grenzen verlasst. Ein erneutes Betreten des Objektbereichs wird daher
auch nicht erkannt und die entsprechende Message wird nicht noch einmal
gesendet.

Ausnahmen sind hier wieder das VisContent und das BitmapContent Objekt.
Sie erhalten die Information "Objektbereich verlassen" bzw. ".. betreten" in
jedem Fall.

2. Bewegt der Nutzer die Maus so schnell, dass sie aus dem Objektbereich direkt
in das Fenster eines anderen Programms springt (ohne dass noch ein
Mausereignis innerhalb des eigenen Programms erzeugt wird), so wir das
Ereignis "Objektbereich verlassen" zunéchst nicht gesendet. Es wird
stattdessen gesendet, wenn der Mauszeiger das Hauptfenster unseres
Programms wieder betritt. Das ist kein Fehler von R-BASIC, sondern eine
Eigenschaft des GEOS-Systems.

3. Die Parameter xPos und yPos des OnMouseOver-Handlers enthalten flr die
Objekte VisContent und BitmapContent stets den Wert Null. Fir alle anderen
Objekte enthalten Sie die Koordinaten, bei denen das Objekt betreten bzw.
verlassen wurde. Das ist im Allgemeinen dicht am Rand des Objekts.

Maushandling -210

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.4.5 Abfrage der Tastatur

Gelegentlich muss man in einem Maushandler unterschiedliche Operationen
ausldsen, je nachdem, ob gleichzeitig eine bestimmte Taste auf der Tastatur
gedruckt ist oder nicht. Insbesondere die Steuertasten wie Shift, Ctrl (Strg) usw.,
die mit GetKeyState abgefragt werden kénnen, sind hier interessant.

GetKeyState liefert einen Word-Wert, dessen einzelne Bits die folgende
Bedeutung haben:

Konstante (Shift-State) Wert (hex.) Bedeutung
- 1 &hO01 Feuertaste 1 am Joystick
- 2 &h02 Feuertaste 2 am Joystick
KS_RSHIFT 4 &h04 Rechte Shift-Taste
KS_LSHIFT 8 &h08 Linke Shift-Taste
KS_RCTRL 16 &h10 Rechte Strg-Taste
KS_LCTRL 32 &h20 Linke Strg-Taste
KS_RALT 64 &h40 Rechte Alt-Taste
KS_LALT 128 &h80 Linke Alt-Taste

Konstante (Toggle-State) Wert Bedeutung
KS_SCROLL_LOCK 256 (&h100) | Scroll-Lock-Taste (Rollen) eingerastet
KS_NUM_LOCK 512 (&h200) | Num-Lock-Taste eingerastet
KS_CAPS_LOCK 1024 (&h400) [Shift-Lock Taste eingerastet

Zur Abfrage der Bits muss man die logische AND Funktion verwenden:

'Abfrage ob eine Shift-Taste gedriickt ist
IF GetKeyState AND (KS LSHIFT OR KS RSHIFT) THEN

' Abfrage ob die NUM-Lock Taste gedriickt ist
IF GetKeyState AND KS NUM LOCK THEN

Weitere Informationen zu GetKeyState finden Sie im Programmier-Handbuch.

Zur Tastaturabfrage innerhalb von Maushandlern eignen sich auBerdem die
folgenden Anweisungen bzw. globale Variablen:
GetKey
GetKeyLP Globale Variablen, die die aktuell bzw. zuletzt gedrlckte Taste
enthalten. Das kann ein ASCII-Code oder bei Steuertasten wie F1
ein erweiterter Code (> 256) sein.
Inkey$ Liest ein einzelnes Zeichen von der Tastatur.
Details dazu finden Sie an den entsprechenden Stellen im Programmier-
Handbuch. Alternativ kénnen Sie auch den Tastaturhandler des Objekts benutzen,
falls es einen besitzt, um Uber den Zustand der Tastatur auf dem Laufenden zu
sein. Bitte benutzen Sie nicht die Anweisungen Input bzw. InputBox. Das kann zu
Konflikten oder zu unerwartetem Verhalten fihren.

Maushandling -211

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

17.5 Utility Methoden

Methode Aufgabe
Testlnside Prift ob ein Koordinatenpaar im Objektbereich liegt
TestinsideAC Prift ob ein Koordinatenpaar im Objektbereich liegt

Syntax im BASIC Code: <z> = <obj>.TestInside (X, y)
<z> = <obj>.TestIinsideAC (x, y)
<z>: numerische Variable
Return: z ist Null, wenn das Koordinatenpaar innerhalb des Objekts liegt
z ist gréBer als Null, wenn nicht

Die beiden Methoden prifen, ob ein Koordinatenpaar im vom Objekt Gberdeckten
Bildschirmbereich liegt oder nicht. Testlnside setzt voraus, dass die linke obere
Ecke des Objekts die Koordinaten (0; 0) hat. Das ist das gleiche Koordinaten-
system, dass verwendet wird, wenn das Objekt der Screen ist (Vergleiche 17.4.3
Zeichnen auf den Bildschirm). Das heiBt, die x-Koordinate liegt auBerhalb des
Objekts wenn gilt: x < 0 oder x > object.xSize. Analoges gilt fir die y-Koordinate.
TestinsideAC (AC = absolute coordiates, absolute Koordinaten) berucksichtigt die
Position des Objekts innerhalb des Ubergeordneten Fensters. Das heiBt, die x-
Koordinate liegt auBerhalb des Objekis wenn gilt: x < object.xPosition oder
x > (object.xPosition + object.xSize). Analoges gilt fir die y-Koordinate.

Testinside bzw. TestinsideAC sind dabei sehr viel schneller als die manuelle
Abfrage der Positionen entsprechend den obigen Beziehungen.
AuBerdem enthélt der zurtckgelieferte Wert Informationen

dariiber, wo genau sich das Koordinatenpaar relativ zum 3 1 5
Objekt befindet. Das Bild rechts veranschaulicht das. Der
Wert ist die Summe aus folgenden Informationen: 5 0 4

1: Die y-Koordinate liegt oberhalb des Objekts
2: Die x-Koordinate liegt links vom Objekt
4: Die x-Koordinate liegt rechts vom Objekt 10 8 12
8: Die y-Koordinate liegt unterhalb des Objekts
Liegt das Koordinatenpaar links oberhalb des Objekts betragt der zurlickgelieferte
Wert 1 +2 =3.
Diese Informationen kénnen mit der logischen Operation AND abgefragt werden.
Der folgende Code fragt ob, ob die x-Koordinate rechts vom Objekt liegt. Die Print-
Anweisung wird also far die Falle 5, 4 und 12 ausgefuhrt:

z = MyObj.TestInside(x, V)
IF z AND 4 THEN Print "Rechts vom Objekt"

Wenn Sie nur die Information bendétigen, ob sich der Mauszeiger innerhalb oder
auBerhalb des Objekts befindet kénnen Sie auch einen OnMouseOver-Handler
verwenden und die Information in einer globalen Variablen speichern. Beachten
Sie, dass Sie dazu gegebenenfalls die Maus grabben mussen.

Maushandling -212

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

(Leerseite)

Maushandling -213

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

18 Abwartskompatibilitat

18.1 Der klassische BASIC Modus

Altere, nicht objekt-orientierte BASIC Programme besitzen ein "Hauptprogramm?”,
das beim Start des Programms automatisch ausgefuhrt wird. AuBerdem gibt es
einen vordefinierten Bildschirm auf die alle Text und Grafikausgaben erfolgen. R-
BASIC kann dieses Verhalten simulieren, so dass das Ubertragen A<erer
Programme nach R-BASIC vereinfacht wird. Dazu gibt es die Anweisung
ClassicCode.

Syntax: ClassicCode

ClassicCode muss vor der ersten ausfuhrbaren Anweisung (z.B. Print) im
Quelltext stehen. Fall Sie Include-Anweisungen verwenden muss ClassicCode
nach den Include-Anweisungen stehen.

Die Anweisung ClassicCode bewirkt folgendes:

+ Das Scheiben von Code auBerhalb von Routinen (das klassische Haupt-
programm) wird zugelassen.

+ Dieser "klassische" Code wird beim Start des Programms automatisch
ausgefuhrt.

+ R-BASIC legt beim ersten Start des klassischen Programms ein paar Objekte
an, damit Text und Grafik-Anweisungen arbeiten kénnen. Konkret sind das ein
Primary mit einem View und einem BitmapContent Objekt der GréBe 640x400
Pixel mit 256 Farben. Einmal angelegt kénnen Sie diese Ul-Objekte andern
oder erganzen, wenn Sie wollen.

Hinweis: Auch unter objekt-orientierten Programmen gibt es das Problem, dass
beim Start des Programms automatisch Code ausgefuhrt werden muss. Die
Lésung fur dieses Problem unter R-BASIC ist, einen OnStartup Handler fir das
Application-Objekt zu programmieren. Details dazu finden Sie im Objekthandbuch,
bei der Beschreibung des Application Objekts (Kapitel 4.1).

18.2 Zeilennummern

Viele altere BASIC-Programme lesen sich etwa so:

10 Print "Bitte geben Sie eine Zahl ein"
20 INPUT Z

30 IF Z < 5 THEN PRINT "Unter Finf"

40 GOTO 10

Die Zahlen am Beginn jeder Zeile werden als Zeilennummern bezeichnet und sind
bei alteren BASIC-Interpretern lebensnotwendig. R-BASIC kommt géanzlich ohne
Zeilennummern aus, zur Definition von Sprungzielen gibt es den LABEL Befehl.

Abwartskompatibilitat - 214

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

Achtung! Verwechseln Sie diese im Code vereinbarten Zeilennummern nicht mit
den im Editorfenster angezeigten Zeilennummern!

R-BASIC kann jedoch mit Zeilennummern umgehen (Bei GOTO, GOSUB und
RESTORE), so dass éltere Programme einfacher nach R-BASIC zu (bertragen
sind. Dazu missen Sie die Zeilennummern aber explizit im Programm
vereinbaren. Beispielsweise kdénnten Sie obiges Programm direkt so eingeben,
wie es oben steht. Es geht aber auch folgende Variante:

10 Print "Bitte geben Sie eine Zahl ein"

INPUT Z
IF Z < 5 THEN PRINT "Unter Finf"
GOTO 10

Wesentlich besser ist aber diese Form:

Label restart
Print "Bitte geben Sie eine Zahl ein"
INPUT Z
IF Z < 5 THEN PRINT "Unter Finf"
GOTO restart

Hinweis: R-BASIC pruft die Gdlltigkeit von Zeilennummern nicht! Mehrfach
definierte Zeilennummern werden nicht erkannt! Die Verwendung von
Zeilennummern, die nicht existieren (also nicht explizit angegeben wurden) fuhrt
aber zu einem Compilerfehler.

Die Verwendung von Zeilennummern ist mit den Befehlen GOTO, GOSUB und
RESTORE mdéglich.

Syntaxvariante Beispiel

GOTO Zeilennummer GOTO 1000

ON <Ausdruck> GOTO <Zeilennummern> ON x+5 GOTO 10, 20, 30
GOSUB Zeilennummer GOSUB 1000

ON <Ausdruck> GOSUB <Zeilennummern> ON x-1 GOSUB 790, 20, 50
RESTORE Zeilennummer RESTORE 240

Abwartskompatibilitat - 215

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

18.3 Kompatibilitat mit dem KC-85-BASIC

Das folgende Kapitel ist fir Nutzer interessant, die einen KC-85 Homecomputer
besitzen oder besessen haben oder aus einem anderen Grund ein KC-85
Programm nach R-BASIC portieren wollen. R-BASIC ist weitgehend abwaérts-
kompatibel zum BASIC des KC-85/3 und KC-85/4, so dass reine KC-BASIC-
Programme ohne gréBere Probleme laufen sollten.

Hinweise zur Portierung von KC-85 BASIC Programmen

Erforderliche Einstellungen

R-BASIC ist nicht als KC-Emulator konzipiert. Insbesondere steht die Hardware
des KC-85 nicht zur Verflgung und wird auch nicht emuliert. Mit der
Systemvariablen kc85Features kénnen Sie R-BASIC trotzdem dazu bringen, sich
in bestimmten Situationen wie der KC-85 zu verhalten. In diesem Modus kénnen
Sie weiterhin alle R-BASIC Befehle verwenden. Ausnahme sind einige
Farbbefehle, da auf dem KC-85 nur maximal 16 Farben moglich sind.

Zusatzlich miussen Sie bestimmte Bedingungen einhalten. Dazu gehdért, dass Sie
als Screen eine 8Bit Bitmap mit aktivierter Palette (idealer Weise 640x512 Pixel)
verwenden sowie das Koordinatensystem drehen. Wie man das macht und
weitere notwendige Einstellungen finden Sie in der Beispieldatei "KC 85 Demo" im
Ordner "R-BASIC\Beispiel\Erste Schritte". Einige Details der Implementation
verlassen sich darauf, dass die im Beispiel aufgefihrten Initialisierungsschritte
ausgefuhrt wurden.

Farben

Auf dem KC-85 sind nur 8 Hintergrundfarben (Farbcodes 0 bis 7) und 16

Vordergrundfarben (Farbcodes 0 bis 15 und 16 bis 31) méglich. Die Farbténe von

Vordergrund- und Hintergrundfarben unterscheiden sich, so dass insgesamt 24

verschieden Farben mdglich sind. Werden die Farbcodes 16 bis 31 fur die

Vordergrundfarbe verwendet, so werden die entsprechenden Pixel blinkend

dargestellt. Intern wird das folgendermaBen so realisiert:

+ R-BASIC konvertiert die KC-Farbindizes intern in eine Farbe aus dem RGB-
Wirfel der GEOS Standardpalette, die den originalen KC-Farben mdglichst
nahe kommt. Eine entsprechende Zuordnung finden Sie im Anhang.

+ Als Screen wird eine 8 Bit Bitmap mit Palette verwendet. R-BASIC stellt eine
spezielle Palette ein, die diese Farben enthéalt. Das Blinken der Vordergrund-
farben wird Uber einen Timer realisiert, der im Hintergrund etwa 2 Mal pro
Sekunde die Palette der Screen-Bitmap modifiziert und die Bitmap neu
dargestellt.

Variablen

Auf dem KC-85 werden Variablen bei ihrer ersten Verwendung definiert. Nur
Felder missen mit DIM angegeben werden. Unter R-BASIC missen Sie alle
Variablen zunachst mit DIM vereinbaren. Beachten Sie, dass auf dem KC nur die
ersten beiden Buchstaben einer Variablen von Bedeutung sind! WE ist die gleiche
Variable wie WELT und AL$ die gleiche wie ALF$.

Abwartskompatibilitat - 216

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

IRM

Die Grafikausgabe des KC-85 erfolgt Uber einen Bildwiederholspeicher (IRM:
Image Repeat Memory). Er besteht aus dem Pixelspeicher ab Adresse 0, dem
Colorspeicher ab Adresse 10240, den Arbeitszellen des KC-Betriebssystems
CAQOS ab Adresse 12800 und einem freien Bereich ab Adresse 14848.

Im Pixelspeicher ist in jedem Byte fur 8 Pixel die Information abgelegt, ob die
Vordergrundfarbe oder die Hintergrundfarbe angezeigt werden soll. Der
Colorspeicher enthalt in jedem Byte fir jeweils 4x8 Pixel die zugehdrige
Vordergrund- und die Hintergrundfarbe. Eine genaue Aufteilung des IRM sowie
Informationen dazu, welche der CAOS Arbeitszellen von R-BASIC benutzt werden
kdnnen, finden Sie im Anhang.

Aus BASIC heraus kann der IRM mit den Befehlen VPEEK und VPOKE (siehe
unten) angesprochen werden. R-BASIC stellt daflr einen eigenen Speicherblock
bereit. Je nachdem welche Bits in der Systemvariablen kc85Features gesetzt sind
l6st ein VPOKE Befehl weitere Aktionen aus, die das Verhalten des KC-85
nachahmen.

Sie sollten auf jeden Fall den zu portierenden Code nach Peek, Poke, VPeek,
VPoke, Deek und Doke Befehlen durchsuchen um deren Funktion gegebenenfalls
anpassen zu kénnen.

Zeilennummern

Klassische BASIC Programme benétigen Zeilennummern, R-BASIC nicht. R-
BASIC kann jedoch mit Zeilennummern umgehen, so dass Sie beim Portieren
eines Programms die Zeilennummern nicht entfernen mussen.

Im Gegensatz zum KC-BASIC tbernimmt R-BASIC reine Kommentarzeilen nicht
in den Code. Folgende KC-Sequenz fuhrt unter R-BASIC zu einem Fehler

(Zeilennummer existiert nicht) wenn der Befehl "GOSUB 1100" compiliert wird.

1100 ! Unterprogramm zur Anzeige
1110 Window : COLOR 15, 1: CLS

Andern Sie den Code dann folgendermaBen:

! Unterprogramm zur Anzeige
1100 Window : COLOR 15, 1: CLS

Zeichensatz

Der Zeichensatz von KC und PC / R-BASIC unterscheiden sich an einige Stellen.
Insbesondere mussen Sie die deutschen Umlaute Uber ihren Code in einen String
einfligen, ein "&" z.B. als "\125". Eine entsprechende Ubersicht finden Sie im
Anhang, Kapitel H.

Zeichengenerator

Einer der Initialisierungsschritte ist das Einstellen des BlockGrafik Modus. Wenn
das Bit 9 in den kc85Features gesetzt ist kann R-BASIC erkennen, ob ein KC-85
Programm der Zeichengenerator des KC-85 andert (Verwendung der Befehle
POKE bzw. VPOKE) und seinen eigenen Zeichengenerator entsprechend
anpassen. Wo der KC-Zeichengenerator liegt wird von den Arbeitszellen 14246
bis 14253 im IRM bestimmt, die mit dem Befehl VPOKE geéandert werden kénnen.

Abwartskompatibilitat - 217

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

Details dazu finden Sie im Anhang. Der Standard-Zeichengenerator liegt beim KC
im ROM auf den Adressen 60928 (&hEEOQ)bzw. 65024 (&hFEO00). R-BASIC
erkennt, wenn das Programm den Zeichengenerator in den RAM (Adresse kleiner
49152 bzw. &hCO000) verschiebt und Uberwacht die entsprechenden Adressen
dann. R-BASIC reagiert jedoch nicht adaquat, wenn das Programm die Adresse
des Zeichengenerators wieder in den ROM zurlick verschiebt. Das kann sinnvoll
sein, wenn zwischenzeitlich wieder Buchstaben statt Grafikzeichen ausgegeben
werden sollen. Sie mussen diese Programmestellen finden und andern, indem Sie
zwischenzeitlich auf den alternativen Zeichengenerator von R-BASIC wechseln.
Im Normalfall missen Sie daflir an zwei Stellen im Programm VPOKE durch
BlockSelect ersetzen. Im eingangs genannten Beispiel ist das demonstriert.

Laufzeit

Lauft ein Programm zu schnell, z.B. in einer Spielschleife, so kdnnen Sie den
Befehl DELAY verwenden. Wenn Sie wéhrend der zu schnell laufenden Schleife
Strg-B drucken 6ffnet sich der R-BASIC Debugger und Sie kdnnen im Einzel-
schrittbetrieb die passende Position fur die Delay-Befehle finden. Beachten Sie die
Dokumentation zum Delay-Befehl!

Nicht vollstdndig KC-kompatible Befehle

Einige wenige Befehle sind nicht vollstandig KC-kompatibel programmiert, um die
Leistungsféhigkeit von R-BASIC nicht unnétig einzuschranken. In anderen Féllen
warde der Nutzen im Vergleich zum erforderlichen Aufwand einfach zu gering.

Chr$: LEN(Chr$(0)) liefert auf dem KC den Wert 1, in R-BASIC Null.

InStr: Bei der Ubergabe von Leerstrings gibt es Unterschiede. INTSR(","X") und
INTSR("X","") erzeugen auf dem KC einen Laufzeitfehler, in R-BASIC
erhalten wir Null.

INPUT: Bei der Eingabe von Strings werden flihrende Leerzeichen vom KC-85-
BASIC ignoriert. R-BASIC ubernimmt die Leerzeichen in den String.
Im KC-85-BASIC sind als Infotext nur Stringkonstanten zuléssig, R-BASIC
akzeptiert auch Variablen und String-Ausdriicke.

Left$(),
Right$(): Ist der Langenparameter negativ, erzeugt der KC einen Laufzeitfehler, R-
BASIC liefert einen leeren String

Mid$(): Ist der Langenparameter negativ, erzeugt der KC einen Laufzeitfehler, R-
BASIC liefert alle Zeichen ab dem Start-Parameter (so als ob kein
Langenparameter angegeben wére)

WINDOW:
Auf dem KC-85 hat der Grafikbildschirm eine feste GréBe von 320 x 256
Pixeln. Da der Zeichensatz 8x8 Pixel grof} ist, hat das Textfenster maximal
32 Zeilen zu je 40 Spalten. Unter R-BASIC kann der Bildschirm und somit
das Textfenster eine beliebige GroBe haben.

Der Befenl WINDOW (ohne Parameter) stellt auf dem KC-85 ein Standard-
Fenster ein, dass oben und unten eine Zeile frei lasst. Das entspricht dem

Abwartskompatibilitat - 218

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

Befehl WINDOW 1, 38, 0, 39. Unter R-BASIC stellt der Befehl WINDOW
(ohne Parameter) das maximal moégliche Fenster ein.

Auf dem KC erzeugen Window-Parameter, die nicht zum Bildschirm passen
(z.B. Anfangszeile < 0) einen Laufzeitfehler, in R-BASIC wird das Fenster
angepasst (abgeschnitten) oder es wird das maximale Fenster eingestellt.

LOCATE: Der KC erzeugt einen Syntax-Fehler zur Laufzeit, wenn die Koordinaten
ungultig sind. R-BASIC begrenzt die Koordinaten auf sinnvolle Werte und
arbeitet weiter.

POS: Der Befehl wurde im CsrPos umbenannt, damit der Bezeichner pos flr
Variablen verwendet werden kann.

PRINT AT, INK, COLOR, PAPER : Auf dem KC in jeder Print-Anweisung nur ein
AT und eine Farbanweisung zuldssig. In R-BASIC kann man diese
Anweisungen beliebig kombinieren.

PRINT - Steuercodes
In R-BASIC ist nicht definiert: &H14 (KeyKlick), &H16 (ShiftLock)
Folgende Codes arbeiten in R-BASIC nur innerhalb einer Zeile, wahrend

sie beim KC auch zeilenlbergreifend arbeiten kénnen: &H16 (Insert),
&H17 (Delete) und &HO08 (Clear Character)

WIDTH: Der Befehl wurde im KC_WIDTH umbenannt, damit der Bezeichner width
far Variablen verwendet werden kann.

SOUND: Der Befehl wurde im KCSOUND umbenannt, damit der Bezeichner
SOUND fur einen leistungsfahigeren Sound-Befehl zur Verfligung steht. Die
Lange eines "Dauertons" ist auf 18 Minuten begrenzt.

LINE, CIRCLE, PSET, PRESET: Die Grafikbefehle schreiben nicht in den IRM,
weder in den Pixel- noch in den Color-RAM. Entsprechend kann es beim
Lesen dieser Speicherbereiche mit VPEEK abweichende Ergebnisse
geben.

VPOKE und VPEEK greifen auf einen von R-BASIC bereitgestellten Speicherblock
zu. Uber die Systemvariable kc85Fetaures (sieche unten) kann eingestellt
werden, inwieweit R-BASIC versuchen soll, die damit verbundene Hard-
wareoperation des KC-85 nachzuahmen. In einigen Féllen gelingt das sehr
gut, in anderen eher weniger gut.

INP, OUT, WAIT: Diese hardwarenahen Befehle greifen auf die 1/0-Ports des PC
zu. Die KC-Hardware wird nicht emuliert.

Nicht unterstitzte KC-BASIC Befehle
Einige Befehle sind unter R-BASIC nicht sinnvoll (z.B. die Editorbefehle) oder
konzeptionell nicht méglich (z.B. der Aufruf von Z80 Maschinencode).

+ Editor-Befehle und Speicherverwaltung
AUTO, BYE, CLOAD, CONT, CSAVE, DELETE, EDIT, FREE(), LINES, LIST,
NEW, RENUMBER, RUN, TRON, TROFF

+ Hardware- oder Maschinenprogramm-Zugriffe:
JOYST, BLOAD, CALL, INPUT#, LIST#, LOAD#, SWITCH, WAIT, USR()

Abwartskompatibilitat - 219

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEQOS programmieren

+ Sonstige:
DEF_FN, KEY, KEYLIST, LET, FRE

« PTEST wird nicht unterstitzt. Verwenden Sie stattdessen PGet.

Spezielle Befehle fiir die KC-Kompatibilitat

kc85Features

Die Systemvariable kc85Features bestimmt das Kompatibilitdtslevel von R-BASIC
gegenuber dem KC-85 BASIC. Die in der Tabelle unten aufgelisteten Funktionen
kann man einzeln ein- und ausschalten, da viele von ihnen R-BASIC einschréanken
oder verlangsamen. Dazu enthélt die Variable kc85Features Bitflags, das heiBt,
jedes Bit hat eine eigene Bedeutung. Die Arbeit mit Bitflags ist im Kapitel 2.3.5.4
des Programmierhandbuchs beschrieben.

Die meisten Bits setzen voraus, dass der Ausgabescreen eine 8 Bit Bitmap mit
Palette ist. Ist diese Bedingung nicht erfullt funktionieren einige Funktionen nicht
oder verhalten sich "seltsam".

Ubersicht iber die Bits in kc85Features

BitNr. | Wert Aufgabe

0 1 (&h01) Print ignoriert Koordinatentransformation

1 2 (&h02) KC-85 Farben verwenden

2 4 (&h04) Blinken unterstlutzen

3 8 (&h08) VPOKE in den Pixel-RAM schreibt auch in die
Ausgabebitmap

4 16 (&h10) VPEEK aus dem Pixel-RAM liest aus der
Ausgabebitmap

5 32 (&h20) VPOKE in den Color-RAM schreibt auch in die
Ausgabebitmap

6 64 (&h40) VPEEK aus dem Color-RAM liest aus der
Ausgabebitmap

7 128 (&h80) VGet$ liest aus dem ASCII-Puffer im IRM

8 256 (&h100) CLS I6scht den Pixel-, Color-RAM sowie den ASCII-
Puffer im IRM, PRINT und INPUT updaten den
ASCII-Puffer im IRM.

9 512 (&h200) KC-85 Zeichengenerator benutzen

10 1024 (&h400) Erstbelegung der Buchstabentasten groB3

11 2048 (&h800) ASCII-Codes der Umlaute und Sonderzeichen von
der Tastatur in KC-Codes umwandeln

12 4096 (&h1000) | INKEY$: ASCII-Codes der Steuertasten in KC-Codes
umwandeln

13 8192 (&h2000) [Bit 3 der Arbeitszelle 14242 (&HB7A2) unterstitzen

14 16344 (&h4000) | Peek(509) liest den Tastencode

15 Immer Null. Kann nicht geandert werden.

Abwértskompatibilitat - 220

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

Néhere Beschreibung der einzelnen Bits

Bit 0 ermdglicht, dass das grafische Koordinatensystem seinen Ursprung links
unten hat, wahrend der PRINT Befehl weiterhin mit der Zeilen- und
Spaltenzahlung links oben beginnt, ohne dass die Buchstaben gespiegelt
werden.

Bit 1 bewirkt, dass den KC-Farbcodes 0 bis 31 Farben aus der GEOS-
Standardpalette zugeordnet werden, die denen des KC-85 entsprechen.

Bit 2 bewirkt, dass die Farben 16 bis 31 der Vordergrundfarbe blinkend dargestellt
werden. Dazu wird etwa 2 Mal pro Sekunde die Palette der Screen-Bitmap
modifiziert und die Bitmap neu dargestellt. Setzt voraus, dass das Bit 1
ebenfalls gesetzt ist. Falls Sie keine blinkenden Zeichen bendtigen sollten
Sie dieses Bit auch nicht setzen.

Bit 3 bewirkt, dass VPOKE beim Schreiben in den Pixel-RAM auch in die
Ausgabebitmap schreibt. Die erzeugten Farben kénnen aber vom Ergebnis
auf dem KC abweichen.

Bit 4 bewirkt, dass VPEEK beim Lesen aus dem Pixel-RAM den zu lesenden Wert
aus den Pixeldaten der Ausgabebitmap rekonstruiert. Ist das Bit nicht gesetzt
wird der Wert direkt aus dem IRM gelesen.

Bit 5 bewirkt, dass VPOKE beim Schreiben in den Color-RAM auch in die
Ausgabebitmap schreibt.

Bit 6 bewirkt, dass VPEEK beim Lesen aus dem Color-RAM den zu lesenden
Wert aus den Pixeldaten der Ausgabebitmap rekonstruiert. Der gelesene
Wert kann vom Ergebnis auf dem KC abweichen. Ist das Bit nicht gesetzt
wird der Wert direkt aus dem IRM gelesen.

Bit 7 bewirkt, dass VGet$ den Wert aus dem ASCII-Puffer im IRM liest statt aus
dem R-BASIC ASCII-Puffer. Setzt einen 40 Zeilen x 32 Zeichen - Screen
voraus.

Bit 8 bewirkt, dass PRINT, INPUT und CLS den ASCII-Puffer im IRM updaten.
CLS léscht auBerdem den Pixel- und den Color-RAM. Setzt einen 40 Zeilen
X 32 Zeichen - Screen voraus.

Bit 9 bewirkt, dass der KC85 Zeichengenerator in den R-BASIC Zeichengenerator
gespiegelt und dabei gegebenenfalls skaliert wird, indem die
entsprechenden Arbeitszellen im IRM tberwacht werden. Setzt einen aktiven
Blockgrafik-Modus mit einem 40 Zeilen x 32 Zeichen - Screen voraus. Die
Blockgrafikzeichen missen quadratisch und ihre GréBe durch 8 teilbar sein.
Andert das KC-Programm den Zeichengenerator im RAM so passt R-BASIC
seinen eigenen Zeichengenerator automatisch an.

Bit 10 bewirkt, dass die Erstbelegung der Buchstabentasten wie beim KC die
GroBbuchstaben sind.

Abwartskompatibilitat - 221

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

Bit 11 bewirkt, dass die ASCII-Codes der Umlaute und Sonderzeichen auf der
Tastatur fir INPUT und INKEY$ in die entsprechenden KC-Codes
umgewandelt werden. Hinweis: Auf dem KC gibt es bei den Umlauten keine
GroBbuchstaben.

Bit 12 bewirkt, dass INKEY$ bei den Steuertasten (Pfeiltasten, Einfg usw.) die KC-
Codes liefert. INPUT behandelt die Steuertasten immer automatisch korrekt.

Bit 13 bewirkt, dass das Bit 3 der Arbeitszelle 14242 (&HB7A2) im IRM
kontrolliert, ob Steuerzeichen (ASCII-Code < 32) "ausgefuhrt" oder als
druckbare Zeichen ausgegeben werden. Dazu wird das Bit
TS_DONT_EXEC_ CONTROLS in printFont.style angepasst.

Bit 14 bewirkt, dass der Befehl Peek(509) des Tastaturcode der aktuell
gedruckten Taste liefert. Die Speicherstelle mit der Adresse 509 (=&h1FD)
ist eine Arbeitszelle des CAOS Betriebssystem des KC-85.

Hinweis: Die R-BASIC Befehle GetKey bzw. GetKeyLP liefern nicht den KC-
Code sondern weiterhin den R-BASIC Code. Diese Codes unterscheiden
sich fir Steuerzeichen. Will man sie verwenden muss man méglicherweise
die Abfrage entsprechend anpassen.

Bit 15 ist immer Null und kann nicht geandert werden.

VPOKE

VPOKE schreibt ein Byte in den IRM. In diesem Bereich liegt der Bildwieder-
holspeicher des KC-85 und die Arbeitszellen des KC Betriebssystems. Einige Bits
in der Systemvariablen kc85Fetaures bestimmen, ob VPOKE weitere Aktionen
auslést oder einfach nur den Speicher beschreibt.

Eine genaue Aufteilung des IRM sowie Informationen dazu, welche der CAOS
Arbeitszellen von R-BASIC benutzt werden kénnen, finden Sie im Anhang.

Syntax: VPOKE adr, val
adr: Adresse im IRM. Erlaube Werte sind 0 bis 16383
val: Zu schreibender Wert (Byte).

VPEEK

VPEEK liest ein Byte aus dem IRM. Die Bits 4 und 6 der Systemvariablen
kc85Features bestimmen, ob beim Lesen aus dem Pixel- bzw. Color-RAM der
IRM selbst gelesen werden soll oder ob VPEEK versuchen soll, den Wert aus den
Pixeldaten der Ausgabebitmap zu rekonstruieren.

Syntax: <numVar> = VPEEK adr
adr: Adresse im IRM. Erlaube Werte sind 0 bis 16383

Abwartskompatibilitat - 222

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEQOS programmieren

PEEK(509)

Die Speicherstelle mit der Adresse 509 (=&h1FD) ist eine Arbeitszelle des CAOS
Betriebssystem des KC-85. Dort wird der Code der aktuell gedrlickten Taste
abgelegt. Viele KC-BASIC Programme greifen direkt darauf zu. Das Setzen des
Bits 14 in der Systemvariablen kc85Features bewirkt, dass der Befehl Peek(509)
des Tastaturcode der aktuell gedriickten Taste liefert.

POKE 862, 1

Die Speicherstelle mit der Adresse 862 (=&h35E) ist eine Arbeitszelle des BASIC
Interpreters des KC-85. Ein Wert ungleich Null verhindert, dass der Nutzer den
Quellcode eines BASIC Programms ansehen kann (Listschutz). R-BASIC ignoriert
diese Zelle.

KC_WIDTH
KC_WIDTH (Breite, KC Kompatibilitatsbefehl) bestimmt die maximale Lénge einer

Ausgabezeile. Dieser Befehl ist urspringlich zur Arbeit mit Druckern gedacht und
wurde deswegen umbenannt. Der Originalbefehl im KC-85 BASIC lautet WIDTH.

Syntax: KC_WIDTH n

n: Lange der Ausgabezeile. Werden mehr als n Zeichen auf einmal
ausgegeben, wird nach n Zeichen jeweils ein Zeilenumbruch
eingeflgt.

Beispiel:

KC_WIDTH 15

KCClear

KCCLEAR léscht den globalen Variablenspeicher, einschlieBlich String und HUGE
Variablen. Der Originalbefehl im KC-85 BASIC lautet CLEAR.

Syntax: KCClear

Beispiel:
KCClear

Abwértskompatibilitat - 223

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

19 Objekte individualisieren

Es gibt Situationen, in denen es nétig ist, dass ein Objekt neben den vom System
vorgegebenen Daten weitere Informationen speichern muss. Ein einfaches
Beispiel ist ein Canvas-Objekt, das entweder einen Kreis oder ein Quadrat
zeichnen soll. Sie kénnen die Information, ob ein Kreis oder ein Quadrat
gezeichnet werden soll, natarlich in einer globalen Variablen speichern. Das ist
aber nicht nur schlechter Stil sondern wird bei mehreren solchen Objekte auch
schnell sehr untbersichtlich und damit fehlernfallig.

Die bessere Ldsung ist, die Information im Objekt selber zu speichern. R-BASIC
bietet Ihnen flr diese Situation die Instancevariable privData. PrivData nimmt eine
Strukturvariable beliebigen Typs auf und speichert sie im Objekt selbst. Hier
kénnen Sie z.B. ablegen, ob ein Kreis oder ein Quadrat gezeichnet werden soll.
AuBerdem kénnen Sie - wenn Sie wollen - die GréBe, die Farbe und beliebige
weitere Informationen speichern.

Far einfache Félle steht Ihnen bei Objekten der Klasse VisObj zuséatzlich die
Instancevariable visDataValue zur Verfugung, die einen numerischen Wert
aufnehmen kann und beim VisObj-Objekt beschrieben ist.

Fortgeschrittene Programmierer kdnnen in einigen Situationen den Bedarf haben,
dass sie eine Routine erst dann aufrufen wollen, wenn der aktuelle Actionhandler
vollstandig abgearbeitet ist. Typische Beispiele sind hier der OnPrint Handler (bei
dem man das Screen-Objekt nicht &ndern darf) oder ein OnMouse~ bzw. der
OnKeyPressed Handler (die meist zeitkritisch sind). R-BASIC |6st dieses Problem,
indem man fir Objekte eigene, private ("custom") Handler definieren kann.
Actionhandler unterbrechen sich niemals, sondern werden immer nacheinander
abgearbeitet. Der Aufruf eines solchen Handlers flhrt also dazu, dass die aktuelle
Routine (genauer: der komplette aktuell laufende Handler) zuerst vollstandig
abgearbeitet wird bevor der neue Handler ausgefihrt wird. Um einen Custom
Handler fur ein Objekt festzulegen verwenden Sie die Instancevariable
CustomHandler. Custom Handler missen als CustomAction deklariert sein. Um
einen Custom Handler aufzurufen verwenden Sie die Methode CustomApply.

PrivData

PrivData ist fur alle Klassen definiert. Sie nimmt eine einzelne Strukturvariable

(also maximal 3500 Bytes) auf. Diese Instancevariable ist zuweisungskompatibel

mit jeder Art von Struktur, es wird weder eine Typ- noch eine GréBenprifung

ausgeflhrt. Es ist daher verninftig beim Schreiben und beim Lesen der Daten den

gleichen Struktur-Datentyp zu verwenden.

Schreiben: Sie mulssen die GréBe der zu schreibenden Daten angeben.
Verwenden Sie dazu die Funktion SIZEOF.

Lesen: Es werden so viele Bytes gelesen, wie die Variable auf der linken Seite
der Zuweisung aufnehmen kann. Enthalt privData weniger Bytes, so
wird der Rest mit Nullen aufgefullt.

Objekte individualisieren - 224

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Es ist zuldssig mehrfach hintereinander Strukturen verschiedenen Typs und
verschiedener GréBe in die Instancevariable zu schreiben. R-BASIC optimiert
jedes Mal den verwendeten Speicher, so dass kein Platz verschwendet wird.

Syntax Schreiben: <obj>.privData = <struct>, size

Lesen: <structVar> = <obj>.privData
<struct>: Strukturausdruck beliebigen Typs
size GroBe der Struktur

<structVar>: Strukturvariable des Typs, der beim Schreiben
verwendet wurde.

Achtung! PrivData kann nicht im Ul Code belegt werden! Wenn Sie wollen, das
privData am Programmstart mit vorgegebenen Werten belegt wird, missen Sie
das im OnStartup- oder im Onlnit-Handler tun.

Beispiel:

Ein Canvas-Objekt soll einen Kreis oder ein Quadrat in einer vorgegebenen Farbe
zeichnen. Wir bendtigen:

- einen Strukturtyp, der die Informationen enthélt,

- eine Routine, die die Werte setzt,

- ein Canvas-Obijekt,

- einen OnDraw Handler fir das Canvas Objekt,

- einen OnStartup Handler fir das Application Objekt

Der Strukturtyp sei folgendermafen definiert:
STRUCT ImgData
isCircle as Integer

color as Integer
End Struct

Zum Belegen der Instancewerte dient die folgende Routine. Die zweite Routine
(SetCanvasToRect) ist hier nicht aufgefuhrt.

SUB SetCanvasToCircle(col as Integer)
DIM pd AS ImgData

pd.isCircle = TRUE

pd.color = col

DemoCanvas.privData = pd, SIZEOF (pd)

DemoCanvas.Dirty ' Neudarstellung auslOsen
End Sub

Das Canvas-Objekt sei wie folgt definiert. Beachten Sie, dass wir privData nicht
definieren brauchen, es ist flur alle Objekte automatisch verfugbar.
CANVAS DemoCanvas

OnDraw = DrawFigure

fixedsize = 70, 70
End Object

Objekte individualisieren - 225

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Unser Application-Objekt benétigt einen OnStartup Handler.

Application DemoApplication
Children = DemoPrimary
OnStartup = AppStartup

End OBJECT

SchlieBlich benétigen wir noch den OnDraw-Handler, der die privData-Werte
ausliest und verwendet sowie den OnStartup Handler fir das Application-Objekt.

DRAWACTION DrawFigure
DIM priv as ImgData

priv = sender.privData
INK priv.color
IF priv.isCircle THEN
FillEllipse 10, 10, 60, 60
ELSE
FillRect 10, 10, 60, 60
END IF
End Action

SYSTEMACTION AppStartup
SetCanvasToCircle (LIGHT RED)
END ACTION

CustomHandler

CustomHandler enthélt den Namen des Actionhandlers, der mit der Methode
CustomApply aufgerufen werden soll.

Syntax Ul- Code: CustomHandler = <Handler>
Schreiben: <obj>.CustomHandler = <Handler>

Ein Custom Handler muss als CustomAction deklariert sein:

Handler-Typ Parameter
CustomAction (sender as object, actionData as integer)
CustomApply

Die Methode CustomApply ruft den CustomHandler eines Objekts auf. lhr wird ein
Integer-Wert GUbergeben, der an den Handler weitergereicht wird.

Syntax: <obj>.CustomApply actionData
actionData: Integerwert, der an CustomHandler Ubergeben wird.

Objekte individualisieren - 226

R-BASIC Handbuch - Spezielle Themen - Vol. 3

Einfach unter PC/GEOS programmieren

Beispiel (einfach, deswegen nicht sehr sinnvoll):

Ein Button mit einem ActionHandler und Primary mit einem CustomHandler.

BUTTON MyButton
Caption$ "Driick mich!"
ActionHandler = PressHandler
End Object

BUTTON MyPrimary
CustomHandler = CHandler
End Object

Der Actionhandler:

ButtonAction PressHandler
Print "Text 1"
MyPrimary.CustomApply 1
Print "Text 2"
MyPrimary.CustomApply -7
Print "Text 3"

End Action

Der CustomHandler wird erst ausgefiihrt, wenn der ActionHandler fertig ist

CustomAction CHandler

DIM i
IF actionData < 0 THEN i = RED : ELSE i = BLUE
Print Ink i;"DATA = ";actionData

End Action

Wenn der Nutzer den Button drickt erscheint folgendes:

Text 1
Text 2
Text 3
DATA =1
DATA =-7

Objekte individualisieren - 227

