

 R-BASICR-BASIC
Einfach unter PC/GEOS programmieren

 Spezielle ThemenSpezielle Themen
Volume 3

Tastatur, Document-Interface, Timer, Maus,
Abwärtskompatibiltät, Objekte individualisieren

Version 1.0

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Inhaltsverzeichnis

14 Arbeit mit der Tastatur ... 144
14.1 Überblick über Tastaturereignisse ... 144
14.2 Schreiben eines Tastaturhandlers ... 146
14.3 Simulieren von Tastaturereignissen .. 151
14.4 Komplexes Beispiel - Filtern von Tastaturereignissen 153

15 Implementieren eines Dokument-Interfaces 156
15.1 Konzeptionelles ... 156
15.2 Die UI: Datei-Menü und Toolbar ... 159
15.3 Kernroutinen und Tools ... 161
15.4 Standard Dokument Operationen .. 167

15.4.1 Ein neues Dokument anlegen .. 168
15.4.2 Öffnen einer Datei .. 169
15.4.3 Speichern der geänderten Daten ... 170
15.4.4 Speichern unter neuem Namen ... 171
15.4.5 Schließen des Dokuments ... 173

15.5 Erweiterte Dateioperationen .. 175
15.6 Letzter Stand ... 178
15.7 Quick Backup ... 180
15.8 Verwendung von Muster-Dateien .. 181
15.9 Schnittstelle zu GEOS Dateisystem .. 184
15.10 Ein einfaches Beispiel .. 189

16 Timer .. 194

17 Arbeit mit der Maus .. 198
17.1 Überblick .. 198
17.2 Maus Grabbing .. 199
17.3 Aufruf der Actionhandler... 200
17.4 Typische Situationen ... 203

17.4.1 Behandlung der Mousebuttons .. 203
17.4.2 Arbeit mit dem OnMouseMove Handler 204
17.4.3 Zeichnen auf den Bildschirm .. 206
17.4.4 Behandeln von MouseOver Ereignissen 209
17.4.5 Abfrage der Tastatur .. 211

17.5 Utility Methoden ... 212

18 Abwärtskompatibilität .. 214
18.1 Der klassische BASIC Modus .. 214
18.2 Zeilennummern .. 214
18.3 Kompatibilität mit dem KC-85-BASIC .. 216

19 Objekte individualisieren ... 224

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 144

14 Arbeit mit der Tastatur

Zur Entgegennahme von Nutzereingaben über die Tastatur stehen dem R-BASIC
Programmierer drei Möglichkeiten zur Verfügung
1. Im Klassischen BASIC Mode wird die Tastatur direkt abgefragt. Dazu stehen

z.B. die Befehle INPUT, Inkey$ und GetKey zur Verfügung. Unter einem
objektorientierten System wie GEOS sollten Sie diesen Weg vermeiden.
Insbesondere die ständige Abfrage der Tastatur in einer Schleife bremst das
System massiv aus und erhöht die CPU-Last.

2. Der einfachste Weg ist die Verwendung von Textobjekten (Memo, InputLine,
VisText oder LargeText). Diese Objekte können intelligent mit Tastatur und
Maus umgehen und reichen für viele Zwecke völlig aus.

3. Der universellste Weg ist das Schreiben eines Tastaturhandlers. Tastatur-
handler werden automatisch gerufen, wenn der Nutzer eine Taste drückt. Sie
können die gerückte Taste mitlesen und entscheiden, ob Sie sie selbst
behandeln oder einfach weitergeben wollen. Dieser Weg wird z.B. benutzt um
ein Spielprogramm zu schreiben, dass mit der Tastatur gesteuert wird.

Dieses Kapitel widmet sich dem Schreiben von Tastaturhandlern, welche
Möglichkeiten sich daraus ergeben und was es zu beachten gilt.

14.1 Überblick über Tastaturereignisse

Um mit den Tastaturhandlern arbeiten zu können sollte man mindestens in
Grundzügen verstanden haben, wie GEOS mit Tastaturereignissen umgeht. Im
Folgenden wir das Prinzip erklärt, für vollständige Informationen muss auf
weiterführende Literatur verweisen werden.

Es gibt genau drei Situationen, in denen ein Tastaturereignis erzeugt wird:

1. Der Nutzer drückt eine Taste nieder. Dieses Ereignis heißt FIRST_PRESS.
2. Der Nutzer hält die Taste länger gedrückt. Dieses Ereignis heißt

REPEAT_PRESS. Es wird immer wieder gesendet, solange der Nutzer die
Taste unten hält. Die Häufigkeit (Tastatur-Wiederholungsrate) kann in den
Voreinstellungen ausgewählt werden.

3. Der Nutzer lässt die Taste wieder los. Dieses Ereignis heißt RELEASE.

Bei jedem dieser Tastaturereignisse passiert intern folgendes:

1. Die Tastatur sendet die Nummer der Taste, den sogenannten Scancode, an
den Computer. Dieser Scancode ist unabhängig vom eingestellten Tastatur-
layout. Im Kapitel 14.3 finden Sie ein Bild mit den Scancodes einer PC-
Tastatur.

2. Der Tastaturtreiber kennt das Tastaturlayout und wandelt den Scancode in den
zugehörigen ASCII-Code (0 ... 255) um. Dabei werden die "Modifier"-Tasten
wie Shift oder AltGr bereits berücksichtigt.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 145

Tasten, denen kein ASCII-Code zugeordnet ist wie F1 oder die Cursortasten,
erzeugen einen "erweiterten" ASCII-Code im Bereich von 65280 bis 65535
(hexadezimal &hFF00 bis &hFFFF).

3. Jetzt erzeugt der Tastaturtreiber ein "Tastaturereignis" für das System und gibt
es als Message an das Application-Objekt des aktiven Programms weiter.
Diese Message enthält unter anderem den ASCII-Code (das schließt erweiterte
ASCII-Codes ein), den Typ des Ereignisses (FIRST_PRESS usw.) und den
aktuellen Zustand der Steuertasten (z.B. linke Strg-Taste gedrückt).

4. Das Application-Objekt leitet das Ereignis an das Objekt weiter, dass den
Focus hat.

Anmerkungen:
Zu Punkt 2:

Bei den erweiterten ASCII-Codes sind die höherwertigen 8 Bit immer gesetzt,
die unteren 8 Bit enthalten die Information, z.B. den Steuercode der zur
gedrückten Taste gehört. Man kann ihn abfragen indem man die oberen 8 Bit
mit der AND-Operation ausblendet.
code = character AND 255 ’ d.h. AND &hFF

Diese Codes sind oft, aber nicht immer identisch mit den für das PRINT-
Kommando verwendeten Steuercodes (siehe Anhang, Kapitel A). Zum Beispiel
ist der PRINT Code für "Cursor nach links" 14 (&h0E), der Tastencode ist
jedoch 147 (&h93).
In der Library "KeyCodes" finden Sie symbolische Konstanten und die Werte
für die erweiterten Tastencodes.

Zu Punkt 3:
Drückt der Nutzer die Tasten Shift + ’a’ wird der Buchstabe ’A’ erzeugt. Die
Shift-Taste ist damit ausgewertet und wird NICHT mehr in das Tastaturereignis
aufgenommen.

Es ist nun möglich sich unter R-BASIC an bestimmten Stellen in den
Tastaturhandler einzuklinken und Tastaturereignisse zu "überschreiben". Das
heißt man kann sie mitlesen, bei Bedarf verhindern dass sie weitergeleitet werden
oder auch dem System eigene "Ereignisse" unterschieben. Der folgende Abschnitt
beschreibt die Konzepte dahinter.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 146

14.2 Schreiben eines Tastaturhandlers

Um sich in das Tastaturhandling einzuklinken muss man einen Tastaturhandler
(auch Keyboardhandler) schreiben. Dazu stehen die folgenden Instancevariablen
zur Verfügung:

Variable Syntax im UI-Code Im BASIC-Code
OnKeyPressed OnKeyPressed = <Handler> nur schreiben
inputFlags inputFlags = <numWert> lesen, schreiben

Handler-Typ Parameter
KeyboardAction (sender as object, character as word, keyState as word,

keyFlags as byte, scanCode as byte)

Der OnKeyPressed Handler wird gerufen, wenn das Objekt ein Tastaturereignis
erhält. Er muss als KeyboardAction deklariert werden. Die inputFlags bestimmen,
in welchen Fällen das Ereignis vom Objekt selbst, vom BASIC Handler oder von
beiden behandelt werden soll.

Für die folgenden Objektklassen sind Keyboardhandler und inputFlags definiert:
• Application
• Memo, InputLine, VisText und LargeText
• View
• VisContent
• BitmapContent
• VisObj

Wichtig: Es ist grundsätzlich so, dass zuerst das Objekt das Tastaturereignis
behandelt (bzw. weiterleitet) und erst danach der BASIC Handler gerufen wird. Im
Abschnitt 14.4 ist beschrieben, wie man trotzdem bestimmte Zeichen herausfiltern
kann.

Einige der Objekte (z.B. alle Textobjekte) behandeln das Ereignis per Default
selbst, andere (z.B. View oder VisContent) leiten es nur an untergeordnete
Objekte weiter. Details oder Besonderheiten zum Tastaturhandling der einzelnen
Objekte finden Sie in den entsprechenden Kapiteln zu den Objekten.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 147

OnKeyPressed

Der OnKeyPressed Handler wird aufgerufen, wenn das Objekt ein Tastatur-
ereignis erhält. Der Handler muss als KeyboardAction deklariert sein. Der BASIC
Handler wird erst gerufen nachdem das Objekt das Ereignis selbst behandelt bzw.
an untergeordnete Objekte weitergeleitet hat.

Syntax UI- Code: OnKeyPressed = <Handler>
Schreiben: <obj>.OnKeyPressed = <Handler>

KeyboardAction Handler haben die folgenden Parameter:

sender: Das Objekt, welches den Handler aufgerufen hat
character: ASCII-Code oder erweiterter ASCII-Code der Taste

Tipp: In der Library "KeyCodes" finden Sie symbolische
Konstanten für die erweiterten ASCII-Codes.

keyState: Information, welche Status- oder Steuertasten aktuell gedrückt
sind.

keyFlags: Information ob der Nutzer die Taste gerade gedrückt hat, sie
gedrückt hält oder gerade losgelassen hat.

scanCode: Der Scancode der gedrückten Taste. Für Ereignisse, die mit der
Methode KbdEvent erzeugt wurden hat scanCode den Wert Null.

KeyState enthält genau die Informationen, die man auch mit der BASIC Funktion
GetKeyState erhalten kann. Der Zugriff auf den Parameter keyState ist jedoch
wesentlich schneller. KeyState sind Bitflags. Jedes Bit hat eine eigene Bedeutung.
Das niederwertige Byte enthält den "Shift"-Status, das höherwertige Byte (Bitwerte
256 und aufwärts) den "Toggle"- Status.
Folgende Werte bzw. Konstanten sind definiert:

Konstante (Shift-State) Wert (hex.) Bedeutung
– 1 &h01 Feuertaste 1 am Joystick
– 2 &h02 Feuertaste 2 am Joystick
KS_RSHIFT 4 &h04 Rechte Shift-Taste
KS_LSHIFT 8 &h08 Linke Shift-Taste
KS_RCTRL 16 &h10 Rechte Strg-Taste
KS_LCTRL 32 &h20 Linke Strg-Taste
KS_RALT 64 &h40 Rechte Alt-Taste
KS_LALT 128 &h80 Linke Alt-Taste

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 148

Konstante (Toggle-State) Wert Bedeutung
KS_SCROLL_LOCK 256 (&h100) Scroll-Lock-Taste (Rollen) eingerastet
KS_NUM_LOCK 512 (&h200) Num-Lock-Taste eingerastet
KS_CAPS_LOCK 1024 (&h400) Shift-Lock Taste eingerastet

Anmerkungen:
1. Die Bits werden vom Host-System an GEOS und von dort an den R-BASIC

Handler übergeben. Nicht verwendete Bits sind intern verwendet und
könnten gesetzt sein oder nicht.

2. Die Bits für "Modifier"-Tasten wie Shift oder AltGr sind i.A. nicht gesetzt, auch
wenn die Tasten gedrückt sind. Sie wurden bei der Erzeugung des ASCII-
Codes vom Tastaturtreiber "geschluckt".

3. Die Toggle-State Bits enthalten die Information, ob der entsprechende
Zustand eingerastet ist oder nicht. Auf der Tastatur sollten dann die
entsprechenden Leuchtdioden aktiv sein. Erfahrungsgemäß haben
verschiedene Hostsysteme und/oder Emulatoren damit aber Probleme, so
dass die LED’s nicht immer den aktuellen Zustand widerspiegeln.
Beispielsweise startet die DosBox unter Windows 7 immer mit dem Zustand
"NumLock nicht aktiv", obwohl die LED leuchtet und man muss die Taste
zweimal betätigen um den NumLock Zustand zu ändern.

KeyFlags sind Bitflags. Jedes Bit hat eine eigene Bedeutung. Folgende Werte
bzw. Konstanten sind definiert.

Konstante Wert Bedeutung
KF_STATE_KEY 128 (&h80) Status-Taste (Shift, Strg, Alt ...)
KF_EXTENDED 16 (&h10) "Erweiterte" Taste (abgesetzte Steuertaste)

(Cursor, Einfg, Pos1 ...)
–– 8 (&h08) temporäre Accent-Taste
KF_FIRST_PRESS 4 (&h04) Taste wurde gerade frisch gedrückt
KF_REPEAT_PRESS 2 (&h02) Taste gehalten, Autorepeat Funktion
KF_RELEASE 1 (&h01) Taste wurde losgelassen

inputFlags

Mit Hilfe der Instancevariablen inputFlags kann man steuern, ob ein
Tastaturereignis vom Objekt selbst, vom BASIC Handler oder von beiden
behandelt werden soll.

Syntax UI-Code: inputFlags = bits
bits: Kombination der IF_-Werte laut Tabelle unten

Lesen: <numVar> = <obj>.inputFlags
Schreiben: <obj>.inputFlags = bits

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 149

Per Default ist inputFlags Null, d.h. Tastaturereignisse werden sowohl vom Objekt
als auch vom BASIC-Handler (so einer gesetzt ist) behandelt. Als Faustregel gilt:
Setzen Sie nur die Bits, die sie auch wirklich für die Programmfunktion benötigen.

Die folgenden Werte bzw. Konstanten sind definiert:

Konstante Wert hexadezimal
IF_IGNORE_FIRST_PRESS 1 &h01
IF_IGNORE_REPEAT_PRESS 2 &h02
IF_IGNORE_RELEASE 4 &h04
IF_IGNORE_ANY_KEY 7 (7 = 1 + 2 + 4)
IF_FILTER_GENERATED_EVENTS 8 &h08
IF_HANDLER_NO_FIRST_PRESS 16 &h10
IF_HANDLER_NO_REPEAT_PRESS 32 &h20
IF_HANDLER_NO_RELEASE 64 &h40
IF_HANDLER_GENERATED_EVENTS 128 &h80
IF_DONT_MAP_NUM_PAD 256 &h100
IF_MAPPED_NUM_PAD_STATE_BIT 512 &h200

IF_IGNORE_FIRST_PRESS
IF_IGNORE_REPEAT_PRESS
IF_IGNORE_RELEASE
IF_IGNORE_ANY_KEY

Diese Bits verhindern, dass das Objekt die entsprechenden Ereignisse selbst
behandelt bzw. an seine Children / sein Content weiterleitet. Das betrifft jedoch
nur "echte" Tastendrücke. Tastaturereignisse, die mit der Methode KbdEvent
erzeugt wurden, werden immer vom Objekt behandelt bzw. weitergeleitet.

IF_FILTER_GENERATED_EVENTS
Dieses Bit bewirkt, dass die Bits IF_IGNORE_FIRST_PRESS, IF_IGNORE_-
REPEAT_PRESS, IF_IGNORE_RELEASE und IF_IGNORE_ANY_KEY auch
auf Ereignisse wirken, die mit der Methode KbdEvent erzeugt wurden. Das Bit
IF_FILTER_GENERATED_EVENTS wird sehr selten gebraucht.

IF_HANDLER_NO_FIRST_PRESS
IF_HANDLER_NO_REPEAT_PRESS
IF_HANDLER_NO_RELEASE

Diese Bits verhindern, dass der BASIC Handler die entsprechenden
Ereignisse behandeln kann.

IF_HANDLER_GENERATED_EVENTS
Per Default wird der BASIC Handler für Tastaturereignisse, die mit KbdEvent
erzeugt wurden, nicht gerufen. Dieses Bit aktiviert den Handler für solche
Ereignisse. Die IF_HANDLER_NO_~ Bits werden dabei berücksichtigt.
Das Bit IF_HANDLER_GENERATED_EVENTS wird sehr selten gebraucht.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 150

IF_DONT_MAP_NUM_PAD
IF_MAPPED_NUM_PAD_EXT_BIT

Aus historischen Gründen senden die Ziffern und Operatorzeichen vom abge-
setzten Ziffernblock eigentlich erweiterte Tastencodes. Das erschwert die
Auswertung der Tasten jedoch sehr. Deshalb wandelt R-BASIC diese
Tastencodes intern in "normale" Codes um, so dass für den BASIC Keyboard-
handler kein Unterschied besteht. Das Flag
IF_MAPPED_NUM_PAD_STATE_BIT weist R-BASIC an, für diese
Tastencodes das Bit KF_EXTENDED zu setzen, so dass Sie diese Tasten
wieder von den "normalen" Tasten unterscheiden können. Das Bit
IF_DONT_MAP_NUM_PAD schaltet die Umwandlung komplett aus. Damit
haben Sie die volle Kontrolle aber auch sehr viel mehr Aufwand.

Beispiel: Die Cursortasten sollen die Spielfigur Willy steuern.
Das Tastaturhandling wird von einem BitmapContent gemacht. Da dieses
keinen eigenen Tastaturhandler und keine Children hat benötigen wir kein
IF_IGNORE~ Bits. Außerdem wollen wir bei jedem Tastendruck nur genau
einen Schritt machen, auch wenn die Taste länger gedrückt ist. Deswegen
leiten wir REPEAT_PRESS und RELEASE-Ereignisse nicht an den BASIC
Handler weiter. Die SUB’s MoveWillyUp usw. müssen natürlich irgendwo
definiert sein.

UI-Code
BitmapContent GameBoard

OnKeyPressed = KeyHandler
inputFlags = IF_HANDLER_NO_REPEAT_PRESS + \

IF_HANDLER_NO_RELEASE
End Object

BASIC Code
Include "KeyCodes" ’ Konstanten KEY_UP usw. einbinden

KEYBOARDACTION KeyHandler
ON character SWITCH
CASE KEY_UP: ’ Cursor nach oben

MoveWillyUp
END CASE

CASE KEY_DOWN: ’ Cursor nach unten
MoveWillyDown
END CASE

CASE KEY_LEFT: ’ Cursor nach links
MoveWillyLeft
END CASE

CASE KEY_RIGHT: ’ Cursor nach rechts
MoveWillyRight
END CASE

END SWITCH
End ACTION

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 151

14.3 Simulieren von Tastaturereignissen

Methode Aufgabe
KbdEvent Erzeugt ein Tastaturereignis (Scancode ist Null)
KbdEventWithScancode Erzeugt ein Tastaturereignis mit Scancode

Die Methoden KbdEvent und KbdEventWithScancode erzeugen ein Tastatur-
ereignis und senden es an das entsprechende Objekt. Diese Methoden sind für
alle Objektklassen definiert.
In den meisten Fällen reicht es aus, KbdEvent zu verwenden.

KbdEvent

Syntax im BASIC Code: <obj>.KbdEvent character, keyState, keyFlags
character: ASCII-Code oder erweiterter ASCII-Code
keyState: Kombination von KS_~Bits (siehe OnKeyPressed)
keyFlags: Eines der KF_~ Bits (siehe OnKeyPressed)

Die übergebenen Werte character, keyState und keyFlags werden 1:1 als Para-
meter an den Tastaturhandler des Objekts und an den BASIC Tastaturhandler
weitergegeben. Im Unterschied zum echten Tastendruck übergibt KbdEvent als
"scanCode" jedoch den Wert Null an das Objekt, so dass sowohl das Objekt als
auch der BASIC Handler echte von vorgetäuschten Tastendrücken unterscheiden
können. Per Default werden mit KbdEvent simulierte Tastaturereignisse nicht
vom Objekt behandelt, sondern sie werden gleich an den BASIC Handler
weitergegeben. Details dazu siehe auch: inputFlags.

Beispiel 1: Kopieren der Tastatureingaben an ein zweites Textobjekt
UI-Code
Memo Text1
OnKeyPressed = KeyHandler

End OBJECT

Memo Text2
End OBJECT

BASIC Code
KEYBOARDACTION KeyHandler
’ Handler von Text1 sendet an Text2
Text2.KbdEvent character, keyState, keyFlags

End ACTION

Beispiel 2: Senden eines Zeichens an das Application-Objekt. Das Ereignis wird
dann intern an das Objekt, das den Focus hat, weitergeleitet.
DemoApplication.KbdEvent ASC("A"), 0, KF_FIRST_PRESS
DemoApplication.KbdEvent ASC("A"), 0, KF_RELEASE

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 152

Beispiel 3: Senden eines Zeichens an das Target-Objekt.
Target.KbdEvent ASC("Z"), 0, KF_FIRST_PRESS
Target.KbdEvent ASC("Z"), 0, KF_RELEASE

KbdEventWithScancode

In einigen Fällen werten die Objekte außer dem ASCII-Code und dem Tastatur-
status auch den Scancode der Taste aus. Das ist insbesondere bei der
Tastaturnavigation durch Menüs der Fall, wenn bei der Definition des
Tastenkürzels (siehe Instancevariable kbdShortcut, Objekthandbuch, Kapitel
3.1.4) das Bit KSM_PHYSICAL gesetzt ist. Typischer Weise ist dieses Bit bei den
Menüeinträgen zum Drucken (Strg-P), Kopieren (Strg-C), Einfügen (Strg-V) usw.
gesetzt.
Für den seltenen Fall, dass Sie einen solchen Button durch ein simuliertes
Tastaturereignis aktivieren wollen gibt es die Methode KbdEventWithScancode. In
allen anderen Fällen sollten Sie die Methode KbdEvent verwenden.

Syntax im BASIC Code:
 <obj>.KbdEventWithScancode character, keyState, keyFlags, scanCode

character: ASCII-Code oder erweiterter ASCII-Code
keyState: Kombination von KS_~Bits (siehe OnKeyPressed)
keyFlags: Eines der KF_~ Bits (siehe OnKeyPressed)
scanCode: Scancode der zu ’character’ gehörenden Taste

Die übergebenen Werte werden 1:1 als Parameter an den Tastaturhandler des
Objekts und an den BASIC Tastaturhandler weitergegeben. Im Unterschied zu
KbdEvent muss der Scancode der simulierten Taste übergeben werden. Das
Objekt kann jetzt den simulierten Tastendruck nicht mehr von einem echten
Tastendruck unterscheiden.
Passen ASCII-Code und Scancode nicht zueinander, so erkennen Objekte, die
den Scancode auswerten, die Taste nicht. Das folgende Bild zeigt die Scancodes
einer MF II Tastatur. Diese Codes sind auch für neuere Tastaturen gültig, die
weitere Tasten (und damit weitere Scancodes) haben.

Scancodes einer MF II Tastatur

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 153

14.4 Komplexes Beispiel - Filtern von Tastaturereignissen

Wir wollen bei einem Textobjekt nur Ziffern zulassen sowie die Buchstaben im
Bereich von ’A’ bis ’F’. Das Objekt soll alle anderen Buchstaben und Zeichen
herausfiltern. Ein Blick auf die Instancevariable textFilter ergibt, dass es dafür
keinen passenden Wert gibt.

Diese Aufgabe erfordert eine komplexe Lösung, da das Objekt per Default das
Tastaturereignis zuerst selbst behandelt. Im Anschluss daran ruft es den BASIC
Handler. Wir wollen jedoch, dass der BASIC Handler das Ereignis zuerst erhält,
damit wir unerwünschte Zeichen herausfiltern können. Erst danach darf das
Textobjekt das Ereignis behandeln.

Um das zu erreichen muss man die inputFlags auf den Wert
IF_IGNORE_ANY_KEY setzen und einen Keyboardhandler implementieren.

UI Code
Memo Text1
OnKeyPressed = KeyHandler
inputFlags = IF_IGNORE_ANY_KEY ’ betrifft nur echte

’ Tastendrücke
End OBJECT

Intern passiert jetzt folgendes:
1. Das Textobjekt erhält ein Tastaturereignis. Es prüft die inputFlags und den

scanCode und stellt fest:
- Ereignis nicht selbst behandeln
- BASIC Handler rufen

2. Der BASIC Handler erhält das Tastaturereignis. Er prüft den Tastencode und
entscheidet, ob er den Tastendruck ignorieren oder an das Textobjekt
zurückgeben soll. In folgenden Fällen soll der Tastendruck an das Textobjekt
zurückgegeben werden:
- Es ist ein Steuerzeichen oder eine Sondertaste.
- Es ist ein erwünschtes ASCII-Zeichen (0 ... 9 und A ... F)
Um das Ereignis an das Objekt zurückzusenden verwenden wir die Methode
KbdEvent.

3. Das Textobjekt erhält das vom BASIC-Handler "künstlich" erzeugte
Tastaturereignis. Das Objekt erkennt automatisch, dass es sich um einen
"unechten" Tastendruck handelt (weil der Parameter scanCode = 0 ist) und
behandelt es deshalb jetzt, ohne den BASIC-Handler noch einmal zu rufen.

Im OnKeyPressed-Handler müssen wir unbedingt dafür sorgen, dass alle
Steuertasten, Shift, Alt usw. durchgereicht werden. Sonst funktionieren die
Keyboard Shortcuts und schlimmstenfalls die gesamte Tastaturnavigation nicht
mehr. Ausnahmen wären Tastencodes, die wir bewusst selbst verwenden.
Beispielsweise könnten wir die Entertaste herausfiltern. In unserem Fall lassen wir
alle erweiterten Tasten passieren und blocken nur diejenige darstellbaren ASCII-
Codes, die uns nicht interessieren. Bei der Gelegenheit wandeln wir auch gleich
Kleinbuchstaben in Großbuchstaben um.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 154

BASIC Code
! -------- Handler KeyHandler --------
! Aufgabe: Tastaturereignisse ausfiltern
! Parameter: sender AS Object, character AS Word,
! keyState AS Word, keyFlags AS Byte, scanCode AS Byte
! scanCode = Null wenn mit Methode KbdEvent erzeugt
! --------------------------------
KEYBOARDACTION KeyHandler
DIM ch

’ Statt den Befehl GOTO zu verwenden erzeugen wir
’ eine "Endlos-Schleife"
’ Diese verlassen wir mit BREAK, wenn wir einen
’ akzeptablen ASCII-Code gefunden haben. Dann wird
’ hinter der Schleife weiter gemacht.
’ Wir verlassen sie mit RETURN, wenn wir den ASCII-Code
’ ignorieren wollen

REPEAT

’ Steuerzeichen und Sondertasten haben die höherwertigen
’ Bits im Parameter "character" gesetzt.
’ Wir verlassen in diesem Fall die Schleife mit BREAK.
IF character AND &hFF00 THEN BREAK

’ Normale Codes prüfen
ch = character ’ Das ist kürzer zu schreiben

’ aber eigentlich überflüssig
’ Ziffer ?
IF (ch >= ASC("0")) AND (ch <= ASC("9")) THEN BREAK

’ Buchstabe von A bis F ?
IF (ch >= ASC("A")) AND (ch <= ASC("F")) THEN BREAK

’ Kleinbuchstabe von a bis f ?
IF (ch >= ASC("a")) AND (ch <= ASC("f")) THEN

character = ch - 32 ’ a->A usw.
BREAK ’ Buchstabe
End IF

RETURN ’ Code nicht akzeptieren
UNTIL TRUE

’ Jetzt ASCII-Code an das Textobjekt zurücksenden
sender.KbdEvent character, keyState, keyFlags

END ACTION

Den kompletten Quellcode hierfür finden Sie bei den Beispielen unter
"Objekte\Text\Keyboard Handler Demo".

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Tastaturhandler - 155

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 156

15 Implementieren eines Dokument-Interfaces

Im PC/GEOS SDK wird die Arbeit mit Dokumenten durch drei Objektklassen
realisiert. Diese Klassen erzeugen die benötigte UI selbst und arbeiten eng
zusammen. Dazu müssen bestimmte Messages in bestimmter Weise gehandelt
werden. Das ist so in R-BASIC nicht realisierbar. Deswegen muss sowohl die UI
als auch die Routinen mit BASIC-Mitteln nachgebildet werden.

Dieses Kapitel beschreibt, wie man zur Realisierung eines Dokument-Interfaces
unter R-BASIC vorgehen muss. Alle hier beschriebenen Routinen und UI-Objekte
sind dem Beispiel "Dokument Interface" entnommen, das sich im Ordner "R-
BASIC\Beispiel\Objekte\Dateiarbeit" befindet. Dort finden Sie auch die hier aus
Platzgründen nicht aufgeführten Objekte.

Um ein eigenes Dokument-Interface zu erstellen sollten Sie in R-BASIC im Menü
"Extras" den Punkt "Code-Sequenz" -> "Dokument-Interface" verwenden. Dort
werden die in diesem Kapitel beschriebenen Routinen bzw. UI-Objekte
bereitgestellt und automatisch in Ihren Code eingefügt. Dabei können Sie
auswählen, ob Sie das komplette hier beschriebene Interface implementieren
wollen oder nur Teile davon. Wenn Sie einmal verstanden haben, wie das Prinzip
geht, können Sie auch leicht weitere Features, die hier nicht besprochen sind,
hinzufügen.

15.1 Konzeptionelles

Unser Dokument-Interface soll folgendes leisten:

Standard-Dateioperationen:
• Neu, Öffnen, Schließen, letzter Stand, Speichern, Speichern unter
• Quick-Backup: Backup anlegen und aus Backup wiederherstellen.
• Muster: Als Muster speichern, Muster öffnen
• Verschieben nach ... , Kopieren nach ..., Umbenennen
• Bearbeiten der Benutzernotizen
• Die Funktionen "Import" und "Benutzerebene ändern" werden zur Demon-

stration vorbereitet, aber nicht implementiert.

Fähigkeiten:
• Arbeit mit DOS- und GEOS-Dateien (auch mit schreibgeschützten) ist möglich
• Wenn die aktuelle Datei ungeändert ist kann man "Neu" und "Öffnen"

anwählen ohne die aktuelle Datei vorher schließen zu müssen.
• Es kann immer nur eine Datei gleichzeitig offen sein.
• Das Programm kann darauf reagieren, wenn der Nutzer eine verknüpfte Datei

doppelklickt. Für DOS-Dateien muss der Nutzer dazu das Programm über
einen entsprechenden Eintrag in der GEOS.INI mit einer Dateierweiterung
verknüpfen. Für GEOS Dateien setzt das Programm das Token und das
Creator-Token der Datei automatisch.

• Jedes Mal, wenn eine Applikations-spezifische Operation nötig ist, z.B. Daten
in die Datei schreiben, wird stattdessen eine MessageBox aufgerufen.

• Ein offenes Dokument soll einen Systemrestart "überleben".

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 157

Software Entscheidungen:
- Alle Buttons aus dem Datei-Menü und aus der Toolbar bekommen einen

actionData-Wert, der ihre Funktion beschreibt. Ein einziger, zentraler Action-
Handler (DocumentAndToolButtonHandler), der von allen Buttons aktiviert
wird, ruft dann die entsprechenden Routinen auf.

- Eine einzige zentrale Routine (DoUpdateDocButtons) ist dafür zuständig die
zum Dokument-Interface gehörenden Buttons an den aktuellen Zustand des
Dokuments anzupassen.

- Änderungen werden erst dann in die Datei geschrieben, wenn der Nutzer dies
explizit anweist. In diesem Kontext bedeutet der Terminus "das Dokument
wurde geändert", dass der Nutzer die Daten im Programm verändert hat. Er
bedeutet nicht, dass die Änderungen schon in die Datei geschrieben wurden!
Wenn Sie VM-Dateien verwenden dürfen Sie von diesem Prinzip abweichen.

Grundstruktur des Dokument-Interface

Das folgende Bild zeigt alle Routinen, die zur vollständigen Implementation der
oben genannten Fähigkeiten notwendig sind.

Basic
CloseDoc

Basic
CopyToDoc

 e S

Basic
MoveToDoc

 e Up

Basic
RenameDoc

 Up

Basic
QuickBackup

 S Up

BasicRestore
FromBackup

 R Up

Basic
RevertDoc
 R Up

 R
DoReadData

FromDoc

 S
DoSaveData

ToDoc

 Up
DoUpdate

DocButtons
DoSet

DocModified
 Up

Basic
SaveAsDoc

Open
ExternalFile

DocStartup
Handler DocumentAndToolButtonHandler

Basic
CreateNewDoc

 e R Up

Basic
OpenDoc

 e R Up

BasicSaveDoc
 e S Up

BasicSave
AsTemplate

Basic
OpenTemplate

 e R Up

 e
DoEnter

DocumentPath
DoRevert

Doc

DoInitDocument
Guardian

DocConnection
Handler

DocExit
Handler

Internal
SaveAs
 S Up

BasicChange
Usernotes

DoRead
CachedData

DoSave
CachedData

Die unten links angeordneten Routinen werden an vielen Stellen aufgerufen. Die
Zuordnung erfolgt deshalb nicht durch Pfeile, sondern durch die in den Kästchen
vermerkten Buchstaben. Zum Beispiel rufen alle Routinen, die ein "R" im Kästchen
haben die Routine DoReadDataFromDoc.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 158

Im Bild sind drei Gruppen von Routinen zu sehen:
• Routinen, die in Cyan unterlegt sind, sind ActionHandler. Sie werden vom

System gerufen und müssen als die passenden Actionhandler in das
Application-Objekt eingebunden werden.

• Routinen, die in Rot unterlegt sind, sind Programmspezifisch. Sie müssen
diese Routinen anpassen bzw. erweitern um die Funktionen Ihres Programms
zu realisieren.

• Ob die Routinen, die in Gelb unterlegt sind, geändert / angepasst werden
müssen hängt von der Komplexität Ihres Programms ab.

• Routinen, die in Grau unterlegt sind, enthalten allgemeingültigen Code. Im
Normalfall ist es nicht notwendig diese Routinen anzupassen.

Bei der Verwaltung von Dokumenten fallen eine Reihe von Aufgaben an, die unab-
hängig von der Art und der Struktur der eigentlichen Dokumentdatei sind. R-
BASIC unterstützt das durch die Bereitstellung einer Objektklasse und einer
Library. Beide arbeiten eng zusammen.

Die Objektklasse DocumentGuardian erleichtert Ihnen den Umgang mit
Dokumenten, indem Sie allgemeine Informationen, die bei der Arbeit mit
Dokumenten anfallen, verwalten. Dazu zählen z.B. der Name und der Pfad zur
Dokumentendatei sowie das FileHandle der offenen Datei. Außerdem können
Objekte der Klasse DocumentGuardian vorhandenen Dokumente öffnen, neue
Dokumente anlegen und offene Dokumente schließen. Dabei berücksichtigen sie
z.B. den Dateityp und das Token, behandeln schreibgeschützte Dateien korrekt
und vieles mehr. Auf diese Weise entlasten diese Objekte den BASIC-
Programmierer von einer Vielzahl von Standardaufgaben.

Die Library DocumentTools stellt eine Reihe von Funktionen bereit, die Sie bei
der Arbeit mit Dokumenten unterstützen. Dazu gehören zum Beispiel die typischen
Dialogboxen zum Öffnen oder Speichern einer Datei. Um die DocumentTools
Library nutzen zu können müssen Sie sie ihn Ihr Programm einbinden:

Include "DocumentTools"

Die DocumentTools Library muss separat heruntergeladen werden, sie ist nicht
Teil des R-BASIC Standard-Pakets. Wenn Sie mit VM-Dateien als Dokumente
arbeiten wollen müssen Sie außerdem die VMFiles Library herunterladen und
includen.

Um die in diesem Kapitel beschriebenen Funktionen und Zusammenhänge zu
verstehen sollten Sie zumindest den einführenden Abschnitt zum Document-
Guardian-Objekt (Objekt Handbuch, Kapitel 4.13) sowie das Kapitel 1
(Konzeptionelles) aus dem Handbuch der DocumentTools Library gelesen haben.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 159

15.2 Die UI: Datei-Menü und Toolbar

Das Dateimenü und die
Toolbar bestehen aus einer
Reihe von Buttons. Die
Grafiken für die Buttons
finden wir im Ordner "Icon
Tool Graphics\Document",
einem Unterordner von
"USERDATA\R-
BASIC\IMAGES".

Jeder Button hat als ActionHandler den zentralen Handler DocumentAnd-
ToolButtonHandler gesetzt und der actionData-Wert bestimmt die Funktion des
Buttons. Aus Platzgründen sind nur einige der Objekte gezeigt.

Group DocumentMenuButtons
Children = MenuNewOpenButton, MenuOpenButton, MenuCloseButton,

MenuSaveButton, MenuSaveAsButton, MenuBackupGroup,
MenuOtherGroup

End OBJECT

Button MenuNewOpenButton
Caption$ = "Neu/Öffnen ", 0
ActionHandler = DocumentAndToolButtonHandler
actionData = ID_NEW_OPEN_DIALOG
BringsUpWindow

End OBJECT
Button MenuOpenButton
Caption$ = "Öffnen " , 1
ActionHandler = DocumentAndToolButtonHandler
actionData = ID_OPEN_DOC
BringsUpWindow

End OBJECT

<...>

Einzige Besonderheit im UI-Code der Group DocumentToolButtons ist der Hint
ExpandHeight bei der Group und den Buttons selbst, der bewirkt, dass sich die
Buttons vergrößern, wenn sie gemeinsam mit größeren Objekten in der Group
DocumentToolGroup verwendet werden.

Group DocumentToolGroup
Children = DocumentToolButtons
ExpandWidth

End OBJECT

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 160

Group DocumentToolButtons
Children = ToolNewButton, ToolOpenButton, ToolTemplateButton,

ToolCloseButton, ToolSaveButton, ToolBackupButton
OrientChildren = ORIENT_HORIZONTALLY
MakeToolbox
ExpandHeight

End OBJECT
Button ToolNewButton
CaptionImage = "Icon Tool Graphics\\Document\\NEW.GIF"
ActionHandler = DocumentAndToolButtonHandler
actionData = ID_NEW_DOC
ExpandHeight

End OBJECT
Button ToolOpenButton
CaptionImage = "Icon Tool Graphics\\Document\\OPEN.GIF"
ActionHandler = DocumentAndToolButtonHandler
actionData = ID_OPEN_DOC
ExpandHeight

End OBJECT

<...>

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 161

15.3 Kernroutinen und Tools

Dieser Abschnitt behandelt grundlegende Routinen, die zur Implementation der in
den folgenden Abschnitten besprochenen Funktionen benötigt werden. Im
Einzelnen sind das
• der Actionhandler DocumentAndToolButtonHandler. Im Normalfall müssen

Sie an dieser Routine nichts ändern. Nur bei sehr komplexen Programmen kann
manchmal nötig sein, sie anzupassen. In diese Gruppe gehört auch die Sub
DoRevertDoc. Sie wird im Kapitel 15.6 (Letzter Stand) beschrieben.

• die Subs DoSetDocModified, DoInitDocumentGuardian, DoUpdateDoc-
Buttons, DoReadDataFromDoc, DoSaveDataToDoc, DoReadCachedData,
DoSaveCachedData und DoEnterDocumentPath. Sie alle müssen angepasst
werden um die Funktionen Ihres Programms zu implementieren.

Der zentrale Handler DocumentAndToolButtonHandler handelt jeden Klick auf
einen Button im Datei-Menü. Um die Buttons zu unterscheiden muss jeder Button
einen actionData-Wert gesetzt haben, der seine Funktion beschreibt. Die
entsprechenden Konstanten sind in der Library DocumentTools definiert und auch
dort beschrieben.
Der Handler ist im Folgenden in Teilen wiedergegeben. In der ON - SWICTH
Anweisung werden die Anweisungen entsprechend dem actionData Wert des
gedrückten Buttons ausgeführt. Die dort verwendeten Routinen haben häufig
selbsterklärende Namen. Sie werden weiter unten ausführlich beschrieben.

Hingewiesen werden soll auf drei Dinge:
1. Im Fall ID_NEW_OPEN_DIALOG wird nur die NewOpenDialogBox geöffnet,

danach ist der Handler beendet. R-BASIC läuft dann solange im Leerlauf bis der
Nutzer einen Button aus diesem Dialog anklickt. Das ist so gewollt.

2. Die Routine BasicCloseDoc schließt das aktuelle Dokument. Sie erwartet einen
Parameter, der bestimmt, ob versucht werden soll, eventuell geänderte Daten
zu speichern. Sollte es ein Problem dabei geben liefert BasicCloseDoc TRUE
zurück und wir können die gewünschte Aktion abbrechen.
Im Gegensatz zu den meisten anderen Routinen updatet BasicCloseDoc die UI
nicht. Deswegen muss das hier erledigt werden. Der Grund dafür ist, dass
BasicCloseDoc von verschiedenen anderen Routinen gerufen wird, z.B. wenn
ein neues Dokument geöffnet wird.

3. Wir brauchen keine Abfragen, ob die gewünschte Aktion gerade erlaubt ist. Das
erledigt die Routine DoUpdateDocButtons für uns, indem sie Buttons, die
gerade nicht erlaubte Aktionen ausführen würden, disabled.

BUTTONACTION DocumentAndToolButtonHandler
DIM err

ON ACTIONData SWITCH

CASE ID_NEW_OPEN_DIALOG:
DTShowNewOpenDialog(ConvertObjForSDK(DocumentObj),

NOF_NEW_OPEN_TEMPLATE + NOF_CONFIG + NOF_IMPORT, "")
END CASE

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 162

CASE ID_NEW_DOC:
BasicCreateNewDoc
END CASE

CASE ID_OPEN_DOC:
BasicOpenDoc
END CASE

CASE ID_CLOSE_DOC:
err = BasicCloseDoc(TRUE) ! Änderungen speichern
IF err THEN RETURN
DoReadDataFromDoc ’ UI updaten
DoUpdateDocButtons
End CASE

CASE ID_SAVE_DOC:
BasicSaveDoc
END CASE

< ... usw. ...>

END SWICTH

END ACTION

Die Routine DoSetDocModified ermöglicht die Verwaltung der Information, ob
das aktuelle Dokument geändert wurde oder nicht. Das ermöglicht z.B. der
Routine BasicCloseDoc den Nutzer zu fragen, ob er die Änderungen speichern
möchte oder nicht. Für diesen Zweck verwaltet das DocumentGuardian-Objekt
das Bit DOCS_MODIFIED in seiner Instancevariablen documentState. Der
Parameter "modi" bestimmt, ob das Dokument als "modifiziert" (modi = TRUE)
oder als "nicht modifiziert" (modi = FALSE) gekennzeichnet werden soll.
Entsprechend setzt die Methode SetDocumentState dieses Bit oder setzt es
zurück. Abschließend wird mit DoUpdateDocButtons die UI angepasst.
Sie sollten die Routine DoSetDocModified jedes Mal rufen, wenn der Nutzer
Daten des Dokuments ändert. Typische Situationen sind der OnModified-Handler
von Text-Objekten, die Apply-Handler der Objektklassen Number, Memo,
InputLine sowie der Listenobjekte oder der ColorChangedHandler von
ColorSelector-Objekten. Die Routine fragt jeweils selbst ab, ob sich der
"modifiziert"-Zustand geändert hat und kehrt sofort zurück, wenn dem nicht so ist.
Wichtig: Nehmen wir an, Sie haben ein Text-Objekt (Memo, InputLine, VisText
oder LargeText), und das Dokument soll "modifiziert" sein, wenn der Nutzer etwas
eingibt.
Text-Objekte senden ihre OnModified-Message aber nur aus, wenn der Nutzer
"erstmalig" etwas eingibt, das heißt wenn sie vom Zustand "nicht modifiziert" in
den Zustand "modifiziert" wechseln. Deswegen müssen Sie den "modified"
Zustand der betroffenen Textobjekte zurücksetzen, wenn DoSetDocModified mit
dem Parameter modi=FALSE gerufen wird.
Der Apply-Handler von Listen- und Number-Objekten wird im Allgemeinen jedes
Mal aufgerufen, wenn er Nutzer etwas ändert. Deswegen ist es normalerweise
nicht nötig, den Modified-Zustand dieser Objekte hier zu ändern.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 163

SUB DoSetDocModified (modi as INTEGER)

IF modi THEN
’ ist schon "modified"? => Return
IF DocumentObj.documentState AND DOCS_MODIFIED THEN RETURN
DocumentObj.SetDocumentState DOCS_MODIFIED, 0

ELSE
’ ist schon "nicht modified"? => Return
IF (DocumentObj.documentState AND DOCS_MODIFIED) = 0 THEN

RETURN
DocumentObj.SetDocumentState 0, DOCS_MODIFIED

End IF

’ -X- Bei Bedarf: weitere Aktionen.
’ -> den "Modified" Status von Textobjekten (z.B. Memo),
’ manchmal auch von Number und Listen-Objekten anpassen
’ Sie sollten hier NICHT DoReadDataFromDoc rufen
DoUpdateDocButtons

END SUB

Die Sub DoInitDocumentGuardian initialisiert das DocumentGuardian-Objekt mit
den Daten, die Ihrem Programm entsprechen. Im Beispiel soll das Document-
Guardian-Objekt eine GEOS Datendatei (fileType = GFT_DATA) mit dem Token
"PHO2", 5 und dem CreatorToken "PHON",5 verwalten. Es ist wichtig, dass das
hier angegeben Token mit dem DocToken-Statement und das CreatorToken mit
dem AppToken-Statement des Application-Objekts im UI-Code übereinstimmen.
Mit der Anweisung "guardian.ConfigData = dc" werden die Einstellungen an das
DocumentGuardian-Objekt übertragen.
Der ButtonHandler wird von der DocumentTools-Library für den "Neuen/Öffnen"
Dialog benötigt.

SUB DoInitDocumentGuardian(guardian as object)
DIM dc AS DocumentConfigStruct

guardian.ButtonHandler = DocumentAndToolButtonHandler

dc.noDocumentString$ = "kein Dokument"
dc.templateFolder$ = "DemoTemplates"
dc.nameForNew$ = "Unbenanntes Dokument "

dc.fileType = GFT_DATA
dc.creatorToken.tokenChars = "PHON"
dc.creatorToken.manufid = 5
dc.token.manufid = 5
dc.token.tokenChars = "PHO2"
dc.matchFlags = DOC_MATCH_TOKEN

guardian.ConfigData = dc

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 164

Eine der wichtigsten Routinen ist die Sub DoUpdateDocButtons. Sie hat die
Aufgabe, die Dokument-Buttons aus dem Datei-Menü und aus der Dokument-
Toolbar sowie ihre eigene UI entsprechend der aktuellen Situation zu enablen
oder zu disablen. Dadurch sorgt diese Routine dafür, dass einzelne Funktionen
nur dann aufgerufen werden können, wenn sie zulässig sind. Zum Beispiel wird
der "Speichern" Button disabled, wenn keine Datei offen ist. Im Allgemeinen
müssen Sie diese Routine ergänzen. Ein typischer Fall ist, dass Sie UI Objekte
haben (z.B. ein Memo-Objekt), in die der Nutzer Daten für das aktuelle Dokument
eingeben kann. Diese UI muss disabled werden, wenn kein Dokument offen ist.

Die Entscheidung, ob ein Button enabled sein soll oder nicht kann komplex und
unübersichtlich sein. Deswegen stellt die DocumentTools Library die Routine
DTFindEnabled bereit, die genau diese Information liefert. Welcher Button gemeint
ist wird über eine Konstante bestimmt, die in der Library definiert ist. Sie wird auch
für den actionData-Wert des Buttons benutzt wird. Der folgende Code zeigt die
Routine in Ausschnitten. DTFindEnabled erwartet eine Referenz auf das
DocumentGuardian-Objekt, die mit der BASIC-Routine ConvertObjForSDK
konvertiert wurde. Die Variable docObj speichert die konvertierte Referenz auf das
Objekt.
Die Anweisung "DemoPrimary.Caption2$ = DocumentObj.documentName$"
bewirkt, dass der Name des aktuell offenen Dokuments in der Titelzeile des
Primary-Objekts angezeigt wird. Hier müssen Sie den Namen ihres eigenen
Primary-Objekts verwenden.

SUB DoUpdateDocButtons ()
DIM docObj as Object
DIM docState

docObj = ConvertObjForSDK(DocumentObj)

MenuNewOpenButton.enabled = DTFindEnabled(docObj,
ID_NEW_OPEN_DIALOG)

MenuOpenButton.enabled = DTFindEnabled(docObj, ID_OPEN_DOC)
MenuSaveAsButton.enabled = DTFindEnabled(docObj,

ID_SAVE_AS_DOC)
MenuCloseButton.enabled = DTFindEnabled(docObj, ID_CLOSE_DOC)
ToolNewButton.enabled = DTFindEnabled(docObj, ID_NEW_DOC)
ToolOpenButton.enabled = DTFindEnabled(docObj, ID_OPEN_DOC)
ToolCloseButton.enabled = DTFindEnabled(docObj, ID_CLOSE_DOC)

< .. usw ...>

DemoPrimary.Caption2$ = DocumentObj.documentName$

< .. hier eigene UI enablen/disablen ...>

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 165

Die Sub DoReadDataFromDoc hat die Aufgabe die im Dokument gespeicherten
Daten auszulesen und darzustellen. Weil das immer vom konkreten Programm
abhängt erinnert uns eine MsgBox daran, dass wir hier noch etwas
programmieren müssen. Wichtig ist, dass wir den Fall "Kein Dokument offen"
ebenfalls berücksichtigen. Das können wir durch Abfrage der Instancevariablen
documentState auf Null oder wie im Beispiel durch Abfrage der Instancevariablen
documentHandle auf NullFile() tun. Häufig werden hier UI-Objekte "geleert", Listen
mit Null Einträgen versehen, Texte gelöscht usw.

SUB DoReadDataFromDoc ()

IF DocumentObj.documentHandle == NullFile() THEN
MsgBox "DoReadDataFromDoc: Keine Datei offen. UI anpassen."

ELSE
MsgBox "DoReadDataFromDoc: Hier Daten aus der Datei lesen und

zugehörige UI anpassen."
End IF

END SUB

Die Routine DoSaveDataToDoc wird jedes Mal gerufen, wenn Daten dauerhaft in
der Datei gespeichert werden sollen. Für VM-Dateien heißt das, dass VMSave
gerufen werden muss. In welche Datei die Daten geschrieben werden sollen wird
durch den übergebenen Parameter fh bestimmt. Sie dürfen hier NICHT auf
DocumentObj.documentHandle zurückgreifen, weil die Routine je nach Kontext
(z.B. erstellen eines Backups) auch für andere Dateien gerufen wird.

SUB DoSaveDataToDoc (fh as FILE)
MsgBox "DoSaveDataToDoc: Hier Daten in der Datei fh speichern"
’ bei Bedarf: FileCommit (fh)

END SUB

Beim Herunterfahren von GEOS müssen Dokument-Daten, die in globalen
Variablen zwischengespeichert sind, an einem sicheren Platz abgelegt werden.
Ein sicherer Speicherplatz für globalen Variablen sind Instancevariablen von
Objekten. Diese werden vom System automatisch gesichert. Wenn man genau
eine globale Struktur hat bietet sich die Instancevariable privData des Document-
Guardian-Objekts dafür geradezu an.
Die Routine DoSaveCachedData wird vom OnExit-Handler gerufen und muss die
globalen Variablen sichern. Das Gegenstück DoReadCachedData wird vom
OnStartup Handler gerufen und muss die globalen Variablen wieder herstellen.
Für den Fall, dass Sie keine Dokument-Daten in globalen Variablen zwischen-
speichern, können Sie diese Routinen löschen.

SUB DoSaveCachedData (docObj as Object)
’ Globals Struktur in "privData" speichern
’ -X- docObj.privData = globalData, sizeof(GlobalDataStruct)

END SUB ’DoSaveCachedData

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 166

SUB DoReadCachedData (docObj as Object)
’ DoReadCachedData: Hier globale Variablen wiederherstellen.
’ Die UI muss nicht upgedatet werden

’ -X- globalData = docObj.privData
END SUB ’DoReadCachedData

Das Tool DoEnterDocumentPath wählt den Pfad an, in dem die Dokumente
gespeichert werden sollen. Weil das von Ihrem Programm abhängt müssen Sie
diese Routine ändern. Wenn der Parameter forNew TRUE ist wird der Pfad
angewählt, in dem neu angelegte Dokumente gespeichert werden sollen. Häufig
ist das der GEOS-Top-Ordner (SP_TOP). Wenn der forNew FLASE ist wählt die
Routine den Ordner an, in dem standardmäßig benannte Dokumente abgelegt
werden. Die Anweisung CreateDir stellt sicher, dass der Ordner existiert.
CreateDir hat kein Problem damit, wenn der Ordner bereits existiert. Sie können
die letzten beiden Statements auskommentieren um den Dokument-Ordner direkt
zu verwenden.

SUB DoEnterDocumentPath (forNew as Integer)

 IF forNew THEN
SetStandardPath SP_TOP

 ELSE
 SetStandardPath SP_DOCUMENT

CreateDir "Subfolder"
SetCurrentPath "Subfolder"

 END IF

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 167

15.4 Standard Dokument Operationen

Alle für die Dateioperationen notwendigen Dialoge werden von der Document-
Tools Library bereitgestellt. Die entsprechenden Routinen liefern eine Struktur
zurück, die folgendermaßen definiert ist:

STRUCT DialogReturnStruct
fileName$ as String[32]
retInfo As Word
End Struct

Das Feld "fileName$" enthält den vom Nutzer eingegeben bzw. ausgewählten
Dateinamen. Das Feld "retInfo" enthält die Information, welchen Button im Dialog
der Nutzer gedrückt hat. Dafür dien folgenden Konstanten definiert:

Konstante Wert Bedeutung
DRI_CANCEL 1 Der Nutzer hat "Abbrechen" gewählt.
DRI_OK 2 Der Nutzer hat "Speichern", "Öffnen" oder

ähnliches gewählt.
DRI_READ_ONLY 3 Der Nutzer hat "Öffnen" oder ähnliches

gewählt, die ausgewählte Datei ist jedoch
schreibgeschützt oder soll schreibgeschützt
geöffnet werden.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 168

15.4.1 Ein neues Dokument anlegen

Klickt der Nutzer im Menü auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicCreateNewDoc gerufen.

Um ein neues, leeres Dokument anzulegen muss BasicCreateNewDoc folgende
Schritte durchführen:
1. Schließen eines eventuell noch offenen Dokuments. BasicCloseDoc(TRUE)

erledigt alle dafür nötigen Schritte, einschließlich der Nachfrage beim Nutzer, ob
eventuelle Änderungen gespeichert werden sollen.

2. Wechseln in den Ordner, in dem die neue Datei angelegt werden soll.
3. Anlegen der Datei. Alle dafür nötigen Schritte erledigt die Methode

CreateNewDocument. Das DocumentGuardian-Objekt kennt sowohl den
Dateityp als auch das Token der Datei und initialisiert die neue Datei
entsprechend. VM-Dateien werden so initialisiert, dass sie mit den Routinen aus
der VMFiles Library verwendet werden kann.

4. Für den (extrem unwahrscheinlichen) Fall, dass es beim Anlegen der Datei ein
Problem gegeben hat, geben wir eine Fehlermeldung aus und verlassen die
Sub.

5. Die Datei initialisieren. Hier schreibt man die Daten in die Datei, die auch bei
Leeren Dateien vorhanden sein müssen. Ob es da etwas gibt und was das
genau sein muss hängt von Ihrem Programm ab.

6. Update der UI mit DoReadDataFromDoc und DoUpdateDocButtons.

SUB BasicCreateNewDoc ()
DIM err

err = BasicCloseDoc(TRUE)
IF err THEN RETURN

DoEnterDocumentPath(TRUE)
DocumentObj.CreateNewDocument
IF fileError THEN

MsgBox "Fehler beim Anlegen der neuen Datei. Fehlercode: "
+ ErrorText$(fileError)

RETURN
End IF

! Datei initialisieren
MsgBox "BasicCreateNewDoc: Hier Datei initialisieren."

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 169

15.4.2 Öffnen einer Datei

Klickt der Nutzer im Menü auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicOpenDoc gerufen.

BasicOpenDoc führt die folgenden Schritte aus:
1. Wechseln in den Pfad, in dem Dokumente normalerweise abgelegt werden.
2. Aufruf der Routine DTOpenDialog aus der DocumentTools Library. Diese

Routine zeigt den "Öffnen" Dialog an. Sie liefert eine DialogReturnStruct
Struktur zurück (siehe oben). Wenn der Nutzer "Abbrechen gewählt hat
verlassen wir die Routine.

3. BasicCloseDoc(TRUE) sorgt dafür, dass eine eventuell noch offene Datei jetzt
geschlossen wird. Im Fehlerfall (z.B. wenn der Nutzer "Abbrechen" wählt)
verlassen wir die Routine.

4. Öffnen der ausgewählten Datei. Die Methode OpenDocument erledigt alle dazu
notwendigen Schritte. Dazu gehört auch, dass schreibgeschützte Dateien
schreibgeschützt geöffnet werden. Wird als zweiter Parameter "TRUE"
angegeben öffnet die Methode die Datei auf jeden Fall schreibgeschützt.

5. Sollte das Öffnen fehlschlagen geben wir eine Fehlermeldung aus.
6. In allen Fällen updaten wir die UI mit DoReadDataFromDoc und DoUpdate-

DocButtons.

SUB BasicOpenDoc ()
DIM ret as DialogReturnStruct
DIM err

DoEnterDocumentPath(FALSE)
ret = DTOpenDialog(ConvertObjForSDK(DocumentObj), "")
IF ret.retInfo = DRI_CANCEL THEN RETURN

err = BasicCloseDoc(TRUE)
IF err THEN RETURN

IF ret.retInfo = DRI_OK THEN
DocumentObj.OpenDocument ret.fileName$

ELSE
’ DRI_READ_ONLY, read-only öffnen
DocumentObj.OpenDocument ret.fileName$, TRUE

End IF

IF fileError THEN
MsgBox "Fehler beim Öffnen der Datei "+ret.fileName$+".

Fehlercode: "+ ErrorText$(fileError)
End IF

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 170

15.4.3 Speichern der geänderten Daten

Klickt der Nutzer im Menü auf den Speichern-Button im Menü oder in der Toolbar
so wird im DocumentAndToolButtonHandler die Routine BasicSaveDoc gerufen.

BasicSaveDoc dient als Verteiler für die verschiedenen möglichen Fälle:
• Wenn die Datei ungeändert ist ((docState AND DOCS_MODIFIED)=0) kehrt die

Routine ohne weitere Aktion zurück. Diese Abfrage greift auch dann, wenn gar
keine Datei offen ist (docState = 0).

• Ist die Datei noch unbenannt (docState AND DOCS_UNTITLED ist nicht Null)
wird die Datei automatisch unter einem neuen Namen gespeichert. BasicSave-
AsDoc() erledigt alle dafür notwendigen Aufgaben.

• Read-Only-Dateien kann man nicht speichern. Deswegen fragen wir den
Nutzer ob er die Datei unter einem anderen Namen speichern möchte und
starten gegebenenfalls wieder BasicSaveAsDoc().

In allen anderen Fällen rufen wir DoSaveDataToDoc (DocumentObj.document-
Handle). Diese Routine erledigt die eigentliche Arbeit. Sie wurde weiter oben
(Kapitel 15.3) beschrieben.
Wichtig ist, dass wir den "modified" Status des Dokuments zurücksetzen. Das
erledigt die Routine DoSetDocModified(FALSE). Abschließend updaten wir mit
DoUpdateDocButtons die Menüs und ggf. andere wichtige UI.

SUB BasicSaveDoc ()
DIM docState, ans

docState = DocumentObj.documentState
IF (docState AND DOCS_MODIFIED)=0 THEN RETURN

IF docState AND DOCS_UNTITLED THEN
BasicSaveAsDoc()
RETURN
END IF

IF docState AND DOCS_READ_ONLY THEN
ans = QuestionBox ("Die Datei ist schreibgeschützt. Wollen

Sie sie unter einem neuen Namen speichern?")
IF ans = YES THEN
 BasicSaveAsDoc()
End IF
RETURN

End IF

DoSaveDataToDoc(DocumentObj.documentHandle)
DoSetDocModified(FALSE)
DoUpdateDocButtons

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 171

15.4.4 Speichern unter neuem Namen

Klickt der Nutzer im Menü auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicSaveAsDoc gerufen. Diese Routine
wechselt in den Pfad, in dem Dokumente im Normalfall abgelegt werden und
öffnet dann mit DTDaveAsDialog den "Speichern unter" Dialog. Sie ist in der
DocumentTools Library definiert und kümmert sich z.B. auch darum, dass der
Nutzer nur einen für den vom DocumentGuardian verwalteten Dateityp gültigen
Dateinamen eingeben kann. Der Parameter "FALSE" bewirkt, dass die Dateien im
FileSelector des "Speichern unter"-Dialogs nicht wie sonst unter GEOS üblich
grau angezeigt werden. Dadurch kann der Nutzer z.B. die Datei, die er über-
schreiben möchte, anklicken.
DTSaveAsDialog wechselt in den Pfad, der im "Speichern unter" Dialog
ausgewählt wurde. Sie liefert eine DialogReturnStruct-Struktur zurück (siehe
oben), die unter anderem den neuen Namen für die Datei enthält.
Die eigentliche Arbeit erledigt dann die Routine InternalSaveAs, die auch von
BasicSaveAsTemplate gerufen wird.

FUNCTION BasicSaveAsDoc () AS REAL
Dim err
DIM ret as DialogReturnStruct

DoEnterDocumentPath(FALSE)

ret = DTSaveAsDialog(ConvertObjForSDK(DocumentObj), "", FALSE)
IF ret.retInfo = DRI_CANCEL THEN RETURN TRUE

err = InternalSaveAs(ret)
RETURN err

END FUNCTION

Sowohl BasicSaveAsDoc als auch InternalSaveAs liefern den Fehlerwert TRUE
zurück, wenn der Nutzer den Vorgang abgebrochen hat oder ein anderer Fehler
auftrat.

Die Funktion InternalSaveAs erledigt die Hauptarbeit zum Speichern einer Datei
unter neuem Namen. Dabei sind die folgenden Schritte zu erledigen:
1. Wir stellen sicher, dass die neue Datei im aktuellen Ordner nicht existiert. Die

Routine DTConfirmAndDelete aus der DocumentTools Library prüft das, fragt
ggf. den Nutzer, ob er die Datei überschreiben möchte und löscht diese dann.
Falls das nicht möglich ist, z.B. weil der Nutzer "Abbrechen" gewählt hat oder
weil die Datei in Benutzung ist, liefert dir Routine TRUE zurück und wir
verlassen die Routine InternalSaveAs mit dem Returnwert TRUE.

2. Wir fertigen mit DTCloneFile eine 1:1 Kopie des aktuell vom DocumentGuardian
geöffneten Dokuments an. Für den sehr unwahrscheinlichen Fall, dass es dabei
ein Problem gibt, setzt DTCloneFile die globale Variable fileError und wir
brechen den Vorgang ab.

3. Jetzt können wir die aktuelle Datei schließen. Vorher merken wir uns den
modified-Status und bringen die Datei mit DoRevertDoc auf den letzten
gespeicherten Stand.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 172

4. Nun können wir die neue Datei öffnen. War die Datei geändert speichern wir die
den aktuellen Stand in der Datei und setzen den modified-Status zurück.

5. Abschließend bringen wir die Buttons und in den Menüs auf den neuesten
Stand und kehren durch "RETURN FALSE" mit der Information "alles OK"
zurück.

FUNCTION InternalSaveAs (ret as DialogReturnStruct) AS Real
DIM err, modi

err = DTConfirmAndDelete(ret.fileName$)
IF err THEN RETURN true

DTCloneFile(ConvertObjForSDK(DocumentObj), ret.fileName$)
IF fileError THEN RETURN TRUE

modi = DocumentObj.documentState AND DOCS_MODIFIED
DoRevertDoc
DocumentObj.CloseDocument

DocumentObj.OpenDocument ret.fileName$
IF modi THEN
DocumentObj.SetDocumentState DOCS_MODIFIED, 0
DoSaveDataToDoc(DocumentObj.documentHandle)
DoSetDocModified(FALSE)

END IF

DoUpdateDocButtons
RETURN FALSE

END FUNCTION

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 173

15.4.5 Schließen des Dokuments

Klickt der Nutzer im Menü auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicCloseDoc aufgerufen. Außerdem wird
BasicCloseDoc an verschiedenen anderen Stellen des Programms gerufen, z.B.
wenn eine neue Datei geöffnet werden soll während noch eine andere offen ist.

Die Funktion BasicCloseDoc schließt das aktuelle Dokument und liefert im
Erfolgsfall den Wert FALSE zurück. Im Fehlerfall gibt BasicCloseDoc den Fehler-
Wert TRUE zurück.

Wenn ein Dokument geschlossen werden soll können vorher andere Aktionen
notwendig sein. Zum Beispiel könnte es nötig sein, geänderte Daten in die Datei
zu schreiben oder die Datei unter einem anderen Namen zu speichern. Da hier
sehr viele Fälle möglich sind bietet die DocumentTools Library die Funktion
DTConfirmClose an. Sie prüft die Instancevariable "documentState" des über-
gebenen DocumentGuardian-Objekts, ob das vom DocumentGuardian-Objekt
geöffnete Dokument einfach geschlossen werden kann oder ob weitere Aktionen
nötig sind. Im Zweifelsfall wird der Nutzer durch eine Dialogbox gefragt, wie weiter
zu verfahren ist. DTConfirmClose handelt alle denkbaren Fälle und liefert einen
der folgenden Werte zurück:

Konstante Wert Vorgehen
CLOSE_DISCARD 0 Die Datei soll ohne Speichern geschlossen

werden, d.h. Änderungen werden verworfen.
CLOSE_SAVE 1 Die Datei soll vor dem Schließen gespeichert

werden.
CLOSE_SAVE_AS 2 Die Datei ist neu oder schreibgeschützt und

soll vor dem Schließen unter neuem Namen
gespeichert werden.

CLOSE_CANCEL 3 Die Datei soll doch nicht geschlossen werden
weil der Nutzer "Abbrechen" gewählt hat.

CLOSE_NO_FILE 4 Es ist keine Datei offen.

Entsprechend besteht die Routine BasicCloseDoc nur aus dem Aufruf der Routine
DTConfirmClose sowie einer ON-SWICTH Anweisung, die die möglichen Fälle
behandelt. Der Parameter saveData bestimmt, ob eventuell geänderte Daten in
der Datei gespeichert werden sollen oder nicht. Ist er FALSE oder wählt der
Nutzer "Änderungen vergessen" wird die Datei auf den letzten gespeicherten
Stand zurückgesetzt und dann geschlossen.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 174

FUNCTION BasicCloseDoc (saveData as INTEGER) AS REAL
DIM cmd, err

IF saveData THEN
cmd = DTConfirmClose(ConvertObjForSDK(DocumentObj), TRUE)
ELSE
cmd = CLOSE_DISCARD
END IF

ON cmd SWITCH
CASE CLOSE_CANCEL: ’ Abbruch

RETURN TRUE
CASE CLOSE_NO_FILE: ’ Keine Datei offen

RETURN FALSE
CASE CLOSE_DISCARD: ’ Änderungen nicht speichern

DoRevertDoc
END CASE

CASE CLOSE_SAVE: ’ Änderungen speichern
BasicSaveDoc ’ Handelt alle denkbaren Fälle
END CASE

CASE CLOSE_SAVE_AS:
err = BasicSaveAsDoc()
IF err THEN RETURN TRUE

END SWITCH

DocumentObj.CloseDocument
RETURN FALSE

END FUNCTION

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 175

15.5 Erweiterte Dateioperationen

In diesem Abschnitt wird beschrieben, wie die Operationen "Kopieren nach",
"Verschieben nach", "Umbenennen" und das Ändern der Benutzernotizen
implementiert werden. Die entsprechenden Routinen BasicCopyToDoc,
BasicMoveToDoc, BasicRenameDoc und BasicChangeUsernotes werden vom
DocumentAndToolButtonHandler aufgerufen, wenn der Nutzer den ent-
sprechenden Menüpunkt anklickt.

Kopieren nach ...

Die Funktion "Kopieren nach" erstellt eine Kopie des aktuellen Standes unseres
Dokuments unter einem neuen Namen. Die von BasicCopyToDoc aufgerufenen
Routinen haben im Folgenden dargestellten Aufgaben. Sollte ein Fehler oder ein
Nutzerabbruch möglich sein wird dieser jeweils abgefragt und die Routine
BasicCopyToDoc wird verlassen.
• DoEnterDocumentPath wechselt in den Pfad, in dem Dokumente normaler-

weise abgelegt werden.
• DTMoveCopyDialog(... FALSE) zeigt den "Kopieren nach..."-Dialog an. Die

Strukturvariable ret enthält danach alle nötigen Informationen.
• DTConfirmAndDelete(ret.fileName$) prüft, ob schon eine Datei des

gewünschten Namens vorhanden ist und löscht diese nach entsprechender
Nachfrage beim Nutzer.

• DTCloneAndOpenFile legt eine 1:1-Kopie des aktuell geöffneten Dokuments an
und öffnet diese. NewFile enthält das FILE Handle der Kopie und die globale
Variable fileError enthält im (sehr unwahrscheinlichen) Falle eines Fehlers den
Fehlercode.

• DoSaveDataToDoc(newFile) bringt die Kopie auf den neuesten Stand und
DTCloseClone(newFile) schließt die Kopie.

Da wir an der Originaldatei nichts geändert haben brauchen wir die UI nicht
upzudaten.

SUB BasicCopyToDoc ()
DIM ret as DialogReturnStruct
DIM err
DIM newFile AS FILE

DoEnterDocumentPath(FALSE)

ret = DTMoveCopyDialog(ConvertObjForSDK(DocumentObj), "", FALSE)
IF ret.retInfo = DRI_CANCEL THEN RETURN

err = DTConfirmAndDelete(ret.fileName$)
IF err THEN RETURN

newFile = DTCloneAndOpenFile(ConvertObjForSDK(DocumentObj),
ret.fileName$)

IF fileError THEN RETURN
DoSaveDataToDoc(newFile)
DTCloseClone(newFile)

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 176

Verschieben nach ...

Die Funktion "Verschieben nach" verschiebt das aktuelle Dokument an einen
neuen Ort. Dazu muss das aktuelle Dokument zunächst kopiert werden. War das
erfolgreich wird es geschlossen und gelöscht. Danach wird die Kopie geöffnet.
Beachten Sie, dass sich durch dieses Vorgehen das FILE Handle des Dokuments
ändert.
• Die Sequenz aus DoEnterDocumentPath und DTMoveCopyDialog(... FALSE)

lässt den Nutzer den neuen Namen und den neuen Pfad des Dokuments
eingeben und wechselt in den neuen Pfad. DTConfirmAndDelete(ret.fileName$)
stellt sicher, dass keine Datei mit dem neuen Namen am Zielort existiert.

• DTCloneFile legt die erforderliche 1:1-Kopie an. Schlägt das fehl brechen wir
den Vorgang ab.

Eigentlich kann ab jetzt nichts mehr schief gehen. Trotzdem programmieren wir
etwas auf Sicherheit.
• Wir merken uns den vollständigen Pfad zur aktuell geöffneten Datei sowie ihren

"modified" Zustand. Beachten Sie, dass oldFile$ als String(230) deklariert ist,
damit wirklich der komplette Pfad abgelegt werden kann.

• Die Methode CloseDocument schießt das aktuelle Dokument, OpenDocument
(ret.FileName$) öffnet die 1:1-Kopie.

• War das Öffnen erfolgreich enthält die Instancevariable documentState einen
Wert ungleich Null. In diesem Fall können wir die Originaldatei beruhigt löschen.
Außerdem passen wird den Documentstatus an.

• Abschließend rufen wir DoUpdateDocButtons. Das bewirkt insbesondere, dass
der Name der neuen Datei in der Titelzeile des Primary-Objekts angezeigt wird.

SUB BasicMoveToDoc ()
DIM ret as DialogReturnStruct
DIM err, oldState
DIM oldFile$ as STRING(230)

DoEnterDocumentPath(FALSE)
ret = DTMoveCopyDialog(ConvertObjForSDK(DocumentObj), "", TRUE)
IF ret.retInfo = DRI_CANCEL THEN RETURN
err = DTConfirmAndDelete(ret.fileName$)
IF err THEN RETURN

DTCloneFile(ConvertObjForSDK(DocumentObj), ret.fileName$)
IF fileError THEN RETURN

oldFile$ = DocumentObj.documentPath$ + "\\" + \
DocumentObj.documentname$

oldState = DocumentObj.documentState AND \
 (DOCS_MODIFIED OR DOCS_EDIT_TEMPLATE)

DocumentObj.CloseDocument
DocumentObj.OpenDocument(ret.FileName$)
if (DocumentObj.documentState) THEN

DocumentObj.SetDocumentState oldState, 0
FileDelete oldFile$

END IF
DoUpdateDocButtons

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 177

Umbenennen

Um eine Datei umbenennen zu können müssen wir sie zunächst schließen. Dann
können wir sie umbenennen und mit neuem Namen wieder öffnen.

• SetCurrentPath(DocumentObj.documentPath$) wechselt in den Pfad, in dem
sich das aktuell geöffnete Dokument befindet.

• Die Sequenz aus DTRenameDialog und DTConfirmAndDelete(ret.fileName$)
ermöglicht dem Nutzer einen neuen Namen einzugeben und stellt sicher, dass
keine Datei mit diesem Namen im aktuellen Ordner existiert.

• Wir merken uns den Namen (oldFile$) und den Zustand (oldState) des aktuell
geöffneten Dokuments und schließen es dann mit CloseDocument.

• FileRename oldFile$, ret.fileName$, "m" erledigt das Umbenennen. Der Para-
meter "m" bewirkt, dass im (extrem unwahrscheinlichen Fall) eines Problems
eine entsprechende Fehlermeldung ausgegeben wird.

• Im Fehlerfall enthält die globale Variable fileError einen Fehlerwert (ungleich
Null). In diesem Fall öffnen wird die originale Datei wieder, ansonsten die
umbenannte.

• In jedem Fall updaten wir den Dokumentstatus (SetDocumentState) und die UI
(DoUpdateDocButtons).

SUB BasicRenameDoc ()
DIM ret as DialogReturnStruct
DIM err, oldState
DIM oldFile$ as STRING(32)

SetCurrentPath(DocumentObj.documentPath$)
ret = DTRenameDialog(ConvertObjForSDK(DocumentObj), "")
IF ret.retInfo = DRI_CANCEL THEN RETURN
err = DTConfirmAndDelete(ret.fileName$)
IF err THEN RETURN

oldFile$ = DocumentObj.documentName$
oldState = DocumentObj.documentState AND (DOCS_MODIFIED OR
DOCS_EDIT_TEMPLATE)
DocumentObj.CloseDocument
FileRename oldFile$, ret.fileName$, "m"

IF fileError THEN
DocumentObj.OpenDocument(oldFile$)
ELSE
DocumentObj.OpenDocument(ret.FileName$)
END IF

DocumentObj.SetDocumentState oldState, 0
DoUpdateDocButtons

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 178

Benutzernotizen ändern

Das Ändern der Benutzernotizen übernimmt die Routine DTChangeUsernotes aus
der DocumentTools Library. Sie erledigt alle notwendigen Schritte, einschließlich
der Anzeige der entsprechenden Dialogbox sowie der Prüfung, ob das aktuell
geöffnete Dokument überhaupt Benutzernotizen unterstützt.

SUB BasicChangeUsernotes ()
DTChangeUsernotes(ConvertObjForSDK(DocumentObj))

END SUB

15.6 Letzter Stand

Klickt der Nutzer im Menü auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicRevertDoc gestartet. Diese Routine prüft
zur Sicherheit, ob das Dokument überhaupt geändert wurde und fragt dann den
User, ob er sicher ist. Sodann ruft es DoRevertDoc, dass die eigentliche Arbeit
erledigt und updatet dann mit DoReadDataFromDoc und DoUpdateDocButtons
die UI. Wichtig ist, dass mit DoSetDocModified (FALSE) der "modified" Zustand
des Dokuments zurückgesetzt wird.

SUB BasicRevertDoc ()
DIM ans, docState

docState = DocumentObj.documentState
IF (docState AND DOCS_MODIFIED) = 0 THEN RETURN

ans = QuestionBox ("Sind Sie sicher, dass Sie alle Änderungen
seit dem letzten Speichern verwerfen wollen?")

IF ans <> YES THEN RETURN

DoRevertDoc

DoSetDocModified (FALSE)
DoReadDataFromDoc
DoUpdateDocButtons

END SUB

Nur VM-Dateien unterstützen ein echtes "Zurück zum letzten gespeicherten
Stand". Wenn Sie VM-Dateien als Dokumente benutzen können Sie beliebig
Daten in die Datei schreiben und trotzdem VMRevert verwenden, um den letzten
gespeicherten Stand wieder herzustellen. Deshalb werden VM-Dateien von allen
großen Applikationen wie GeoWrite und auch R-BASIC selbst als Dokumente
benutzt.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 179

Wenn Sie sich, wie in unserem Beispiel, gegen VM-Dateien entscheiden ist der
einfachste Weg, eine "Revert"-Funktion zu unterstützen, alle Änderungen der
Dokumentdaten in Instancevariablen oder globalen Variablen zu speichern und
nicht in die Datei zu schreiben, bis der Nutzer explizit "Speichern" wählt. In diesem
Fall besteht das Wiederherstellen des letzten gespeicherten Standes einfach
darin, die (ungeänderten) Daten aus dem Dokument wieder auszulesen.
DoRevertDoc hat dann nichts zu tun, weil das Auslesen der Daten von
BasicRevertDoc erledigt wird, nachdem es DoRevertDoc aufgerufen hat.

Dieses Konzept hat einen großen Nachteil. Im Falle eines Fehlers gehen alle
geänderten Daten verloren, weil sie nirgends in einer Datei gespeichert wurden.

Auch wenn DoRevertDoc nichts tut wird es von allen Routinen, die ein
Zurücksetzen der Datei auf den letzten gespeicherten Stand erwarten, gerufen.
Deshalb, wenn Sie ein Konzept haben, nicht-VM-Dateien auf ihren letzten
gespeicherten Stand zurückzusetzen, so können Sie es hier implementieren.

Wenn Sie VM-Dateien benutzen braucht DoRevertDoc nur VMRevert aufzurufen.

SUB DoRevertDoc ()
MsgBox "DoRevertDoc: Datei auf den letzten gespeicherten Stand

bringen - falls es dazu etwas zu tun gibt."
’ Im aktuellen Konzept hat DoRevertDoc nichts zu tun
’ Sie können die MsgBox einfach entfernen
’ Für VM-Dateien: VMRevert(DocumentObj.documentHandle) rufen

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 180

15.7 Quick Backup

Klickt der Nutzer im Menü auf den entsprechenden Button so wird im Document-
AndToolButtonHandler die Routine BasicQuickBackup bzw. BasicRestoreFrom-
Backup gerufen.

BasicQuickBackup legt eine Kopie der Datei im Backup-Ordner (SP_BACKUP) an.
Dort werden üblicherweise keine Unterordner verwaltet. Zunächst wird ein
eventuell vorhandenes älteres Backup gelöscht. DTCloneAndOpenFile legt eine
1:1 Kopie der aktuell offenen Datei an und öffnet diese. Im Fehlerfall gibt es eine
Fehlermeldung, ansonsten wird die Backupkopie mit DoSaveDataToDoc auf den
neuesten Stand gebracht und danach geschlossen. In jedem Fall rufen wir
DoUpdateDocButtons um den "Aus Backup wiederherstellen"-Button zu updaten.

SUB BasicQuickBackup ()
DIM fileName$ ’, docState, ro
DIM docPath$ as string(200)
DIM backupFile as FILE

fileName$ = DocumentObj.documentName$
SetStandardPath SP_BACKUP

FileDelete fileName$
backupFile = DTCloneAndOpenFile(ConvertObjForSDK(DocumentObj),

fileName$)
IF fileError THEN

MsgBox "Konnte Backup-Datei nicht anlegen. Fehlercode: "
+ ErrorText$(fileError)

ELSE
DoSaveDataToDoc(backupFile)
DTCloseClone(backupFile)

End IF

DoUpdateDocButtons

END SUB

BasicRestoreFromBackup stellt eine Datei aus einer Backupkopie wieder her.
Dazu gehen wir folgendermaßen vor:
• Wir merken uns Name (fileName$) und Pfad (docPath$) der aktuell offenen

Datei.
• Nach dem Wechsel in den Backup-Ordner prüfen wir mit der Routine DTCheck-

FileType aus der DocumentTools Library ob eine Backupdatei existiert und ob
diese kompatibel zur aktuell offenen Datei ist. Das umfasst den Dateityp, den
Dateinamen und für GEOS bzw. VM-Dateien auch das Token bzw. das
CreatorToken. Im Fehlerfall brechen wir den Prozess ab.

• Das "Wiederherstellen" der Datei besteht aus vier Schritten:
1. Schließen des aktuellen Dokuments.
2. Kopieren der Backupkopie an die Stelle des aktuellen Dokuments. Das alte

Dokument wird dabei automatisch überschrieben.
3. Öffnen der herkopierten Backupkopie.
4. Update der UI mit DoReadDataFromDoc und DoUpdateDocButtons.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 181

SUB BasicRestoreFromBackup ()
DIM docPath$ as String(200)
DIM fileName$, err

fileName$ = DocumentObj.documentname$
docPath$ = DocumentObj.documentPath$

SetStandardPath SP_BACKUP
err = DTCheckFileType(ConvertObjForSDK(DocumentObj),

fileName$, "*")
IF err THEN

MsgBox "Kann Backup nicht wieder herstellen. Fehlercode:
" + ErrorText$(err)

RETURN
End IF

DocumentObj.CloseDocument
FileCopy fileName$, docPath$ + "\\" + fileName$
SetCurrentPath docPath$
DocumentObj.OpenDocument fileName$

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

15.8 Verwendung von Muster-Dateien

Muster-Dateien werden immer in einem Unterordner des Ordners
"USERDATA\TEMPLATE" gespeichert. Klickt der Nutzer im Menü auf einen der
zugehörigen Buttons so wird im DocumentAndToolButtonHandler eine der
Routinen BasicOpenTemplate oder BasicSaveAsTemplate gerufen.

Die Routine BasicOpenTemplate öffnet eine Musterdatei indem entweder eine
neue Datei angelegt wird oder das Muster zum Bearbeiten geöffnet wird.
• DTOpenTemplateDialog erlaubt es dem Nutzer eine Musterdatei auszuwählen.

Standardmäßig ist die Option "Zum Bearbeiten" deaktiviert und ret.retInfo
enthält den Wert DRI_READ_ONLY. Aktiviert der Nutzer die genannte Option
enthält ret.retInfo den Wert DRI_OK.
srcFile$ speichert den kompletten Pfad zu ausgewählten Musterdatei.

• BasicCloseDoc(TRUE) schließt die aktuell geöffnete Datei und fragt den Nutzer
gegebenenfalls ob er seine Änderungen speichern will usw. Wählt der Nutzer
"Abbrechen" wird die Datei nicht geschlossen und wir verlassen die Routine.

• Für den Fall, dass der Nutzer die Musterdatei bearbeiten will (ret.retInfo =
DRI_OK) öffnen wir die Musterdatei selbst (ret.fileName$) und teilen dem
DocumentGuardian-Objekt mit, dass wir eine Musterdatei bearbeiten
(DocumentObj.SetDocumentState DOCS_EDIT_TEMPLATE, 0). Dieses Flag

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 182

bewirkt nur, dass der nächste "Öffnen"-Dialog den Dokument-Ordner anzeigt,
und nicht dem der aktuell offenen Datei (den Template-Ordner).

• Wenn der Nutzer das Muster verwenden will um eine neue Datei anzulegen
gehen wir folgendermaßen vor:
1. DoEnterDocumentPath(TRUE) wechselt in den Pfad, wo neue Dokumente

abgelegt werden.
2. DTFindNameForNew findet einen passenden (und noch unbenutzten)

Namen für das neue Dokument.
3. FileCopy srcFile$, fileName$, "m" kopiert das Musterdokument unter dem

neuen Namen in den aktuellen Ordner (siehe Punkt 1.)
4. Für den Fall dass alles gut gegangen ist öffnen wir das neue Dokument und

markieren es als "unbenannt".
• Abschließend passen wir die UI mit der Standardsequenz aus DoReadData-

FromDoc und DoUpdateDocButtons an.

SUB BasicOpenTemplate ()
DIM fileName$ as string(32)
DIM srcFile$ as String(240)
DIM err
DIM ret as DialogReturnStruct

ret = DTOpenTemplateDialog(ConvertObjForSDK(DocumentObj), "")
IF ret.retInfo = DRI_CANCEL THEN RETURN
srcFile$ = currentPath$ + "\\" + ret.fileName$

err = BasicCloseDoc(TRUE)
IF err THEN RETURN

IF ret.retInfo = DRI_OK THEN ’ => zum Bearbeiten
DocumentObj.OpenDocument ret.fileName$
DocumentObj.SetDocumentState DOCS_EDIT_TEMPLATE, 0

ELSE
DoEnterDocumentPath(TRUE)
fileName$ = DTFindNameForNew(ConvertObjForSDK(DocumentObj))
FileCopy srcFile$, fileName$, "m"
IF fileError = 0 THEN

DocumentObj.OpenDocument fileName$
DocumentObj.SetDocumentState DOCS_UNTITLED, 0

End IF
End IF

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

BasicSaveAsTemplate speichert eine Datei als Muster im Template-Ordner. Dazu
ruft es zuerst DTSaveAsTemplateDialog. Diese Routine erlaubt es dem Nutzer
einen Namen und ggf. einen anderen Pfad für die Musterdatei einzugeben. Die

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 183

nächsten Schritte sind identisch mit dem "normalen" Speichern einer Datei mit
einem neuen Namen. Deswegen können wir diese Aufgabe an InternalSaveAs
delegieren. Diese Routine ist im Abschnitt 15.4.4 (Speichern unter neuem Namen)
beschrieben. Sie speichert die aktuell offene Datei mit einem neuen Namen und
öffnet diese zum Bearbeiten.

Nun informieren wir das DocumentGuardian-Objekt, dass eine Musterdatei in
Bearbeitung ist und wir haben die Möglichkeit "Muster-typische" Änderungen an
der Datei vorzunehmen. Ob es da etwas gibt und was das ist hängt wieder vom
Ihrem Programm ab. Abschließend geben wir noch eine Erfolgsmeldung an den
Nutzer aus.

SUB BasicSaveAsTemplate ()
DIM err
DIM ret as DialogReturnStruct

ret = DTSaveAsTemplateDialog(ConvertObjForSDK(DocumentObj),
"", FALSE)

IF ret.retInfo = DRI_CANCEL THEN RETURN

err = InternalSaveAs(ret)
IF err THEN RETURN

DocumentObj.SetDocumentState DOCS_EDIT_TEMPLATE, 0
MsgBox("BasicSaveAsTemplate: Datei gespeichert. Hier eventuell

Sonderaufgaben für \"Muster\" erledigen")
MsgBox "Die Datei wurde als Muster gespeichert und zum

Bearbeiten geöffnet."
RETURN

END SUB

Das GEOS-System hat für "Muster" Dateien ein spezielles Attribut, das dem
Dokument-Interface mitteilt, dass es sich nicht um ein normales Dokument
handelt. R-BASIC unterstützt dieses Attribut nicht. Wenn Sie möchten können Sie
an dieser Stelle einen bestimmten Wert in Ihrem Muster-Dokument setzen, der
das Dokument als "Muster" kennzeichnet. Diesen können Sie beim Öffnen des
Dokuments auslesen und entsprechend (analog zu BasicOpenTemplate)
reagieren.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 184

15.9 Schnittstelle zum GEOS Dateisystem

Ein Programm, das mit Dokumenten arbeitet, muss mit folgenden Situationen
umgehen können:
• Der Nutzer öffnet im GeoManager ein zu dem Programm gehörendes

Dokument. In diesem Fall unterscheidet das System zwei Fälle. Wenn das
Programm noch nicht läuft wird es gestartet und der OnStartup-Handler (in
unserem Fall die Routine DocStartupHandler) des Programms wird ausge-
führt. Läuft das Programm bereits wird stattdessen der OnConnection-Handler
des Programms ausgeführt (in unserem Fall die Routine DocConnection-
Handler). In beiden Fällen wird den Handlern der komplette Pfad zur Datei
übergeben und das Programm muss in der Lage sein diese Datei zu öffnen.
Das erledigen wir mit der Routine OpenExternalFile.

• Der Nutzer selektiert im GeoManager ein Dokument und wählt den Menüpunkt
"Drucken". Diese Situation wird nicht hier, sondern im Objekthandbuch, beim
PrintControl-Objekt, Kapitel 4.14.8, besprochen.

• Der Nutzer schließt das Programm während noch ein Dokument offen ist. Dann
muss der OnExit-Handler (in unserem Fall die Routine DocExitHandler) dafür
sorgen, dass die Dokumentendatei geschlossen wird. Falls erforderlich muss
der Nutzer vorher gefragt werden, ob er Änderungen in der Datei speichern will.

• GEOS fährt bei offenem Programm herunter. Auch hier ist der OnExit-Handler
gefragt. Er muss dafür sorgen, dass die Datei so geschlossen wird, dass sie
beim Wiederhochfahren automatisch geöffnet werden kann. Diese Aufgabe
delegieren wir an das DocumentGuardian-Objekt. Vorher müssen wir eventuell
in globalen Variablen gecachte Daten sichern.

• Wenn GEOS wieder hochfährt muss die beim Herunterfahren geschlossene
Datei automatisch wieder geöffnet werden. Auch das delegieren wir komplett an
das DocumentGuardian-Objekt. Danach müssen wir gegebenenfalls globale
Variablen wiederherstellen.

Alle drei Handler müssen wie folgt im UI-Code als Handler des Application-Objekts
vereinbart werden. Wenn Sie bereits einen entsprechenden Handler haben reicht
es, wenn Sie den Code in den bereits definierten Handler verschieben.

Application MyAppObject
OnStartup = DocStartupHandler
OnExit = DocExitHandler
OnConnection = DocConnectionHandler
<..>

End Object

Außerdem benutzen wir die Tatsache, dass alle Instancevariablen von Generic-
Class Objekten eine Systemrestart automatisch überleben. Das Document-
Guardian-Objekt merkt sich also z.B. den Namen und den Pfad der aktuell offenen
Datei automatisch, ohne unser Zutun. Wenn wir weiterhin darauf achten, dass alle
geänderten Daten des Dokument in irgendwelchen Instancevariablen gespeichert
sind (das ist z.B. automatisch der Fall beim Text eines Memo-Objekts, dem
ausgewählten Eintrag einer Liste oder der aktuellen Farbe bei einem
ColorSelector), stehen uns diese Daten nach einem Systemneustart automatisch
wieder zur Verfügung. Kümmern müssen Sie sich nur, wenn Sie Daten in globalen

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 185

Variablen haben. Diese könnten Sie z.B. in der Instancevariablen "document-
UserData" des DocumentGuardian-Objekts "retten".

Um eine DOS-Datei mit einem Programm zu verknüpfen muss in der GEOS.INI in
der Kategorie [filemanager] unter "fileNameTokens" ein Eintrag der Form

*.EXT="DTOK", 0, "AppT", 16600
existieren, wobei *.EXT die DOS-Datei beschreibt, "DTOK", 0 das Token ist, das
der GeoManager zur Anzeige der Datei verwenden soll und "AppT", 16600 das
Token unseres Programms ist.
R-BASIC unterstützt das Setzen eines solchen Eintrags nicht. Der Nutzer muss
das selbst tun, z.B. mit Hilfe des Voreinstellungs-Moduls.

Für GEOS- und VM-Dateien müssen wir nicht in die GEOS.INI eingreifen. Wir
müssen der Datei nur ein CreatorToken zuweisen. Damit weiß das System zu
welchem Programm die Datei gehört. Sinnvoller Weise geben wir der Datei auch
noch ein eigenes Token. Das alles erledigt das DocumentGuardian-Objekt für uns.
Wir müssen nur Token und CreatorToken bei der Konfiguration des Objekts
angeben (siehe Kapitel 15.3, Routine DoInitDocumentGuardian).

Der OnStartup-Handler

Wie oben beschrieben muss der OnStartup-Handler (er heißt DocStartupHandler)
unterscheiden, ob das Programm neu startet oder ob GEOS gerade wieder
hochfährt. Außerdem muss er wissen, ob eine Datendatei (Dokument) übergeben
wurde oder nicht. Die entsprechende Information ist im Parameter "flags" zu
finden. Ist das Bit AF_RESTORE gesetzt fährt GEOS nach einem Shutdown
wieder hoch. Das Bit AF_DATA_FILE ist gesetzt, wenn eine Datei an den Handler
übergeben wurde. Das ermöglicht uns folgendes Vorgehen:
• Wir prüfen zunächst das Bit AF_RESTORE. Ist es gesetzt rufen wir die

Methode HandleRestart des DocumentGuardian-Objekts. Diese erledigt die
notwendigen Schritte. DoReadCachedData stellt bei Bedarf die globalen
Variablen wieder her.

• Ist das Bit AF_RESTORE nicht gesetzt startet das Programm gerade neu. In
diesem Fall müssen wir unbedingt das DocumentGuardian-Objekt initialisieren.
Das erledigt die weiter oben beschriebene Routine DoInitDocumentGuardian.

• Falls eine Datendatei übergeben wurde (das Bit AF_DATA_FILE ist gesetzt)
öffnen wir diese mit OpenExternalFile, andernfalls blenden wir mit DTShow-
NewOpenDialog den "Neu/Öffnen" Dialog ein. DTShowNewOpenDialog wartet
nicht bis der Nutzer etwas eingibt sondern öffnet nur den Dialog und kehrt dann
zurück, so dass die Startup-Sequenz des Programms fortgesetzt werden kann.
Der Nutzer kann irgendwann später einen Button im "Neu/Öffnen" Dialog
anklicken und die DocumentTools Library ruft dann, wie vorn beschrieben, den
DocumentAndToolButtonHandler.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 186

SYSTEMACTION DocStartupHandler

IF flags AND AF_RESTORE THEN
DocumentObj.HandleRestart
DoReadCachedData (DocumentObj)
RETURN

End IF

DoInitDocumentGuardian(DocumentObj)

IF flags AND AF_DATA_FILE THEN
OpenExternalFile(dataFile$)

ELSE
DTShowNewOpenDialog(ConvertObjForSDK(DocumentObj),

NOF_STARTUP + NOF_NEW_OPEN_TEMPLATE + NOF_CONFIG +
NOF_IMPORT, "")

End IF

END ACTION

Der OnExit-Handler

Der OnExit-Handler namens DocExitHandler hat nicht zu tun, wenn gar kein
Dokument offen ist. Das wird deswegen zuerst abgefragt.
Ist ein Dokument offen muss er zwischen zwei Fällen unterscheiden:
• GEOS fährt herunter. In diesem Fall ist das Bit AF_SHUTDOWN im Parameter

"flags" gesetzt. Dann sichern wir die wichtigen globalen Variablen (mit
DoSaveCachedData) und rufen die Methode HandleShutdown des Document-
Guardian-Objekts. Diese erledigt die notwendigen Schritte. Dazu gehört vor
allem die Datei zu schließen, sich aber den Namen und den Pfad zu merken, so
dass die Methode HandleRestart genau diese Datei wieder öffnen kann.

• Das Programm schließt. In diesem Fall muss das Dokument geschlossen
werden. Vorher müssen wir den Nutzer fragen, ob er eventuelle Änderungen
speichern will. Dazu verwenden wir die im Kapitel 15.4.5 (Schließen des
Dokuments) beschriebene Funktion DTConfirmClose. Der Parameter "FALSE"
bewirkt, dass der Nutzer die Option "Abbrechen" nicht hat. Je nach zurückge-
gebenem Wert rufen wir BasicSaveDoc (CLOSE_SAVE), BasicSaveAsDoc
(CLOSE_SAVE_AS) oder nichts davon (CLOSE_DISCARD, Änderungen
verwerfen).
Abschließend können wir mit der Methode CloseDocument die Datei schließen.

SYSTEMACTION DocExitHandler
DIM cmd

 IF DocumentObj.documentHandle = NullFile() THEN RETURN
 IF flags AND AF_SHUTDOWN THEN
 DoSaveCachedData (DocumentObj)
 DocumentObj.HandleShutdown

RETURN
 End IF

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 187

 cmd = DTConfirmClose(ConvertObjForSDK(DocumentObj), FALSE)
 ON cmd SWITCH

CASE CLOSE_SAVE: ’ Änderungen speichern
BasicSaveDoc ’ Handelt alle denkbaren Fälle
END CASE

CASE CLOSE_SAVE_AS:
BasicSaveAsDoc()

END SWITCH

 DocumentObj.CloseDocument

END ACTION

Der OnConnection-Handler

Der OnConnection-Handler (er heißt DocConnectionHandler) wird gerufen, wenn
der Nutzer ein Dokument im GeoManager doppelklickt, das zugehörige Programm
aber schon läuft. Der vollständige Pfad zu diesem Dokument wird dem Handler im
Parameter dataFile$ übergeben. Da es nicht auszuschließen ist, dass GEOS den
Handler auch in anderen Zusammenhängen ruft, fragen wir das Bit
AF_DATA_FILE ab, bevor wir OpenExternalFile zum Öffnen der Datei rufen.

SYSTEMACTION DocConnectionHandler

 IF flags AND AF_DATA_FILE THEN
OpenExternalFile(dataFile$)

 End IF

END ACTION

OpenExternalFile

Die Routine OpenExternalFile erledigt alles was nötig ist um eine Datei zu öffnen,
die einem der Handler DocStartupHandler oder DocConnectionHandler übergeben
wurde.

SUB OpenExternalFile (file$ as string(235))
DIM err, n, state
DIm fileName$ as String(32)
DIM path$ as String(235)

state = DocumentObj.documentState
IF state THEN
err = BasicCloseDoc(True)
IF err THEN RETURN

END IF

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 188

path$ = file$
n = InStr("\\", path$)
WHILE n <> 0
path$ = Right$(path$, len(path$) - n)
n = InStr("\\", path$)

WEND

fileName$ = path$
path$ = left$(file$, len(file$) - len(fileName$) - 1)

SetCurrentPath path$
DocumentObj.OpenDocument fileName$

DoReadDataFromDoc
DoUpdateDocButtons

END SUB

Zunächst prüfen wir ob noch eine Datei offen ist (die Variable state ist dann
ungleich Null). In diesem Fall erledigt BasicCloseDoc das Schließen der Datei mit
vorheriger Nachfrage beim Nutzer. Entscheidet sich der Nutzer die Datei doch
nicht zu schließen liefert BasicCloseDoc TRUE und wir verlassen die Routine
OpenExternalFile.

Der nächste Schritt ist das Separieren von Pfad und Dateinamen. Dafür
verwenden wir die lokale Variable path$ denn der Parameter file$ wird später noch
gebraucht. Die WHILE Schleife sucht jeweils den nächsten Backslash. Aus
"C:\GEOS\DOCUMENT\NAME.EXT" wird so schrittweise "GEOS\DOCUMENT\
NAME.EXT", "DOCUMENT\NAME.EXT" und schließlich "NAME.EXT". Das ist der
Dateiname, also speichern wir ihn in fileName$. Der Pfad ist dann alles links
davon, mit Ausnahme des letzten Backslash-Zeichens.

Jetzt können wir mit SetCurrentPath in den richtigen Ordner wechseln und mit der
Methode OpenDocument das Dokument öffnen. Abschließend rufen wir
DoReadDataFromDoc und DoUpdateDocButtons um die UI zu updaten.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 189

15.10 Ein einfaches Beispiel

Am Beispiel der Programms "Yellow Notes", das im Ordner "Beispiele\Objekte
\Dateiarbeit" gefunden werden kann, soll gezeigt werden, wie man die zum
Dokumentinterface gehörende Routinen an das eigene Programm anpassen kann.

Kernobjekte des Programms sind ein Textobjekt (YNotesText) und ein Menu
(YNotesColorMenu) mit zwei ColorSelektoren (YNotesTextColor und YNotesBack-
Color) für die Vordergrund- und die Hintergrundfarbe.

Sehr häufig ist es sinnvoll, die Dokumentdaten in einer Struktur zu speichern. Das
vereinfacht den Zugriff auf die Daten und deren Verwaltung, insbesondere das
Speichern in einer Dokumentdatei, enorm. Für das "Yellow-Notes"-Beispiel
benötigen wir die Farben von Text und Hintergrund sowie den Notiztext selbst.
Außerdem haben wir 8 Word Reserve vorgesehen, die wir später zur kompatiblen
Erweiterung des Programms verwenden können.

STRUCT NotesData
backcolor, textColor as word
reserve[8] as word
text as String(1024)

End STRUCT

Als Dokumentdatei wählen wir eine GEOS Datendatei. Eine DOS-Datei sollte man
nur verwenden, wenn es erforderlich ist. Der Zugriff auf eine GEOS Datendatei ist
genau so einfach wie der auf eine DOS-Datei, aber man kann ein Token und ein
CreatorToken vergeben, so dass die Verknüpfung mit dem zugehörigen
Programm ohne Eingriff in die GEOS.INI erfolgt.

Wie am Anfang des Kapitels beschrieben beschränkt sich die Anpassung des
Dokument-Interfaces auf die folgenden Routinen:

• DoInitDocumentGuardian
• BasicCreateNewDoc
• DoUpdateDocButtons
• DoReadDataFromDoc
• DoSaveDataToDoc
• DoEnterDocumentPath
• DoSetDocModified
• DoRevertDoc

In der Routine DoInitDocumentGuardian müssen alle das Dokument betreffen-
den Daten an das eigene Programm angepasst werden. Wichtig ist, dass der Wert
für CreatorToken dem AppToken-Statement im UI-Code des Application-Objekts
entspricht.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 190

SUB DoInitDocumentGuardian(guardian as object)
DIM dc as DocumentConfigStruct

guardian.buttonhandler = DocumentAndToolButtonHandler

dc.noDocumentString$ = "leer"
dc.nameForNew$ = "Notiz "

dc.fileType = GFT_DATA
dc.creatorToken.tokenChars = "YNot"
dc.creatorToken.manufid = 16600
dc.token.tokenChars = "YNOD"
dc.token.manufid = 16600

dc.matchFlags = DOC_MATCH_TOKEN
guardian.ConfigData = dc

END SUB

In der Routine BasicCreateNewDoc muss der Teil angepasst werden, der für das
Initialisieren des neu angelegten Dokuments zuständig ist. Im Yellow Notes
Beispiel wird dazu die Sub YNotesInitializeDocument aufgerufen. Sie belegt eine
NotesData-Struktur mit den Standardfarben und einem leeren Text und schreibt
sie dann in die neu angelegt Datei. Token und CreatorToken werden automatisch
vom DocumentGuardian-Objekt gesetzt.

SUB YNotesInitializeDocument ()
DIM notes as NotesData

notes.textColor = BLACK
notes.backColor = YELLOW
notes.text = ""

FileSetPos DocumentObj.documentHandle , 0
FileWrite DocumentObj.documentHandle , notes, sizeof(NotesData)

END SUB

Die Routine DoUpdateDocButtons hat die Aufgabe, die UI des Programms zu
enablen oder zu disablen, je nachdem ob ein Dokument offen ist und welchen
Status es hat. Im Yellow Notes Beispiel ruft sie dazu die SUB YNotesUpdateUI,
die im Folgenden gezeigt ist. DocumentObj.documentState ist ungleich Null, wenn
ein Dokument offen ist. Dann wird die UI enabled, ansonsten wird sie disabled.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 191

SUB YNotesUpdateUI ()
IF DocumentObj.documentState THEN
YNotesText.enabled = TRUE
YNotesColorMenu.enabled = TRUE

ELSE
YNotesText.enabled = FALSE
YNotesColorMenu.enabled = FALSE

End IF
END SUB

Die Routine DoReadDataFromDoc wird jedes Mal gerufen, wenn Daten aus der
Datei gelesen werden sollen oder ein Dokument geschlossen wurde. Sie liest die
NotesData-Struktur aus der Datei und verteilt die Informationen an die
entsprechenden UI-Objekte. Falls keine Datei offen ist muss sie dafür sorgen,
dass das Objekt YNotesText leer ist. Das Enablen bzw. Disablen der UI-Objekte
übernimmt die Routine DoUpdateDocButtons.

SUB DoReadDataFromDoc ()
DIM notes as NotesData

IF DocumentObj.documentHandle == NullFile() THEn
YNotesText.text$ = ""

ELSE
’ Text und Farben updaten
FileSetPos DocumentObj.documentHandle, 0
notes = FileRead DocumentObj.documentHandle,sizeof(NotesData)
YNotesText.textColor = notes.textColor
YNotesText.backColor = notes.backColor
YNotesText.text$ = notes.text
YNotesTextColor.csColor = notes.textColor
YNotesBackColor.csColor = notes.backColor

End IF

END SUB

Die Routine DoSaveDataToDoc schreibt die aktuellen Daten in die Datei, indem
sie die Struktur "notes" mit den aktuellen Werten, gelesen vom Textobjekt und den
ColorSelektoren, belegt und sie dann mit einem einzigen FileWrite in die Datei
schreibt. Wir dürfen natürlich nicht vergessen vorher mit FileSetPos die korrekte
Schreibposition anzuwählen.

SUB DoSaveDataToDoc (fh as FILE)
DIM notes AS NotesData
notes.textColor = YNotesText.textColor
notes.backColor = YNotesText.backColor
notes.text = YNotesText.text$
FileSetPos fh, 0
FileWrite fh, notes, sizeof(NotesData)

END SUB

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 192

DoEnterDocumentPath wechselt in dem Pfad, in dem die Dateien angelegt
werden sollen. Wir entscheiden uns bei neuen Dateien für den GEOS-Top-Ordner
und für die Notiz-Dateien selbst für den Document-Ordner ohne Unterordner.

SUB DoEnterDocumentPath (forNew as Integer)
 IF forNew THEN

SetStandardPath SP_TOP
 ELSE

SetStandardPath SP_DOCUMENT
 END IF
END SUB

In der Routine DoSetDocModified gibt es eine wichtige Anpassung: Wir müssen
sicherstellen, dass nach dem Speichern des Dokuments (in diesem Fall wird
DoSetDocModified automatisch mit dem Parameter FALSE aufgerufen) die
nächste Nutzereingabe wieder den OnModified Handler des Textobjekts ruft. Dazu
setzen wir den modified-Status des Textobjekts zurück.

SUB DoSetDocModified (modi as INTEGER)

IF modi THEN
’ ist schon "modified"? => Return
IF DocumentObj.documentState AND DOCS_MODIFIED THEN RETURN
DocumentObj.SetDocumentState DOCS_MODIFIED, 0

ELSE
’ ist schon "not modified"? => Return
IF (DocumentObj.documentState AND DOCS_MODIFIED) = 0 \

THEN RETURN
DocumentObj.SetDocumentState 0, DOCS_MODIFIED
YNotesText.modified = FALSE

End IF

DoUpdateDocButtons

END SUB

Da sich das Zurücksetzen des Dokuments auf den letzten gespeicherten Stand in
unserem einfachen Konzept darauf beschränkt, die die Dokument-Daten aus der
(ungeänderten) Datei wieder auszulesen, hat die Routine DoRevertDoc nichts zu
tun. Sie könnte komplett aus dem Code entfernt werden.

SUB DoRevertDoc ()
END SUB

Zusätzlich benötigt das Yellow Notes Beispiel ein paar weitere Routinen. Die
wichtigsten davon sind der OnModified-Handler des YNotesText-Objekts und der

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Dokument-Interface - 193

ColorChangedHander der beiden ColorSelektoren, da diese das Dokument als
"modified" markieren müssen, wenn der Nutzer etwas ändert.

Der OnModified Handler des Textobjekts ist sehr einfach. Er ruft nur
DoSetDocModified (TRUE). Diese Routine informiert das DocumentGuardian-
Objekt und ruft DoUpdateDocButtons. Mehr ist nicht zu tun.

TEXTACTION TextModifedHandler
DoSetDocModified (TRUE)

END ACTION

Beide ColorSelektoren haben den gleichen ColorChangedHander. Seine Aufgabe
ist es, dem Text-Objekt eine neue Vorder- und Hintergrundfarbe zuzuweisen
sowie das Dokument als "geändert" zu markieren.
ColorSelector Objekte haben die Eigenart, dass der Handler öfter gerufen wird, als
es für unsere Zwecke sinnvoll ist, z.B. wenn sie erstmalig auf dem Schirm
erscheinen. Das könnte dazu führen, dass das Dokument als "geändert" markiert
wird, obwohl es eigentlich nicht geändert wurde. Deswegen fragen wir die
aktuellen Farben des Textobjekts ab und rufen DoSetDocModified (TRUE) nur
dann, wenn sie sich wirklich geändert haben.

COLORACTION NewColorHandler
dim tc, bc

tc = YNotesText.textColor
bc = YNotesText.backColor

YNotesText.textColor = YNotesTextColor.csIndexColor
YNotesText.backColor = YNotesBackColor.csIndexColor

IF (tc <> YNotesText.textColor) \
OR (bc <> YNotesText.backColor) THEN
DoSetDocModified (TRUE)

End IF
END ACTION

Den kompletten Quellcode für dieses Beispiel sowie die Iconeditor-Datei mit den
Iconbildern findet man im Ordner "Beispiele\Objekte\Dateiarbeit".

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Timer - 194

16 Timer

Timer erlauben es, einen Actionhandler in bestimmten Zeitabständen automatisch
aufzurufen. Man kann sich das so vorstellen, als ob jemand einen Button in regel-
mäßigen Abständen drückt. Damit kann man beispielsweise eine blinkende Schrift
realisieren, eine Spielfigur über das Spielfeld bewegen oder eine Uhr weiter-
zählen.

Die Routine TimerStart aktiviert einen Timer. Sie erwartet den Namen des
Actionhandlers, der aufgerufen werden soll, sowie einen oder zwei numerische
Werte. Der erste Wert gibt an, wie lange es dauern soll, bis der Timer das erste
Mal auslöst. Die Zeitangabe erfolgt in "tics", das sind 1/60s. Der zweite Wert gibt
das Zeitintervall an, in dem der Timer danach periodisch auslösen soll (ebenfalls
in tics). Wird der zweite Wert nicht angegeben oder ist er Null, so löst der Timer
nur genau einmal aus (Single-Shot Timer). Das maximale Zeitintervall beträgt
jeweils 65535 tics, das entspricht etwa 18 Minuten.
Um einen Timer zu stoppen verwenden Sie TimerStop. Single-Shot Timer
brauchen nicht gestoppt zu werden. Es ist ein guter Stil alle Timer am
Programmende, vorzugsweise im OnExit-Handler, zu stoppen. Sollten Sie das
vergessen, stoppt das System die aktiven Timer.

Wenn ein Timer auslöst erzeugt er ein BASIC-Event, das wie allen anderen
Events (Aktivieren eines Button, Klick in eine Liste usw.) behandelt wird. Das
bedeutet:
 • Timerevents unterbrechen laufende Actionhandler nicht. Das Timerevent wird

erst behandelt, wenn der laufende Actionhandler beendet ist.
 • Timerevents haben keine erhöhte Priorität. Sie reihen sich wie jedes andere

Ereignis in der Ereigniswarteschlage hinten ein.

Bei sehr schnellen Timern kann es vorkommen, dass der Timer bereits wieder
auslöst, bevor das letzte Timerevent behandelt wurde. Damit diese Situation nicht
zu einem Überlaufen der Warteschlange führt, stellt der Eventmanager sicher,
dass sich für jeden Timer maximal ein Event in der Warteschlage befindet. Zu
schnell aufeinander folgende Events werden verworfen.

Verwechseln Sie Timerevents nicht mit den Befehlen Delay und Pause! Delay und
Pause unterbrechen die Abarbeitung eines Handlers für eine bestimmte Zeit
während Timer einen eigenen Handler aufrufen.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Timer - 195

TimerStart

TimerStart aktiviert einen Timer. Das kann eine einmaliger Timer (Single-Shot-
Timer) oder ein periodischer Timer sein.

Syntax: <th> = TimerStart (<Handler>, tics1 [, tics2])
<th>: Variable vom Typ HANDLE.

Der Wert wird für TimerStop benötigt.
<Handler>: Name des ActionHandlers, der vom Timer aufgerufen werden soll

Er muss als TimerAction deklariert sein.
tics1: Zeit, bis der Timer erstmalig auslöst (in 1/60s)
tics2: Intervall (in 1/60s), in dem der Timer periodisch auslösen soll. Wird

tics2 nicht angegeben (oder wenn er Null ist) löst der Timer nur einmal
aus (Single-Shot-Timer).

Erlaubte Werte für tics1 und tics2: 0 ... 65535

TimerStop

TimerStop hält einen Timer an. Es erwartet das Handle, das von TimerStart
zurückgegeben wurde. Es ist explizit erlaubt:
• Einen Timer zu stoppen, der bereits gestoppt wurde.
• Einen Single-Shot-Timer zu stoppen, der bereits ausgelöst hat.

Hinweis: TimerStop entfernt keine Timerevents aus der Warteschlange. Falls sich
beim Aufruf von TimerStop noch ein Timerevent in der Warteschlange befindet, so
wird dieses noch ausgeführt.

Syntax: TimerStop <th>
<th>: Handle, das von TimerStart geliefert wurde

TimerAction

Actionhandler, die von einem Timer aufgerufen werden, müssen als TimerAction
deklariert sein.

Handler-Typ Parameter
TimerAction (sender as object, actionData as integer)

Der Parameter "sender" enthält das Application-Objekt des Programms, der
Parameter "actionData" ist unbenutzt und enthält den Wert Null.

Beispiele. Den folgenden Code finden Sie komplette im R-BASIC Beispiel "Datum
und Zeit\TimerDemo".

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Timer - 196

Beispiel 1: Blinkende Schrift
Eine globale Variable z bestimmt, ob die Schrift gezeigt wird oder nicht. Das
TimerHandle th ist ebenfalls global, damit wir dem Timer wieder anhalten können.

DIM z
DIM th as HANDLE

Mit TimerStart aktivieren wir die blinkende Schrift. Der erste Timerevent soll sofort
ausgelöst werden (zweiter Parameter ist Null), dann soll der Timer alle 0,5
Sekunden auslösen (dritter Parameter: 30 tics).

th = TimerStart (TimerBlink, 0, 30)

TimerStop schaltet die blinkende Schrift wieder aus. Wir kümmern uns nicht
darum, ob die Schrift gerade zu sehen ist oder nicht.

TimerStop th

Der eigentliche TimerHandler prüft die globale Variable z. Ist sie ungleich Null wird
dein Leertext ausgegeben und z auf Null gesetzt. Beim nächsten Handleraufruf ist
z dann Null und der Text selbst wird ausgegeben. z wird auf 1 gesetzt.

TIMERACTION TimerBlink
IF z THEN
Print at 3, 5; " "
z = 0;

ELSE
print at 3, 5;"R-BASIC Timer Demo"
z = 1

End IF

END ACTION

Beispiel 2: Willkommensbox
Viele Programme zeigen am Start eine Infobox an, die dann von allein wieder
verschwindet. Dafür eignet sich ein Single-Shot-Timer. Im OnStartup-Handler
öffnen wir die Dialogbox und starten den Timer. Das Timerhandle th2 wird bei
Single-Shot-Timern nicht weiter gebraucht.

SYSTEMACTION DemoStartupHandler
DemoStartupDialog.Open
th2 = TimerStart (StartupTimerHandler, 180) ’ 3 sek.

END ACTION

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Timer - 197

Der Timerhandler muss nur die Dialogbox schließen.

TIMERACTION StartupTimerHandler
DemoStartupDialog.Close

END ACTION

Die Dialogbox selbst sollte das Attribut DA_HIDDEN_UNTIL_OPENED gesetzt
haben, damit das System keinen Button erzeugt, mit dem man die Dialogbox
manuell öffnen kann. Die Anweisung "modal = APP_MODAL" ist auskommentiert.
Sie würde bewirken, dass der Nutzer nicht mit dem Programm interagieren kann,
solange die Dialogbox noch offen ist.

Dialog DemoStartupDialog
Caption$ = "Willkommen!"
Children = TimerStartupText
attrs = DA_HIDDEN_UNTIL_OPENED
’modal = APP_MODAL

End OBJECT

Tipps & Tricks
• Actionhandler vom Typ TimerAction sind kompatibel mit dem Typ ButtonAction.

Das heißt, Sie können einem Button einen Timer-Handler als ActionHandler
zuweisen und so ihren Timerhandler komfortabel testen. In diesem Fall wird der
Parameter "actionData" mit dem actionData-Wert des Buttons belegt.

• Der zwei- oder mehrmalige Aufruf von TimerStop mit dem gleichen TimerHandle
oder mit einem Null-Handle (leeres Handle) ist erlaubt. Sie können deshalb in
Ihrem OnExit-Handler einfach sämtliche Timer stoppen (Aufruf von TimerStop),
egal ob die Timer noch laufen oder ob sie je benutzt wurden (unbenutzte
Handles sind leere Handles).

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 198

17 Arbeit mit der Maus

17.1 Überblick

Die meisten GEOS-Objekte können automatisch auf Mausereignisse reagieren.
So weiß ein Button was zu tun ist, wenn er mit der Maus angeklickt wird. Hier
braucht und kann der R-BASIC Programmierer nicht eingreifen. In vielen Fällen
muss der R-BASIC Programmierer jedoch die Reaktion auf ein Mausereignis
selbst behandeln. Deshalb gibt es eine Reihe von Objekten, die eine explizite
Mausunterstützung anbieten. Das sind die Objekte:

 VisContent, BitmapContent, VisObj, Canvas und Image

Dazu sind die folgenden Actionhandler, Instancevariablen und Methoden definiert.
Details dazu, insbesondere unter welchen Bedingungen die entsprechenden
Handler gerufen werden, finden Sie in den nächsten Abschnitten.

Action-Handler-Typen:
Handler-Typ Parameter
MouseAction (sender as object, xPos, yPos, event as Integer)

Spezielle Instance-Variablen:
Variable Syntax im UI-Code Im BASIC-Code
OnMouseButton OnMouseButton = <Handler> nur schreiben
OnMouseMove OnMouseMove = <Handler> nur schreiben
OnMouseOver OnMouseOver = <Handler> nur schreiben
sendMouseEvents sendMouseEvents = bits [, mode] lesen, schreiben

Methoden:
Methode Aufgabe
GrabMouse Objekt "greift sich" die Maus
ReleaseMouse Objekt lässt die Maus wieder los
TestInside Prüft ob ein Koordinatenpaar im Objektbereich liegt
TestInsideAC Prüft ob ein Koordinatenpaar im Objektbereich liegt

Ein einfaches Beispiel
Canvas MyMouseObj
OnMouseButton = ButtonPressed
...

End Object

MOUSEACTION ButtonPressed
IF event = ME_LEFT_DOWN THEN MsgBox("Linke Maustaste gedrückt")

End Action

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 199

17.2 Maus Grabbing

Die folgenden Aussagen gelten nicht für VisContent und BitmapContent Objekte.

Im Normalfall wird ein Mausereignis von einem zum nächsten Objekt weiter-
gereicht, bis es das Objekt erreicht hat, das sich direkt unter dem Mauszeiger
befindet. Einige Ereignisse, insbesondere das Loslassen der Maustasten und das
Verlassen des Objektbereichs, werden im Normalfall gar nicht durchgestellt.
Es ist deshalb oft erforderlich, dass ein Objekt die Mausereignisse exklusiv und
komplett zu sehen bekommt. Dieser Prozess heißt "Grabbing". Das Objekt "greift"
sich die Mausereignisse direkt und ohne Umweg. Dafür stehen die folgenden
Methoden zur Verfügung:

Methode Aufgabe
GrabMouse Objekt "greift sich" die Maus
ReleaseMouse Objekt lässt die Maus wieder los

Syntax im BASIC Code: <obj>.GrabMouse
 <obj>.ReleaseMouse

Das Objekt zählt nicht mit, wie oft es die Maus gegrabbt hat. Grabbt ein Objekt die
Maus mehrfach so wird trotzdem bei ersten ReleaseMouse die Maus wieder
freigegeben.
Durch das Grabben der Maus wird erreicht, dass das System alle Mausereignisse
direkt an das Objekt sendet, unabhängig davon, wo sich der Mauspointer gerade
befindet. Das bedeutet insbesondere, dass das Objekt auch dann die Maus-
ereignisse erhält, wenn sich der Mauszeiger nicht mehr über dem Objekt befindet.
Das Objekt bekommt solange alle Mausereignisse, bis es die Maus wieder freigibt.
In der Zwischenzeit ist weder die Bedienung von Menüs möglich noch kann sich
ein anderes Objekt die Maus grabben. Häufig ist es so, dass sich ein Objekt beim
Drücken einer Maustaste die Maus grabbt und sie beim Loslassen der Taste
wieder freigibt. Entsprechende Beispiele finden Sie in den nächsten Kapiteln.

VisContent und BitmapContent

VisContent und BitmapContent Objekte können die Maus nicht grabben. Die
Methoden GrabMouse und ReleaseMouse sind wirkungslos. Im Gegenzug
erhalten diese Objekte stets alle Mausevents, so dass ein Grabbing der Maus gar
nicht nötig ist. Sobald eine Maustaste über einem VisContent- oder BitmapContent
gerückt wird grabbt das Objekt die Maus implizit, d.h. alle Mausereignisse gehen
an dieses Objekt, auch wenn der Mauszeiger das zugehörige View zwischen-
zeitlich verlässt. Im Unterschied zum expliziten Grabbing gehen die Maus-
ereignisse zusätzlich an eventuelle Children des VisContent-Objekts. Diese
Children (vom Typ VisObj) können dann die Maus explizit grabben.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 200

17.3 Aufruf der Actionhandler

Die Mausereignisse sind in drei Gruppen eingeteilt, für die es jeweils einen
eigenen Actionhandler gibt.

Handler Zugeordnete Ereignisse
OnMouseButton Linke Maustaste wird gedrückt

Doppelklick mit der linken Maustaste
Linke Maustaste wird gehalten (G)
Linke Maustaste wird losgelassen (G)
Rechte Maustaste wird gedrückt
Doppelklick mit der rechten Maustaste
Rechte Maustaste wird gehalten (G)
Rechte Maustaste wird losgelassen (G)

OnMouseMove Maus bewegt sich im Objektbereich
OnMouseOver Maus "betritt" den Objektbereich

Maus "verlässt" den Objektbereich (G)

Die genannten Ereignisse führen nur dann zum Aufruf des Actionhandlers, wenn
die folgenden Bedingungenerfüllt sind

• Es ist ein Handler zugewiesen.
• Das entsprechende Bit ist in der Instancevariablen sendMouseEvents

gesetzt.
• Bei den mit (G) gekennzeichneten Ereignissen: Das Objekt hat die Maus

"gegrabbt".
Diese Beschränkung gilt nicht für VisContent und BitmapContent. Für sie
gelten nur die ersten beiden Bedingungen.

Syntax UI- Code: OnMouseButton = <Handler>
OnMouseMove = <Handler>
OnMouseOver = <Handler>

Schreiben: <obj>.OnMouseButton = <Handler>
<obj>.OnMouseMove = <Handler>
<obj>.OnMouseOver = <Handler>

Durch Zuweisen des speziellen "Handlers" NoAction kann man die Zuweisung
eines Handlers aufheben, z.B.

sender.OnMouseMove = NoAction

NoAction kann mit allen Handlern, nicht nur mit Maushandlern, benutzt werden.

Alle Mausaction Handler haben die folgenden Parameter:
sender: Das Objekt, welches das Mausereignis ausgelöst hat
xPos, yPos: Die Koordinaten des Mauszeigers, relativ zur linken oberen Ecke

des Objekts.
event: Information welches Ereignis zum Aufruf geführt hat.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 201

Für event sind folgenden Konstanten definiert.

Konstante Wert Bedeutung
ME_LEFT_DOWN 1 Linke Maustaste wird gedrückt
ME_LEFT_UP 2 Linke Maustaste wird losgelassen
ME_LEFT_DOUBLE 4 Doppelklick links
ME_LEFT_HOLD 8 Linke Maustaste wird gedrückt gehalten
ME_RIGHT_DOWN 16 Rechte Maustaste wird gedrückt
ME_RIGHT_UP 32 Rechte Maustaste wird losgelassen
ME_RIGHT_DOUBLE 64 Doppelklick rechts
ME_RIGHT_HOLD 128 Rechte Maustaste wird gedrückt gehalten
ME_MOVE 256 Maus bewegt sich im Objektbereich
ME_ENTER 512 Maus "betritt" den Objektbereich
ME_LEAVE 1024 Maus "verlässt" den Objektbereich

Anmerkungen

Doppelklicks:
Drückt der Nutzer z.B. die linke Maustaste erstmalig so wird zunächst ein
LEFT_DOWN-Ereignis erzeugt. Lässt der Nutzer die Taste kurz darauf los und
drückt sie ein zweites Mal (dh. er führt einen Doppelklick aus) so wird zusätzlich
ein LEFT_DOUBLE-Ereignis erzeugt.

Hold-Ereignisse
Drückt der Nutzer z.B. die linke Maustaste so wird zunächst wieder ein
LEFT_DOWN-Ereignis erzeugt. Hält er jetzt die Maustaste für eine bestimmte
Zeit gedrückt (ca. 0,5 Sekunden) so wird zusätzlich ein LEFT_HOLD-Ereignis
erzeugt. Sie können damit z.B. unterscheiden ob der Nutzer etwas nur
anklicken oder es festhalten und bewegen will.

sendMouseEvents

Die Instancevariable sendMouseEvents bietet die Möglichkeit die Behandlung von
Mausereignissen schnell ein- und auszuschalten. Das ist wesentlich effektiver als
jedes Mal den entsprechenden Handler aufzurufen und dort abzufragen, ob er
aktuell auch erwünscht ist. Insbesondere der OnMouseMove Handler wird, wenn
sich die Maus über dem Objekt befindet, extrem häufig gerufen. Das kann zu einer
unerwünschten Belastung und zur Verlangsamung des Systems führen.

SendMouseEvents ist ein Bitfeld, d.h. jedes Bit hat eine bestimmte Bedeutung. Die
Bits sind identisch mit den ME_-Werten aus der Tabelle oben.

Hinweis: Per Default sind alle Bits gesetzt, die sollten daher im UI-Code immer
genau die Bits (ME_-Werte) setzen, die Sie benötigen. Nicht in der Tabelle
aufgeführte Bits sind reserviert und sollten Null bleiben.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 202

Syntax UI-Code: sendMouseEvents = bits [, mode]
bits: Kombination der ME_-Werte (siehe oben)
mode: bestimmt, wie der übergebene Bit-Wert zu

behandeln ist (siehe Tabelle unten)
Defaultwert: 0 (REPALACE_BITS)

Lesen: <numVar> = <obj>.sendMouseEvents (0)
Die BASIC Syntax verlangt beim Lesen von send-
MouseEvents einen Parameter, weil sendMouseEvents
beim Schreiben zwei Parameter hat. Der in der
Klammer stehende Wert wird jedoch ignoriert.

Schreiben: <obj>.sendMouseEvents = bits [, mode]

Für Mode sind die folgenden Konstanten definiert:

Konstante Wert Bedeutung
REPLACE_BITS 0 Der Wert wird 1:1 zugewiesen, d.h. der

Instancewert wird, wie bei einer normalen
Zuweisung, mit dem neuen Wert über-
schrieben. Das ist der Defaultwert und wird
meist im UI-Code benutzt.

SET_BITS 1 Angegebene Bits auf den Wert 1 setzen.
Die anderen Bits werden nicht beeinflusst.
Verwenden Sie diesen Mode-Wert wenn
Sie die Behandlung einen Ereignisses
aktivieren wollen.

CLEAR_BITS 2 Angegebene Bits auf den Wert 0 setzen.
Die anderen Bits werden nicht beeinflusst.
Verwenden Sie diesen Mode-Wert wenn
Sie die Behandlung einen Ereignisses
ausschalten wollen.

Beispiele
’ Ein und Ausschalten der Mauszeiger-Ereignisse
MyMouseObj.sendMouseEvents = ME_MOVE, SET_BITS
MyMouseObj.sendMouseEvents = ME_MOVE, CLEAR_BITS

’ Lesen des sendMouseEvents-Werts und Prüfen, ob ME_MOVE
’ gesetzt ist
DIM bits as WORD
bits = MyMouseObj.sendMouseEvents (0)
IF bits AND ME_MOVE THEN MsgBox "Ja"

’ Prüfen ob ME_MOVE ODER ME_LEFT_UP gesetzt ist
IF bits AND (ME_MOVE OR ME_LEFT_UP) THEN MsgBox "Ja"

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 203

17.4 Typische Situationen

Dieser Abschnitt beschreibt die Behandlung typischer Fälle, die beim Arbeiten mit
der Maus auftreten können.

17.4.1 Behandlung der Mousebuttons

In diesem Abschnitt wird am Beispiel der linken Maustaste das typische Vorgehen
für diesen Fall erklärt.

Im UI-Code sollten wir nur die Bits im Feld sendMouseEvents setzen, die wir auch
wirklich benötigen. Das sind ME_LEFT_DOWN und ME_LEFT_UP, alle anderen
Mausereignisse werden dann vom Objekt ignoriert.

Canvas MyOutputObj
....
sendMouseEvents = ME_LEFT_DOWN + ME_LEFT_UP
OnMouseButton = ButtonPressed

End Object

Im Actionhandler unterscheiden wir mit einer On - SWITCH Anweisung zwischen
den beiden Ereignissen. Außerdem müssen wir beim Drücken der linken
Maustaste die Maus "grabben" (GrabMouse), sonst wird das Ereignisse
"Loslassen" nicht an den Handler weitergeleitet. Das ist eine GEOS-intere
Optimierungsfunktion. Entsprechend müssen wir beim Loslassen die Maus wieder
freigeben (ReleaseMouse)

MOUSEACTION ButtonPressed
 ON event SWITCH

CASE ME_LEFT_DOWN:
sender.GrabMouse
’<... hier Aktionen ausführen ...>
End CASE

CASE ME_LEFT_UP:
sender.ReleaseMouse
’<..� hier Aktionen ausführen ...>
End CASE

End SWITCH

End Action

Statt des LEFT_DOWN-Ereignisses könnte man auch das LEFT_HOLD-Ereignis
abfragen. Das hätte den Vorteil, dass ein kurzer - eventuell versehentlicher - Klick
wirkungslos bleibt. Entsprechende Beispiele finden Sie im nächsten Kapitel.
Bei entsprechender Programmierung kann man auch zwischen einem
Einfachklick, einem Doppelklick und einem längeren Festhalten (HOLD) des
Mausbuttons unterscheiden.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 204

17.4.2 Arbeit mit dem OnMouseMove Handler

Wenn Sie während der Bewegung des Mauszeigers bestimmte Aktionen auslösen
wollen (z.B. etwas zeichnen, siehe nächster Abschnitt) müssen Sie einen
OnMouseMove Handler benutzen. Der Handler wird gerufen, sobald sich die Maus
über dem Objekt bewegt. Da das in schneller Folge passiert ist es sinnvoll, diesen
Handler nur freizuschalten, wenn er gebraucht wird. Ein sehr häufiger Fall ist, dass
er nur benötigt wird, während die linke Maustaste gedrückt ist. Diese Situation wird
im Folgenden beschrieben.

Im UI-Code setzen wir in sendMouseEvents nur die Bits ME_LEFT_HOLD und
ME_LEFT_UP, d.h. der OnMouseMove Handler ist zunächst inaktiv, weil wir das
Bit ME_MOVE nicht setzen.
Ob wir zum Starten der Aktion das Ereignis ME_LEFT_DOWN oder
ME_LEFT_HOLD verwenden hängt von der konkreten Situation und von den
Intentionen des Programmierers ab. In einem Zeichenprogramm wird häufig
ME_LEFT_DOWN bevorzugt während zum Bewegen von Objekten über den
Schirm ME_LEFT_HOLD der Vorzug gegeben wird.
Der Code verwendet ein VisObj, er ist aber genauso auf jedes andere Objekt,
dass die Maus unterstützt, anwendbar.

VisObj MyObj
....
sendMouseEvents = ME_LEFT_HOLD + ME_LEFT_UP
OnMouseButton = ButtonPressed
OnMouseMove = MoveIt

End Object

Im Actionhandler "ButtonPressed" müssen wir zusätzlich zum Beispiel aus dem
vorherigen Kapitel noch den OnMouseMove Handler freischalten bzw.
deaktivieren. Der Parameter SET_BITS sorgt dafür, dass das Bit ME_MOVE
gesetzt wird, alle anderen Bits aber nicht geändert werden. Analog sorgt
CLEAR_BITS dafür, dass das Bit ME_MOVE zurückgesetzt (auf Null gesetzt)
wird, ohne dass die anderen Bits beeinflusst werden.

MOUSEACTION ButtonPressed
 ON event SWITCH

CASE ME_LEFT_HOLD:
sender.GrabMouse
sender.sendMouseEvents = ME_MOVE, SET_BITS
’<... hier weitere Aktionen ausführen ...>
End CASE

CASE ME_LEFT_UP:
sender.ReleaseMouse
sender.sendMouseEvents = ME_MOVE, CLEAR_BITS
’<..� hier weitere Aktionen ausführen ...>
End CASE

End SWITCH
End Action

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 205

Der OnMouseMove Handler "MoveIt" wird nun nur gerufen, während die linke
Maustaste gedrückt ist. Die Anweisung "sender.GrabMouse" sorgt im Übrigen
auch dafür, dass dieser Handler auch dann gerufen wird, wenn der Nutzer die
Maus aus dem Objekt herausbewegt. Das ist sehr praktisch, da wir diesen Fall
dann nicht extra behandeln müssen. Das Grafiksystem von GEOS sorgt dabei
dafür, dass wir nicht über den Rand des zugehörigen Views (bzw. bei Canvas und
Image Objekten nicht über den Rand des Objekts) malen können.

MOUSEACTION MoveIt
’<... hier Aktionen ausführen ...>

End Action

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 206

17.4.3 Zeichnen auf den Bildschirm

Sehr häufig wollen wir mit der Maus etwas auf den Bildschirm zeichnen. Dieser
Abschnitt beschreibt, wie man dazu vorgehen muss. Wir setzen den folgenden UI-
Code voraus:

BitmapContent MyBitmap
....
sendMouseEvents = ME_LEFT_HOLD + ME_LEFT_UP
OnMouseButton = ButtonPressed
OnMouseMove = MoveIt

End Object

Beim Drücken der Linken Maustaste müssen wir jetzt unser Objekt zum "Screen"
machen. Damit gehen alle Grafik- und Textausgaben an dieses Objekt und
erscheinen somit auf dem Bildschirm. Analog müssen wir den Screen wieder
zurücksetzen, wenn die Maustaste losgelassen wird. Außerdem müssen wir
unbedingt den vorher aktiven Screen in einer (globalen) Variablen speichern.
Beim BitmapContent (wie im Beispiel) gehen die Grafik- und Textausgaben
parallel dazu in die Bitmap, so dass sie automatisch "gespeichert" werden. Bei
anderen Objekten, wie z.B. einem Canvas oder einem VisObj gehen sie nur auf
den Bildschirm und wir müssen selbst dafür sorgen, dass unser "Ergebnis" auf
geeignete Weise gespeichert wird.
Weil wir ein BitmapContent verwenden brauchen wir die Maus nicht zu Grabben
und zu Releasen. Sobald eine Maustaste über einem VisContent- oder
BitmapContent gerückt und festgehalten wird gehen alle Mausereignisse an
dieses Objekt, auch wenn der Mauszeiger das zugehörige View zwischenzeitlich
verlässt.

DIM oldScreen as Object ’ Zur Veranschaulichung rot

MOUSEACTION ButtonPressed
 ON event SWITCH

CASE ME_LEFT_HOLD:
sender.sendMouseEvents = ME_MOVE, SET_BITS
oldScreen = Screen
Screen = sender
’< ... mehr ..>
End CASE

CASE ME_LEFT_UP:
sender.sendMouseEvents = ME_MOVE, CLEAR_BITS
Screen = oldScreen
’< ... mehr ..>
End CASE

End SWITCH

End Action

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 207

Zur Demonstration wollen wir eine "Gummilinie" implementieren. Dazu benötigen
wir globale Variablen. X0 und y0 sind der Startpunkt, x1, und y1 der sich mit der
Mausbewegung ändernde Endpunkt der Linie. OldScreen soll den beim Aufruf des
Maushandlers aktiven Screen zwischenspeichern.

DIM x0, y0, x1, y1
DIM oldScreen as Object ’ Zur Veranschaulichung rot

Beim Drücken der linken Maustaste müssen wir die Linienkoordinaten auf die
aktuelle Mausposition setzen. Wir stellen den MixMode MM_INVERT ein, der wie
für eine Gummilinie gemacht ist. In diesem Modus werden die Pixels, auf die
Linien und andere Grafikausgaben wirken, nicht mit der Vordergrundfarbe
überschrieben, sondern die Farbcodes werden invertiert. Das hat zwei
Konsequenzen. Erstens ist die Linie immer zusehen, egal welche Farbe der
Hintergrund hat und zweitens bewirkt ein zweimaliges Zeichnen der gleichen Linie,
dass sie wieder verschwindet. Das ist genau das, was wir brauchen.
Schließlich stellen wir noch eine Linienbreite von 8 Pixeln ein und zeichnen sie
erstmalig. In unserem Fall ergibt das nur einen Punkt auf dem Schirm, der aber
nötig ist, weil der OnMove-Handler ihn wieder löscht.
Der fertige Codeabschnitt sieht also so aus:

CASE ME_LEFT_HOLD:
sender.GrabMouse
sender.sendMouseEvents = ME_MOVE, SET_BITS
oldScreen = Screen
Screen = sender
x0 = xPos : y0 = yPos
x1 = xPos : y1 = yPos
graphic.MixMode = MM_INVERT
graphic.lineWidth = 8
Line x0, y0, x1, y1
End CASE

Der OnMove Handler hat nun nur wenig zu tun. Unser Objekt ist noch der Screen.
Die erste Line Anweisung löscht die aktuelle Line vom Bildschirm. Das geht, weil
wir den MixMode MM_INVERT eingestellt haben. Dann speichern wir die neuen
Endkoordinaten und zeichnen die Line erneut.

MOUSEACTION MoveIt
Line x0, y0, x1, y1
x1 = xPos
y1 = yPos
Line x0, y0, x1, y1

End Action

Etwas schneller - und damit weniger anfällig gegen Flackern - wäre folgende
Sequenz:

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 208

Line x0, y0, x1, y1
Line x0, y0, xPos, yPos ’ Koordinaten beachten!
x1 = xPos
y1 = yPos

Beim Loslassen der Maustaste löschen wir zuerst die vorhandene Linie, stellen
den "normalen" MixMode MM_SET ein und zeichnen die Line dann permanent in
weißer Farbe. Schließlich setzen wir den Screen zurück.

CASE ME_LEFT_UP:
sender.ReleaseMouse
sender.sendMouseEvents = ME_MOVE, CLEAR_BITS
Line x0, y0, x1, y1
graphic.MixMode = MM_SET
INK WHITE
Line x0, y0, x1, y1
Screen = oldScreen ’ nicht vergessen!
End CASE

Wichtige Hinweise:

Wir müssen der Zuweisung der globalen Screen-Variablen große Aufmerksamkeit
widmen, insbesondere wenn Sie mehrere Objekte haben, die Grafik ausgeben
können (z.B. ein VisContent und/oder mehrere VisObj-Objekte). Deswegen der
scheinbar umständliche Weg mit der globalen Variablen oldScreen. Vergessen wir
das "Zurücksetzen" des Screens kann GEOS crashen - entweder gleich oder beim
Beenden des Programms.

Außerdem sollten wir uns in einer globalen Variablen merken, dass die Maustaste
gedrückt ist und dies im OnMove Hander abfragen. Der Grund ist, dass nach dem
Loslassen der Maustaste noch ein OnMove Event in der Wartschlange sein
könnte, dass dann auf den falschen Screen zeichnet. Die folgenden Codezeilen
sind an den entsprechenden Stellen einzufügen.

DIM mouseDown ’ globale Variable

’ Im ME_LEFT_HOLD-Zweig:
mouseDown = TRUE

’ Im ME_LEFT_UP-Zweig:
mouseDown = FALSE

’ Im MoveIt Handler:
IF mouseDown = FALSE THEN RETURN

Weitere Beispiele zum Thema Maushandling finden Sie bei der Beschreibung der
Objekte VisContent und VisObj.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 209

17.4.4 Behandeln von MouseOver Ereignissen

Gelegentlich ist es sinnvoll einfach nur zu wissen, ob sich die Maus über dem vom
Objekt eingenommen Bildschirmbereich befindet oder nicht. Diesem Zweck dient
der OnMouseOver Handler. Er wird gerufen, wenn die Maus den Bereich des
Objekts betritt (event = ME_ENTER) oder ihn verlässt (event = ME_LEAVE).

Beachten Sie, dass das Ereignis "Verlassen des Objektsbereichs" nur gesendet
wird, wenn das Objekt die Maus gegrabbt hat. Ausnahmen sind die Objekte
VisContent und BitmapContent. Sie senden dieses ME_LEAVE-Ereignis in jedem
Fall.

Eine typische Implementation könnte also wie folgt aussehen. Das Objekt stellt
eine gelbe Ellipse dar, die rot wird, wenn sich der Mauszeiger über dem Objekt
befindet.

UI-Code:
Canvas Area
fixedSize = 200, 100
sendMouseEvents = ME_ENTER + ME_LEAVE
OnMouseOver = OverHandler
OnDraw = DrawHandler

End Object

BASIC-Code:
DrawAction DrawHandler
Rectangle 0, 0, MaxX, MaxY, Black
Fillellipse 2, 2, MaxX-2, MaxY-2, Yellow

End Action

Im Handler für den Mauszeiger machen wir zunächst das das Canvas-Objekt zum
Screen, grabben uns die Maus (damit das ME_LEAVE-Ereignis gesendet wird)
und zeichnen dann eine rote Ellipse. Beim Verlassen des Objektbereichs machen
wir die Ellipse wieder gelb, setzen den Screen zurück und geben die Maus wieder
frei.

MouseAction OverHandler
ON event Switch
case ME_ENTER
Screen = sender
Sender.GrabMouse
FillEllipse 2, 2, MaxX-2, MaxY-2, RED
End CASE

case ME_LEAVE
FillEllipse 2, 2, MaxX-2, MaxY-2, YELLOW
Screen = NullObj()
Sender.ReleaseMouse
End CASE

End SWITCH
End Action

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 210

Das nächste Beispiel für einen OnMouseOver-Handler gibt eine Information an ein
Textobjekt aus, je nachdem, ob sich die Maus über dem Objekt befindet oder
nicht.

MouseAction OverHandler
ON event Switch
case ME_ENTER
Sender.GrabMouse
InfoText.text$ = "Maus ist über dem Objekt"
End CASE

case ME_LEAVE
InfoText.text$ = ""
Sender.ReleaseMouse
End CASE

End SWITCH
End Action

Hinweise / Technische Details
1. Um zu erkennen, ob der Mauszeiger gerade den Objektbereich betritt oder

verlässt muss sich das Objekt merken, ob der Mauszeiger vorher innerhalb
oder außerhalb der Grenzen des Objekts war. Die Information, dass sich der
Mauszeiger außerhalb der Grenzen des Objekts befindet bekommt es aber nur,
wenn es die Maus gegrabbt hat. Unterlassen Sie das Grabben der Maus beim
Betreten des Objekts, so erkennt das Objekt nicht mehr, wenn der Mauszeiger
seine Grenzen verlässt. Ein erneutes Betreten des Objektbereichs wird daher
auch nicht erkannt und die entsprechende Message wird nicht noch einmal
gesendet.
Ausnahmen sind hier wieder das VisContent und das BitmapContent Objekt.
Sie erhalten die Information "Objektbereich verlassen" bzw. ".. betreten" in
jedem Fall.

2. Bewegt der Nutzer die Maus so schnell, dass sie aus dem Objektbereich direkt
in das Fenster eines anderen Programms springt (ohne dass noch ein
Mausereignis innerhalb des eigenen Programms erzeugt wird), so wir das
Ereignis "Objektbereich verlassen" zunächst nicht gesendet. Es wird
stattdessen gesendet, wenn der Mauszeiger das Hauptfenster unseres
Programms wieder betritt. Das ist kein Fehler von R-BASIC, sondern eine
Eigenschaft des GEOS-Systems.

3. Die Parameter xPos und yPos des OnMouseOver-Handlers enthalten für die
Objekte VisContent und BitmapContent stets den Wert Null. Für alle anderen
Objekte enthalten Sie die Koordinaten, bei denen das Objekt betreten bzw.
verlassen wurde. Das ist im Allgemeinen dicht am Rand des Objekts.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 211

17.4.5 Abfrage der Tastatur

Gelegentlich muss man in einem Maushandler unterschiedliche Operationen
auslösen, je nachdem, ob gleichzeitig eine bestimmte Taste auf der Tastatur
gedrückt ist oder nicht. Insbesondere die Steuertasten wie Shift, Ctrl (Strg) usw.,
die mit GetKeyState abgefragt werden können, sind hier interessant.

GetKeyState liefert einen Word-Wert, dessen einzelne Bits die folgende
Bedeutung haben:

Konstante (Shift-State) Wert (hex.) Bedeutung
– 1 &h01 Feuertaste 1 am Joystick
– 2 &h02 Feuertaste 2 am Joystick
KS_RSHIFT 4 &h04 Rechte Shift-Taste
KS_LSHIFT 8 &h08 Linke Shift-Taste
KS_RCTRL 16 &h10 Rechte Strg-Taste
KS_LCTRL 32 &h20 Linke Strg-Taste
KS_RALT 64 &h40 Rechte Alt-Taste
KS_LALT 128 &h80 Linke Alt-Taste

Konstante (Toggle-State) Wert Bedeutung
KS_SCROLL_LOCK 256 (&h100) Scroll-Lock-Taste (Rollen) eingerastet
KS_NUM_LOCK 512 (&h200) Num-Lock-Taste eingerastet
KS_CAPS_LOCK 1024 (&h400) Shift-Lock Taste eingerastet

Zur Abfrage der Bits muss man die logische AND Funktion verwenden:

’Abfrage ob eine Shift-Taste gedrückt ist
IF GetKeyState AND (KS_LSHIFT OR KS_RSHIFT) THEN

’ Abfrage ob die NUM-Lock Taste gedrückt ist
IF GetKeyState AND KS_NUM_LOCK THEN

Weitere Informationen zu GetKeyState finden Sie im Programmier-Handbuch.

Zur Tastaturabfrage innerhalb von Maushandlern eignen sich außerdem die
folgenden Anweisungen bzw. globale Variablen:

GetKey
GetKeyLP Globale Variablen, die die aktuell bzw. zuletzt gedrückte Taste

enthalten. Das kann ein ASCII-Code oder bei Steuertasten wie F1
ein erweiterter Code (> 256) sein.

Inkey$ Liest ein einzelnes Zeichen von der Tastatur.
Details dazu finden Sie an den entsprechenden Stellen im Programmier-
Handbuch. Alternativ können Sie auch den Tastaturhandler des Objekts benutzen,
falls es einen besitzt, um über den Zustand der Tastatur auf dem Laufenden zu
sein. Bitte benutzen Sie nicht die Anweisungen Input bzw. InputBox. Das kann zu
Konflikten oder zu unerwartetem Verhalten führen.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 212

17.5 Utility Methoden

Methode Aufgabe
TestInside Prüft ob ein Koordinatenpaar im Objektbereich liegt
TestInsideAC Prüft ob ein Koordinatenpaar im Objektbereich liegt

Syntax im BASIC Code: <z> = <obj>.TestInside (x, y)
 <z> = <obj>.TestInsideAC (x, y)

<z>: numerische Variable
Return: z ist Null, wenn das Koordinatenpaar innerhalb des Objekts liegt

z ist größer als Null, wenn nicht

Die beiden Methoden prüfen, ob ein Koordinatenpaar im vom Objekt überdeckten
Bildschirmbereich liegt oder nicht. TestInside setzt voraus, dass die linke obere
Ecke des Objekts die Koordinaten (0; 0) hat. Das ist das gleiche Koordinaten-
system, dass verwendet wird, wenn das Objekt der Screen ist (Vergleiche 17.4.3
Zeichnen auf den Bildschirm). Das heißt, die x-Koordinate liegt außerhalb des
Objekts wenn gilt: x < 0 oder x > object.xSize. Analoges gilt für die y-Koordinate.
TestInsideAC (AC = absolute coordiates, absolute Koordinaten) berücksichtigt die
Position des Objekts innerhalb des übergeordneten Fensters. Das heißt, die x-
Koordinate liegt außerhalb des Objekts wenn gilt: x < object.xPosition oder
x > (object.xPosition + object.xSize). Analoges gilt für die y-Koordinate.
TestInside bzw. TestInsideAC sind dabei sehr viel schneller als die manuelle
Abfrage der Positionen entsprechend den obigen Beziehungen.
Außerdem enthält der zurückgelieferte Wert Informationen
darüber, wo genau sich das Koordinatenpaar relativ zum
Objekt befindet. Das Bild rechts veranschaulicht das. Der
Wert ist die Summe aus folgenden Informationen:

1: Die y-Koordinate liegt oberhalb des Objekts
2: Die x-Koordinate liegt links vom Objekt
4: Die x-Koordinate liegt rechts vom Objekt
8: Die y-Koordinate liegt unterhalb des Objekts

02 4

13 5

810 12

Liegt das Koordinatenpaar links oberhalb des Objekts beträgt der zurückgelieferte
Wert 1 + 2 = 3.
Diese Informationen können mit der logischen Operation AND abgefragt werden.
Der folgende Code fragt ob, ob die x-Koordinate rechts vom Objekt liegt. Die Print-
Anweisung wird also für die Fälle 5, 4 und 12 ausgeführt:

z = MyObj.TestInside(x, y)
IF z AND 4 THEN Print "Rechts vom Objekt"

Wenn Sie nur die Information benötigen, ob sich der Mauszeiger innerhalb oder
außerhalb des Objekts befindet können Sie auch einen OnMouseOver-Handler
verwenden und die Information in einer globalen Variablen speichern. Beachten
Sie, dass Sie dazu gegebenenfalls die Maus grabben müssen.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Maushandling - 213

(Leerseite)

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 214

18 Abwärtskompatibilität

18.1 Der klassische BASIC Modus

Ältere, nicht objekt-orientierte BASIC Programme besitzen ein "Hauptprogramm",
das beim Start des Programms automatisch ausgeführt wird. Außerdem gibt es
einen vordefinierten Bildschirm auf die alle Text und Grafikausgaben erfolgen. R-
BASIC kann dieses Verhalten simulieren, so dass das Übertragen älterer
Programme nach R-BASIC vereinfacht wird. Dazu gibt es die Anweisung
ClassicCode.

Syntax: ClassicCode

ClassicCode muss vor der ersten ausführbaren Anweisung (z.B. Print) im
Quelltext stehen. Fall Sie Include-Anweisungen verwenden muss ClassicCode
nach den Include-Anweisungen stehen.

Die Anweisung ClassicCode bewirkt folgendes:
• Das Scheiben von Code außerhalb von Routinen (das klassische Haupt-

programm) wird zugelassen.
• Dieser "klassische" Code wird beim Start des Programms automatisch

ausgeführt.
• R-BASIC legt beim ersten Start des klassischen Programms ein paar Objekte

an, damit Text und Grafik-Anweisungen arbeiten können. Konkret sind das ein
Primary mit einem View und einem BitmapContent Objekt der Größe 640x400
Pixel mit 256 Farben. Einmal angelegt können Sie diese UI-Objekte ändern
oder ergänzen, wenn Sie wollen.

Hinweis: Auch unter objekt-orientierten Programmen gibt es das Problem, dass
beim Start des Programms automatisch Code ausgeführt werden muss. Die
Lösung für dieses Problem unter R-BASIC ist, einen OnStartup Handler für das
Application-Objekt zu programmieren. Details dazu finden Sie im Objekthandbuch,
bei der Beschreibung des Application Objekts (Kapitel 4.1).

18.2 Zeilennummern

Viele ältere BASIC-Programme lesen sich etwa so:

10 Print "Bitte geben Sie eine Zahl ein"
20 INPUT Z
30 IF Z < 5 THEN PRINT "Unter Fünf"
40 GOTO 10

Die Zahlen am Beginn jeder Zeile werden als Zeilennummern bezeichnet und sind
bei älteren BASIC-Interpretern lebensnotwendig. R-BASIC kommt gänzlich ohne
Zeilennummern aus, zur Definition von Sprungzielen gibt es den LABEL Befehl.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 215

Achtung! Verwechseln Sie diese im Code vereinbarten Zeilennummern nicht mit
den im Editorfenster angezeigten Zeilennummern!

R-BASIC kann jedoch mit Zeilennummern umgehen (Bei GOTO, GOSUB und
RESTORE), so dass ältere Programme einfacher nach R-BASIC zu übertragen
sind. Dazu müssen Sie die Zeilennummern aber explizit im Programm
vereinbaren. Beispielsweise könnten Sie obiges Programm direkt so eingeben,
wie es oben steht. Es geht aber auch folgende Variante:

10 Print "Bitte geben Sie eine Zahl ein"
INPUT Z
IF Z < 5 THEN PRINT "Unter Fünf"
GOTO 10

Wesentlich besser ist aber diese Form:

Label restart
Print "Bitte geben Sie eine Zahl ein"
INPUT Z
IF Z < 5 THEN PRINT "Unter Fünf"
GOTO restart

Hinweis: R-BASIC prüft die Gültigkeit von Zeilennummern nicht! Mehrfach
definierte Zeilennummern werden nicht erkannt! Die Verwendung von
Zeilennummern, die nicht existieren (also nicht explizit angegeben wurden) führt
aber zu einem Compilerfehler.

Die Verwendung von Zeilennummern ist mit den Befehlen GOTO, GOSUB und
RESTORE möglich.

Syntaxvariante Beispiel
GOTO Zeilennummer GOTO 1000
ON <Ausdruck> GOTO <Zeilennummern> ON x+5 GOTO 10, 20, 30
GOSUB Zeilennummer GOSUB 1000
ON <Ausdruck> GOSUB <Zeilennummern> ON x-1 GOSUB 790, 20, 50
RESTORE Zeilennummer RESTORE 240

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 216

18.3 Kompatibilität mit dem KC-85-BASIC

Das folgende Kapitel ist für Nutzer interessant, die einen KC-85 Homecomputer
besitzen oder besessen haben oder aus einem anderen Grund ein KC-85
Programm nach R-BASIC portieren wollen. R-BASIC ist weitgehend abwärts-
kompatibel zum BASIC des KC-85/3 und KC-85/4, so dass reine KC-BASIC-
Programme ohne größere Probleme laufen sollten.

Hinweise zur Portierung von KC-85 BASIC Programmen

Erforderliche Einstellungen
R-BASIC ist nicht als KC-Emulator konzipiert. Insbesondere steht die Hardware
des KC-85 nicht zur Verfügung und wird auch nicht emuliert. Mit der
Systemvariablen kc85Features können Sie R-BASIC trotzdem dazu bringen, sich
in bestimmten Situationen wie der KC-85 zu verhalten. In diesem Modus können
Sie weiterhin alle R-BASIC Befehle verwenden. Ausnahme sind einige
Farbbefehle, da auf dem KC-85 nur maximal 16 Farben möglich sind.
Zusätzlich müssen Sie bestimmte Bedingungen einhalten. Dazu gehört, dass Sie
als Screen eine 8Bit Bitmap mit aktivierter Palette (idealer Weise 640x512 Pixel)
verwenden sowie das Koordinatensystem drehen. Wie man das macht und
weitere notwendige Einstellungen finden Sie in der Beispieldatei "KC 85 Demo" im
Ordner "R-BASIC\Beispiel\Erste Schritte". Einige Details der Implementation
verlassen sich darauf, dass die im Beispiel aufgeführten Initialisierungsschritte
ausgeführt wurden.

Farben
Auf dem KC-85 sind nur 8 Hintergrundfarben (Farbcodes 0 bis 7) und 16
Vordergrundfarben (Farbcodes 0 bis 15 und 16 bis 31) möglich. Die Farbtöne von
Vordergrund- und Hintergrundfarben unterscheiden sich, so dass insgesamt 24
verschieden Farben möglich sind. Werden die Farbcodes 16 bis 31 für die
Vordergrundfarbe verwendet, so werden die entsprechenden Pixel blinkend
dargestellt. Intern wird das folgendermaßen so realisiert:
• R-BASIC konvertiert die KC-Farbindizes intern in eine Farbe aus dem RGB-

Würfel der GEOS Standardpalette, die den originalen KC-Farben möglichst
nahe kommt. Eine entsprechende Zuordnung finden Sie im Anhang.

• Als Screen wird eine 8 Bit Bitmap mit Palette verwendet. R-BASIC stellt eine
spezielle Palette ein, die diese Farben enthält. Das Blinken der Vordergrund-
farben wird über einen Timer realisiert, der im Hintergrund etwa 2 Mal pro
Sekunde die Palette der Screen-Bitmap modifiziert und die Bitmap neu
dargestellt.

Variablen
Auf dem KC-85 werden Variablen bei ihrer ersten Verwendung definiert. Nur
Felder müssen mit DIM angegeben werden. Unter R-BASIC müssen Sie alle
Variablen zunächst mit DIM vereinbaren. Beachten Sie, dass auf dem KC nur die
ersten beiden Buchstaben einer Variablen von Bedeutung sind! WE ist die gleiche
Variable wie WELT und AL$ die gleiche wie ALF$.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 217

IRM
Die Grafikausgabe des KC-85 erfolgt über einen Bildwiederholspeicher (IRM:
Image Repeat Memory). Er besteht aus dem Pixelspeicher ab Adresse 0, dem
Colorspeicher ab Adresse 10240, den Arbeitszellen des KC-Betriebssystems
CAOS ab Adresse 12800 und einem freien Bereich ab Adresse 14848.
Im Pixelspeicher ist in jedem Byte für 8 Pixel die Information abgelegt, ob die
Vordergrundfarbe oder die Hintergrundfarbe angezeigt werden soll. Der
Colorspeicher enthält in jedem Byte für jeweils 4x8 Pixel die zugehörige
Vordergrund- und die Hintergrundfarbe. Eine genaue Aufteilung des IRM sowie
Informationen dazu, welche der CAOS Arbeitszellen von R-BASIC benutzt werden
können, finden Sie im Anhang.
Aus BASIC heraus kann der IRM mit den Befehlen VPEEK und VPOKE (siehe
unten) angesprochen werden. R-BASIC stellt dafür einen eigenen Speicherblock
bereit. Je nachdem welche Bits in der Systemvariablen kc85Features gesetzt sind
löst ein VPOKE Befehl weitere Aktionen aus, die das Verhalten des KC-85
nachahmen.
Sie sollten auf jeden Fall den zu portierenden Code nach Peek, Poke, VPeek,
VPoke, Deek und Doke Befehlen durchsuchen um deren Funktion gegebenenfalls
anpassen zu können.

Zeilennummern
Klassische BASIC Programme benötigen Zeilennummern, R-BASIC nicht. R-
BASIC kann jedoch mit Zeilennummern umgehen, so dass Sie beim Portieren
eines Programms die Zeilennummern nicht entfernen müssen.
Im Gegensatz zum KC-BASIC übernimmt R-BASIC reine Kommentarzeilen nicht
in den Code. Folgende KC-Sequenz führt unter R-BASIC zu einem Fehler
(Zeilennummer existiert nicht) wenn der Befehl "GOSUB 1100" compiliert wird.

1100 ! Unterprogramm zur Anzeige
1110 Window : COLOR 15, 1: CLS

Ändern Sie den Code dann folgendermaßen:
! Unterprogramm zur Anzeige
1100 Window : COLOR 15, 1: CLS

Zeichensatz
Der Zeichensatz von KC und PC / R-BASIC unterscheiden sich an einige Stellen.
Insbesondere müssen Sie die deutschen Umlaute über ihren Code in einen String
einfügen, ein "ä" z.B. als "\125". Eine entsprechende Übersicht finden Sie im
Anhang, Kapitel H.

Zeichengenerator
Einer der Initialisierungsschritte ist das Einstellen des BlockGrafik Modus. Wenn
das Bit 9 in den kc85Features gesetzt ist kann R-BASIC erkennen, ob ein KC-85
Programm der Zeichengenerator des KC-85 ändert (Verwendung der Befehle
POKE bzw. VPOKE) und seinen eigenen Zeichengenerator entsprechend
anpassen. Wo der KC-Zeichengenerator liegt wird von den Arbeitszellen 14246
bis 14253 im IRM bestimmt, die mit dem Befehl VPOKE geändert werden können.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 218

Details dazu finden Sie im Anhang. Der Standard-Zeichengenerator liegt beim KC
im ROM auf den Adressen 60928 (&hEE00)bzw. 65024 (&hFE00). R-BASIC
erkennt, wenn das Programm den Zeichengenerator in den RAM (Adresse kleiner
49152 bzw. &hC000) verschiebt und überwacht die entsprechenden Adressen
dann. R-BASIC reagiert jedoch nicht adäquat, wenn das Programm die Adresse
des Zeichengenerators wieder in den ROM zurück verschiebt. Das kann sinnvoll
sein, wenn zwischenzeitlich wieder Buchstaben statt Grafikzeichen ausgegeben
werden sollen. Sie müssen diese Programmstellen finden und ändern, indem Sie
zwischenzeitlich auf den alternativen Zeichengenerator von R-BASIC wechseln.
Im Normalfall müssen Sie dafür an zwei Stellen im Programm VPOKE durch
BlockSelect ersetzen. Im eingangs genannten Beispiel ist das demonstriert.

Laufzeit
Läuft ein Programm zu schnell, z.B. in einer Spielschleife, so können Sie den
Befehl DELAY verwenden. Wenn Sie während der zu schnell laufenden Schleife
Strg-B drücken öffnet sich der R-BASIC Debugger und Sie können im Einzel-
schrittbetrieb die passende Position für die Delay-Befehle finden. Beachten Sie die
Dokumentation zum Delay-Befehl!

Nicht vollständig KC-kompatible Befehle
Einige wenige Befehle sind nicht vollständig KC-kompatibel programmiert, um die
Leistungsfähigkeit von R-BASIC nicht unnötig einzuschränken. In anderen Fällen
würde der Nutzen im Vergleich zum erforderlichen Aufwand einfach zu gering.
Chr$: LEN(Chr$(0)) liefert auf dem KC den Wert 1, in R-BASIC Null.
InStr: Bei der Übergabe von Leerstrings gibt es Unterschiede. INTSR("","X") und

INTSR("X","") erzeugen auf dem KC einen Laufzeitfehler, in R-BASIC
erhalten wir Null.

INPUT: Bei der Eingabe von Strings werden führende Leerzeichen vom KC-85-
BASIC ignoriert. R-BASIC übernimmt die Leerzeichen in den String.
Im KC-85-BASIC sind als Infotext nur Stringkonstanten zulässig, R-BASIC
akzeptiert auch Variablen und String-Ausdrücke.

Left$(),
Right$(): Ist der Längenparameter negativ, erzeugt der KC einen Laufzeitfehler, R-

BASIC liefert einen leeren String
Mid$(): Ist der Längenparameter negativ, erzeugt der KC einen Laufzeitfehler, R-

BASIC liefert alle Zeichen ab dem Start-Parameter (so als ob kein
Längenparameter angegeben wäre)

WINDOW:
Auf dem KC-85 hat der Grafikbildschirm eine feste Größe von 320 x 256
Pixeln. Da der Zeichensatz 8x8 Pixel groß ist, hat das Textfenster maximal
32 Zeilen zu je 40 Spalten. Unter R-BASIC kann der Bildschirm und somit
das Textfenster eine beliebige Größe haben.
Der Befehl WINDOW (ohne Parameter) stellt auf dem KC-85 ein Standard-
Fenster ein, dass oben und unten eine Zeile frei lässt. Das entspricht dem

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 219

Befehl WINDOW 1, 38, 0, 39. Unter R-BASIC stellt der Befehl WINDOW
(ohne Parameter) das maximal mögliche Fenster ein.
Auf dem KC erzeugen Window-Parameter, die nicht zum Bildschirm passen
(z.B. Anfangszeile < 0) einen Laufzeitfehler, in R-BASIC wird das Fenster
angepasst (abgeschnitten) oder es wird das maximale Fenster eingestellt.

LOCATE: Der KC erzeugt einen Syntax-Fehler zur Laufzeit, wenn die Koordinaten
ungültig sind. R-BASIC begrenzt die Koordinaten auf sinnvolle Werte und
arbeitet weiter.

POS: Der Befehl wurde im CsrPos umbenannt, damit der Bezeichner pos für
Variablen verwendet werden kann.

PRINT AT, INK, COLOR, PAPER : Auf dem KC in jeder Print-Anweisung nur ein
AT und eine Farbanweisung zulässig. In R-BASIC kann man diese
Anweisungen beliebig kombinieren.

PRINT - Steuercodes
In R-BASIC ist nicht definiert: &H14 (KeyKlick), &H16 (ShiftLock)
Folgende Codes arbeiten in R-BASIC nur innerhalb einer Zeile, während
sie beim KC auch zeilenübergreifend arbeiten können: &H16 (Insert),
&H17 (Delete) und &H08 (Clear Character)

WIDTH: Der Befehl wurde im KC_WIDTH umbenannt, damit der Bezeichner width
für Variablen verwendet werden kann.

SOUND: Der Befehl wurde im KCSOUND umbenannt, damit der Bezeichner
SOUND für einen leistungsfähigeren Sound-Befehl zur Verfügung steht. Die
Länge eines "Dauertons" ist auf 18 Minuten begrenzt.

LINE, CIRCLE, PSET, PRESET: Die Grafikbefehle schreiben nicht in den IRM,
weder in den Pixel- noch in den Color-RAM. Entsprechend kann es beim
Lesen dieser Speicherbereiche mit VPEEK abweichende Ergebnisse
geben.

VPOKE und VPEEK greifen auf einen von R-BASIC bereitgestellten Speicherblock
zu. Über die Systemvariable kc85Fetaures (siehe unten) kann eingestellt
werden, inwieweit R-BASIC versuchen soll, die damit verbundene Hard-
wareoperation des KC-85 nachzuahmen. In einigen Fällen gelingt das sehr
gut, in anderen eher weniger gut.

INP, OUT, WAIT: Diese hardwarenahen Befehle greifen auf die I/O-Ports des PC
zu. Die KC-Hardware wird nicht emuliert.

Nicht unterstützte KC-BASIC Befehle
Einige Befehle sind unter R-BASIC nicht sinnvoll (z.B. die Editorbefehle) oder
konzeptionell nicht möglich (z.B. der Aufruf von Z80 Maschinencode).
• Editor-Befehle und Speicherverwaltung

AUTO, BYE, CLOAD, CONT, CSAVE, DELETE, EDIT, FREE(), LINES, LIST,
NEW, RENUMBER, RUN, TRON, TROFF

• Hardware- oder Maschinenprogramm-Zugriffe:
JOYST, BLOAD, CALL, INPUT#, LIST#, LOAD#, SWITCH, WAIT, USR()

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 220

• Sonstige:
DEF_FN, KEY, KEYLIST, LET, FRE

• PTEST wird nicht unterstützt. Verwenden Sie stattdessen PGet.

Spezielle Befehle für die KC-Kompatibilität

kc85Features

Die Systemvariable kc85Features bestimmt das Kompatibilitätslevel von R-BASIC
gegenüber dem KC-85 BASIC. Die in der Tabelle unten aufgelisteten Funktionen
kann man einzeln ein- und ausschalten, da viele von ihnen R-BASIC einschränken
oder verlangsamen. Dazu enthält die Variable kc85Features Bitflags, das heißt,
jedes Bit hat eine eigene Bedeutung. Die Arbeit mit Bitflags ist im Kapitel 2.3.5.4
des Programmierhandbuchs beschrieben.
Die meisten Bits setzen voraus, dass der Ausgabescreen eine 8 Bit Bitmap mit
Palette ist. Ist diese Bedingung nicht erfüllt funktionieren einige Funktionen nicht
oder verhalten sich "seltsam".

Übersicht über die Bits in kc85Features

BitNr. Wert Aufgabe
0 1 (&h01) Print ignoriert Koordinatentransformation
1 2 (&h02) KC-85 Farben verwenden
2 4 (&h04) Blinken unterstützen
3 8 (&h08) VPOKE in den Pixel-RAM schreibt auch in die

Ausgabebitmap
4 16 (&h10) VPEEK aus dem Pixel-RAM liest aus der

Ausgabebitmap
5 32 (&h20) VPOKE in den Color-RAM schreibt auch in die

Ausgabebitmap
6 64 (&h40) VPEEK aus dem Color-RAM liest aus der

Ausgabebitmap
7 128 (&h80) VGet$ liest aus dem ASCII-Puffer im IRM
8 256 (&h100) CLS löscht den Pixel-, Color-RAM sowie den ASCII-

Puffer im IRM, PRINT und INPUT updaten den
ASCII-Puffer im IRM.

9 512 (&h200) KC-85 Zeichengenerator benutzen
10 1024 (&h400) Erstbelegung der Buchstabentasten groß
11 2048 (&h800) ASCII-Codes der Umlaute und Sonderzeichen von

der Tastatur in KC-Codes umwandeln
12 4096 (&h1000) INKEY$: ASCII-Codes der Steuertasten in KC-Codes

umwandeln
13 8192 (&h2000) Bit 3 der Arbeitszelle 14242 (&HB7A2) unterstützen
14 16344 (&h4000) Peek(509) liest den Tastencode
15 Immer Null. Kann nicht geändert werden.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 221

Nähere Beschreibung der einzelnen Bits
Bit 0 ermöglicht, dass das grafische Koordinatensystem seinen Ursprung links

unten hat, während der PRINT Befehl weiterhin mit der Zeilen- und
Spaltenzählung links oben beginnt, ohne dass die Buchstaben gespiegelt
werden.

Bit 1 bewirkt, dass den KC-Farbcodes 0 bis 31 Farben aus der GEOS-
Standardpalette zugeordnet werden, die denen des KC-85 entsprechen.

Bit 2 bewirkt, dass die Farben 16 bis 31 der Vordergrundfarbe blinkend dargestellt
werden. Dazu wird etwa 2 Mal pro Sekunde die Palette der Screen-Bitmap
modifiziert und die Bitmap neu dargestellt. Setzt voraus, dass das Bit 1
ebenfalls gesetzt ist. Falls Sie keine blinkenden Zeichen benötigen sollten
Sie dieses Bit auch nicht setzen.

Bit 3 bewirkt, dass VPOKE beim Schreiben in den Pixel-RAM auch in die
Ausgabebitmap schreibt. Die erzeugten Farben können aber vom Ergebnis
auf dem KC abweichen.

Bit 4 bewirkt, dass VPEEK beim Lesen aus dem Pixel-RAM den zu lesenden Wert
aus den Pixeldaten der Ausgabebitmap rekonstruiert. Ist das Bit nicht gesetzt
wird der Wert direkt aus dem IRM gelesen.

Bit 5 bewirkt, dass VPOKE beim Schreiben in den Color-RAM auch in die
Ausgabebitmap schreibt.

Bit 6 bewirkt, dass VPEEK beim Lesen aus dem Color-RAM den zu lesenden
Wert aus den Pixeldaten der Ausgabebitmap rekonstruiert. Der gelesene
Wert kann vom Ergebnis auf dem KC abweichen. Ist das Bit nicht gesetzt
wird der Wert direkt aus dem IRM gelesen.

Bit 7 bewirkt, dass VGet$ den Wert aus dem ASCII-Puffer im IRM liest statt aus
dem R-BASIC ASCII-Puffer. Setzt einen 40 Zeilen x 32 Zeichen - Screen
voraus.

Bit 8 bewirkt, dass PRINT, INPUT und CLS den ASCII-Puffer im IRM updaten.
CLS löscht außerdem den Pixel- und den Color-RAM. Setzt einen 40 Zeilen
x 32 Zeichen - Screen voraus.

Bit 9 bewirkt, dass der KC85 Zeichengenerator in den R-BASIC Zeichengenerator
gespiegelt und dabei gegebenenfalls skaliert wird, indem die
entsprechenden Arbeitszellen im IRM überwacht werden. Setzt einen aktiven
Blockgrafik-Modus mit einem 40 Zeilen x 32 Zeichen - Screen voraus. Die
Blockgrafikzeichen müssen quadratisch und ihre Größe durch 8 teilbar sein.
Ändert das KC-Programm den Zeichengenerator im RAM so passt R-BASIC
seinen eigenen Zeichengenerator automatisch an.

Bit 10 bewirkt, dass die Erstbelegung der Buchstabentasten wie beim KC die
Großbuchstaben sind.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 222

Bit 11 bewirkt, dass die ASCII-Codes der Umlaute und Sonderzeichen auf der
Tastatur für INPUT und INKEY$ in die entsprechenden KC-Codes
umgewandelt werden. Hinweis: Auf dem KC gibt es bei den Umlauten keine
Großbuchstaben.

Bit 12 bewirkt, dass INKEY$ bei den Steuertasten (Pfeiltasten, Einfg usw.) die KC-
Codes liefert. INPUT behandelt die Steuertasten immer automatisch korrekt.

Bit 13 bewirkt, dass das Bit 3 der Arbeitszelle 14242 (&HB7A2) im IRM
kontrolliert, ob Steuerzeichen (ASCII-Code < 32) "ausgeführt" oder als
druckbare Zeichen ausgegeben werden. Dazu wird das Bit
TS_DONT_EXEC_ CONTROLS in printFont.style angepasst.

Bit 14 bewirkt, dass der Befehl Peek(509) des Tastaturcode der aktuell
gedrückten Taste liefert. Die Speicherstelle mit der Adresse 509 (=&h1FD)
ist eine Arbeitszelle des CAOS Betriebssystem des KC-85.
Hinweis: Die R-BASIC Befehle GetKey bzw. GetKeyLP liefern nicht den KC-
Code sondern weiterhin den R-BASIC Code. Diese Codes unterscheiden
sich für Steuerzeichen. Will man sie verwenden muss man möglicherweise
die Abfrage entsprechend anpassen.

Bit 15 ist immer Null und kann nicht geändert werden.

VPOKE

VPOKE schreibt ein Byte in den IRM. In diesem Bereich liegt der Bildwieder-
holspeicher des KC-85 und die Arbeitszellen des KC Betriebssystems. Einige Bits
in der Systemvariablen kc85Fetaures bestimmen, ob VPOKE weitere Aktionen
auslöst oder einfach nur den Speicher beschreibt.
Eine genaue Aufteilung des IRM sowie Informationen dazu, welche der CAOS
Arbeitszellen von R-BASIC benutzt werden können, finden Sie im Anhang.

Syntax: VPOKE adr, val
adr: Adresse im IRM. Erlaube Werte sind 0 bis 16383
val: Zu schreibender Wert (Byte).

VPEEK

VPEEK liest ein Byte aus dem IRM. Die Bits 4 und 6 der Systemvariablen
kc85Features bestimmen, ob beim Lesen aus dem Pixel- bzw. Color-RAM der
IRM selbst gelesen werden soll oder ob VPEEK versuchen soll, den Wert aus den
Pixeldaten der Ausgabebitmap zu rekonstruieren.

Syntax: <numVar> = VPEEK adr
adr: Adresse im IRM. Erlaube Werte sind 0 bis 16383

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Abwärtskompatibilität - 223

PEEK(509)

Die Speicherstelle mit der Adresse 509 (=&h1FD) ist eine Arbeitszelle des CAOS
Betriebssystem des KC-85. Dort wird der Code der aktuell gedrückten Taste
abgelegt. Viele KC-BASIC Programme greifen direkt darauf zu. Das Setzen des
Bits 14 in der Systemvariablen kc85Features bewirkt, dass der Befehl Peek(509)
des Tastaturcode der aktuell gedrückten Taste liefert.

POKE 862, 1

Die Speicherstelle mit der Adresse 862 (=&h35E) ist eine Arbeitszelle des BASIC
Interpreters des KC-85. Ein Wert ungleich Null verhindert, dass der Nutzer den
Quellcode eines BASIC Programms ansehen kann (Listschutz). R-BASIC ignoriert
diese Zelle.

KC_WIDTH

KC_WIDTH (Breite, KC Kompatibilitätsbefehl) bestimmt die maximale Länge einer
Ausgabezeile. Dieser Befehl ist ursprünglich zur Arbeit mit Druckern gedacht und
wurde deswegen umbenannt. Der Originalbefehl im KC-85 BASIC lautet WIDTH.

Syntax: KC_WIDTH n
n: Länge der Ausgabezeile. Werden mehr als n Zeichen auf einmal

ausgegeben, wird nach n Zeichen jeweils ein Zeilenumbruch
eingefügt.

Beispiel:
KC_WIDTH 15

KCClear

KCCLEAR löscht den globalen Variablenspeicher, einschließlich String und HUGE
Variablen. Der Originalbefehl im KC-85 BASIC lautet CLEAR.

Syntax: KCClear

Beispiel:
KCClear

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Objekte individualisieren - 224

19 Objekte individualisieren

Es gibt Situationen, in denen es nötig ist, dass ein Objekt neben den vom System
vorgegebenen Daten weitere Informationen speichern muss. Ein einfaches
Beispiel ist ein Canvas-Objekt, das entweder einen Kreis oder ein Quadrat
zeichnen soll. Sie können die Information, ob ein Kreis oder ein Quadrat
gezeichnet werden soll, natürlich in einer globalen Variablen speichern. Das ist
aber nicht nur schlechter Stil sondern wird bei mehreren solchen Objekte auch
schnell sehr unübersichtlich und damit fehlernfällig.
Die bessere Lösung ist, die Information im Objekt selber zu speichern. R-BASIC
bietet Ihnen für diese Situation die Instancevariable privData. PrivData nimmt eine
Strukturvariable beliebigen Typs auf und speichert sie im Objekt selbst. Hier
können Sie z.B. ablegen, ob ein Kreis oder ein Quadrat gezeichnet werden soll.
Außerdem können Sie - wenn Sie wollen - die Größe, die Farbe und beliebige
weitere Informationen speichern.
Für einfache Fälle steht Ihnen bei Objekten der Klasse VisObj zusätzlich die
Instancevariable visDataValue zur Verfügung, die einen numerischen Wert
aufnehmen kann und beim VisObj-Objekt beschrieben ist.

Fortgeschrittene Programmierer können in einigen Situationen den Bedarf haben,
dass sie eine Routine erst dann aufrufen wollen, wenn der aktuelle Actionhandler
vollständig abgearbeitet ist. Typische Beispiele sind hier der OnPrint Handler (bei
dem man das Screen-Objekt nicht ändern darf) oder ein OnMouse~ bzw. der
OnKeyPressed Handler (die meist zeitkritisch sind). R-BASIC löst dieses Problem,
indem man für Objekte eigene, private ("custom") Handler definieren kann.
Actionhandler unterbrechen sich niemals, sondern werden immer nacheinander
abgearbeitet. Der Aufruf eines solchen Handlers führt also dazu, dass die aktuelle
Routine (genauer: der komplette aktuell laufende Handler) zuerst vollständig
abgearbeitet wird bevor der neue Handler ausgeführt wird. Um einen Custom
Handler für ein Objekt festzulegen verwenden Sie die Instancevariable
CustomHandler. Custom Handler müssen als CustomAction deklariert sein. Um
einen Custom Handler aufzurufen verwenden Sie die Methode CustomApply.

PrivData

PrivData ist für alle Klassen definiert. Sie nimmt eine einzelne Strukturvariable
(also maximal 3500 Bytes) auf. Diese Instancevariable ist zuweisungskompatibel
mit jeder Art von Struktur, es wird weder eine Typ- noch eine Größenprüfung
ausgeführt. Es ist daher vernünftig beim Schreiben und beim Lesen der Daten den
gleichen Struktur-Datentyp zu verwenden.
Schreiben: Sie müssen die Größe der zu schreibenden Daten angeben.

Verwenden Sie dazu die Funktion SIZEOF.
Lesen: Es werden so viele Bytes gelesen, wie die Variable auf der linken Seite

der Zuweisung aufnehmen kann. Enthält privData weniger Bytes, so
wird der Rest mit Nullen aufgefüllt.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Objekte individualisieren - 225

Es ist zulässig mehrfach hintereinander Strukturen verschiedenen Typs und
verschiedener Größe in die Instancevariable zu schreiben. R-BASIC optimiert
jedes Mal den verwendeten Speicher, so dass kein Platz verschwendet wird.

Syntax Schreiben: <obj>.privData = <struct>, size
Lesen: <structVar> = <obj>.privData

<struct>: Strukturausdruck beliebigen Typs
size Größe der Struktur
<structVar>: Strukturvariable des Typs, der beim Schreiben

 verwendet wurde.

Achtung! PrivData kann nicht im UI Code belegt werden! Wenn Sie wollen, das
privData am Programmstart mit vorgegebenen Werten belegt wird, müssen Sie
das im OnStartup- oder im OnInit-Handler tun.

Beispiel:
Ein Canvas-Objekt soll einen Kreis oder ein Quadrat in einer vorgegebenen Farbe
zeichnen. Wir benötigen:
- einen Strukturtyp, der die Informationen enthält,
- eine Routine, die die Werte setzt,
- ein Canvas-Objekt,
- einen OnDraw Handler für das Canvas Objekt,
- einen OnStartup Handler für das Application Objekt

Der Strukturtyp sei folgendermaßen definiert:
STRUCT ImgData
isCircle as Integer
color as Integer

End Struct

Zum Belegen der Instancewerte dient die folgende Routine. Die zweite Routine
(SetCanvasToRect) ist hier nicht aufgeführt.
SUB SetCanvasToCircle(col as Integer)
DIM pd AS ImgData
pd.isCircle = TRUE
pd.color = col

 DemoCanvas.privData = pd, SIZEOF(pd)
 DemoCanvas.Dirty ’ Neudarstellung auslösen
End Sub

Das Canvas-Objekt sei wie folgt definiert. Beachten Sie, dass wir privData nicht
definieren brauchen, es ist für alle Objekte automatisch verfügbar.
CANVAS DemoCanvas
OnDraw = DrawFigure
fixedSize = 70, 70

End Object

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Objekte individualisieren - 226

Unser Application-Objekt benötigt einen OnStartup Handler.
Application DemoApplication
Children = DemoPrimary
OnStartup = AppStartup

End OBJECT

Schließlich benötigen wir noch den OnDraw-Handler, der die privData-Werte
ausliest und verwendet sowie den OnStartup Handler für das Application-Objekt.
DRAWACTION DrawFigure
DIM priv as ImgData

priv = sender.privData
INK priv.color
IF priv.isCircle THEN
FillEllipse 10, 10, 60, 60

ELSE
FillRect 10, 10, 60, 60

END IF
End Action

SYSTEMACTION AppStartup
SetCanvasToCircle(LIGHT_RED)

END ACTION

CustomHandler

CustomHandler enthält den Namen des Actionhandlers, der mit der Methode
CustomApply aufgerufen werden soll.

Syntax UI- Code: CustomHandler = <Handler>
Schreiben: <obj>.CustomHandler = <Handler>

Ein Custom Handler muss als CustomAction deklariert sein:
Handler-Typ Parameter
CustomAction (sender as object, actionData as integer)

CustomApply

Die Methode CustomApply ruft den CustomHandler eines Objekts auf. Ihr wird ein
Integer-Wert übergeben, der an den Handler weitergereicht wird.

Syntax: <obj>.CustomApply actionData
actionData: Integerwert, der an CustomHandler übergeben wird.

R-BASIC Handbuch - Spezielle Themen - Vol. 3
Einfach unter PC/GEOS programmieren

Objekte individualisieren - 227

Beispiel (einfach, deswegen nicht sehr sinnvoll):

Ein Button mit einem ActionHandler und Primary mit einem CustomHandler.
BUTTON MyButton
Caption$ "Drück mich!"
ActionHandler = PressHandler

End Object

BUTTON MyPrimary
CustomHandler = CHandler

End Object

Der Actionhandler:
ButtonAction PressHandler
Print "Text 1"
MyPrimary.CustomApply 1
Print "Text 2"
MyPrimary.CustomApply -7
Print "Text 3"

End Action

Der CustomHandler wird erst ausgeführt, wenn der ActionHandler fertig ist
CustomAction CHandler
DIM i
IF actionData < 0 THEN i = RED : ELSE i = BLUE
Print Ink i;"DATA = ";actionData

End Action

Wenn der Nutzer den Button drückt erscheint folgendes:
Text 1
Text 2
Text 3
DATA = 1
DATA =-7

